
COVER FEATURE GO/NO GO

14	 C O M P U T E R   P U B L I S H E D  B Y  T H E  I E E E  C O M P U T E R  S O C I E T Y � 0 0 1 8 - 9 1 6 2 / 1 9 © 2 0 1 9 I E E E

Massimo Villari and Maria Fazio, University of Messina

Schahram Dustdar, Technische Universität Wien

Omer Rana, Cardiff University

Devki Nandan Jha, Newcastle University

Rajiv Ranjan, Chinese University of Geosciences and Newcastle University

Rapid growth and evolution in the number, functionalities, 

and scope of Internet of Things devices is evident. We present 

osmotic computing as a new paradigm able to respond to 

resource heterogeneity, secure data exchange, and efficient 

microservices deployment across federated cloud systems. 

Internet of Things (IoT) and edge devices (such as smart 
sensors and actuators, smartphones, closed-circuit tele-
vision cameras, switches, gateways, and routers) moni-
tor events in the cyber and physical worlds, providing the 

potential to collect raw data and ensuring the timely process-
ing of such data. An intelligent approach is required to reduce 

the processing cost and network latency while guaranteeing 
a high degree of security and data privacy. The advantages of 
integrating different computing paradigms, such as cloud 
and edge computing, have already been acknowledged by 
numerous industry- and academia-based initiatives, includ-
ing the OpenFog Consortium, Amazon Web Services (AWS) 
(e.g., Snowball Edge and Greengrass), and Cisco.

In this article, we outline a more generic approach 
that can, conceptually, combine these different industry 

Osmosis: The Osmotic 
Computing Platform for
Microelements in the
Cloud, Edge, and 
Internet of Things

Digital Object Identifier 10.1109/MC.2018.2888767
Date of publication: 30 July 2019



	 A U G U S T  2 0 1 9 � 15

initiatives to provide support for IoT–
cloud integration. The proposed ap
proach is referred to as osmotic comput-
ing, and it provides a new computing 
model that builds upon and extends 
existing approaches. In particular, the 
proposed Osmosis platform supports 
an opportunistic management of IoT 
microelements (MELs), an abstraction 
defined and used in this framework 
to compose and deploy IoT applica-
tions across a number of different 
resource types. Such MELs can also 
be migrated across different resources 
within the system.

MOTIVATION
Cloud computing offers both data stor-
age and computation for IoT data pro-
cessing. However, effectively exploiting 
cloud technologies for IoT applications 
can be challenging since the remote 
management of resources can cause 
unacceptable delay for latency-sensi-
tive IoT applications. Thus, new com-
puting paradigms are needed, such as 
edge and fog computing technologies.

A key concern with using comput-
ing models to support IoT applications 
is the management of different phys-
ical and virtual infrastructures (e.g., 
data centers, edge devices, and IoT 
devices) according to specific appli-
cation and service requirements (for 
instance, latency, data volume, respon-
sivity, and processing delays). How-
ever, these models address specific 
application issues and often coexist 
or need to cooperate. The coexistence 
of these computing paradigms in the 
same application scenario can be hard 
to manage, and it requires additional 
services to support interoperability 
and service management. Osmotic 
computing aims to overcome such con-
straints by integrating services offered 
across (close to user) edge devices and 

cloud systems, supporting a service 
migration paradigm that enables ser-
vices to move from a data center to a 
device close to the user (or the data gen-
eration source).

MELs FOR IoT APPLICATIONS
Osmotic computing provides an abstrac-
tion referred to as an MEL, encapsu-
lating resources, services, and data. 
In particular, IoT applications can be 
organized as a graph of MELs [Figure 1(a)] 
and migrated across different infra-
structures, following different triggers 
(cost, security and privacy, or perfor-
mance). An MEL encapsulates one of 
the following categories: 1) microser-
vices (MS), which offer particular func-
tionality and can be easily deployed 
or migrated, 2) microdata (MD), which 
represent information flow to and from 
a sensor or actuator, 3) microcomputing 
(MC), which executes different type of 
computational tasks (e.g., statistical 
analysis, error checking, or machine 
learning) using a mixture of real-time 
and historic MD data, or 4) the micro-
actuator (MA), which implements pro-
gramming interfaces (e.g., for sending 
some commands) using actuators that 
alter or control the state of a physical 
resource at the network edge.

Each IoT application can be decom-
posed into cooperating subprograms 
and services to improve deployability 
and scalability. In osmotic comput-
ing, IoT applications are decomposed 
into a number of interacting MELs, 
which are atomic entities providing 
simple functionalities (for example, 
data collection from a specific sensor, 
identification of data types or asso-
ciated semantic annotations, push-
ing of information toward a remote 
server, or credential and access con-
trol). In general, a graph of MELs can 
include several MS and MD combined 

to provide specific behaviors in the ref-
erence domain (such as smart building 
or traffic management). Due to their 
simple behavior, some of these MELs 
can be usefully exploited across dif-
ferent contexts through indepen-
dent instances at t he same time. 
MELs can also be compared with the 
implementation of specialist func-
tions (e.g., AWS or Azure Functions) 
that are triggered on the availability 
of particular events. We assume in 
this instance that an MEL exists for a 
longer time frame than such server-
less functions.

In Osmosis, virtual components or 
containers (for instance, Linux Con-
tainers, Docker, Preboot Execution 
Environment, Amazon Elastic Con-
tainer Service, and Google Kuberne-
tes Engine) executing on cloud or edge 
resources are used to deploy MELs [Fig-
ure 1(b)]. MELs can be implemented 
using the uPython virtual machine 
(VM), the uLUA VM, and JavaScript 
(Node.js), all lightweight alternatives 
to the hypervisor-based approach (such 
as Xen, Kernel-based Virtual Machine, 
and Hyper-V). Only well-defined soft-
ware components (e.g., database serv-
ers) are permitted to be encapsulated 
in a container, leading to a remarkable 
reduction in execution time and a high 
density of instances on a single device 
as compared to hypervisor-based ap
proaches. MELs may be deployed and 
orchestrated across both cloud and 
edge resources [Figure 1(b)].

The Osmosis framework exploits 
and extends existing container-based 
approaches for the dynamic deploy-
ment and migration of MELs across 
heterogeneous systems. An open-ac-
cess MEL repositor y is needed to 
suppor t public consumption and 
collaboration of services. MELs en
capsulate simple entities in virtual 



GO/NO GO

16	 C O M P U T E R   � W W W . C O M P U T E R . O R G / C O M P U T E R

environments (e.g., a container). This 
guarantees the following:

1.	 Isolation among MELs: This offers 
the opportunity to execute MELs 
across different applications on 
the same physical device.

2.	 Execution of MELs on hetero-
geneous infrastructures: MELs 
can be deployed and executed 
on different physical devices, 
even on resource-constrained 
devices, depending on specific 
application scenarios.

3.	 Application independence from 
MEL graph composition and 
the orchestration engine (OE): 
MELs can be easily applied in 
any application context. This 
approach extends workflow 
engines that can enable the 
deployment of edge services.

MEL composition can also be sup-
ported through existing composition 
tools, such as Fabric8 (http://fabric8 
.io), if Kubernetes is being used as an 
underlying resource management 

system. With an application repre-
sented as a group of multiple self-con-
tained MELs, Osmosis addresses the 
needs of emerging IoT applications 
and systems in terms of scalability 
and dynamicity by developing orches-
tration techniques and an underlying 
platform. More generally, the Osmosis 
orchestrator enables the enactment 
of MELs across heterogeneous infra-
structures. Unlike traditional cloud 
orchestrators, the Osmosis orchestra-
tor merges activities and information 
at two logical layers: the application 

MEL MEL

MEL MEL MEL MEL
MEL MEL

MEL

MEL
MEL MEL

MAMCMD
MS

MELMELMELMEL
MELMEL

MEL MEL
MEL

MEL

MEL
MEL

MEL
MEL

MEL

MEL

MEL

Cloud MEL Edge MEL IoT MEL

(a)

(b)

FIGURE 1. A tree representation for MELs. (a) A graphical representation of MELs. (b) Cloud or edge resources used to deploy MELs. 



	 A U G U S T  2 0 1 9 � 17

layer and the infrastructure layer. This 
means that new functionalities in both 
monitoring activities and scheduling 
algorithms need to be investigated. 
MEL deployment, therefore, must take 
into account not only resource avail-
ability to execute single MELs with a 
specific quality-of-service (QoS) level 
but also the performance of the entire 
application or service. Thus, the orches-
trator has to monitor the infrastruc-
ture’s MS execution to detect issues on 
physical hardware, software and net-
work resources, and the performance of 
the application or service to guarantee 
the promised service level agreement 
(SLA). In the scheduling of MEL deploy-
ment and migration, based on depen-
dencies identified in the MEL graph, it is 
necessary to manage virtual network-
ing among MELs and identify highly 
coupled MELs that need to be deployed 
according to specific application and 
service constraints. For example, some 
MELs need to be in the proximity of a 
user to support real-time interactions 
and data sharing.

Osmosis leads to a software-de-
fined federated ecosystem support-
ing different stakeholders working 
at the IoT, edge, and cloud layers. The 
adoption of network function virtual-
ization (NFV) and software function 
chaining (SFC) solutions (such as HP 
OpenFlow and middlebox technolo-
gies) enables MELs deployed on edge 
and cloud data centers to be intercon-
nected to provide a secure service. 
NFV and SFC, due to their flexibility, 
are adopted as new software-defined 
net work management ser vices in 
Osmosis to mitigate threats observed 
in network management. Moreover, 
additional security-oriented solutions 
intrinsic to the network function 
software—for example, centralized 
security management and hypervisor 

introspection—are considered. Osmo-
sis could benefit other IoT applica-
tion domains (such as through the 
use of public IFTTT.com interfaces to 
Google, Twitter, and Fitbit). It is also 
able to demonstrate how a holistic IoT 
application management platform can 
be supported by federating heteroge-
neous computing systems and infra-
structures. Inspired by the growth of 
the Docker and Kubernetes communi-
ties, the MEL repository and contain-
er-based approach are used to demon-
strate the potential for IoT providers 
to develop and advertise sophisticated 
container-hosted MELs.

Fig u re S1 i n “Osmot ic Comput-
ing” shows how MELs are deployed in 
embedded devices at different layers in 
the osmotic computing environment.1 
To manage flows of data and composed 
ser vices, MEL orchestration must 
leverage networking functionalities. 
For example, it can make use of the 
open source framework Open Virtual 
Network, originally launched by the 
Open vSwitch team at Nicira (currently 
part of VMware), which can be usefully 
adapted to manage the abstraction 
of MEL networks and data-, device-, 
and network-centric security features, 
thanks to its high flexibility in config-
uration isolation capability.

A COMPARISON OF  
OSMOTIC COMPUTING  
WITH DISTRIBUTED 
COMPUTING MODELS
Osmotic computing1 is an innovative 
paradigm that merges and extends 
several distributed computing tech-
nologies. In this section, we discuss 
the main advantages of using this new 
paradigm, comparing it with well-
known distributed computing models. 
On-demand computing and storage 
resources and services are provided 

by cloud computing. Osmotic comput-
ing extends cloud resources over edge 
and IoT infrastructures and devices, 
providing seamless service. This is 
achieved through the use of the MEL 
abstraction that introduces microenti-
ties deployable on heterogeneous and 
resource-constrained systems.

By providing additional resources 
when required, elastic computing sup-
ports resource expansion and con-
traction to increase produc t iv it y. 
Resources can be easily scaled up 
or out, depending on the r untime 
resource requirements, without cre-
ating any disr uption to ser vices. 
Both cloud and osmotic computing 
implement elastic management of 
resources but take care of both low-
level metrics (such as resource avail-
ability, load balancing, and QoS) and 
application requirements (for exam-
ple, application and service response 
time and the SLA). Although cloud 
computing focuses on resource elas-
ticity within a data center, osmotic 
computing attempts to support elas-
ticity by also including resources at 
the network edge.

Edge computing manages constrain
ed resources close to end users and the 
physical world. In contrast, osmotic 
computing extends edge resources 
throughout the cloud data centers. The 
Osmosis orchestrator effectively man-
ages the different computing resources. 
The edge computing paradigm is im
proved by mobile edge computing, or mul-
tiaccess edge computing (MEC), which 
supports mobile end users and embraces 
different access technologies for mobile 
devices (not only cellular networks). 
Osmotic computing naturally supports 
MEC due to its dynamic management of 
resources and services in runtime and 
exploitation of heterogeneous comput-
ing and networking technologies.



GO/NO GO

18	 C O M P U T E R   � W W W . C O M P U T E R . O R G / C O M P U T E R

OSMOTIC COMPUTING

Borrowed from chemistry, the term osmo-
sis represents the seamless diffusion of 

microelements (MELs) across heterogeneous 
infrastructures. To better describe the osmotic 
management of computing, we logically subdi-
vide computing environments into three main 
layers (see Figure S1): layer 1 (L1), cloud data 
centers; layer 2 (L2), edge systems and micro-
data centers; and layer 3 (L3), Internet of Things 
(IoT) devices. At L3, various IoT devices, such as 
smartphones (with human input), sensors, and 
smart wearables, capture raw data from the 
environment with some defined frequency or, 
if specific events occur, based on the device’s 
data collection and storage capacity along with 
the particular requirements of the system that 
need to be fulfilled. Recently, different stan-
dards have been proposed for L3, for example, 
the Constrained Application Protocol supported 
through specialist operating systems, such as 
the Riot operating system or Contiki, and the 
REST engine, such as Erbium. Multiple gateways 

are used by L2, which is commonly imple-
mented, using routers and network switches 
(supported by OpenFlow protocols) or network 
processor-based hardware that enables network 
components to be accessed and managed re-
motely. Moreover, data from different L3 sensors 
can also be collected and aggregated by these 
gateways. Finally, L1 consists of large comput-
ing clusters, where storage and computational 
capacity is provided to application users, thus 
enabling complex, generally time-consuming 
operations to be performed. L2 devices can sup-
port the collection of raw data from numerous 
L3 devices and perform various computations 
(such as simple stream operations, for example, 
min, max, average, aggregation, and filtering, on 
a small data time frame), encryption, encoding, 
or transcoding operations on the incoming data 
stream before transferring these data to L1 for 
further analysis. Therefore, L2 devices not only 
retrieve data from L3 devices but also perform 
some fundamental analysis.

Cloud
L1

Edge
L2

IoT
L3

MEL

MEL
MEL

MEL

MEL

Cloud Data Center
Cloud MEL IoT MEL Edge MEL Osmotic

Resources

Data and Control
Flow

Edge Microdata Center

FIGURE S1. The osmotic computing model. To better describe the osmotic management of computing, the computing environ-

ments are divided into three main layers: layer 1 (L1), cloud data centers; layer 2 (L2), edge systems and microdata centers; and 

layer 3 (L3), IoT devices.



	 A U G U S T  2 0 1 9 � 19

Each type of infrastructure (cloud and edge) 
also has specific objective functions that influence 
different types of operations. For example, edge 
(L2) devices are generally resource constrained 
(with limited battery power, network range, etc.). 
Therefore, operations must be executed keeping 
these constraints in mind. Thus, multiple concurrent 
dataflows from the L3 layer share the storage and 
computation capability of the edge device, limit-
ing analysis to the particular time constraints and 
number of flows. Cloud (L1) operations are based 
on predefined service level agreements between 
a cloud service provider and a client, for example, 
response time, throughput, availability, and cost. 
Understanding the interaction and coordination be-
tween the cloud (L1) with the IoT (L3) and edge (L2) 
for deployment of an application is a key research 
challenge, especially for real-time, stream-process-
ing applications. The MEL can be allocated across 
edge and cloud resources based on the privacy and 
security and quality-of-service (QoS) constraints. 
This distribution of data analysis can support 
performance improvement, reducing overall core 
network load. Based on our proposed osmotic con-
cept, one MEL can be implemented across different 

resource types and data centers having different 
levels of complexity.

Osmotic computing extends elastic resource 
management because infrastructure (for example, 
availability and load balancing) and applications (for 
example, sensing or actuation capability and user 
proximity) requirements affect deployment and mi-
gration strategies and can change over time (see Fig-
ure S2). Osmotic functionalities automatically config-
ure or reconfigure the movement and deployment 
of MELs in response to QoS, security, and runtime 
perturbations (see Figure S2). With our proposed 
abstraction, it is possible to decouple infrastructure 
management from application deployment issues and 
make the flow of MELs from edge to cloud and vice 
versa possible. For example, consider a situation with 
numerous IoT devices at L3 collecting and generating 
large data volumes, the transfer of which to a cloud 
platform (L1) can consume significant bandwidth. 
If this scenario is detected, the osmotic computing 
orchestrator shifts some of the data processing to 
the edge (L2), leading to increased flexibility and 
system resilience. Osmosis offers a great opportunity 
to adopt FIWARE and its related generic enablers in a 
new context, such as edge computing and MELs.

FIGURE S2. MELs’ osmotic movement across the cloud, edge, and IoT.

Cloud Computing (L1)

Edge Computing (L2)

IoT (L3)

Edge MD Centers

Cloud Data Centers

MEL 1

1) MEL

2) MEL

3) MEL

1) MEL

2) MEL

3) MEL

MEL 2
MEL 3

MEL



GO/NO GO

20	 C O M P U T E R   � W W W . C O M P U T E R . O R G / C O M P U T E R

Low-latency IoT applications are sup-
ported by fog computing, a distributed 
computing environment that connects 
edge and cloud resources. Fog comput-
ing focuses attention on IoT applica-
tions and their efficiency, performing 
real-time analysis of the data gener-
ated by these IoT objects and devices. In 
osmotic computing, IoT applications 
are abstracted and composed into con-
nected MELs at a first stage and then 
deployed on available resources at the 
edge and in the cloud (and even in IoT 
devices, if possible). During the run-
time stage of applications, the Osmosis 
orchestrator monitors physical and vir-
tual resources, MEL behaviors, and IoT 
application performance to provide a 
dynamic and continuous reconfigura-
tion of the whole system. Such recon-
figurations can imply the movement of 
MELs through the system but can be per-
formed at low cost in terms of overhead 
and delay and also with high flexibility.

OSMOSIS ARCHITECTURE
The Osmosis platform spawns MELs on 
cloud and edge devices, with continuous 
monitoring supporting feedback-driven 

orchestration during runtime. The main 
challenges that Osmosis addresses in this 
context can be summarized as follows:

›› creating a new way to describe 
MELs for all cloud and edge 
domains, making it necessary to 
determine how to specify an exe-
cution environment—in particu-
lar, where an MEL can be hosted

›› setting up an easy-to-use envi-
ronment in which MELs are 
intrinsically fully equipped with 
security and able to evaluate the 
behavior of MELs during their 
executions and guarantee secu-
rity and privacy

›› understanding how MELs 
behave with external interac-
tions and adjusting them accord-
ingly, releasing new versions 
and new configurations.

›› understanding how to wire 
virtual networks among MELs, 
given security constraints.

Figure 2 shows the two main parts of 
the Osmosis reference architecture: 
the MEL engine (ME) and the OE.

ME engine
The ME controls deployment of MELs 
across the edge and cloud infrastruc-
ture, supporting an execution en
vironment that is configurable and 
adaptive and also independent of any 
underlying infrastructure. A plugga-
ble infrastructure abstraction associ-
ated with the MEL deployment envi-
ronment transparently supports and 
manages heterogeneous MEL deploy-
ment mechanisms (VM and container 
based). The ME includes the MEL image 
repository, which provides the basis 
for storing images, along with profil-
ing and versioning data that use pre-
defined interfaces to constantly mon-
itor and detect the underlying runtime 
QoS anomaly status of resources (for 
example, disk or memory consump-
tion) and security attacks. The ver-
sioning system allows the recovery of 
MEL instances after failure or secu-
rity attacks. Based on this profiling 
information, the OE’s tuned global 
monitoring module detects failure or 
derives and learns load patterns for 
dynamic reconfiguration. The mas-
ter crane allocator module of the ME 

Web Portal

MEL Orchestration
Engine

MEL Engine

Tradeoff
Modeler

Dynamic
Reconfigurator

Graph
Deployer

Tuned
Global Monitoring

IA
M Master Crane

Allocator
MEL Image
Repository

Tuned
Local Monitoring Dock Plan

Attack
Profile

Tunneling
Module

Tunneling
ModuleEncryption

Module

Encryption
Module

Software Defined 
Membrane

API to Devices

FIGURE 2. The Osmosis internal architecture: the MEL orchestrator engine and MEL engine. API: application programming interface; 
IAM: identity and access management.



	 A U G U S T  2 0 1 9 � 21

is connected to the OE to push com-
mands to and pull data from the OE. 
It establishes a secure connection 
with other modules and components. 
The dock plane is in charge of creat-
ing, executing, and monitoring MELs 
in interoperable ways. To aggregate 
data that need to be delivered to global 
monitoring, the tuned local monitor-
ing module is used.

MEL OE
The MEL OE implements the follow-
ing four modules: the tradeoff mod-
eler, g raph deployer, t u ned loca l 
monitoring, and dynamic reconfig-
urator. The tradeoff modeler simpli-
fies resource and device configuration 
selection across level 1 (L1), level  2 
(L2), and level 3 (L3) by implement-
ing novel tradeoff optimization mod-
els, fusing multicriteria optimization 
techniques with multicriteria deci-
sion-making techniques. The graph 
deployer i mplement s a lgor it h m s 
to characterize the runtime perfor-
mance of MELs deployed across het-
erogeneous infrastructures (e.g., L1 
versus L2 versus L3).

The tuned local monitoring module 
is used for the orchestrator and supports 
the continuous monitoring and collec-
tion of the dataflow anomaly and secu-
rity attack information from connected 
resources at L1, L2, and L3. Moreover, it 
offers techniques to manage collected 
data, events, and faults or failures. Using 
gathered logs and information about the 
underlying infrastructures, this module 
is capable of evaluating performance and 
fault analyses based on techniques, such 
as Bayesian networks. Furthermore, 
the dynamic reconfigurator uses the 
detailed analysis information for adapt-
ing MEL topologies so that it can respond 
to the defined requirements in terms of 
privacy, security, QoS, and so on.

The dynamic reconfigurator sup-
ports techniques, such as a mixture 
density network (a combined struc-
ture of neural networks and mixture 
models), for predicting the QoS of 
deployed MELs across L1, L2, and L3. 
The MEL OE offers an application pro-
gramming interface (API) to interact 
with distributed modules of the frame-
work for orchestrating MELs across 
L1, L2, and L3 infrastructure. Figure S3 
in “How the Osmosis Orchestrator Dif-
fers From Traditional Cloud Orchestra-
tors” captures the main architectural 
components of Osmosis and in addi-
tion considers a federated scenario, 
where several cloud, edge, and IoT pro-
viders cooperate to deploy applications 
and services.

The MEL engine accomplishes the 
adaptive deployment of MS within 
edge and cloud data centers and the 
runtime performance monitoring of 
containers in execution. The deploy-
ment task provides a customizable 
and adaptable environment without 
having any dependency on the under-
lying infrastructure. To manage and 
suppor t dif ferent MS deployment 
operations, such as container- and 
VM-based deployments, an abstract, 
pluggable infrastructure is incorpo-
rated by the execution environment.

The OE runs within a cloud data 
center and implements selection, com-
position, deployment, high-level mon-
itoring, and runtime management 
techniques. Continuous resource mon-
itoring and data collection are sup-
ported by the OE using the monitoring 
framework of the underlying infra-
structure or some software capabili-
ties that collect different performance 
metrics (for example, tailored moni-
toring profilers for cloud and edge con-
tainers). In a federated scenario, each 
cloud provider implements its own OE 

(e.g., the providers of clouds A, B, and C 
in Figure S3), and the OEs cooperate for 
the osmotic management of MELs over 
the whole system.

ADVANCES BROUGHT  
BY OSMOSIS IN THE STATE 
OF THE ART
In this section, we summarize the key 
advances as compared with related 
work in each core topic relevant to 
the Osmosis framework, highlighting 
issues to be addressed and our pro-
posed approaches to solve them.

Osmotic MELs deployment
Container-based virtualization is a 
useful alternative to VMs when imple-
menting cloud-based solutions in IoT 
and edge devices. The application 
with its dependencies is encapsulated 
within a virtual container by some 
container engine, such as Docker, to 
provide resource control and isolation. 
This makes containers an appealing 
solut ion for deploy i ng M ELs. R ao 
et al.3 present a system model for devel-
oping applications that process raw 
data gathered by IoT devices, leading 
to a processing model that runs on the 
cloud, whereas IoT devices are exclu-
sively engaged in collecting sensed 
data. A container evaluation is given 
within the context of the edge envi-
ronment by Lee and Pahl.4 Multitier 
web application design is also enabled 
by containers because multitenancy 
can be built into cloud-enabled ser-
vices, allowing the reengineering and 
refactoring of the traditional code-
base system using container-based 
MS. Some solutions in the literature 
provide MS orchestration f rame-
works—for example, Docker Swarm 
supports a native orchestration frame-
work for multi-Docker deployment 
environments, converting a collection 



GO/NO GO

22	 C O M P U T E R   � W W W . C O M P U T E R . O R G / C O M P U T E R

HOW THE OSMOSIS ORCHESTRATOR  
DIFFERS FROM TRADITIONAL 
CLOUD ORCHESTRATORS

A cloud orchestrator is a software component of 
the cloud management system that evaluates 

workloads on the cloud infrastructure and auto-
mates the deployment of services. In this regard, 
it continuously monitors hardware and software 
resource availability and services, and it sched-
ules all activities for the efficient management of 
resources according to well-defined policies. Thus, 
the orchestrator allows the cloud system to ensure 
the desired quality of service (QoS) to detect possi-
ble failures or capacity shortage.

In osmotic computing, the orchestrator 
functionalities need to be extended, integrating 
new capacities in both monitoring activities and 
scheduling algorithms. Indeed, in this computing 
model, microelements (MELs) holding microdata or 
microservices (MS) are composed and networked 
to provide full applications and services. The de-
ployment of such MELs must take into account not 

only resource availability to execute single MELs 
with a specific QoS level but also the performance 
of the entire application and service. Thus, the 
orchestrator must monitor the execution of MS in 
the infrastructure to detect issues on physical hard-
ware, software, and network resources and moni-
tor the performance of the application and service 
to guarantee an agreed service level agreement.

In scheduling MEL deployment and migration, 
because of the MEL graph composition, it is nec-
essary to manage virtual networking among MELs 
but also to identify highly coupled MELs that need 
to be deployed according to specific application and 
service constraints (for example, some MELs need to 
be close for real-time interactions). In general, we can 
say that, in contrast to traditional cloud orchestrators, 
an osmotic orchestrator works to merge activities 
and information at two logical layers: the infrastruc-
ture layer and the application layer.

FIGURE S3. The deployment of Osmosis architectural components at different layers.

Cloud
Data Center B Cloud

Data Center A

Cloud
Data Center C

MEL Engine
MEL Engine MEL Engine

MEL Engine (T)

MEL Engine (S)

MEL Engine (R)

MEL Orchestration
Engine (B) MEL Orchestration

Engine (A)

Federated System

Cloud
L1

Edge
L2

Iot
L3



	 A U G U S T  2 0 1 9 � 23

of Docker hosts into one large virtual 
Docker host. Kubernetes is an open 
source framework that automates the 
deployment, operations, and manage-
ment of applications running in con-
tainers. It provides horizontal scaling 
of applications, implemented using 
manual or automatic methods based 
on the CPU usage (while ignoring QoS 
constraints). The Osmosis framework 
provides an MEL engine that allows 
users and developers to deploy con-
tainers running MELs on edge devices, 
enabling customization and migration 
of MELs. Software adaptation and ver-
sioning mechanisms will allow edge 
and cloud resource providers to deploy 
MELs across a heterogeneous pool of 
physical devices.

IoT computing
Significant interest from the academic 
community has been seen in the area of 
the IoT, as is indicated by recent efforts, 
such as IoTCloud or the European Ope-
nIoT, an open source middleware-ori-
ented framework providing sensors as 
a service. In parallel contexts, strong 
commercial interest in applications 
ranging from smart homes to smart 
traffic is indicated by REST- and HTTP-
based APIs, such as Xively, Think-
Speak, and OpenSense. There have also 
been attempts to develop an interoper-
ability specification for the IoT, which, 
according to the National Institute of 
Standards and Technology, are “smart 
systems that include engineered inter-
acting networks of physical and com-
putational components.”13 Recent 
attempts by the IEEE to define an 
architectural framework for IoT, such 
as P2413,14 indicate that current stan-
dardization activities are l imited 
to specific areas and represent dis-
jointed or s ome t i me s r e du n d a n t 
developments. The P2413 framework 

promotes functional compatibility 
and aids system interoperability and 
cross-domain interaction. 

Another significant approach5 to 
mobile offloading is focused toward the 
offloading of complex and time-con-
suming tasks from resource-constrained 
mobile devices to resource-abundant 
cloud data centers. To increase battery 
operation hours and reduce potential 
application overhead due to intermit-
tent network connection, tasks are off-
loaded from mobile devices (considered 
to have lower computing and storage 
capability compared with a cloud data 
center) to cloud data centers, with regu-
lar synchronization between the cloud 
data center and the edge device. Sim-
ilarly, a different but related approach 
gaining favor is MEC, which has primar-
ily been driven by significant advances 
in 5G networks and the ability to sup-
port user-provisioned services within 
the network. MEC is driven by similar 
requirements for latency-sensitive ser-
vice provisioning as well as the ability to 
offer application management and ser-
vice orchestration at the network edge. 
Recent research conducted in the realm 
of MEC occurred in the context of mobile 
computing, where smartphones act as 
both IoT devices and gateways. However, 
most existing MEC approaches focus 
on infrastructure-level QoS constraints, 
such as energy minimization or resource 
utilization, while giving very little atten-
tion to the more complex and interde-
pendent QoS requirements across MELs 
that must be choreographed and orches-
trated in a coordinated manner to real-
ize an IoT application. Our approach 
reverses the emphasis on mobile off-
loading: we transfer a cloud-intended 
computation to a resource-constrained 
mobile device. This reverse offloading 
facilitates computation closer to the 
activity being measured (data transfer 

costs and latency). Therefore, the Osmo-
sis framework is focused on understand-
ing the MEL types that would be better 
executed on the edge and IoT rather 
than on a cloud. Our work complements 
MEC because the Osmosis framework 
approach advocated here focuses on 
migration of MELs across MEC levels and 
investigates techniques that can be used 
to support and facilitate such migration 
based on application QoS and secu-
rity requirements.

QoS and security tradeoff 
optimization across the 
IoT, edge, and cloud
Mapping an application (represented by 
a graph of MELs) requires the selection 
of customized cloud or edge resources 
or both. However, existing orchestra-
tion platforms (such as Kubernetes, 
Docker Swarm, Amazon EC2 Container 
Service, and OpenShift Origin) are not 
capable of handling conflicting QoS, 
privacy, and security requirements 
while undertaking container-mapping 
decisions. Various optimization and 
performance measurement techniques 
support selecting VM configurations 
using numerous QoS requirements (for 
instance, cost, throughput, latency, 
availability, reputation, etc.). However, 
the QoS constraints, configuration 
environments, and security and pri-
vacy requirements for mapping MELs 
to the edge (L2) are fundamentally 
different from choosing VM config-
urations on a cloud (L1). Given a set of 
conflicting QoS, security, and privacy 
requirements, as well as the configura-
tion search space, existing determin-
istic optimization techniques, such as 
linear and mixed-integer nonlinear 
programming, although successful in 
optimizing web service composition, 
would not be effective for computing 
the optimal solution when mapping a 



GO/NO GO

24	 C O M P U T E R   � W W W . C O M P U T E R . O R G / C O M P U T E R

graph of MELs in the osmotic comput-
ing (L1, L2, and L3) environments.

The Osmosis framework requires 
multilevel (L1 versus L2 versus L3) 
optimization models based on fusing 
multicriteria optimization and deci-
sion-making techniques. A unique set 
of computationally tractable tradeoff 
optimization models is needed using 
cross-cutting concerns as parame-
ters, such as resource configuration, 
QoS, and security and privacy require-
ments. The optimization models can 
be used to generate a Pareto-optimal 
curve whose points will represent a 
nondominated optimal configuration 
set (no other configuration set has 
higher utility without compromising 
one of the requirements in terms of 
QoS and security and privacy) for map-
ping an MEL either to the edge or to the 
cloud or to both.

MEL graph performance 
characterization
Per for ma nce cha racter izat ion is 
undertaken by evaluating the relative 
performance of a computing resource 
(for example, processor capabilit y, 
memory, storage, and network) via 
benchmarking. However, existing per-
formance characterization research 
in the cloud context (L1) is limited for 
the IoT (L3) and edge (L2). Understand-
ing performance bottlenecks of MELs 
within an IoT or cloud system remains 
a challenge, and it is useful to identify 

benchmark kernels that are relevant 
for particular parts of the infrastruc-
ture and application classes (such as 
stream or real time versus batch). For 
instance, the following benchmark 
(kernels) may be considered:

›› Edge layer: TPCx-IoT (for data 
aggregation, real-time analytics, 
and persistent storage), Google 
ROADEF, and Linear Road bench-
marks (for stream processing).

›› Cloud layer: TeraGen, TeraSort, 
TeraValidate, and BigDataBench 
(for batch-oriented processing)

However, creating a benchmark 
that can aggregate processing capabil-
ity across these two layers and, more 
importantly, identify performance 
dependencies between these layers in 
a holistic manner remains a challenge.

Holistic QoS and  
dataflow-anomaly monitoring
Much of the difficulty in QoS and  
dataflow-anomaly monitoring (and 
detection) in Osmosis originates from 
the complexity of MELs and the inte-
gration of different computing envi-
ronments. Monitoring tools—such 
as the Relational Grid Monitoring 
Architecture, Hawkeye, and Cloud-
Watch—are concerned with monitor-
ing QoS metrics related only to cloud 
resources, such as CPU percentage, 
TCP/IP performance, and available 

nonpaged memory. Similarly, cluster- 
monitoring tools, such as SequenceIQ, 
Ganglia, DMon, Sematext, Apache 
Chukwa, and Nagios, provide QoS param-
eter (CPU-, disk-, or network-bound, or 
memory) information of the virtualized 
resources belonging to private or pub-
lic clouds. These tools are incompatible 
with monitoring any anomalies in QoS 
and dataflow in the osmotic comput-
ing environment.

QoS monitoring has been investi-
gated extensively in the context of the 
cloud. Emeakaroha et al.6 explore an 
approach to tackle QoS anomalies at 
the application level, but the comput-
ing model is fundamentally different 
from that of osmotic computing. A 
framework to monitor QoS anomalies 
for content-based routing and complex 
event-processing applications hosted 
on the cloud is presented by Romano 
et al.7 To understand the behavior of 
cloud-hosted web and database appli-
cations, Moldovan et al.8 propose ana-
lyzing consistent relationships among 
monitored metrics belonging to dif-
ferent software and hardware compo-
nents; Copil et al.9 suggest monitoring 
and analyzing cloud-hosted applica-
tion behavior in terms of topology 
and software- and hardware-level 
QoS information. A monitoring plat-
form that automatically improves the 
QoS of multicloud-hosted applica-
tions, MODAClouds is endorsed by Di 
Nitto et al.10 Leitner et al.11 describe 
an approach to monitor high-level QoS 
parameters of complex cloud-hosted 
event processing applications. 

In summary, no existing QoS anom-
aly-monitoring tools and techniques 
can ubiquitously monitor QoS and data-
flow across MELs mapped to an osmotic 
infrastructure or detect root causes of 
QoS and dataflow anomalies across the 
osmotic infrastructure. In Osmosis, a 

OUR RESEARCH OUTCOMES WILL 
SIGNIFICANTLY IMPROVE IoT 

RECONFIGURATION AND RESILIENCE 
CAPABILITIES TO DEAL WITH RUNTIME 

UNCERTAINTIES.



	 A U G U S T  2 0 1 9 � 25

monitoring technique is needed to give 
users insights into how their MELs are 
performing, where possible QoS bottle-
necks may occur, and what the poten-
tial is for security threats.

Dynamic reconfiguration
In the Osmosis infrastructure, dynamic 
reconfiguration of MELs can lead to the 
following challenges: 1) estimating 
the behavior of MEL-specific dataflow 
in terms of analyzed data volume and 
potential input–output behavior and 2) 
making decisions about the types and 
scale of edge or cloud resources that 
should be provisioned across MELs 
without any knowledge about the run-
time changes to the dataflow.

Edge orchestration tools, such as 
Kubernetes, Docker Swarm (based on 
the sFlow-RT monitoring engine), and 
OpenShift Origin, offer a container 
reconfiguration capability, scaling 
by monitoring CPU usage and net-
work traffic. Apache Oozie, Quincy, 
Omega, Mercur y, and Lin kedIn’s  
Azkaban suppor t provisioning of 
Hadoop data-processing graphs on 
the cloud but in a restrictive manner; 
it works well only for MapReduce. 
Other big data application orches-
tration platforms, such as AWS IoT, 
Google’s Cloud Dataflow, Mesos, and 
YARN, support manual reconfigura-
tion of VM- and container-based data 
analytics graphs on cloud resources. 
Substantial theoretical work12 on 
dynamic reconfiguration of tradi-
tional multitier web applications on 
the cloud has been undertaken. In 
Osmosis, we extend the traditional 
notion of dynamic reconfiguration, 
which only considers application com-
ponents hosted on cloud resources, to 
application components (MELs) that 
can be deployed across edge and cloud 
resources. Our research outcomes will 

significantly improve IoT reconfigu-
ration and resilience capabilities to 
deal with runtime uncertainties (for 
example, changing data volume and 
velocity or runtime failures). A degree 
of confidence will be associated with 

each MEL-specific prediction model. 
Along with QoS and security and pri-
vacy requirements, this will allow an 
application owner to assess risks and 
opportunities and plan the level of 
osmotic capacity needed to maximize 

ABOUT THE AUTHORS
MASSIMO VILLARI is an associate professor of computer science at the Uni-
versity of Messina, Italy. His research interests include cloud computing, dis-
tributed systems, wireless networks, security systems, big data analytics, and 
the Internet of Things. Villari received a Ph.D. in computer engineering  from the 
University of Messina, Italy. Contact him at mvillari@unime.it.

MARIA FAZIO is an assistant researcher in computer science at the University 
of Messina, Italy. Her research interests include distributed systems and wireless 
communications. Fazio received a Ph.D. in advanced technologies for information 
engineering from the University of Messina, Italy. Contact her at mfazio@unime.it.

SCHAHRAM DUSTDAR is a full professor of computer science heading the Distrib-
uted Systems Research Division at Technische Universität Wien, Austria. His research 
interests include the Internet of Things and edge computing. Dustdar received a 
Habilitation degree in computer science from Technische Universität Wien. He is an 
IEEE Fellow, an Association for Computing Machinery Distinguished Scientist, a member 
of the Academia Europaea—The Academy of Europe, and a member of the Computer 
Editorial Board. Contact him at dustdar@dsg.tuwien.ac.at.

OMER RANA is a full professor of performance engineering in the School of 
Computer Science and Informatics at Cardiff University, Scotland, where he 
also leads the Internet of Things laboratory. Rana received a Ph.D. from Imperial 
College of Science, Technology and Medicine, United Kingdom. Contact him at 
o.f.rana@cs.cardiff.ac.uk.

DEVKI NANDAN JHA is a Ph.D. student in the School of Computing at Newcastle 
University, United Kingdom. Jha received an M.Tech. in computer science and tech-
nology from Jawaharlal Nehru University, India. Contact him at d.n.jha2@ncl.ac.uk.

RAJIV RANJAN is full professor in the School of Computing at Newcastle Uni-
versity, United Kingdom, and a chair professor in the School of Computer at the 
China University of Geosciences. Ranjan received a Ph.D. in computer science 
and software engineering from the University of Melbourne, Australia. Contact 
him at raj.ranjan@ncl.ac.uk.



GO/NO GO

26	 C O M P U T E R   � W W W . C O M P U T E R . O R G / C O M P U T E R

the value of an application for end 
users. Osmosis will also develop tech-
niques to dynamically fine-tune per-
formance prediction models based 
on real-time information (for exam-
ple, QoS anomalies, security anoma-
lies, and failures) available from the 
monitoring and anomaly detection 
engine. Fine-tuned analysis based on 
MEL-specific performance-prediction 
models can be used by the orchestra-
tor to adapt MEL topologies’ reaction 
react to defined QoS and security con-
straints. These performance predic-
tion models will form the basis for the 
next generation of dependable osmotic 
orchestration algorithms and plat-
forms, with  complete understanding 
of dataflow and cloud, IoT, and edge 
resource demands, thereby improving 
resilience to uncertainties.

In this article, we presented the ben-
efits and limitations of osmotic com-
puting, supporting the deployment 

of applications and services over het-
erogeneous distributed infrastruc-
tures. We described how the use of 
osmotic computing can advance the 
current state of the art within the IoT–
edge–cloud continuum. The Inves-
tigation of new technologies and 
solutions for osmotic computing will 
bring innovation in several research 
areas. Osmotic computing also rep-
resents the integration of a number of 
technologies and does not necessar-
ily need to be developed as a separate 
platform (as outlined in this article). 
We distinguished between 1) a con-
ceptual model and 2) an architectural 
realization of an osmotic computing 
model. The conceptual model has 
a number of potential mechanisms 
that enable realization using existing 
technologies.  

REFERENCES
1.	 M. Villari, M. Fazio, S. Dustdar, O. 

Rana, and R. Ranjan, “Osmotic com-
puting: A new paradigm for edge/
cloud integration,” IEEE Cloud Com-
puting, vol. 3, no. 6, pp. 76–83, 2016. 
doi: 10.1109/MCC.2016.124. 

2.	 R. Khalaf, A. Slominski, and  
V. Muthusamy, “Building a multi-
tenant cloud service from legacy code 
with docker containers,” in Proc. 2015 
IEEE Int. Conf. Cloud Eng., pp. 394–396.

3.	 B. B. P. Rao, P. Saluia, N. Sharma, A. Mit-
tal, and S. V. Sharma, “Cloud comput-
ing for Internet of Things and sensing 
based applications,” in Proc. 2012 6th 
Int. Conf. Sensing Technol., pp. 374–380.

4.	 B. Lee and C. Pahl, “Containers and 
clusters for edge cloud architec-
tures—A technology review,” in Proc. 
2015 3rd Int. Conf. Future Internet of 
Things and Cloud, pp. 379–386.

5.	 S. Abolfazli, Z. Sanaei, E. Ahmed, 
A. Gani, and R. Buyya, “Cloud-
based augmentation for mobile 
devices: Motivation, taxonomies, 
and open challenges,” IEEE Com-
mun. Surveys Tut., vol. 16, no. 1, pp. 
337–368, 2014.

6.	 V. C. Emeakaroha, T. C. Ferreto, M. 
A. S. Netto, I. Brandic, and C. A. 
F. De Rose, “CASViD: Application 
level monitoring for SLA violation 
detection in clouds,” in Proc. 2012 
IEEE 36th Annu. Comput. Software and 
Appl. Conf., pp. 499–508.

7.	 L. Romano, D. D. Mari, Z. Jerzak, and 
C. Fetzer, “A novel approach to QoS 
monitoring in the cloud,” in Proc. 
2011 1st Int. Conf. Data Compression, 
Commun. and Process., pp. 45–51. 

8.	 D. Moldovan, G. Copil, H. L. Truong, 
and S. Dustdar, “On analyzing 
elasticity relationships of cloud ser-
vices,” in Proc. 2014 IEEE 6th Int. Conf. 
Cloud Computing Technol. and Sci,,  
pp. 447–454.

9.	 G. Copil et al., “ADVISE—A frame-
work for evaluating cloud service 
elasticity behavior,” in Proc. 11th Int. 
Conf. Service-Oriented Computing, 
2014, pp. 275–290.

10.	 E. Di Nitto et al., “Supporting 
the development and operation 
of multi-cloud applications: The 
MODAClouds approach,” in Proc. 
Int. Symp. Symbolic and Numeric 
Algorithms Scientific Computing, 
2013, pp. 417–423.

11.	 P. Leitner, C. Inzinger, W. Hummer, 
B. Satzger, and S. Dustdar. “Applica-
tion-level performance monitoring of 
cloud services based on the complex 
event processing paradigm,” in Proc. 
Int. Conf. Service-Oriented Computing 
and Appl., 2012, pp. 1–8.

12.	 D. Ardagna, G. Casale, M. 
Ciavotta, J. F. Pérez, and W. Wang, 
“Quality-of-service in cloud com-
puting: Modeling techniques and 
their applications,” J. Internet Services 
Appl., vol. 5, no. 1, pp. 11, 2014.

13.	 U.S. Department of Commerce,  
“Welcome to the NIST cyber- 
physical systems website,” NIST 
Engineering Laboratory. Accessed 
on: Mar. 8, 2019. [Online]. Available: 
https://www.nist.gov/el 
/cyber-physical-systems

14.	 IEEE Standards Association, “Stan-
dard for an architectural framework 
for the Internet of Things (IoT),” 
IEEE. Accessed on: Mar. 8, 2019. 
[Online]. Available: http://grouper 
.ieee.org/groups/2413/

Access all your IEEE Computer Society 
subscriptions at

computer.org 
/mysubscriptions


