
A Programming Model for Hybrid Collaborative
Adaptive Systems

OGNJEN SCEKIC , TOMMASO SCHIAVINOTTO, SVETOSLAV VIDENOV, MICHAEL ROVATSOS,
HONG-LINH TRUONG, DANIELE MIORANDI , AND SCHAHRAM DUSTDAR , (Fellow, IEEE)

O. Scekic, S. Videnov, H.-L. Truong, and S. Dustdar are with Distributed Systems Group, TU Wien, Vienna 1040, Austria
T. Schiavinotto and D. Miorandi are with U-Hopper, Trento 38121, Italy

M. Rovatsos is with Centre for Intelligent Systems and their Applications, University of Edinburgh, Edinburgh EH8 9YL, United Kingdom

CORRESPONDING AUTHOR: O. SCEKIC (oscekic@dsg.tuwien.ac.at)

ABSTRACT Hybrid Diversity-aware Collective Adaptive Systems (HDA-CAS) are a new generation of
socio-technical systems where both human and machine peers collectively participate in complex cognitive
and physical tasks. These systems are characterized by the fundamental properties of hybridity and collective-
ness, hiding from users the complexities associated with managing the collaboration and coordination of
human-machine teams. The SmartSociety platform is a set of integrated software components that jointly pro-
vide a number of advanced HDA-CAS functionalities. As part of the CAS initiative, we have developed a
programming model and Java APIs that make the use of those functionalities easy and accessible to applica-
tion developers. In this paper we present the SmartSociety programming model elements, including the prin-
cipal contributions – Collectives and Collective-based Tasks. We describe and discuss their functionality,
implementation and runtime environment. Finally, we qualitatively evaluate the programming model and the
language constructs with respect to the desired HDA-CAS properties.

INDEX TERMS Socio-technical systems, collective adaptive systems, crowdsourcing, social computing,
programming model

I. INTRODUCTION

We have recently witnessed the evolution of conventional
social computing and the appearance of new classes of
socio-technical systems, which attempt leveraging human
expertise for carrying out intellectually challenging tasks
[1]–[6]. This type of systems is opening up the possibility for
novel forms of interaction, collaboration and organization of
labor, building upon the complementary strengths of humans
and computers. The state-of-the-art, however, is limited to
systems using computers to support and orchestrate purely
human collaborations, usually based on patterns of work
that can be predictably modeled before the execution
(Section VI). The innovative approach considered in this
paper implies blurring the line between human and machine
computing elements, and considering them under a generic
term of peers – entities that provide different functionalities
under different contexts; participating in collectives – persis-
tent or short-lived teams of peers, representing the principal
entity performing the computation (task).

Peers and collectives embody the two fundamental proper-
ties of the novel approach: hybridity and collectiveness,
offered as inherent features of the system. Systems supporting
these properties perform tasks and computations transparently
to the user by assembling or provisioning appropriate collec-
tives of peers that will perform the task in a collaborative fash-
ion. We call the whole class of these emerging socio-technical
systems Hybrid Diversity-Aware Collective Adaptive Sys-
tems (HDA-CAS). Engineering and managing such systems
is a challenging task, as they present coordination and com-
munication problems that go well beyond what state-of-the-
art solutions can tackle. This is particularly apparent when we
consider participating humans not merely as computational
nodes providing a service at request, but put them on an equal
footing and allow them to actively drive computations.
In this paper we present the programming framework and

the API for accessing and using the SmartSociety1 Platform2,

1EU FP7 research project (www.smart-society-project.eu)
2www.smartcollectives.com

Received 31 October 2016; revised 23 March 2017; accepted 30 April 2017.
Date of publication 9 May 2017; date of current version 11 March 2020.

Digital Object Identifier 10.1109/TETC.2017.2702578

6

2168-6750� 2017 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.

See ht _tp://www.ieee.org/publications_standards/publications/rights/index.html for more information. VOLUME 8, NO. 1, JAN.-MAR. 2020

Authorized licensed use limited to: Universitaetsbibliothek der TU Wien. Downloaded on March 06,2020 at 07:14:22 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0001-6573-8274
https://orcid.org/0000-0001-6573-8274
https://orcid.org/0000-0001-6573-8274
https://orcid.org/0000-0001-6573-8274
https://orcid.org/0000-0001-6573-8274
https://orcid.org/0000-0002-3089-977X
https://orcid.org/0000-0002-3089-977X
https://orcid.org/0000-0002-3089-977X
https://orcid.org/0000-0002-3089-977X
https://orcid.org/0000-0002-3089-977X
https://orcid.org/0000-0001-6872-8821
https://orcid.org/0000-0001-6872-8821
https://orcid.org/0000-0001-6872-8821
https://orcid.org/0000-0001-6872-8821
https://orcid.org/0000-0001-6872-8821
www.smartcollectives.com

a novel HDA-CAS supporting a wide spectrum of collabora-
tion scenarios – from simple, independent crowdsourcing
tasks to fully human-driven collaborations involving non-
trivial execution plan composition with constraint matching
and human negotiations (e.g., ride-sharing, collaborative
software development).
The paper describes how the presented programming

framework design tackles the fundamental HDA-CAS nov-
elty requirements and showcases how the introduced lan-
guage constructs can be used to encode and execute hybrid
collaborations on the SmartSociety platform. In the previous
version of this paper [7] we presented the main concepts of a
programming model for HDA-CASs. The major additions
with respect to the previous work are: (i) the description of a
complete implementation of the presented model into an
actual, working framework; (ii) the contrivance and imple-
mentation of a set of demonstrative examples highlighting
the main functionalities and how they can be used to design
and manage HDA-CASs; and (iii) an evaluation of the frame-
work’s ability to effectively support application developers
in programming collective tasks.
The paper is organized as follows: In Section II, we pres-

ent the fundamental concepts of HDA-CAS systems and the
concrete executable context of the programming framework
– the SmartSociety HDA-CAS. In this section we also
define the fundamental design requirements that we later
use in the evaluation section. In Section III, the principal
programming model elements are introduced and their func-
tionality is described. Section IV presents the associated
programming API. The evaluation of the programming
model and the API is presented in Section V. Related work
is described in Section VI and contrasted to our approach.
Finally, Section VII concludes the paper and points out
future directions.

II. HYBRID COLLECTIVE ADAPTIVE SYSTEMS

A. CONCEPTS

The focus of our work is on technical support for performing
collective activities (tasks) using augmented hybrid collec-
tives. After analyzing the way the current state-of-the-art
agent-based systems, workflow systems and socio-technical/
crowdsourcing platforms combine human and machine/soft-
ware elements (peers) for performing complex collaborative
activities we were able to observe two general approaches:
modeling machine peers to resemble human peers, and
modeling humans to be able to cooperate with software
peers. The former approach is typical of agent-based sys-
tems, where complex software peers are modeled to imitate
human peers in an effort to simulate or delegate human
behavior/functionality. However, such approaches need to
make a large number of assumptions regarding the communi-
cation, representations, computational and coordination
mechanisms in order to bootstrap the collaborative activity.
We end up with elaborate computational agents, which are,
however, restricted exclusively to the foreseen, application-
specific collaboration scenarios.

The latter approach models the humans as machine elements
in an attempt to include humans into existing workflow/orches-
tration platforms. Through this simplification and reduction of
human peers to an API, we willingly renounce the extraordi-
nary cognitive and creative capabilities that a human can pro-
vide in order to include it in an existing system. Such
approaches are able to support complex collaborative activities
if the execution plan (execution steps, execution order and con-
ditions, executing roles) is known at design-time. Both
approaches seem to lack the versatility required when attempt-
ing to manage collective collaborations spanning both human
and software elements in the physical world, where the envi-
ronment, peers and the workflow itself are volatile. Therefore,
the challenge of SmartSociety was to design an HDA-CAS that
would be appropriate for such environments.
The following are therefore the principal defining properties

of the SmartSociety HDA-CAS which also needed to be
reflected in the programmingmodel as its design requirements:
(a) Collectiveness – Individual peer is secondary to the

group/team. The collective is the first-class entity man-
aged by the platform.

(b) Hybridity – The platform supports a mixture of differ-
ent types of peers (humans, software services, devices)
working in concert within the same collective.

(c) Diversity – The platform is able to manage heteroge-
neous peers towards a common collective goal, by
composing or aligning their individual diverging char-
acteristics, abilities and goals.

(d) Adaptivity – The platform is able to dynamically com-
pose and execute runtime (ad-hoc) workflows, as
opposed to executing static, predefined workflows.

(e) Human orchestration – Closely related to the previous
point, the human orchestration refers to possibility of
human peers determining and actively influencing (adapt-
ing) the workflow at runtime. This is especially important
for solving cognitive, creative, artistic problems.

(f) Privacy compliance – The platform discloses as little
private information about the peers as required to take
part in the collective activity. The peer’s preferences
and terms of participation are transparent and respected
by the platform.

Furthermore, the SmartSociety Platform was designed to
handle complex collaborative tasks, where the complexity is
not reflected in the numerosity of the participants, but the com-
plexity of the tasks. Unlike the embarrassingly-parallel tasks
typical of conventional crowdsourcing, we put focus on neigh-
borhood-scale collectives with up toOð103Þ participants.

B. IMPLEMENTATION – THE SMARTSOCIETY

PLATFORM

The SmartSociety platform, shown in Figure 1, is a software
framework intended for use by the following user roles:
(1) Users – external human clients or applications who need

a complex collaborative human-machine task performed.
(2) Peers – human or machine entities participating in task

executions managed by a platform application.

VOLUME 8, NO. 1, JAN.-MAR. 2020 7

Scekic et al.: A Programming Model for Hybrid Collaborative Adaptive Systems

Authorized licensed use limited to: Universitaetsbibliothek der TU Wien. Downloaded on March 06,2020 at 07:14:22 UTC from IEEE Xplore. Restrictions apply.

(3) Developers – external individuals providing the business
logic in form of programming code that is compiled and
executed on the platform as a platform application.

The platform acts as intermediary between users and peers,
providing a collaborative task execution environment and
workforce management functionality. Note that the same
physical person can act at the same time both as a user and a
peer. The platform offers a variety of commonly used coordi-
nation, orchestration, communication and incentivization
mechanisms as ready-made concepts exposed through the
programming API.
Interested human peers register their profiles with the plat-

form and enlist for performing different professional activi-
ties. The platform uses this data for locating and engaging
peers into different collaborative efforts. In case of human
peers, the platform asks for an explicit approval, enabling the
peer engagement under a short-term contractual relationship.
In case of a software peer, the services are contracted under
conventional service-level agreements (SLAs). Registered
users are the basis from which appropriate peers are selected
to take part in collectives, which then execute collaborative
tasks. A collective is composed of a team of peers along with
a collaborative environment assembled for performing a spe-
cific task. The environment consists of a set of software com-
munication and coordination tools. For example, as described
in [8], the platform is able to set up a predefined virtual com-
munication infrastructure for the collective members and pro-
vide access to a shared data repository (e.g., Dropbox folder).
The complete collective lifecycle is managed by the platform
in the context of a SmartSociety platform application
(Figure 1). A platform application consists of different mod-
ules, one of which is a SmartSociety program – a compiled
module containing the externally provided code that: a)
implements the desired business logic of the user; b)manages
the communication with the corresponding user applications;
and c) relies on libraries implementing the programming
model to utilize the full functionality of the platform. Through
a user application, users can submit task requests to the plat-
form. The user application communicates with the corre-
sponding platform application.

1) PLATFORM ARCHITECTURE & FUNCTIONALITY

A simplified, high-level view of the SmartSociety platform
architecture is presented in Figure 1. The rectangular boxes
represent the key platform components. The principal com-
ponent-interoperability channels are denoted with double-
headed arrows. Communication with peers is supported via
popular commercial services (e.g., Twitter, Dropbox,
Android cloud messages). User applications contact the plat-
form through the REST API component. All incoming user
requests are served by this module that dispatches them to
the appropriate SmartSociety program, which will be proc-
essing and responding to them. The program is a Java appli-
cation making use of SmartSociety platform’s programming
model libraries, which in turn expose the functionality of dif-
ferent platform components:
PeerManager (PM). Central peer data-store (peer-store) of

the platform.Manages all peer and application information and
allows privacy-aware access and sharing of the peer/collective
data among platform components and applications. Details on
how the PeerManager is implemented can be found in [9].
Orchestration Manager (OM). Component in charge of

orchestrating collaborative activities among human peers.
OM’s core functionalities [10] (also reflected in the program-
ming model) are: a) Composition – generating possible exe-
cution plans to meet user-set constraints and optimize
wanted parameters; and b) Negotiation – coordinating the
negotiation process among human peers leading to the
changes in the execution plan and the overall agreement and
ultimate acceptance of the plan.
Incentive Server (IS). An independent component that

monitors and motivates peer participation through controlled
interventions, using machine learning methods to adapt to
various contexts [11]. It supports two modes of operation: a)
Sustained incentivization over a longer period of time where
the IS algorithms monitor participation and through machine
learning determine optimal intervention times and types of
incentive messages that are sent to peers; and b) Per-task
incentivization, where actual SmartSociety applications
prompt incentivization via IS and determine the target group
and possibly intervention times.
Communication and Virtualization Middleware. The mid-

dleware named SMARTCOM is used as the primary means of
communication between the platform and the peers and among
the peers. It supports the typical messaging middleware func-
tionalities (delivery, routing, transformation) thus virtualizing
peers by homogenizing the communication with both human
and software-based peers to the remainder of the platform [8].
SMARTCOM is tightly integrated into the programming model,
where it is used to allow collective communication, peer nego-
tiations and setting up of collaborative environments.

III. PROGRAMMING FRAMEWORK

A. RUNTIME ENVIRONMENT & EXECUTION MODEL

The developer who wishes his/her application deployed on
the SmartSociety platform provides a set of classes
(Application, TaskRequestDefinition, Task

FIGURE 1. SmartSociety platform users and architecture. Pro-

gramming framework elements outlined.

8 VOLUME 8, NO. 1, JAN.-MAR. 2020

Scekic et al.: A Programming Model for Hybrid Collaborative Adaptive Systems

Authorized licensed use limited to: Universitaetsbibliothek der TU Wien. Downloaded on March 06,2020 at 07:14:22 UTC from IEEE Xplore. Restrictions apply.

Runner, SmartSocietyApplicationContext) in
a Java jar file. The provided classes specify: a) actual busi-
ness logic of the new application; b) the runtime context of
the application (e.g., initialization and configuration param-
eters for handlers (Section III-B, loading of predefined col-
lective kind definitions); c) the logic for interpreting and
(un)marshalling the requests and responses. Upon submis-
sion, a set of Docker containers are created. The main one
will be running the application. The submitted jar is injected
into this container. Remaining containers are created for
deploying other platform components. A new application
ID is generated and assigned to the application. The appli-
cation is then registered as a user with special access privi-
leges with other platform components. Finally, the runtime
initializes the context, the application-specific URL end-
point, and starts the application.
Whenever a request is received via the URL endpoint it is

interpreted according to the TaskRequestDefinition to
produce a new TaskRequest which represents the main
input for our programming model. Figure 2 illustrates this
process. For each request a thread is started, executing the
application’s arbitrary business logic from the TaskRun-

ner class. When this logic requires some collaborative proc-
essing the developer uses the programming model library
constructs to create and concurrently execute a Collective-
based Task (CBT) – an object encapsulating all the necessary
logic for managing complex collective-related operations on
the SmartSociety platform: team provisioning and assembly,
execution plan composition, human participation negotia-
tions, and finally the execution itself. During the lifetime of a
CBT, various Collectives related to the CBT are created and
exposed to the developer for further (arbitrary) use in the
remainder of the code outside of the context of the originat-
ing CBT or its lifespan. Developer can communicate with
the collectives, incentivize them, persist them, and combine
them to produce new collectives to pass as inputs to other
CBTs.

B. TASK MANAGEMENT

A collective-based task (CBT) is the element of the program-
ming model keeping the state and managing the lifecycle
of a collective task. A CBT instance is always associated
with a TaskRequest containing input data and possibly
a TaskResult containing the outcome of the task. Both
are very generic interfaces meant to hide from the program-
ming model the application-specific format of the input and
output data, respectively. In fact, the programming model is
designed to be task-agnostic. This is in line with the general
HDA-CAS principle that unconstrained collaboration should
be supported and preferred when possible. This design
choice was made to allow subsequent support of different
task models which will be interpretable by the application-
specific Orchestration Manager, or by human peers directly.
This is arguably at the same time a weakness of our
approach, making it vulnerable to possible accidental or pur-
poseful misinterpretations. However, we believe that it is a
necessary sacrifice to make in order to achieve an effective
inclusion of humans into hybrid collaborations.
A CBT can be processed in one of the two collaboration

models – (on demand and open call); or a combination of the
two, as specified by the developer. Table 1 lists the allowed
combinations and describes them in more detail.
At CBT’s core is a state machine (Figure 3) consisting of

states representing the eponymous phases of the task’s life-
cycle: provisioning, composition, negotiation
and execution. An additional state, continuou-

s_orchestration, is used to represent a process combin-
ing composition and negotiation under specific conditions, as
explained in Table 1. The collaboration model selection flags
are used in state transition guards to skip certain states. Each
state consumes and produces input/output collectives during

FIGURE 2. Using the SmartSociety programming framework.

TABLE 1. CBT Collaboration Models and Selection Flags.

on_demand = true ^ open_call = true
A collective of possible peers is first provisioned, then a set of possible
execution plans is generated. The peers are then asked to negotiate on
them, ultimately accepting one or failing (and possibly re-trying). The set
of peers to execute the plan is a subset of the provisioned collective but
established only at runtime.

on_demand = true ^ open_call = false
The expectedly optimal collective peers is provisioned, and given the
task to execute. The task execution plan is implicitly assumed, or known
before runtime. Therefore no composition is performed. Negotiation is
trivial: accepting or rejecting the task.

on_demand = false ^ open_call = true
“Continuous orchestration”. No platform-driven provisioning takes
place. The entire orchestration is fully peer-driven (by arbitrarily distrib-
uted arrivals of peer/user requests). The platform only manages and coor-
dinates this process. Therefore, neither the composition of the collective,
nor the execution plan can be known in advance, and vary in time, until
either the final (binding) agreement is made, or the orchestration perma-
nently fails due to non-fulfillment of some critical constraint (e.g., time-
out). Note that in this case the repetition of the process makes no sense,
as the process lasts until either success or ultimate canceling/failure.

on_demand = false ^ open_call = false
Not allowed/applicable.

VOLUME 8, NO. 1, JAN.-MAR. 2020 9

Scekic et al.: A Programming Model for Hybrid Collaborative Adaptive Systems

Authorized licensed use limited to: Universitaetsbibliothek der TU Wien. Downloaded on March 06,2020 at 07:14:22 UTC from IEEE Xplore. Restrictions apply.

its execution. All these collectives get exposed to the devel-
oper through appropriate language constructs (Listing 5) and
are subsequently usable in general program logic.
Each state is associated with a set of handlers with prede-

fined APIs that needs to be executed upon entering the state
in a specific order. The handlers registered for a specific
application are assumed to know how to interpret and pro-
duce correct formats of input and output data, and wrap them
into TaskRequest and TaskResult objects. By regis-
tering different handler instances for the states the developer
can obtain different overall execution of the CBT. For exam-
ple, one of the handlers associated with the execution

state is the ‘QoR’ (quality of result) handler. By switching
between different handler instances, we can produce different
outcomes of the execution phase. Similarly, by registering a
different handler, an OM instance with different parameters
can be used. The programming model libraries provide a set
of default handlers exposing the ground platform functionali-
ties, such as orchestration and negotiation algorithms pro-
vided by the Orchestration Manager or provisioning
algorithms (e.g., [12]). Concrete handlers are registered at
initialization for each CBT type used in the application.
Provisioning State. The input to the state is the CBT input

collective specified at CBT instantiation (often a predefined
collective representing all the peers accessible to the applica-
tion). In our case, the process of provisioning refers to find-
ing a set of human or machine peers that can support the
computation, while being optimized on e.g., highest aggre-
gate set of skills, or lowest aggregate price. See [12] for
examples of possible provisioning algorithms. Provisioning
is crucial in supporting hybridity in the programming model,
because it shifts the responsibility of explicitly specifying
peer types or individual peers at design time from the devel-
oper onto the provisioning algorithms executed at runtime,
thus making both human and machine-based peers eligible

depending on the current availability of the peers and the
developer-specified constraints. The bootstrapping aspect of
provisioning refers to finding and starting a software service,
or inviting a human expert to sign up for the participation in
the upcoming computation; and setting up the communication
topology among them via SMARTCOM (cf. Section III-E). The
output of the state is the ‘provisioned’ collective, that gets
passed on to the next state during the execution.
Composition State. The composition process calculates fea-

sible task execution plans, consisting of ordered activities
(steps) required to process the given task and associated per-
former peers. Generation of execution plans is usually a task-
specific, non-trivial problem involving advanced planning
and constraint satisfaction algorithms, going well beyond the
scope of this paper; the description of the currently offered
composition algorithms can be found in [10]. If there is no
requirement of optimality, then a human peer can be used to
compose an ad-hoc, non-optimal plan. From the programming
model’s perspective, however, it suffices to know the required
inputs and outputs of this state: the input is the ‘provisioned’
collective from the previous state, while the output is a list of
collectives ‘negotiables’, associated with composed execution
plans, which get passed on to the following state.
Negotiation State. Involves selecting one or more execu-

tion plans passed as inputs from the composition state
and enacting a negotiation process on them. If the state is
entered directly from the provisioning state, the execu-
tion plan is implied, and assumed to be implicitly understood
by participating peers. The negotiation is a complex collabo-
rative process involving human peers, members of the collec-
tive associated with the plan, expressing their participation
conditions and (potential) participation acceptance. How
exactly a negotiating process unfolds is guided by the negoti-
ating pattern specified by the developer. For example, the
pattern may stipulate that at a given time only one plan can
be actively negotiated, and that the participation in this plan
must be reached through the consensus of all peers belonging
to the associated collective. An alternative pattern may allow
negotiation of multiple plans in parallel, and termination of
the negotiation process as soon as one plan is accepted by a
simple majority. The output of the negotiation process is the
single ‘agreed’ collective and the associated execution plan.
Continuous Orchestration State. Continuous orchestration

(cf. Table 1) does not separate composition and negotiation,
but rather allows continuous switching between (re-)compos-
ing and negotiating. Each new task request submitted by user
re-triggers composition, allowing the peers to temporarily
accept plans and later withdraw, until the plan is ultimately
considered accepted and thus becomes ready for execution,
or ultimately fails. Note that repetition of this state is not
applicable, because repetition is generally done in case of
remediable failures, but in this case the orchestration lasts
until the execution starts (a non-revocable success) or a non-
revocable failure is detected (e.g., a ride to work makes no
sense after working hours have already begun). As continu-
ous orchestration is completely human-driven, the developer

FIGURE 3. CBT state diagram.

10 VOLUME 8, NO. 1, JAN.-MAR. 2020

Scekic et al.: A Programming Model for Hybrid Collaborative Adaptive Systems

Authorized licensed use limited to: Universitaetsbibliothek der TU Wien. Downloaded on March 06,2020 at 07:14:22 UTC from IEEE Xplore. Restrictions apply.

is expected to specify only the reference collective while the
planning and negotiations are handled by the peers. The out-
put is the ‘agreed’ collective (a subset of the input one) and
the associated execution plan.
As an example of real-world continuous orchestration,

assume a ride sharing scenario: users submit driving offers,
peers submit passenger offers. An execution plan in this case
is the description of the possible route along with information
on vehicle, driver and passengers for each route section. If
enough requests are submitted, a number of plans matching
hard (time/destination) constraints are generated. However, a
number of soft constraints influence the human negotiations:
drivers prefer different passengers (due to personal preferen-
ces or price); passengers prefer different rides depending on
the vehicle, fellow-passengers, cost, duration and the number
of transfers. All potential driver/passenger peers are allowed
to participate in negotiations for multiple plans in parallel,
and to accepting or withdraw from multiple plans while they
are valid. As soon as all required peers accept it, the plan is
considered agreed. However, the plan can exist in agreed
state, but still revert to non-agreed if some peers change their
mind before the actual execution takes place. Furthermore,
this affects other plans: if a passenger commits to participat-
ing in ride A, then ride B may become non-agreed if his pres-
ence was a required condition for executing the ride B. When
the actual plan (ride) finally starts executing, or its scheduled
time is reached, the plan is non-revocable; if it is in
addition in agreed state, it can get executed. Otherwise, the
orch_fail state is entered. More details on the supported
orchestration algorithms are provided in [10].
Execution State. The execution state handles the actual

processing of the agreed execution plan by the ‘agreed’ col-
lective. In line with the general HDA-CAS guidelines, this
process is willingly made highly independent of the devel-
oper and the programming model and let be driven autono-
mously by the collective’s member peers. Since peers can be
either human or software agents, the execution may be either
loosely orchestrated by human peer member(s), or executed
as a traditional workflow, depending on what the state’s han-
dlers stipulate. For example, in the simplified collaborative
software development scenario shown in Listing 5 both
CBTs are executed by purely human-composed collectives.
However, the testTask CBT could have been initialized
with a different type, implying an execution handler using a
software peer to execute a test suite on the software artifact
previously produced by the progTask CBT. Whether the
developer will choose software or human-driven execution
CBTs depends primarily on the nature of the task, but also
on the expected execution duration, quality and reliability. In
either case, the developer is limited to declaratively specify-
ing the CBT’s type (handlers), the required the termination
criterion and the Quality of Results (QoR) expectations. The
state is exited when the termination criterion evaluates to
true. The outcome is ‘success’ or ‘failure’ based on the value
of QoR metric. In either case, the developer can fetch the

TaskResult object, containing the outcome, and the eval-
uation of the acceptability of the task’s quality.
Fail States. Each of the principal states has a dedicated

failure state. Different failure states are introduced so that
certain states can be re-entered, depending on what the
selected adaptation policy specifies. Some failure states react
only to specific adaptation policies; some to none.

1) ADAPTATION POLICIES

An adaptation policy is used to enable re-doing of a particu-
lar subset of CBT’s general workflow with different func-
tionality and parameters, by changing/re-attaching different/
new handlers to the CBT’s states, and enabling transitions
from the failure states back to active states. The policies are
triggered upon entering failure states, as shown in Figure 3.
The possible transitions are marked with dotted lines in the
state diagram, as certain policies make sense only in certain
fail states. Adaptation policies allow for completely changing
the way a state is executed. For example, by registering a
new handler for the provisioning state a different
provisioning algorithm can be used. Similarly, a new
handler installed by the adaptation policy can in a repeated
negotiation attempt use the “majority vote” pattern for
reaching a decision, instead of the previous “consensus” pat-
tern. Natively supported predefined policies are described in
Table 2. Only a single adaptation policy is applicable in a
single failure state at a given time. If no policy is specified
by the developer, the ABORT policy is assumed (shown as
full-line transition in CBT state machine diagram).

C. COLLECTIVE MANAGEMENT

The notion of “collective” in HDA-CAS terminology some-
times denotes a stable group or category of peers based on
the common properties, but not necessarily with any per-
sonal/professional relationships (e.g., ‘Java developers’, ‘stu-
dents’, ‘Vienna residents’); in other cases, the term refers to
a team – a group of people gathered around a concrete task.
The former type of collectives is more durable, whereas the
latter one is short-lived. Therefore, we make following dis-
tinction in the programming model:
Resident Collective (RC). is an entity defined by a persistent

peer-store identifier, existing across multiple application exe-
cutions, and possibly different applications. Resident collec-
tives can also be created, altered and destroyed fully out of
scope of the code managed by the programming model. The

TABLE 2. CBT Adaptation Policies.

adaptation policy description

ABORT Default. Do nothing, and let the fail state lead
to total failure.

REPEAT Repeats the corresponding active state, with
(optionally) new handler(s).

REPROVISION Transition into provisioning state, with
(optionally) a new provisioning handler.

RECOMPOSE Repeat the composition, with (optionally)
a new handler.

VOLUME 8, NO. 1, JAN.-MAR. 2020 11

Scekic et al.: A Programming Model for Hybrid Collaborative Adaptive Systems

Authorized licensed use limited to: Universitaetsbibliothek der TU Wien. Downloaded on March 06,2020 at 07:14:22 UTC from IEEE Xplore. Restrictions apply.

control of who can access and read a resident collective is
enforced solely by the ‘peer-store’ (in our case the PeerMan-
ager component). For those resident collectives accessible
from the given application, a developer can read/access indi-
vidual collective members as well as all accessible attributes
defined in the collective’s profile. When accessing or creating
a RC, the programming model either passes to the peer store a
query and constructs the corresponding object from returned
peers, or passes an ID to get an existing peer-store collective.
In either case, in the background, the programming model
will pass to the peer-store its credentials. The peer store then
decides based on the privacy rules which peers to expose
(return). For example, for the requested collective with ID
‘ViennaResidents’ we may get all Vienna residents who are
willing to participate in a new (our) application, but not neces-
sarily all Vienna residents from the peer-store’s DB. By
default, the newly-created RC remains visible to future runs
of the application that created it, but not to other applications.
The peer-store can make them visible to other applications as
well. At least one RCmust exist in the application, namely the
collective representing all peers visible to the application.
Application-Based Collective (ABC). Differently than a

resident collective, an ABC’s life cycle is managed exclu-
sively by the SmartSociety application. Therefore, it is not
possible (and is meaningless) to access an ABC outside of
the application’s execution context. The ABCs are instanti-
ated: a) implicitly – by the programming model libraries as
intermediate products of different states of CBT execution
(e.g., ‘provisioned’, ‘agreed’); or b) explicitly – by using
dedicated collective manipulation operators to clone a resi-
dent collective or as the result of a set operation over existing

Collectives. Also differently than resident collectives, ABCs
are atomic and immutable entities for the developer, meaning
that individual peers cannot be explicitly known or accessed/
modified from an ABC instance. The ABCs embody the
principle of collectiveness, making the collective an atomic,
first-class citizen in our programming model, and encourag-
ing the developer to express problem solutions in terms of
collectives and collective-based tasks, rather than single
activities and associated individuals. Furthermore, as collec-
tive members and execution plans are not known at design
time, this enhances the general transparency and fairness of
the virtual working environment, eliminating subjective bias.
One of the reasons for introducing the concept of collec-

tives with the described properties is to prevent the User/
Developer from using individual human peers as mere com-
puting/processing nodes being assigned activities to perform,
instead favoring a more ethical (teamwork) approach. Further-
more, the distinction and existence of both RC and ABC
Collective models (Figure 4) allows a trade-off between
hand-picking the team members and the flexibility offered
between a platform-managed collective provisioned based on
user’s requirements. The rationale in the latter case is similar
to cloud computing – the user specifies the infrastructural
requirements and constraints and the platform takes care to
provision this infrastructure, without letting the user care
about which particular VM instances are used and changed.
Different use-cases, privacy and fairness policies may dictate
or favor the choice of one Collective type over the other.
For example, when assembling an input collective of experts
for a CBT, the User may require to use as source the RC repre-
senting the peers with whom the User had positive previous
experiences with. Although this seems like a reasonable
request, over time the peer community might start exhibiting
the characteristics of a scale-free network due to the preferen-
tial attachment method of choosing the collective members
[13]. This, in turn, may lead to discouragement of less promi-
nent peers, and in overall, increase the attrition rate. To pre-
vent this, the fairness policy of the application/platform
enforced at the peer store may prevent handpicking of peers,
and impose the use of ABCs provisioned transparently to the
Developer/User in accordance with the fairness policy (e.g.,
round-robin or random peer assignment with reputation
threshold). This is important for establishing attractive and
competitive virtual crowd marketplaces [14].

D. PEER MANAGEMENT

1) PERSONAL DATA MANAGEMENT AND PRIVACY

COMPLIANCE

In order to fulfill the HDA-CAS design requirement of pri-
vacy compliance, the programming framework inherits the
privacy features of the PeerManagr component described in
[9]. It allows the programming framework to fetch peer pro-
files from the peer-store through a privacy-enforcing PM
API containing only the data (possibly semantically obfus-
cated) previously approved by the user himself (upon signing
up and creating the profile) for use by that particular

FIGURE 4. Differences between RCs and ABCs. ABCs are atomic

to the Developer, although the Developer is able to manipulate

and create new descending ABCs.

12 VOLUME 8, NO. 1, JAN.-MAR. 2020

Scekic et al.: A Programming Model for Hybrid Collaborative Adaptive Systems

Authorized licensed use limited to: Universitaetsbibliothek der TU Wien. Downloaded on March 06,2020 at 07:14:22 UTC from IEEE Xplore. Restrictions apply.

application. By performing the queries through the PM inter-
mediary, the programming framework is not allowed to
access nor can it perform queries over non-approved peer/
collective attributes. The most of the privacy-assurance
responsibility is thus delegated to the PM.
The attribute definitions are provided within the collec-

tive kind. It is a set of collective attribute descriptors sup-
plied at the application registration time and subject to
approval by the platform operator. If approved, the collec-
tive kinds used by the application are referenced in the
SmartSocietyApplicationContext class that is
used to initialize the application. Thereafter, the developer
can access those attributes directly from the application’s
code through the ABC.get/setAttribute() meth-
ods. Note that the use of these methods cannot override
the original privacy settings-originally obfuscated/hidden
data is still not accessible, and setting a user attribute can-
not override an original attribute.
For the purposes of testing and usage in non-privacy-criti-

cal environments, the programming framework additionally
implements a local MongoDB-based peer-store implement-
ing the same PM API but without privacy enforcement. The
local peer-store can also be used to cache the PM peer pro-
files for faster access.

E. COMMUNICATION MANAGEMENT

As mentioned in Section II-B, the programming framework
now directly incorporates a fully-fledged communication
middleware SMARTCOM, allowing it to perform advanced col-
lective communication in the background transparently to the
developer. While a broader description of the offered func-
tionalities goes beyond the scope of this paper (provided as
[8] for reference), we would like to briefly discuss the capabil-
ities that set apart the SMARTCOM and, consequently, the pro-
gramming framework from the existing state-of-the-art.
By supporting a single communication endpoint model, but

different delivery channels, the framework is able to commu-
nicate with heterogeneous peers during the various CBT life-
cycle phases (e.g., inviting peers at provisioning, task
acceptance during negotiations, termination determination
during execution). Each individual peer can use personally
stipulated communication protocols and modes to interact
with the framework/application, e.g., a human peer can com-
municate via email and Twitter interchangeably, receive task
descriptions and track progress through a web application,
and communicate with other peers within the collective
through a dedicated mobile app. Human peers can make use
of software peers in the collective, serving as collaborative
and utility tools. For example, a software service like Dropbox
can be used as a common repository for sharing artifacts.
This rich communication model is regulated through the

use of privacy and delivery policies. Each peer can individu-
ally stipulate a set of privacy policies which regulate: a) times
at which the platform may communicate with the peer (e.g.,
working days 09-17h); and b) blacklisted message senders
(to avoid becoming a member of collective with unwanted

peers). On the other hand, the developer or the programming
framework can stipulate different delivery policies for peers
and collectives. The policy determines what constitutes a
successful delivery: in case of peers-with respect to different
delivery channels; in case of collectives-with respect to col-
lective members. The programming framework supports out
of the box a number of basic policies, such as best effort
(TO_ANY) or exhaustive (TO_ALL). In practice, the delivery
policies allow us to fine-tune the sensitivity and reliability of
the communication with collectives. For example, we can
consider that a whole collective has been notified if a single
member (perhaps the leader) has been notified of an event;
we can request delivery reports, or repeat delivery attempts.
Taken together, the privacy and delivery policies are a versa-
tile mechanism to combine and match the preferences of
both peers and the developer. They are both storable both in
the local as well as in the PM peer-store.

F. INCENTIVE MANAGEMENT

The programming model uses the Incentive Server’s per-task
incentivization mode (Section II-B1) to provide the incentiv-
ization functionality through the programming model. In this
mode, the IS relies on external components for providing the
incentivization logic and application conditions, and limits
itself to providing the delivery of motivational messages in a
privacy and ethically-compliant way. This allows the IS to
be used in arbitrary scenarios/applications (unlike the sus-
tained incentivization mode, when IS functions as a fully
independent, but application-specific component that needs
to be manually set up).
Due to the high scenario-specificity of incentives, the pro-

gramming framework currently does not itself provide any
incentive logic and management capabilities. Instead, in
order to remain task agnostic, the responsibility for specify-
ing the type of incentives, the target peers, and the interven-
tion timing is left to the developer using the programming
API, who can explicitly trigger the incentive campaign over
a certain collective when deemed appropriate:

� cbt.incentivize(incType [, times])

The currently active collective of the CBT upon invocation
of incentivization is considered as the target collective (e.g.,
the initial input collective if the CBT is in the provisioning
state). If no timings are specified (as a sequence of time-
stamps), a single immediate intervention is triggered. In the
future, a finer grained and automated timing specification
will be implemented, allowing to declaratively specify incen-
tive strategies to coincide with the execution of specific CBT
handlers, as incentives often need to be focused to a specific
phase and collective of the CBT’s life cycle (e.g., at repeated
execution of provisioning, or only during the negotiation/
execution). Alternatively, the developer can invoke the
incentivization directly on a collective (see Listing 6):

� targetCollective.incentivize(incType

[, times])

In order to invoke the IS incentivization intervention
(Listing 1) the PM is assumed as intermediary, not only to

VOLUME 8, NO. 1, JAN.-MAR. 2020 13

Scekic et al.: A Programming Model for Hybrid Collaborative Adaptive Systems

Authorized licensed use limited to: Universitaetsbibliothek der TU Wien. Downloaded on March 06,2020 at 07:14:22 UTC from IEEE Xplore. Restrictions apply.

uniquely identify the collective’s members via the collective
ID, but also to prevent unsolicited incentivization messages
to the peers that have opted out. Internally, the IS also uses a
private SMARTCOM instance to handle communication with
the peers.
Here are two incentivization examples to illustrate the cur-

rent incentivization capabilities:
1) CBT is executing and we are at 80 percent of the

allowed execution time, but a certain subset of the
agreed peers has not performed their part of the job.
Isolate only those as the target collective and try to
motivate them to contribute.

2) CBT has finished executing successfully, and the devel-
oper wants to foster future relationship with the peers
that took part by instructing the IS to issue reminders
about how appreciated their contribution was 3x within
next 6 months.

IV. PROGRAMMING API

The functionality of the programming model is exposed
through various associated language constructs constituting
the SmarSociety Programming API. Due to space constraints,
in this section we do not describe the full API, which is rather
provided as a separate document.3 Instead, we describe the
supported groups of constructs and their functionality, and
some representative individual methods. The examples in
Section V-B showcase the use of these constructs.
CBT Instantiation. This construct allows instantiating

CBTs of a given type, specifying the collaboration model,
inputs (task request and input collective) as well as configur-
ing or setting the non-default handlers. In order to offer a
human-friendly and comprehensible syntax in conditions
where many parameters need to be passed at once, we make
use of the nested builder pattern to create a “fluent interface”.
CBT lifecycle Operations. These constructs allow testing

for the state of execution, and controlling how and when CBT
state transitions can happen. Apart from getters/setters for
individual CBT selection (state) flags, the API provides a con-
venience method that will set at once all flags to true/false:

� setAllTransitionsTo(boolean tf)

Since from the initial state we can transition into more than
one state, for that we use the method:

� void start() – allows entering into provision-

ing or continuous_orchestration state
(depending which of them is the first state). Non-block-
ing call.

Furthermore, CBT implements the Java 7 Future inter-
face4 and preserves its semantics. This offers a convenient
and familiar syntax to the developer, and allows easier

integration of CBTs with legacy code. The Future API
allows the developer to control and cancel the execution, and
to block on CBT waiting for the result:

� TaskResult get() – waits if necessary for the
computation to complete (until isDone() == true),
and then retrieves its result. Blocking call.

� TaskResult get(long timeout, TimeUnit

unit) – same as above, but throwing appropriate excep-
tion if timeout expired before the result was obtained.

� boolean cancel(boolean mayInterruptI-

fRunning) – attempts to abort the overall execution in
any state and transition directly to the final fail-state. The
original Java 7 semantics of the method is preserved.

� boolean isCancelled() – Returns true if CBT
was canceled before it completed. The original Java 7
semantics of the method is preserved.

Listing 6 (:3-5, 7, 16, 21, 28) shows the usage of some of
the constructs.
CBT Collective-Fetching Operations. As explained in

Section III-C, during the CBT’s lifecycle multiple ABCs get
created (‘input’, ‘provisioned’, ‘negotiables’, ‘agreed’).
These constructs serve as getters for those collectives. At the
beginning of CBT’s lifecycle, the return values of these
methods are null. During the execution, the executing thread
updates them with current values. Listing 5 (:20-21) shows
examples of these constructs.
Collective Manipulation Constructs. These constructs

allow instantiations of RCs by running the queries on the
peer-store (PeerManager), or by creating local representa-
tions of already existing peer-store collectives with a well-
known ID. We assume that the peer-store checks whether we
are allowed to access the requested collective, and filters out
only those peers whose privacy settings allow them to be vis-
ible to our application’s queries.

� ResidentCollective createFromQuery

(PeerMgrQuery q, string to_kind) – Creates
a collective by running a query on the PeerManager.

� ResidentCollective createFromID

(string ID, string to_kind) – Creates a local
representation of an already existing collective on the
PeerManager, with a pre-existing ID.

This group also contains methods for explicitly instantiat-
ing ABCs. Due to specific properties of ABCs (Section III-C),
they can only be created through cloning or set operations
from already existing collectives (both RCs and ABCs). These
operations are performed in a way that preserves atomicity
and immutability. Finally, a method for persisting the collec-
tives at the peer-store is also provided.

� ABC copy(Collective from, [string

to_kind)] – Creates an ABC instance of kind
to_kind. Peers from collective from are copied to
the returned ABC instance. If to_kind is omitted, the
kind from collective from is assumed.

� ABC join(Collective master, Collective

slave, [string to_kind)]) – Creates an ABC
instance, containing the union of peers from Collectives

LISTING 1. Setting up an incentive intervention through IS.

3http://tinyurl.com/smartsoc-prog-api
4http://docs.oracle.com/javase/7/docs/api/java/util/concurrent/Future.html

14 VOLUME 8, NO. 1, JAN.-MAR. 2020

Scekic et al.: A Programming Model for Hybrid Collaborative Adaptive Systems

Authorized licensed use limited to: Universitaetsbibliothek der TU Wien. Downloaded on March 06,2020 at 07:14:22 UTC from IEEE Xplore. Restrictions apply.

http://docs.oracle.com/javase/7/docs/api/java/util/concurrent/Future.html

master and slave. The resulting collective must be
transformable into to_kind. The last argument can be
omitted if both master andslave have the same kind.

� ABC complement(Collective master,

Collective slave, [string to_kind)]) –

Creates an ABC instance, containing the peers from Col-
lective master after removing the peers present both in
master and in slave. The resulting collective must be
transformable into to_kind. The last argument can be
omitted if both master and slave have the same kind.

� void persist() – Persist the collective on peer-
store. RCs are already persisted, so in this case the
operation defaults to renaming.

Listing 5 (:1-2, 19-22) shows examples of these constructs.

V. EVALUATION

The implementation of the programming framework refers
to the two principal elements – the programming API and
the programming model libraries (including the various
subcomponents required to integrate the functionality of
other SmartSociety platform components). In this section
we present a qualitative evaluation of the two elements,
and an initial performance evaluation. This is a common
evaluation methodology during the development and proto-
typing phase [15], [16] when the immaturity of the imple-
mented prototype would affect the validity of a full-scale
quantitative evaluation. For evaluating the programming
model, we analyze the fulfillment of the the HDA-CAS
design requirements formulated in Section II-A by present-
ing and discussing an example suite covering the said prop-
erties. For evaluating the programming API, we perform an
analysis of language characteristics with respect to func-
tionality and usability. Finally, we assess the gained perfor-
mance and conciseness improvements when using the
presented programming model. Comparative analysis was
not applicable in this case, due to nonexistence of similarly
expressive models (Section VI). The source code of the
programming framework, as well as of the presented exam-
ples is provided via our repository.5

A. PROGRAMMING MODEL EVALUATION

Table 3 shows the coverage of HDA-CAS design require-
ments by the evaluation examples that are presented in the
continuation.

1) EXAMPLE 1

A user posts a question to the platform about restaurants with
specific eating options in the vicinity. The question is proc-
essed by the platform application representing our example
and returned to the user. The processing collective is hybrid,
as it involves software services (Google/Yelp) that are que-
ried for restaurants as well as human peers queried via email
or Twitter in accordance with their personal delivery and pri-
vacy policies. The orchestration (plan composition) is soft-
ware-managed – the workflow is predetermined, and there is
no need for negotiation. The workflow prescribes how the
queries are dispatched and how the replies are aggregated
(e.g., preference for human replies if high reputation or mul-
tiple matching answers from more than two peers; otherwise,
preference for the software peer reply).
The relevant application code for performing such a

task is short and straightforward (Listing 2). Note that the
code for collective provisioning and execution (aggrega-
tion) is already packaged within the CBT handlers, which
form part of the programming library, meaning that the
developer only needs to provide the parameters to use
them. While the collective itself is hybrid, there is no
direct collaboration (collectiveness) between the peers.
This scenario therefore simulates the conventional crowd-
sourcing scenarios, where a task is solved through micro-
task parallelization with a predefined workflow without
human orchestration.

2) EXAMPLE 2

In this example, we extend the previous example to include
adaptivity and human orchestration. In particular, we want to
allow local experts to select the top-pick restaurant among
the list of proposed ones. However, this scenario presents an
issue, in that the local expert may be unavailable or slow in
responding, which could result in a failure of the whole task.
In such cases, we need a failover strategy. The programming
model offers 2 possibilities in this case: a) detect the delay/
failure through the use of the CBT API and do an arbitrary
corrective action, e.g., create a new CBT with different
parameters, perhaps along with an incentivization interven-
tion to increase the likelihood of success, or simply apologize
to the user for failing; or b) define an adaptation policy to
take an automated corrective action (in our case failover to
the scenario from Example 1). Listing 3 shows the relevant

LISTING 2. Hybrid, crowdsourced answering with SmartSociety.

TABLE 3. Coverage of HDA-CAS Design Requirements.

Ex. 1 Ex. 2 Ex. 3 Ex. 4

Hybridity @ @
Diversity @ @
Adaptivity @
Collectiveness @ @
Privacy-compliance @ @ @
Human orchestration @ @ @

5https://gitlab.com/smartsociety/programming-framework

VOLUME 8, NO. 1, JAN.-MAR. 2020 15

Scekic et al.: A Programming Model for Hybrid Collaborative Adaptive Systems

Authorized licensed use limited to: Universitaetsbibliothek der TU Wien. Downloaded on March 06,2020 at 07:14:22 UTC from IEEE Xplore. Restrictions apply.

https://gitlab.com/smartsociety/programming-framework

code snippet variant b). We provide the source code for both
variants in our repository.

3) EXAMPLE 3

This example simulates a simplified ride-sharing application.
Each interested party submits ride requests to the application,
either as a driver offering a ride, or as a passenger seeking to
take a ride and share the costs. A ride request contains the fol-
lowing information: [driver/passenger, origin, destination,
departure time, arrival time, price/contribution, seats offered/
requested]. Upon each submission of a ride request, the plat-
form re-runs the composition algorithm that creates new feasi-
ble ride plans in terms of timing/seats/route constraints being
met. Viable plans are then put on negotiation between potential
peer participants. After each individual ride request, accepta-
tion, non-responding or refusal new plans can be generated or
existing ones invalidated/undecided. The platform, therefore,
needs to continuously adjust the state. As described in
Section III-B, in the course of the SmartSociety project a fully-
fledged set of algorithms were developed for handling particu-
lar this class of problems [10]. They are made readily available
to any developer through the programming API, i.e., through
the CBT’s continuous orchestration mode, making the neces-
sary developer-side coding extremely simple (Listing 4).
The developer initializes the appropriate CBT type, by

specifying a library-provided handler for continuous orches-
tration. Upon each new ride request, a new instance of this
CBT is instantiated. In the background, the parameters of the
requested ride are forwarded to the OM, triggering anew the
ride matching, plan generations and possible new negotiation.
Ultimately, some rides and the corresponding CBTs will suc-
ceed (with ‘agreed’ collective representing the passengers),
while others will fail. It is up to the developer to decide what
will be the arbitrary application logic in both cases (e.g.,
updating the user reputation, charging for the ride).
Compared to the previous two examples, this one is not

characterized by hybridity. Namely, only 2 peer types are
present and both are human peers. On the other hand, the
peers are characterized by a great diversity in goals (destina-
tion, times, acceptable costs). These types of optimization
problems are inherently difficult for humans to handle, as
they involve too many variables to consider. For this reason,
the platform is taking over this complex computational bur-
den and leaving it to the developer to provide the remainder

of the application’s business logic suited to his needs. On the
other hand, the platform is not actively searching for humans
and engaging them, but merely reacting to human requests.
In this respect, the execution is truly human-orchestrated at
runtime.

4) EXAMPLE 4

Example 4 (Listing 5) illustrates6 another important class of
tasks – intellectually-challenging (engineering, creative) col-
lective tasks. A programming (software engineering) task is
the prime example of such a problem. The simplified sce-
nario used in this example assumes submitting a natural lan-
guage description of a Java software artifact that the
platform application needs to produce for an external user.
The software artifact is produced by a simplified 2-stage
methodology – the artifact is first coded by collective mem-
bers submitting to a joint repository, then tested against
externally provided unit tests. Since they involve primarily
human experts with diverse skills, such tasks are not charac-
terized by much hybridity but by a high diversity. In order
to solve such a task successfully, the team first needs to be
carefully assembled to contain compatible expert roles. This
means that the provisioning phase needs to offer advanced
matching algorithms. In our case, we make use of the in-
house developed algorithm [12] for fuzzy skill matching
inside the provisioning handler, hiding the collective forma-
tion complexity from the developer. The TaskRequest

swImplTaskReq needs to contain the requested number
of experts and natural-language (fuzzy) descriptions of the
required skills (e.g., <“Java EE developer”, “very

good”>).
Unlike the previous examples, here we deal with a purely

on-demand task – a problem at hand that needs to be solved
by peers actively located and engaged by the platform. This
implies that peers cannot self-initiatively apply for participa-
tion, nor is there a plan composition phase. Instead, the plan
is determined collectively by the provisioned peers through
unmanaged (direct) communication based on the understand-
ing of the task as provided in the task request, implying that
the overall orchestration is human-driven. In order to support
the communication requirement, the programming frame-
work puts at peers’ disposal the collective communication
capabilities described in Section III-E.

LISTING 3. Human orchestration and adaptation.

LISTING 4. Ride-sharing scenario.

6To save space, the accompanying code snippet is partial and shared with the
Collective’s API evaluation example from the Section V-B, shown in
Listing 5. Full implementation is provided in the repository.

16 VOLUME 8, NO. 1, JAN.-MAR. 2020

Scekic et al.: A Programming Model for Hybrid Collaborative Adaptive Systems

Authorized licensed use limited to: Universitaetsbibliothek der TU Wien. Downloaded on March 06,2020 at 07:14:22 UTC from IEEE Xplore. Restrictions apply.

B. PROGRAMMING API EVALUATION

1) COLLECTIVE API

Consider the software engineering scenario introduced in
Section V-A-Ex. 4, partially depicted in Listing 5. First, the
developer creates a RC javaDevs containing all accessible
Java developers from the peer-store. This collective is used as
the input of the progTask CBT. progTask is instantiated
as an on-demand collective task, meaning that the compo-

sition state is omitted. The output of the provisioning
state is the ‘provisioned’ collective, a CBT-built ABC collec-
tive, containing the selected programmers. Since it is atomic
and immutable, the exact programmers which are members of
the team are not known to the application developer. The
negotiation used in the example requires from the peers sim-
ply to agree or reject participating in the task, and will form an
‘agreed’ collective out of the first 50 percent peers who give
acceptance. After the progTask’s execution this ABC
becomes exposed to the developer, who uses it to construct
another collective testTeamby set operations (:21-22), con-
taining Java developers from the ‘provisioned’ collective that
were not selected into the ‘agreed’ one. This collective is then
used to perform the second CBT testTask, which takes as
input the output of the first CBT (:32).

2) COLLECTIVE-BASED TASK API

Listing 6 shows some examples of interaction with a CBT. An
on-demand CBT named cbt is initially instantiated. For illus-
tration purposes we make sure that all transition flags are ena-
bles (true by default), then manually set do_negotiate to
false, to force cbt to block before entering the negotia-

tion state, and start the CBT (:3-5). While CBT is executing,
arbitrary business logic can be performed in parallel (:7-10). At
some point, the CBT is ready to start negotiations. At that
moment, for the sake of demonstration, we dispatch the moti-
vating messages to the members of the collective manually
(:12-14) instead through the incentivization functionality, and

let the negotiation process begin. Finally, we block the main
thread of the application waiting on the cbt to finish or the
specified timeout to elapse (:20-21), in which casewe explicitly
cancel the execution (:28).

C. PERFORMANCE & USABILITY EVALUATION

An approximate quantitative insight into the productivity
improvements can be given by considering the lines of code
(LOC) metric for the two scenarios that were previously imple-
mented by the project partners in plain Java, using the same
platform components, but without the use of the programming
framework (PF), and comparing them with the functionally
equivalent Examples 2 and 3 presented in Section V-A. As
shown in Table 4, the use of the programming API drastically
reduces the amount of newly-written code, which is usually
concurrent and error-prone, often boilerplate and repetitive. As
a consequence, the principal business logic can be encoded in a
concise and easily understandable, human-readable manner,
further simplifying debugging and subsequent changes, as well
as integration with legacy code.
The number and diversity of the platform’s components

and supported scenarios prevented us from establishing a sin-
gle comprehensive scalability and performance assessment
benchmark for the entire platform. Instead, the two most crit-
ical subcomponents in terms of scalability (for messaging
and continuous orchestrations) were individually evaluated
in [10] and [8], respectively, on “neighborhood-scale”
Oð103Þ collectives. While the messaging throughputs proved
scalable and satisfactory for the targeted collectives
(3200� 5000msg=sec), the existing continuous orchestration
algorithms have proven feasible for collective sizes up to 100
participants due to long execution times (� 30min),

LISTING 5. Software engineering scenario.

LISTING 6. Controlling CBT’s lifecycle.

TABLE 4. Overview of conciseness and productivity improve-

ments when using the Programming Framework (PF).

Scenario LOC without PF LOC with PF improvement

Example 2 � 3:5K < 0:5K > 7�
Example 3 � 40K < 1K > 40�

VOLUME 8, NO. 1, JAN.-MAR. 2020 17

Scekic et al.: A Programming Model for Hybrid Collaborative Adaptive Systems

Authorized licensed use limited to: Universitaetsbibliothek der TU Wien. Downloaded on March 06,2020 at 07:14:22 UTC from IEEE Xplore. Restrictions apply.

consequence of their high computational complexity. How-
ever, our in-field test pilots in Israel and Italy have shown
that in practice most collectives fall in this category. Further-
more, most real-life complex tasks involving humans have
execution times in the order of hours and a drastically lower
concurrency, making our orchestration algorithms fully
applicable. Due to space restrictions, further details are pre-
sented in the cited papers.

VI. RELATEDWORK

Here we present an overview of relevant classes of socio-tech-
nical systems, their typical representatives, and compare their
principal features with the SmartSociety programming model.
Based on the way the workflow is abstracted and encoded the
existing approaches can be categorized into three groups [5]:
a) programming-level approaches; b) parallel-computing
approaches; and c) process modeling approaches.
Programming level approaches focus on developing a set of

libraries and language constructs allowing general-purpose
application developers to instantiate and manage tasks to be
performed on socio-technical platforms. Unlike SmartSociety,
the existing systems do not include the design of the crowd
management platform itself, and therefore have to rely on
external (commercial) platforms. The functionality of such sys-
tems is effectively limited by the design of the underlying plat-
form. Typical examples of such systems are CrowdDB [17]
and AutoMan [2]. CrowdDB outsources parts of SQL queries
as Amazon Mechanical Turk microtasks. Concretely, the
authors extend traditional SQLwith a set of “crowd operators”,
allowing subjective ordering or comparisons of datasets by
crowdsourcing these tasks through conventional micro-task
platforms. From the programming model’s perspective, this
approach is limited to a predefined set of functionalities which
are performed in a highly-parallelizable and well-know man-
ner. AutoMan integrates the functionality of crowdsourced
multiple-choice question answering into the Scala program-
ming language. The authors focus on automated management
of answering quality. The answering follows a hard-coded
workflow. Synchronization and aggregation are centrally han-
dled by the AutoMan library. The solution is of limited scope,
targeting only the designated labor type. Neither of the
described systems allows explicit collective formation, or
hybrid collective composition.
Parallel computing approaches rely on the divide-and-con-

quer strategy that divides complex tasks into a set of subtasks
solvable either by machines or humans. Typical examples
include Turkomatic [18] and Jabberwocky. For example,
Jabberwocky’s [1] ManReduce collaboration model requires
users to break down the task into appropriate map and reduce
steps which can then be performed by a machine or by a set
of humans workers. Hybridity is supported at the overall
workflow level, but individual activities are still performed
by homogeneous teams. In addition, the efficacy of these sys-
tems is restricted to a suitable (e.g., MapReduce-like) class of
parallelizable problems. In practice they rely on existing
crowdsourcing platforms and do not manage the workforce

independently, thereby inheriting all the underlying plat-
form’s limitations.
The process modeling approaches focus on integrating

human-provided services into workflow systems, allowing
modeling and enactment of workflows comprising both
machine and human-based activities. They are usually
designed as extensions to existing workflow systems, and
therefore can perform certain peer management. The currently
most advanced systems are CrowdLang [3], CrowdSearcher
[4] and CrowdComputer [5]. CrowdLang brings in a number
of novelties in comparison with the previously described sys-
tems, primarily with respect to the collaboration synthesis and
synchronization. It enables users to (visually) specify a hybrid
machine-human workflow, by combining a number of generic
(simple) collaborative patterns (e.g., iterative, contest, collec-
tion, divide-and-conquer), and to generate a number of similar
workflows by differently recombining the constituent patterns,
in order to generate a more efficient workflow at runtime. The
use of human workflows also enables indirect encoding of
inter-task dependencies. The user can influence which workers
will be chosen for performing a task by specifying a predicate
for each subtask that need to be fulfilled. The predicates are
also used for specifying a limited number of constraints based
on social relationships, e.g., to consider only Facebook friends.
The PPLib [6] similarly uses the principle of process recombi-
nation, but supports automated recombination and composition
of subprocesses (operators) in search of an optimal process for
a given task. In a similar vein, CrowdSearcher presents a task
model composed of a number of elementary crowdsourcable
operations (e.g., label, like, sort, classify, group), associated
with individual human workers. Such tasks are composable
into arbitrary workflows, through application of a set of com-
mon collaborative patterns which are provided. This allows a
very expressive model but on a very narrow set of crowdsourc-
ing-specific scenarios. This is in full contrast with the more
general task-agnostic approach taken by the SmartSociety pro-
gramming model. The provisioning is limited to the simple
mapping “1 microtask $ 1 peer”. No notion of collective or
team is not explicitly supported, nor is human-driven orchestra-
tion/negotiation. Finally, CrowdComputer is a platform allow-
ing the users to submit general tasks to be performed by a
hybrid crowd of both web services and human peers. The tasks
are executed following a workflow encoded in a BPMN-like
notation called BPMN4Crowd, and enacted by the platform.
Tasks are assigned to individual workers through different ‘tac-
tics’ (e.g., marketplace, auction, mailing list).

VII. CONCLUSIONS & FUTUREWORK

In this paper we presented a novel framework for effectively
programming hybrid diversity-aware collective adaptive sys-
tems (HDA-CASs). The framework reflects the defining
HDA-CAS properties and exposes to the developer the plat-
form’s functionality though an intuitive API. The platform is
able to host user-provided applications and to manage collab-
orative computations on their behalf. Even if related systems
allow a certain level of runtime workflow adaptability, they

18 VOLUME 8, NO. 1, JAN.-MAR. 2020

Scekic et al.: A Programming Model for Hybrid Collaborative Adaptive Systems

Authorized licensed use limited to: Universitaetsbibliothek der TU Wien. Downloaded on March 06,2020 at 07:14:22 UTC from IEEE Xplore. Restrictions apply.

are limited to patterns that need to be foreseen at design-time.
Our approach differs from these systems by extending the
support for collaborations spanning from processes known at
design-time to fully human-driven, ad-hoc runtime work-
flows. The spectrum of supported collaboration models and
runtime workflow adaptability are exposed through the
newly introduced “CBT” and “Collective” constructs. The
CBT is task-agnostic, delegating the responsibility of provid-
ing a mutually-interpretable task description to the developer,
which allows the construct to be generally applicable for the
entire class of collaborative activities supported by the plat-
form. Under the hood of CBT, the programming framework
offers advanced composition of execution plans, coordina-
tion of the negotiation process and virtualization of peers.
The Collective construct, coming in two flavors (RC and
ABC), highlights the collective aspect of the task execution
and prevents assigning individuals to workflow activities. At
the same time, it allows the platform to enforce desired pri-
vacy and fairness policies, and prevents exploiting human
peers as individual processing nodes. The core platform com-
ponents are currently being evaluated in-field, by providing a
ride-sharing application for the commuters between the city
of Milan and the Cremona province in northern Italy. The
future work will include the integration of more advanced
incentive management models into the programming model.

ACKNOWLEDGMENTS

Supported by EU FP7 SmartSociety project, grant 600854.
Extended version of: Scekic O. et al., “Programming
Model Elements for Hybrid Collaborative Adaptive Sys-
tems”, IEEE CIC’15, Hangzhou, China. http://dx.doi.org/
10.1109/CIC.2015.17.

REFERENCES

[1] S. Ahmad, A. Battle, Z. Malkani, and S. Kamvar, “The jabberwocky pro-
gramming environment for structured social computing,” in Proc. 24th
Annu. ACM Symp. User Interface Softw. Technol., 2011, pp. 53–64.

[2] D. W. Barowy, C. Curtsinger, E. D. Berger, and A. McGregor, “Automan:
A platform for integrating human-based and digital computation,” SIG-
PLAN Not., vol. 47, no. 10, pp. 639–654, Oct. 2012.

[3] P. Minder and A. Bernstein, “Crowdlang: A programming language for the
systematic exploration of human computation systems,” in Social Infor-
matics. Berlin, Germany: Springer, 2012, pp. 124–137.

[4] A. Bozzon, M. Brambilla, S. Ceri, A. Mauri, and R. Volonterio, “Pattern-
based specification of crowdsourcing applications,” in Proc. 14th Intl.
Conf. Web Eng., 2014, pp. 218–235.

[5] S. Tranquillini, F. Daniel, P. Kucherbaev, and F. Casati, “Modeling, enact-
ing, and integrating custom crowdsourcing processes,” ACM Trans. Web,
vol. 9, no. 2, pp. 7:1–7:43, May 2015.

[6] P. M. D. Boer and A. Bernstein, “PPlib: Toward the automated generation
of crowd computing programs using process recombination and auto-
experimentation,” ACM Trans. Intell. Syst. Technol., vol. 7, no. 4, 2016,
Art. no. 49.

[7] O. Scekic, et al., “Programming model elements for hybrid collaborative
adaptive systems,” in Proc. 1st IEEE Int. Conf. Collab. Internet Comp.,
Oct. 2015, pp. 278–287.

[8] P. Zeppezauer, O. Scekic, and H.-L. Truong, “Technical report - smartcom
design,” 2014. [Online]. Available: https://github.com/tuwiendsg/
SmartCom/wiki#technical-report

[9] M. Hartswood, et al., “Privacy for peer profiling in collective adaptive
systems,” in Proc. Privacy Identity Mgmt. Future Internet, 9 2014,
pp. 237–252.

[10] M. Rovatsos, D. I. Diochnos, Z. Wen, S. Ceppi, and P. Andreadis, “Smar-
torch: An adaptive orchestration system for human-machine collectives,”
in Proc. 32nd ACM Symp. Appl. Comput., Apr. 2017.

[11] A. Segal, Y. K. Gal, E. Kamar, E. Horvitz, A. Bowyer, and G. Miller,
“Intervention strategies for increasing engagement in crowdsourcing: Plat-
form, predictions, and experiments,” in Proc. 25th Int. Joint Conf. Artif.
Intell., 2016, pp. 3861–3867.

[12] M. Z. C. Candra, H.-L. Truong, and S. Dustdar, “Provisioning quality-
aware social compute units in the cloud,” in Proc. 11th Int. Conf. Service-
Oriented Comput., 2013, pp. 313–327.

[13] J. Kleinberg, “The convergence of social and technological networks,”
Comm. ACM, vol. 51, no. 11, pp. 66–72, Nov. 2008.

[14] A. Kittur, et al., “The future of crowd work,” in Proc. Conf. Comput. Sup-
ported Cooperative Work, 2013, pp. 1301–1318.

[15] P. Mohagheghi and Ø. Haugen, “Evaluating domain-specific modelling
solutions,” in Advances in Conceptual Modeling, J. Trujillo, et al., Eds.
Berlin, Germany: Springer, 2010, pp. 212–221.

[16] A. Seffah, M. Donyaee, R. B. Kline, and H. K. Padda, “Usability measure-
ment and metrics: A consolidated model,” Softw. Quality Control, vol. 14,
no. 2, pp. 159–178, Jun. 2006.

[17] M. J. Franklin, D. Kossmann, T. Kraska, S. Ramesh, and R. Xin,
“Crowddb: Answering queries with crowdsourcing,” in Proc. ACM SIG-
MOD Intl. Conf. Mgmt. Data, 2011, pp. 61–72.

[18] A. P. Kulkarni, M. Can, and B. Hartmann, “Turkomatic: Automatic recur-
sive task and workflow design for mechanical turk,” in Proc. Extended
Abstracts Human Factors Comput. Syst., 2011, pp. 2053–2058.

OGNJEN SCEKIC is postdoctoral researcher and lecturer with the Dis-
tributed Systems Group, TU Wien.

TOMMASO SCHIAVINOTTO is senior product manager and software
architect with U-Hopper, Trento, Italy.

SVETOSLAV VIDENOV is scientific/research developer with the Dis-
tributed Systems Group, TU Wien.

MICHAEL ROVATSOS is senior lecturer in the School of Informatics,
The University of Edinburgh and director of the Centre For Intelligent
Systems and their Applications.

HONG-LINH TRUONG is assistant professor with the Distributed Sys-
tems Group, TU Wien.

DANIELE MIORANDI received the MSc and PhD degree in communica-
tions engineering. He is VP executive of R&D with U-Hopper, Trento,
Italy.

SCHAHRAM DUSTDAR is full professor of computer science and head
of the Distributed Systems Group, the TU Wien. He is a fellow of the
IEEE, ACM Distinguished scientist and IBM Faculty Award recipient.

VOLUME 8, NO. 1, JAN.-MAR. 2020 19

Scekic et al.: A Programming Model for Hybrid Collaborative Adaptive Systems

Authorized licensed use limited to: Universitaetsbibliothek der TU Wien. Downloaded on March 06,2020 at 07:14:22 UTC from IEEE Xplore. Restrictions apply.

http://dx.doi.org/10.1109/CIC.2015.17
http://dx.doi.org/10.1109/CIC.2015.17
https://github.com/tuwiendsg/SmartCom/wiki#technical-report
https://github.com/tuwiendsg/SmartCom/wiki#technical-report

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

