
1939-1374 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2018.2889087, IEEE
Transactions on Services Computing

1

Microservices: Migration of a
Mission Critical System

Manuel Mazzara∗, Nicola Dragoni†, Antonio Bucchiarone ‡, Alberto Giaretta §,
Stephan T. Larsen ¶, and Schahram Dustdar‖

∗ Innopolis University, Russia, m.mazzara@innopolis.ru
† Technical University of Denmark, Denmark, and Örebro University, Sweden, ndra@dtu.dk

‡ Fondazione Bruno Kessler, Italy, bucchiarone@fbk.eu
§ Örebro University, Sweden, alberto.giaretta@oru.se
¶ Danske Bank, Denmark , stephantl@gmail.com

‖ TU Wien, dustdar@dsg.tuwien.ac.at

Abstract—An increasing interest is growing around the idea of microservices and the promise of improving scalability when compared
to monolithic systems. Several companies are evaluating pros and cons of a complex migration. In particular, financial institutions are
positioned in a difficult situation due to the economic climate and the appearance of agile competitors that can navigate in a more
flexible legal framework and started their business since day one with more agile architectures and without being bounded to outdated
technological standard. In this paper, we present a real world case study in order to demonstrate how scalability is positively affected
by re-implementing a monolithic architecture (MA) into a microservices architecture (MSA). The case study is based on the FX Core
system, a mission critical system of Danske Bank, the largest bank in Denmark and one of the leading financial institutions in Northern
Europe. The technical problem that has been addressed and solved in this paper is the identification of a repeatable migration process
that can be used to convert a real world Monolithic architecture into a Microservices architecture in the specific setting of financial
domain, typically characterized by legacy systems and batch-based processing on heterogeneous data sources.

Index Terms—Service Computing, Software Architecture, Scalability, Microservices

F

1 INTRODUCTION

THE history of software architectures has been charac-
terized in the last few decades by a progressive shift to-

wards distribution, modularization, and loose coupling. The
main purpose is increasing code reuse and robustness [1], a
necessity dictated by the need of increasing software quality,
not only in safety and financial-critical applications, but also
in more common off-the-shelf software packages.

In service-oriented architectures [2], the emphasis was
on cross-boundaries inter-organization technology-agnostic
communication, and on orchestration of business pro-
cesses [3]. The research community dedicated significant
attention to foundational aspects, such as correctness and
verifiability of service composition [4]. Nonetheless, little
effort was spent on defining the nature of the internal
logic of services, on scalability and maintainability issues,
concerns of major importance for modern organizations.

The latest step in this process is the microservice architec-
ture (MSA). Inspired by service-oriented computing, MSA
aims to change the way in which software is perceived,
conceived, and designed [5]. A number of programming
languages based on this new paradigm are emerging. As
an example, Jolie [6] allows describing computation from
a data-driven perspective, instead of a process-driven one
[7], and introduces as first-class entities concepts that are
fundamental to microservices [8].

The shift towards MSA is a sensitive topic these days,

as several companies are deeply refactoring their back-end
systems, which is the case of the institution considered in
this paper (i.e., the FX Core of Danske Bank). MSA paradigm
relies upon simple principles [5]:

• Bounded Context: first introduced in [9], this concept
captures one of the key properties of MSA: focus
on business capabilities. Related functionalities are
combined into a single business capability which is
then implemented as a service.

• Size: this represents a crucial concept for microser-
vices and brings major benefits in terms of service
maintainability and extendability. Idiomatic use of a
MSA suggests that if a service is too large, it should
be refined into two or more services, thus preserving
granularity and maintaining focus on providing only
a single business capability.

• Independency: this concept encourages loose coupling
and high cohesion by stating that each service in
MSA is operationally independent from others, and
the only form of communication between services is
through their published interfaces.

The MSA style enables to handle scalability almost out
of the box, since that many of the techniques and principles
used are inherently beneficial to scalability. Such character-
istics have firstly been introduced in [10], although no prac-
tical case study has been considered in that contribution.

Authorized licensed use limited to: Universitaetsbibliothek der TU Wien. Downloaded on May 04,2020 at 08:50:54 UTC from IEEE Xplore. Restrictions apply.

1939-1374 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2018.2889087, IEEE
Transactions on Services Computing

2

In this paper, we consider a real world case study
concerning the migration of a mission critical system from
an existing monolithic architecture (MA) to MSA, i.e.,
the FX Core system of Danske Bank, the largest bank in
Denmark and one of the leading financial institutions in
northern Europe. The contribution of the paper is threefold.
First, we highlight the key technical aspects that need to
be considered for full system scalability in the microservice
context. Second, we show how a real world MA can be
converted into a MSA, and we highlight the resulting
benefits of this migration. Finally, we study in detail how
scalability has positively been affected by this paradigm
transition. To the best of our knowledge, this is the first
fully and publicly documented real world migration of a
mission-critical MA to MSA.

Outline of the Paper. The paper is structured as follows:
Section 2 summarizes the related work in the monoliths
migration topic, Section 3 discusses the technical aspects
to consider, in order to exploit the scalability potential of
microservices. In Section 4 the Danske Bank FX Core system
functionalities are described, as well as its general structure.
The legacy MA is then presented in Section 5, while the
proposed MSA appears in Section 6. The comparison be-
tween the two architectures is detailed in Section 7. Section 8
concludes the paper with the lessons learned and open
research challenges.

2 RELATED WORK

Since the 2014, as shown by Balalaie et al. [11], MSA has
steadily grown as a concept, and plenty of businesses de-
cided to migrate their MA and service-oriented architectures
(SOA) to MSA. Taibi et al. [12] conducted an empirical in-
vestigation through interviews to experienced practitioners,
and outlined three migration processes adopted. Among
the motivations for migration, both maintainability and
scalability are the common ones. Unsurprisingly, the main
issue was the monetary expenditure.

In another study, Knoche and Hasselbring [13] report
that discussions with practitioners highlighted that industry
looks at MSA as a promising way to solve maintainability
issues, even in those cases where scalability is not a critical
priority. The authors provide a decomposition process to
achieve an incremental migration, which is the most com-
mon approach, and argue that for critical deployments it is
better to implement new functionalities within the MA, and
then incrementally migrate all the services, starting with the
clients applications.

Di Francesco et al. [14] conducted another empirical
study, similar to the one conducted by Taibi et al. [12]
putting greater focus on the details of each migration phase,
as well as analyzing migrations both from MA and SOA.
In particular, the work shows that more than half of the
migrations did not migrate the existing data together with
the architecture. The authors argue that this does not align
well with two microservices typical principles: hiding in-
ternal implementations details, and managing data in a
decentralized fashion.

In 2015, Levcovitz et al. [15] proposed a technique to
identify, within monoliths, service candidates for migrat-
ing to microservices based on mapping the dependencies

between databases, business functions, and facades. To the
best of our knowledge, apart from our work, this is the only
publication that discusses migration techniques applied to a
specific banking case study. Moreover, while their approach
aims to automatize the migration from the legacy monolith,
our case study was primarily business-driven. Therefore,
our approach had to be necessarily manual and iterative.

Again, Balalaie et al. [11], [16] reported their experience
of performing an incremental migration of a mobile back-
end as a service (MBaaS) to microservices, coupling with
DevOps methodologies. The authors caution a posteriori
about two important lessons learned. First, migration can in-
troduce small errors in service contracts that can potentially
break down a substantial part of the architecture. Second,
a MSA is not a silver bullet, as it can bring scalability to
services, but it can introduce higher complexity as well.

Following the previous works, the authors collected and
reported some empirical migration patterns derived from
medium to large-scale industrial projects, aiming to help
others to perform a smooth migration [17]. They evaluate
such patterns through qualitative empirical research, and
cite as future work the development of a pattern language
that would allow to automatically compose the patterns.

In a recent work, Furda et al. [18] agree on defining the
migration to MSA a promising way to modernize MA and to
full-scale utilize cloud computing. Moreover, they identify
three major challenges in migrating a MA to MSA, namely:
multitenancy, statefulness, and data consistency.

3 MSA AND SCALABILITY

Proponents of MSA claim that per se this style increases
system scalability. However, it is necessary to pay particular
attention to certain technical features, to fully enable its
potential. This section covers all the aspects that need to be
taken care of, in order to achieve full scalability: automation,
orchestration, service discovery, load balancing, and clustering.

Automation. In a MA, at times it is possible to manually
manage the system and the hosts on which it is running.
However, as soon as the system scales, the number of hosts
may increase leading to a hard-to-maintain system. This
applies to MSA too, as services are scattered across multiple
hosts, with each one running multiple services. Manually
managing a MSA would result in an enormous overhead,
since deployment, configuration, and maintenance extends
to each and every service instance and host. Every time a
new service or host is introduced, the system requires an
increasing amount of time for manual management. When
standard management activities (i.e., builds, tests, deploy-
ment, configuration, host provisioning, and relocation of
services) are automated, the introduction of new services
does not imply a management overhead. Only mainte-
nance of scripts is required, and developers are expected
to manage all the system via automation. The bottom line
is automation of growth-sensitive tasks, in order to contain
the time overhead.

Orchestration. In MSA, orchestration is necessary for
managing service containers and infrastructure. Without an
orchestration system, engineers would have to develop and
maintain themselves a number of necessary features for a
large scale system. Open source orchestration systems such

Authorized licensed use limited to: Universitaetsbibliothek der TU Wien. Downloaded on May 04,2020 at 08:50:54 UTC from IEEE Xplore. Restrictions apply.

1939-1374 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2018.2889087, IEEE
Transactions on Services Computing

3

as Google Kubernetes [19], Mesosphere Marathon [20] and
Docker built-in Swarm Mode [21] all provide a number of
features which are necessary to achieve scalability, such
as service discovery, load balancing and cluster management.
Orchestration systems also handle replication of services
and distribution of replicas across the nodes.

Service Discovery. Widespread diffusion of the tradi-
tional SOA failed due to fundamental shortcomings related
to service discovery and, in particular, dynamic binding and
invocation [22]. Microservices and orchestration tools are
trying to overcome these issues.

MSA consists of many services, and a mechanism has
to be deployed to keep track which instances are running
and how to reach them. This is typically done with a service
discovery tool, either a separate service such as Consul [23],
or as part of the aforementioned orchestration tools. Service
discovery provides more than simple DNS lookups, it also
includes health-checking mechanisms that ensure that the
services it resolves names to are actually alive and available.

Service discovery is a must in MSA, since services do
not have static IP addresses and require a mapping from
a hostname. Service discovery can make use of locality,
resolving hostnames to the service instance that is closest
to the requester, hereby achieving geographical scalability.
Service discovery also creates the illusion of interacting with
a single service, although a sequence of requests actually
might be handled by multiple service replicas.

Load Balancing. Load balancing is critical for service
discovery, necessary to ensure that load is equally balanced
across service replicas. This can be done in a number of
ways, such as by using DNS mechanisms to resolve host-
names, or looking up for a different replica IP each time.
The latter option can be achieved through a dispatcher server
that hands out replicas IPs (based on some scheduling algo-
rithm), or by appointing clients themselves to decide which
replica should be used. Typically implemented as part of
service discovery and orchestration, if services integrate via
a messaging system, distributing messages and events to
different replicas can help to distribute load.

Clustering. MSAs can be deployed on a single host,
but this would not contribute to scalability. To enable full
scalability, deployment has to happen on a cluster of hosts.
Clustering enables a system to utilize multiple hosts re-
sources as a single system. It also enables elasticity in the
form of expansion with additional hosts when needed and
decrease of hosts when not. This may be achieved without
clustering, but it would require the entire system to run on
each host, like vertically scaled MAs.

Clusters can be configured and run with a variety of
tools but, if containerization is used, it is typically part
of the orchestration. Orchestration tools allow services and
replicas to spread across the cluster (while ensuring that
they can reach each other), enabling higher availability,
increased resilience and better load scalability.

Running services in a cluster, requires them to either run
actively in parallel or, in the case of infrastructure and data
storage, to use clustering mechanisms in order to collabo-
rate. These clustering mechanisms differ depending on their
requirements to performance, consistency, availability etc.,
but are typically included in scalable messaging systems,
such as RabbitMQ [24], and databases such as Redis [25].

4 DANSKE BANK FX Core SYSTEM

The Danske Bank FX Core system is a paradigmatic case
study to demonstrate how to effectively migrate from a MA
to a MSA, and how this affects scalability. The documen-
tation of the original system architecture was sparse and
the vast majority of technical details have been obtained by
direct conversations, interviews and discussions with the
FX Core team, and by manually inspecting the source code.
This was a lengthy process given the complexity of the MA.
The outcome of this process is reported in this paper, where
we describe the system in terms of responsibilities and
organization. All confidential information, such as concrete
names of protocols, external providers and specific services
has been withheld in order for the results to be published.

4.1 Foreign Exchange
Foreign Exchange, often abbreviated as forex or FX, is the
conversion from one currency to another. Exchange of cur-
rencies is of interest to private individuals, corporations,
financial institutions, and governments. FX encompasses
everything, from private transactions performed in foreign
countries (e.g., use of credit cards while traveling), to cor-
porations working with foreign markets. FX has become
the largest financial market in the world, averaging a daily
transaction volume of roughly 5 trillion dollars, with single
transactions reaching the 100 millions of dollars. Unlike the
centralized stock exchange, FX is decentralized and pen 24
hours a day, five days a week [26]. Transactions happen over-
the-counter (OTC), which means that traders (typically large
multinational banks) negotiate directly with each other.

4.2 FX IT
The FX IT (Figure 1) system is part of the banks Corporates
and Institutions (C&I) department and handles price stream-
ing, trades, line-checks, and associated tasks, such as ana-
lytics and post-trade management. FX IT acts as a gateway
between the international markets and Danske Bank clients,
mainly large financial institutions and multi-national cor-
porations. Such institutions continuously process currency
prices and calculate margins to reduce important risks on
swaps and forwards, before streaming final prices to their
clients. Then, clients can act on a price by registering a trade,
or check if they have the required collateral with line-checks.

4.3 FX Core
The FX Core system is part of FX IT and it handles trades
and line-checks. This includes registration, validation and
post-trade management. Below there is a brief description
of the two main responsibilities of FX Core.
LineChecks are used to check whether a client has the finan-
cial collateral to perform a trade and how a trade will affect
said collateral, also called their Line. This collateral can be
a multitude of financial assets, e.g. stocks, bonds or cash.
Line-checks are always executed as part of a trade, but is
also run separately, so Danske Bank traders can ensure that
their customers are capable of requested trades.
Trades are received from both Danske Bank clients and
external providers, i.e., external clients and markets. The trade
is then validated and line-checked, before being registered.

Authorized licensed use limited to: Universitaetsbibliothek der TU Wien. Downloaded on May 04,2020 at 08:50:54 UTC from IEEE Xplore. Restrictions apply.

1939-1374 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2018.2889087, IEEE
Transactions on Services Computing

4

Fig. 1. FX IT handles both price streaming and requests for trades and
line-checks from global markets. Prices of currency pairs are streamed
to FX IT, which then calculates prices of specific trades, before stream-
ing them to external and internal clients. Clients can request FX IT
for trades or line-checks on the prices they have received. Clients are
usually Danske Bank internal traders and external customers, but trade
and line-check requests can also be received from the markets, when
banks wish to exchange currencies directly. FX Core is part of FX IT, but
handles tasks associated with trades and line-checks, thus not handling
any of the price streaming and stream processing.

Depending on the type of trade, the trade is either per-
formed immediately, (i.e., a spot trade), or registered in the
system as a contract for future execution (i.e., swaps and
forwards). When the trade is executed, financial assets are
moved between banking books. After a trade has been
registered, a number of actions can be executed: trades can
be joined to ease administration or split into smaller ones to
reduce margins, forward and swap contracts can be extended
or pre-settled, and trades can be corrected or deleted by
internal clients. Additionally, the system can also run batch
jobs in order to balance books between departments, or to
analyze trades.

5 FX CORE MONOLITH

In this section, in order to evaluate the benefits of a MSA
FX Core implementation, we cover the old MA. This in-
cludes an overview of the architecture, how it copes with
scaling, the scalability techniques applied, and the related
achievements. We also depict other problems, non-related
to scaling, that motivated the system redesign.

5.1 Architecture
Danske Bank monolithic system was in part already service-
based, as it can be seen in Figure 2. The system copes
with scale in a variety of different ways. The services are
deployable individually, and are actually already replicated
and deployed across a cluster. The system also utilizes
APIs as interfaces for clients to interact with the services
of the system, and a messaging system to delegate received
requests from external providers. At a first sight, it looks
like an ideal and scalable solution. However, Danske Bank
has experienced severe challenges when trying to rapidly
develop the system and deploying consistent changes, and
in general in handling system complexity. We will describe
here systems components, how they integrate and how they
are deployed.

5.1.1 System Components
The MA, shown in Figure 2, is componentized in a variety
of ways. The system utilizes both services, shared software

Fig. 2. Danske Bank MA. Red services are infrastructure services, green
are part of the monolith, blue is the client, yellow are external provider
APIs and grey are external Danske Bank systems. The external provider
APIs are part of the monolith and consist of multiple services, with each
one connecting to a different provider. Their names have been excluded
due to confidentiality. The ForexData database is one big monolithic MS
SQL database, shared amongst many of the monolithic components and
also accessed by external systems

libraries and thick desktop clients. This section will briefly
cover each of these components, their type and their respon-
sibilities, in order to give an idea of how functionalities and
data is distributed across the system. The thick clients will
not be covered, as they are not going to be replaced by the
MSA, but simply be updated to interface with it.

External APIs. The external APIs integrate with external
providers of trades and line-checks, not mentioned explic-
itly due to confidentiality reasons. APIs have open TCP
sockets to communicate with external providers. The APIs
receive requests for trade and line-checks from different
providers, each with their own trading protocol, and feed
them into the system via the messaging queues in Rab-
bitMQ [24]. The protocols are not translated by the APIs,
so requests are simply wrapped in messages and fed to the
system as is. The APIs are two-way, to notify the external
providers with status of their line-checks and trades, and
receive responses via RabbitMQ as well.

ForexAPI. The ForexAPI receives all requests for trades
and line-checks from the external APIs through RabbitMQ.
It translates the proprietary protocols from the APIs to
a uniform local format, and the other way around when
responding. Some integration with RequestService is done via
RPC and some through ForexData, which is shared between
the two. ForexAPI also provides interfaces to external clients
and users for several system functionalities, which it either
handles itself or mediates to RequestService. This also means
that the ForexAPI knows of most functionality in the system,
resulting in unintended functionalities having been imple-

Authorized licensed use limited to: Universitaetsbibliothek der TU Wien. Downloaded on May 04,2020 at 08:50:54 UTC from IEEE Xplore. Restrictions apply.

1939-1374 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2018.2889087, IEEE
Transactions on Services Computing

5

mented directly in the service over time.
RequestService. The RequestService receives requests for

trades and line-checks from ForexAPI and feeds them to the
mainframe. Beyond this, the service provides data and infor-
mation from the mainframe and ForexData to the ForexClient.
Most of the business logic lies within this service as well,
including authentication of clients and requests, trade re-
sponsibility assignment, trade validation, trade registration,
and line-check processing with data from the mainframe.

The RequestService shares part of its business logic with
the ForexAPI, for example trade registration logic, and the
knowledge of all protocols from the external APIs. Records
of all received messages and trades processed are stored in
the database ForexData.

ForexData and ForexBasicData. The states of both
ForexAPI and RequestService are persisted in the relational
SQL database ForexData, which includes records of trades
alongside with the original raw messages from the external
APIs. The data is also used to integrate some of the trade-
registration logic, spread across ForexAPI and RequestService.
The ForexBasicData service synchronizes some of the often
accessed static data from the mainframe database in order
to speed up access, acting therefore like a cache. However,
differently from a cache, some data is sometimes also syn-
chronized down to the mainframe from ForexData.

PushService. It listens to updates on trades and line-
checks in the mainframe and fetches additional information
from the ForexAPI. It pushes updates to the ForexClient.

Shared Libraries. Following the Do not Repeat Yourself
(DRY) principle [27], a number of shared libraries and com-
ponents have been created, which are used across the sys-
tem. These can be seen in the upper left corner, in Figure 2.
They are simple .NET DLLs, which are maintained and used
across almost all components of the system and include a
unified model in Models and access to the database through
DataAccess. The libraries have dependencies between each
other, resulting in difficulties when it comes to updates.

Mainframe and DB2. Although the mainframe and its
associated database DB2 are not official parts of the FX Core,
the system relies on its functionalities, such as fetching of
account balances used for line-checks, and the final registra-
tion of trades, i.e. requests to move assets from one account
to another. It also contains organization information, such as
users and their access rights, which is used for authorization
purposes.

5.1.2 Integration
A wide variety of integration mechanisms and technologies
are used between components and to external clients. In the
following we provide a brief description.

• Proprietary external protocols from external clients and
providers of trade and line-check requests, to the
external APIs. Protocol messages are sent to the sys-
tem through a TCP socket established between the
providers and the external APIs. One of these propri-
etary protocols is the FIX protocol, which is used by
many financial institutions.

• .NET RPC over TCP is used to integrate some of the
internal components, RequestService, ForexAPI and
PushService.

• Messages via RabbitMQ is used to integrate the exter-
nal APIs with the ForexAPI.

• Web-service interface in the form of Windows Communi-
cation Foundation (WCF) and SOAP, provided by the
ForexAPI to some clients, including traders wishing
to manually fetch information.

• Mainframe calls are done over a proprietary RPC
protocol on TCP sockets, and is used by most of the
services in the system, to integrate with functionality
and data in the mainframe.

• Database integration is used between ForexAPI and
RequestService for some functionalities, such as trade-
registration, meaning that instead of communicating
trade registration data directly, they do it indirectly
through the database. It is also used by some traders
and other external systems to fetch data directly from
the database.

5.1.3 Deployment
The system is deployed on three Windows Server hosts,
in three different Danske Bank data centers, as shown in
Figure 3. Each component can potentially be deployed in-
dividually, as they are independent processes, but they are
always co-located both for availability reasons and for the
high coupling between them.

All the components hold local references to all instances
(replicas) of the services, on which they depend. This means
that, in case a co-located dependency should fail, compo-
nents can fail-over and establish a connection to another
instance, on another host. The external provider APIs all
run in active/passive fail-over, since only one socket per
external provider can be opened. If an external provider
API terminates, its connections will be taken over by one
of the passive replicated instances, hereby becoming active.
The problem with both types of fail-overs is that, once fail-
over has occurred and the failed component is alive again,
the dependants will not fall back. This can result in only a
single instance actually being active and serving the system,
should two previous nodes have failed, whether or not they
are alive again. Manual intervention is required to fall back
services to their co-located dependency-replica.

The RabbitMQ messaging system runs clustered across
all nodes, since it is responsible for routing messages. This
effectively functions as a load balancer of trade and line-
check requests from external providers. The clustering en-
sures that no messages from external providers are missed,
should a RabbitMQ node terminate, maintaining the at least
once delivery guarantee provided by RabbitMQ. All servers
are manually maintained, hereby becoming snowflakes, i.e,
manually configured hosts that increase the risk of hetero-
geneous and non-replicable environments [28]. Deployment
of components is automated with the continuous integration
system GoCD [29].

5.2 Scalability

The MA paradigm itself applies some scalability tech-
niques.First, the system is scaled horizontally by usage of
multiple hosts, as seen in Figure 3, in a non-elastic way.
Hosts are manually configured, and services need to be
configured upon introduction of additional replicas since

Authorized licensed use limited to: Universitaetsbibliothek der TU Wien. Downloaded on May 04,2020 at 08:50:54 UTC from IEEE Xplore. Restrictions apply.

1939-1374 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2018.2889087, IEEE
Transactions on Services Computing

6

Fig. 3. Illustration of how the older MA is deployed on Danske Bank
internal datacenters, which are connected via a VPN on a WAN. Three
servers are provisioned to run the system, and the whole systems
is replicated across the three servers. The mainframe and ForexData
database are not deployed together with the system, but are managed
by the IT department.

they hold internal references to all dependency replicas.
Therefore, although possible, introducing additional hosts
is too cumbersome to face temporary needs.

Distribution of functionality into services has been im-
plemented, but such distribution does not result in high
cohesion and low coupling. This results in small degrees of
load distribution, not significant enough to improve load
scalability. The usage of functionality distribution into thick
clients is utilized, meaning that clients handle a lot of logic
for data inspection, e.g. filtering, sorting and visualization,
which relieves the monolithic system from some load. In
theory, thick clients should enable better geographical scal-
ability and lower latency, as it reduces the amount of net-
worked communication necessary between the ForexClient
and FXCore. Instead, the high coupling between ForexClient
and RequestService results in extensive communication.

The whole system is replicated and runs concurrently in
active/active mode across the three servers. The external APIs
are the only exception. Replicated in active/passive mode,
only a single replica is active at a time, as shown in Figure 3.
This replication allows load to be split amongst replicas,
resulting in better load scalability. The replicas also act as
redundant instances hereby improving availability.

Since all trades and line-checks are independent they can
be executed concurrently. The trades are spread amongst the
replicated systems by RabbitMQ, so multiple trades can be
executed in parallel. Services such as RequestService, also use
multi-threading, in order to concurrently processes requests.

In order to achieve higher availability and throughput,

system clustering is applied to RabbitMQ messaging. Should
a RabbitMQ node terminate or become unavailable due
to a network partition, the cluster automatically handles
partitioning based on its consistency configuration. The
ForexData database is stored on a database cluster, externally
managed by the IT department, thus out of our scope.

The ForexBasicData component mirrors some data to
ForexData from the mainframes DB2. This is somewhat a
cache, as it speeds up access to some mainframe static data,
but not significantly fast as the database is not optimized for
fast reads. Additionally, many services use simple internal
memory caches to reduce latency on serving requests.

The Brewer’s CAP theorem [30], states that at any given
time it is impossible for a distributed system to simulta-
neously provide consistency, availability, and partition tol-
erance. In network partition scenarios, only the clustered
components are required to choose between consistency and
availability (i.e., only RabbitMQ since ForexData is an ex-
ternal dependency). Since availability is desired, RabbitMQ
is configured to handle partitions with its auto-heal feature,
optimized for availability [31].

Fault tolerance is mainly implemented as part of the fail-
over mechanisms in replication, load-balancing and routing.
This ensures that if a component of the system fails, a replica
is ready to take over its load.

Load balancing is mainly handled by RabbitMQ, which
distributes messages from the external APIs in a round-robin
manner among ForexAPI replicas. For other clients, e.g. the
ForexClient, load is determined by which host they have
a reference to, configurable on each client from a central
management tool. Routing between the system components
is manually configured, so each instance of a component has
a list of all available replicas.

The MA has no centralized logs nor monitoring, but
instead relies on manual inspection and reports of erroneous
behavior from the users. All system components create local
logs, which are manually aggregated, searched, and investi-
gated by the developers as a post-mortem analysis (i.e., after
errors have occurred). Only one preventive monitoring is
done, by inspecting the size of RabbitMQ error queue. This is
where messages are located, when not handled successfully.

5.3 Achieved Characteristics and Goals of the Monolith

Here we provide a summary of the (fully or partially)
achieved scalability characteristics.

Load scalability has been achieved, since it can handle
load up to the statically allocated resources limits. The
system can be expanded manually, in case more load occurs.

Geographical scalability has been partially achieved. Since
the system is accessed by external providers, and is not
latency critical, geographical scalability is mostly a question
of keeping the system available via the Internet. However,
components are highly coupled, resulting in extensive mes-
sage exchanges and reduced geographical scalability

Elasticity has not been achieved, since the infrastructure
cannot expand and contract based on load. Additionally, the
architecture is not suited for dynamic additions of resources
and replicas, as load balancing is mainly done by the re-
quester having references to all replicated dependencies.

Authorized licensed use limited to: Universitaetsbibliothek der TU Wien. Downloaded on May 04,2020 at 08:50:54 UTC from IEEE Xplore. Restrictions apply.

1939-1374 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2018.2889087, IEEE
Transactions on Services Computing

7

Fault-tolerance is achieved to a limited degree, since the
system can handle faults with fail-over, but fall-back after a
component is alive again does not function optimally.

High Availability is achieved to a limited degree, since
the system has implemented fault-tolerance mechanisms in
the form of redundant replicas, fail-over, and configuration
of RabbitMQ to prefer availability during network partitions.
That being said, since the system does not provide any
centralized aggregation of health-checking, monitoring, or
logging, the system cannot act in a preventive manner, and
this could lead to reduced availability.

Weak Consistency is achieved by choosing availability
over strong consistency within RabbitMQ. ForexData is an
external transactional MS SQL database, which ensures that
writes are strongly consistent. The asynchronous at-least-once
delivery guarantee, together with the strong consistency guar-
antee of MS SQL, results in an eventually consistent system.

Three main techniques have contributed to the scalabil-
ity goals. Throughput has been improved by implement-
ing horizontal scaling, replication, concurrency, and load-
balancing. Distribution of functionality has not contributed
much to throughput, as the components are highly coupled.

Availability has been improved through horizontal
scaling, replication, load-balancing, clustering, and fault-
tolerance. Accordingly to the CAP theorem, we configured
the clustering to prefer availability over consistency. Fixing
the fail-over mechanisms, as well as allowing the system to
act preventively on aggregated health-checking, monitoring
and logging, could lead to further improvements.

Latency has been improved by caching, load-balancing,
replication, and concurrency. Services tight coupling be-
tween, and the use of many communication paradigms
makes it difficult to optimize latency even further. Distri-
bution might also have introduced some extra latency, since
the system can no longer rely on IPC for communication.
Again, tight coupling increases the messages exchange, si-
multaneously introducing even more latency.

5.4 Problems

Beyond scalability, the system has some other problems
which motivated the team to design and implement a new
architecture from scratch. Below are some of the major
problems with the old MA.

5.4.1 Large Components

As many organizations experience, functionality after func-
tionality, at some point the components grow too big. In
particular, the analyzed system suffers from monolithic ser-
vices that contain too many functionalities. This results in
unnecessary complexity, confusion on where to locate new
functionality and consequent hindered development.

As an example, RequestService suffers from size and
contains too many functionalities, some of which are even
shared with ForexAPI. As visible in Figure 2, it interacts
with nearly all the system components, making it both a
critical and a too complex component to handle. Over time,
this resulted in low cohesion and high coupling, especially
between RequestService and ForexAPI.

5.4.2 Shared Components
Although the system is split into separate services, a lot of
functionalities are shared in the form of shared components,
as it can be seen in Figure 2. Since the components are
shared across the services, updating a shared component
can result in forced updates across all services, as well as
comprehensive testing of such changes across all dependent
components. In turn, the more the shared components,
the tighter the coupling and the lower the cohesion, since
the functionalities are shared amongst dependent services.
Simply put, shared components are tempting, but lead to
unclear boundaries and unnecessary coupling.

5.4.3 The Mainframe
Due to the system age, a lot of the business logic and
data are located within the organization mainframe. The
developers estimate that around 90% of the business logic is
still located in the mainframe. Clearly, this results in some
difficulties. First, most of the mainframe code is developed
with old legacy technologies, such as Cobol and DB2, and
follows the imperative paradigm. Therefore, its structure
is complex and nearly incomprehensible by any developer.
Calls and dependencies criss-cross the system, with no kind
of management or overview, making extremely difficult to
optimize the system. The mainframe is not an easy com-
ponent to replace, as it contains many core functionalities.
However, the developers have started to pull out some
functionalities and migrate them in external services, hereby
slowly abstracting the mainframe away and minimizing its
necessity over time. The FX Core MA was the first attempt
to decouple the mainframe.

5.4.4 Complex Deployment
Deployment is somewhat risky and a very intricate process.
Although the system has automated pipelines, the high cou-
pling between components and the usage of shared compo-
nents, makes deployment pipelines coupled and complex.
Updating a single component can result in the whole system
requiring a rebuild and redeployment, meaning that the
whole system now needs to be tested.

5.4.5 Organizational Culture and Unknown Dependants
Danske Bank is a huge organization and the system has a
large number of users outside the IT department, some of
which have the capabilities to develop their own solutions,
dependent on internal system components. An example is
business people which rely on the data found in ForexData.
Since these people are not educated in software architecture,
they have made the mistake of writing quick scripts that
read data directly from the database. This makes difficult
for the team to modify the database structure, since it might
break unknown important business processes. The team
has already developed APIs for stakeholders and clients,
but the transition is a slow process. At some point the
system needs clear boundaries, hindering similar practices
that slow down development and might cause errors.

5.4.6 Multiple Communication and Integration Paradigms
The system utilizes various integration and communication
paradigms. This makes communication and integration be-
tween components unnecessarily complex, often resulting in

Authorized licensed use limited to: Universitaetsbibliothek der TU Wien. Downloaded on May 04,2020 at 08:50:54 UTC from IEEE Xplore. Restrictions apply.

1939-1374 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2018.2889087, IEEE
Transactions on Services Computing

8

violation and bad definition of interfaces. The usage of RPC
and database integration also results in high coupling between
components. Often, services also communicate directly and
two-way, resulting in even higher coupling.

5.4.7 Technology Dependence
Monoliths also strongly limit the use of different technolo-
gies. If a developer needs to develop a new feature within
the monolith, said developer is limited to the technologies
the monolith is already implemented in, although another
technology might be a better fit, either for the feature or the
developer’s expertise. Although the system is not one big
monolith, the choice of databases, integration paradigms,
reliance on shared components and choice of deployment
platform, limits the choice within Microsoft .NET platform.
In turn, heavy reliance on Microsoft technologies also limits
the deployment platform to Windows Server, which in gen-
eral provides less flexibility, compared to running on Linux
servers.

5.4.8 Missing System Status Overview
Since the system does not have a central location and ag-
gregation of monitoring data, health-checks and logs, there
is no way to get an overview of the system status. This
shortage forces developers to manually investigate logs or
the messaging system, minimizing any opportunity to apply
preventive measures based on system warnings.

6 FX CORE MSA
The Danske Bank new FXCore architecture is based on the
MSA style and is intended to completely replace the old
MA. This section will cover how Danske Bank FX Core
team has chosen to implement a MSA, thus giving an
idea of how such an architecture can be implemented in
an enterprise setting. This includes a description of the
infrastructure as depicted in Figure 4, a brief description of
the implemented services, some of the additional architec-
tural principles used, what scalability techniques have been
applied and what scalability characteristics and goals have
been achieved.

Danske Bank FX Core MSA is hosted on private data-
centers, i.e. not in the cloud. This means that new hosts
can not be provisioned and de-provisioned as rapidly and
automated as in a cloud. It is in their interest to provide a
private cloud for systems to run in, but due to regulations on
banking data, this is still work in progress. There are three
data-center locations in Denmark, which can be utilized to
achieve better availability and increased resilience to the
internal systems.

On the IT department roadmap there is the adoption of
the Red Hat OpenShift [32] Iaas/PaaS platform, on the inter-
nal data-centers. However, at the moment, the infrastructure
consists of VMs ordered through a web-portal, manually
setup by the FX Core team.

6.1 Containerization
All services in Danske Bank FXCore architecture are hosted
in Linux Containers on the Docker Swarm cluster [21]. Con-
tainerization enables a whole suite of tools, provided by

Fig. 4. The new FX Core MSA. Red services are infrastructure services,
green are foundation services, blue are business services and the yellow
is external provider APIs. Databases in the diagram should be seen as
database management systems (DBMS), meaning that although four
services use PostgreSQL they all have their own standalone database
within the DBMS

Docker platform. Docker Compose, for example, allows the
deploy the entire architecture with a single command, so
that developers define all service dependencies and deploy
them for local testing during development. Services are
deployed locally, since they are running in containers, but
their environments are exactly as if deployed to production.

All container images are hosted on an internal Docker
Registry, a central repository for container images, where
the official registry is hub.docker.com [33]. New images
are deployed to the internal registry when a new version of
a service is successfully built and tested by the continuous
integration system. Furthermore, the services images inherit
from infrastructure and base images hosted on the same
hub. A list of all FX Core images can be retrieved with a
search within the local registry.

6.2 Automation

All services in the architecture, including infrastructural
clusters, has an automated continuous integration and contin-
uous deployment (CICD) pipeline on their internally hosted
GoCD server [29]. The GoCD platform offers a simple inter-
face, which gives an overview and interaction with building,
testing and deployment. The tooling which comes with the
orchestration system Docker Swarm, has APIs which enables
automation of many infrastructural tasks, such as rolling
updates. These are utilized by the CICD system, combined
with checks on correct functioning.

6.3 Orchestration

All deployment and execution of services, in containers, is
managed by Docker Swarms orchestration on the swarm clus-
ter. Swarm uses the notion of a service which is an aggre-
gation of containers, meaning that multiple replicas of the
service containers are treated as a single swarm service,
also called managed containers. An example of this can be
seen in Figure 6, where the service trading-service has
multiple replicated containers, i.e. trading-service.1

Authorized licensed use limited to: Universitaetsbibliothek der TU Wien. Downloaded on May 04,2020 at 08:50:54 UTC from IEEE Xplore. Restrictions apply.

1939-1374 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2018.2889087, IEEE
Transactions on Services Computing

9

and trading-service.2, but service discovery and per-
sistence in the same database, allows them to act as a single
service. The swarm cluster is also managed by Swarm and
hosts all services on the cluster. The orchestration tooling
also handles service discovery and load balancing, and has
web and command line interfaces which can be used for
automation of rolling updates, scaling etc.

6.4 Clustering
Clustering is one of the primary techniques used in the FX
Core. The architecture runs across five virtual hosts located
in the three data-centers. On the hosts a Docker Swarm cluster
has been setup, with each host acting as a Swarm Node. This
allows the three container engines on the Swarm Nodes, i.e.
Docker Engines, to act as a single engine, allowing containers
to run spread across the cluster. This is illustrated in Figure 6
Since Swarm is also a container orchestration system, it
provides the features mentioned in Section 3.

Docker Swarm [21] allows for overlay networking, which
enables the developers to define internal networks which
is used to communicate between service containers, which
all expose their ports to the internal network. Docker Swarm
also allows for management of storage volumes, which are
spread across the cluster nodes and are used to persist data
from databases and RabbitMQ. The cluster allows for dy-
namic joining and leaving of Swarm nodes, and automatically
rebalances location of services to efficiently use resources.

Beyond clustering the container engines, some of the ser-
vices also utilize clustering. This includes the messaging sys-
tem RabbitMQ, monitoring system Icinga and all databases,
i.e. Redis, Cassandra and PostgreSQL. These services use clus-
tering mostly due to requirements to their availability, since
they are critical components of the infrastructure. Therefore
all infrastructure service clusters are deployed with a service
cluster node on at least one Swarm cluster node in each
datacenter. Ensuring that the system can keep running as
long as a single datacenter is available and has an active
Swarm cluster node.

6.5 Load Balancing and Service Discovery
Service discovery is implemented as part of Swarm, which
ensures that service hostname lookups from containers are
translated into IPs of concrete containers. Since RabbitMQ
is used to communicate between services, Swarms service
discovery is only used by services requesting infrastructure
services. RabbitMQ knows of services which have actively
subscribed to one of its queues, hereby not needing service
discovery. Load balancing is therefore required to be imple-
mented by both RabbitMQ and Swarm service discovery.

RabbitMQ implements load balancing by distributing
messages between subscribers to a queue, hereby spread-
ing load between them. Usually all replicas of a service
subscribe to the same queue, and they can hereby share
the load. This is usually done in a round-robin, distributing
messages to replicas in sequential order. RabbitMQ queues
rely on acknowledgements upon successful processing of
a message. Should a replica not acknowledge a message,
it will simply be handed to the next replica, ensuring the
message is processed at-least-once. In the case no replica can
handle the message, it will be sent to an error queue, hereby

Fig. 5. Danske Bank MSA is deployed in three datacenters. The operat-
ing system on all hosts is Red Hat Enterprise Linux (RHEL) 7, which
has been configured to open network ports for the installed Docker
Engines to run and communicate. The Docker Engines are configured
to run as a cluster, i.e. each in Swarm Mode as part of the Swarm
Cluster. The infrastructure services, such as databases and messaging
software, here Redis and RabbitMQ, are configured to run on at least
one host in each datacenter, and do so in clusters. Services running in
active/passive failover, such as the TradingAPI services here, also run
replicated across the cluster.

notifying the developers. RabbitMQ can be configured to
distribute messages in other ways if load balancing is not
needed, which is done upon creation of a queue.

Swarm utilizes the built-in service discovery to balance
load between replicated service containers. When a service
hostname is requested, Swarm translates to an IP of a replica
container. For now, this is done in a round-robin fashion, but
one might consider translating based on proximity, i.e., to
co-located replicas to reduce latency, or based on load, i.e., to
least busy replicas to improve throughput.

An illustration of RabbitMQ and Swarm load balancing,
can be found in Figure 6.

6.6 Services

Here will give a short overview of the services within the
system, how they are implemented, how they integrate
and their different fail-over modes, which are important
to how they are scaled. The services’ responsibilities and
functionality will not be covered in depth, but it should be
apparent from their naming.

6.6.1 Integration
All services written by Danske Bank integrate via message-
based choreography, as it is asynchronous and decouples
services entirely. The chosen messaging system is Rab-
bitMQ [24], which provides configurable publish/subscribe

Authorized licensed use limited to: Universitaetsbibliothek der TU Wien. Downloaded on May 04,2020 at 08:50:54 UTC from IEEE Xplore. Restrictions apply.

1939-1374 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2018.2889087, IEEE
Transactions on Services Computing

10

Fig. 6. Load balancing is implemented in two places in the infrastructure,
as part of RabbitMQ message distribution between replicas and as
part of Docker Swarm built-in service discovery. In this diagram, when
a trading-service replica sends a request to redis, Swarm will
translate the message to one of the replicas, e.g. redis.1, redis.2
or redis.3. Since all three replicas run in a cluster, they ensure that
state is shared and consistent amongst each other.

mechanisms in the form of messaging exchanges, queues,
and bindings between these two. Typically, a producer ser-
vice pushes messages to an exchange component, whereas
consumer services pull messages from a queue. Between
exchanges and queues occur bindings, which define how
messages are distributed from the exchange component to
one (or more) queues, based on message metadata. This
decouples services from each other and makes all commu-
nication between them asynchronous.

Queues function as a load balancer between consuming
replicas of specific services. When a queue is shared among
services replicas, each replica gets messages in a round-
robin manner, as shown in Figure 6. RabbitMQ supports
acknowledgements from consumers, so if a message is not
acknowledged after a predefined timeout it is redistributed
to another replica. If the redistribution happens too many
times, the message is forwarded to an error queue. Ac-
knowledgements are put in place, in order to ensure that all
messages are handled eventually and if not the developers
will be notified from the error queue.

6.6.2 Fail-over Modes
All the services are categorised into two failover modes,
which not only describes how the services handle failure,
but also helps define how they are run in production.

Active/Active failover means that multiple service repli-
cas can run alongside each other, providing better scalability
through load sharing. Besides, if one replica fails others can
take over its intended load, while the failed one recovers.
This can also be used for rolling updates, where replicas are
updated one at a time, resulting in zero-downtime updates.

Active/Passive failover means that only a single instance
of a service can be running at a time. Therefore it cannot be
scaled by replication, but only by increasing resources, i.e.
vertical scaling. During runtime a passive service will be

idling until the active service fails, and the passive service
will become active and take over the workload from the
failed service. The same approach applies to updates, where
a new version of the service will be deployed and take over
the old versions workload when ready, hereby letting the
old service terminate.

6.6.3 Foundation Services
These services function as the foundation of the architec-
ture, meaning that they implement supportive functions
and not business related functionalities. They implement
centralized logging and monitoring, centralized service con-
figuration and handling of active/passive failover. All of
these services run in active/active failover, meaning they can
be replicated and run concurrently:LoggingService, Moni-
toringService, ConfigurationService, FailoverService, Data-
SyncService, TracingService.

6.6.4 Business Services
These are the services that are actually implementing busi-
ness logic. They process trades, line-checks and authoriza-
tion of actions in the system. This is mainly the group
of services which will be expanded before deployment to
production. All of these services also run in active/active
failover, meaning they can also be replicated and run con-
currently: LinecheckService, TradingService, Responsibility-
Service, AuthService.

6.6.5 Infrastructure Services
All of these services make up the infrastructure of the archi-
tecture, which includes messaging, monitoring, logging and
databases. All of these infrastructure services run in clusters,
to provide high availability and better performance, i.e. load
scalability.

• Elasticsearch stores logs and health check data from
services.

• Icinga aggregates, visualizes and inspects monitoring
data.

• Kibana aggregates, searches and inspects logs from
all services.

• PostgreSQL is a database used by most of the services
which require persistence.

• RabbitMQ is the main messaging system, used by all
services.

• Cassandra is a database used by the TracingService.
• Redis is used as a cache for static data from the

mainframe database.
• cAdvisor is used to retrieve performance metrics

about containers and hosts, from the Swarm cluster
nodes.

6.6.6 External API Services
These services provide interfaces to the external providers
of trades and line-checks. Their main task is to have an open
socket to the providers, translate the messages they receive
on proprietary protocols to a standard format that can be fed
to the system, via RabbitMQ. They are all active/passive as a
provider typically only provides a single socket. The names
of the concrete services will not be mentioned, as they are
confidential.

Authorized licensed use limited to: Universitaetsbibliothek der TU Wien. Downloaded on May 04,2020 at 08:50:54 UTC from IEEE Xplore. Restrictions apply.

1939-1374 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2018.2889087, IEEE
Transactions on Services Computing

11

7 MA VS. MSA
After having presented both architectures, we will now
discuss the migration process how they differ in handling
the effects of scale. Beyond comparing their scalability, this
section will also explain how the new MSA copes with the
problems we have presented for the MA.

7.1 Migration Process and Principles
In Section 8 we will emphasize the key aspects that are
relevant to the migration, and that could help to replicate
the process within another organization. Here we focus
on the process of migration itself, showing how the MA
was converted into MSA and what principles have been
followed to divide a complex business service into mul-
tiple microservices. First, as we will repeat in the lesson
learned, the scenario has to be business-driven and outside-
in, meaning led by the necessity of the stakeholders, and in
a precise order elicited through conversations with them. In
our work, the business functionalities were defined mostly
by communicating with forex traders and were iteratively
added according to the level of priority for the business
itself. The complexity of the whole system is therefore
addressed outside-in, therefore not moved by internal needs
of the hosting organization. The migration was performed
manually, considering each specific functionality and iden-
tifying whether it should have resulted in a new service or
not.

The divide et impera principle that emerged in our work
can be synthesized as follows, as result of empirical experi-
ence: when a business functionality is isolated and sufficiently
big, or shared among many other business functionalities, it
should result in a new service. As we will discuss later, often
the iterative approach was necessary and some function-
alities were included in the same service, before splitting
them on a successive iteration. This approach has at least
one advantage and one disadvantage: on the positive side
it progressively distances the team from the legacy system,
avoiding the implementation of a distributed monolith; on
the negative side, “sufficiently big” is a fuzzy and highly
subjective definition. In this case, we have to keep in mind
that the process is business-driven and, considering busi-
ness priorities, it is generally clear how to identify the func-
tionalities which need to be often updated and redeployed,
therefore worth to become a new standalone service.

7.2 Effects of Scale
Both architectures apply techniques to achieve a certain
degree of scalability, which ensures they can cope with the
effects of scale. In the following, we will discuss how they
differ in handling these effects.

Availability is handled better by the MSA, since the MA
has problems with fall-back after a fail-over. They have
both applied techniques to improve availability, but the
MSA loose coupling and reliance on replication and load-
balancing of individual services has ensured availability will
not be affected by scale.

Reliability may become an issue at scale since both ar-
chitectures integrate components with unreliable networked
communication. In the MSA, all integration between ser-
vices rely on RabbitMQ which can be configured to ensure

reliable transfer of messages [31]. This may apply to the
APIs used to integrate with infrastructure services as well.
The simpler integration in the MSA, combined with its prin-
ciple of designing for failure, could result in better tackling of
reliability at large scale. Additionally the use of containerized
and independent environments of the individual microser-
vices, should also provide the same reliability between local
testing and deployment. This is not the case with the mono-
lithic components, which are run directly on the developers
machines for testing, and server OS for deployment.

System Load is handled in both architectures by horizon-
tally scaling the hosts and load-balancing between replicas,
thus spreading overall system load between hosts. One
might also argue that the MSA, although distributed, en-
sures through loose coupling that messaging does not create
too much network traffic. Elasticity also ensures that the
MSA can make use of extra allocated resources, which could
be used to reduce system load on individual hosts, when
needed.

Complexity is handled better by the MSA, although more
distributed and thus with more moving parts. This is mainly
due to its high cohesion, low coupling, extensive monitor-
ing and logging, and reliance on automation. All of this
contribute to reduced complexity in structure, separation of
responsibilities, and deployment. This is likely to endure
over time, as the architecture is optimized to evolve by ser-
vices addition. Conversely, the MA exhibits high coupling
between large components, making structure and services
integration complex, without a clear separation of responsi-
bilities. The variety of integration patterns also contributes
to such complexity and, although automated, deployment
is still a complex process due to shared components. Fur-
thermore, the missing centralized logging and monitoring
makes complex to keep the whole system running.

Administrative costs are greatly reduced in the MSA as
it relies on orchestration tooling, automation and extensive
centralized monitoring and logging. The MA requires more
manual work to keep running at large scale, as deployments
are more complex, there is no centralized monitoring, and
the server environments are manually maintained.

Consistency in both systems is simply kept weak, or more
precisely eventual. This also ensures that the system can
be kept highly available at large scale, although network
partitions might occur.

Heterogeneity is effectively handled by the MSA due
to the use of containerized environments, which results
in highly portable services. This is also substantiated by
its ability to be deployed to heterogeneous infrastructure,
such as differently sized hosts. On the other hand, MA
is less portable as it requires a specifically configured and
maintained environment, in this particular case a Windows
Server. Besides, it requires homogeneous infrastructure (i.e.,
same amount of resources), since the whole architecture is
replicated on each and every host.

From the above analysis, it results evident that, in gen-
eral, FX Core MSA scales better than the MA version.

7.3 Solving Monolithic Problems

Let us now see how the MSA has improved or solved some
of the problems identified in the MA.

Authorized licensed use limited to: Universitaetsbibliothek der TU Wien. Downloaded on May 04,2020 at 08:50:54 UTC from IEEE Xplore. Restrictions apply.

1939-1374 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2018.2889087, IEEE
Transactions on Services Computing

12

Large Components. The large components of the MA
which were highly coupled, had overlapping responsibil-
ities and integrated in a multitude of ways, have been
substituted with several independent microservices. Just the
name of the services reveal their responsibility and they
are generally way smaller compared to the large monolithic
services. They do not integrate directly, resulting in looser
coupling and less chance of feature overlapping in the
future. As an example, trade-registration and line-checks
were handled both by ForexAPI and RequestService amongst
almost all other functionality in the MA. In the MSA a
TradingService and a LineCheckService are handling these
tasks individually instead. This is the case with all other
functionalities in the MSA, resulting in low coupling, high
cohesion and small services.

Shared Components. The shared component were many
in the MA, but in the MSA, this has been reduced to only one
shared component, the Lambda framework. Lambda is very
minimal and is only meant to be a framework to connect to
the infrastructure and provide standard formatting methods
for e.g. messages, logs and health-checks.

The Mainframe. The mainframe will still be attached for
a while in the MSA, but over time the functionalities from
the mainframe will be implemented as new services. In turn,
this will result in all Forex functionalities being extracted,
totally decoupling the mainframe from the system. For now,
the impact of the mainframe has been reduced by caching.

Complex Deployment. Since the microservices are in-
dependent, loosely coupled and isolated components, they
can be deployed individually, without affecting the other
components. There is no dependency hell and the only shared
component is Lambda. Even when Lambda is updated, all the
services are not necessarily required to update, since they
run in their own containerized environments and do not
directly share any dependencies, i.e. libraries. This makes
deployment very simple and the usage of Docker and Linux
containers ensures that services run in the same environ-
ment during local testing, on test servers and in production.

Organisational Culture and Unknown Dependants.
The whole re-implementation brings other benefits with it
than a new MSA. It also allows the team to kill all paths
into the system, which they do not control. Since the team
controls the whole infrastructure with Docker, including
databases and ports open to outside clients, the team can
eliminate all unwanted access. This allows the team to
develop open APIs for clients and traders in the bank to
use, thus eliminating direct database queries and the like.
This gives the team full ownership and control of internal
implementation details.

Multiple Communication and Integration Paradigms.
Internally the microservices integrate only via messaging
on RabbitMQ. Due to using message-based choreography the
services do not call each other directly, thus resulting in
very low coupling and no interfaces to violate. The system
does communicate to external systems via other paradigms,
such as the proprietary protocols to external providers and
future REST APIs, but this does not compromise internal
system complexity. The integration between services and
their infrastructure dependencies, does not result in inter-
nally complexity either, as it is not used for any integration
between business or foundation services.

Technology Dependence. The team aimed for a polyglot
architecture, meaning that it is not technology dependent.
The team is no longer dependent on the .NET platform
or MS SQL databases, but can implement the services in
whatever language they like. One might argue that they
are just becoming dependent on other technologies, such
as Docker, but Linux containers are becoming a standard
through the Open Container Initiative [34].

Missing System Status Overview. The MSA has central-
ized logging in the form of LoggingService, ElasticSearch and
Kibana, allowing for aggregation of logs from all services.
The same applies to monitoring implemented with the Mon-
itoringService, Icinga and cAdvisor, allowing for aggregated
monitoring of metrics. Centralizing and aggregating both
logs and monitoring, gives the team a complete system sta-
tus overview, allowing them to act proactively on suspicious
and faulty behaviour.

8 CONCLUSION AND LESSONS LEARNED

An increasing interest is growing around the idea of mi-
croservices, and companies are evaluating pros and cons
of a complex migration. Not every business domain is
affected the same way by the necessity of migrating legacy
systems. In particular, financial institutions are positioned
in a difficult situation due to the economic climate, but even
more by the appearance of small players that grew big fast
in recent times, such as alternative payment systems that
can also navigate in a more flexible (and less regulated)
legal framework. Evolution is necessary to stay competitive.
When compared with companies (such as Paypal) that
started their activities using innovative technologies as a
business foundation, in order to scale and deliver value,
old banking institutions appear outdated with regards to
technology standards. The Danske Bank system itself was
largely monolithic and mostly batch-based, generally deal-
ing with an heterogeneity of data sources. For example,
batch jobs were in place to balance books between depart-
ments, and to analyze trades aiming to detect fraudulent
behaviors. Nowadays, customers expect to conduct online
most of their operations but, even if mobile banking ap-
plications can be built from scratch according to agile and
DevOps principles, data dependencies still apply. It is easy
to see that, if the core banking legacy system is based on
batch jobs, huge performance bottlenecks can be expected.
A MSA solution, like the one developed for Danske Bank, is
capable of increasing the agility of the whole company.

The re-engineering of the system discussed in this paper
led to reduced complexity, lower coupling, higher cohesion,
and a simplified integration. Comparing the two architec-
tural designs, we have seen how microservices led to better
scalability and solved the major problems caused by the MA
solution. Although the comparison did not include quanti-
tative metrics, the implementation of specific techniques has
been used as an argument in support of increased scalability.

There are a few points worth emphasizing about the
migration process, which may be useful to engineers and
specialist that have to cope with similar problems. First, our
approach was incremental and we would generally suggest
to follow this line starting from a proof-of-concept and then
generalizing into a replicable process. Approaching a legacy

Authorized licensed use limited to: Universitaetsbibliothek der TU Wien. Downloaded on May 04,2020 at 08:50:54 UTC from IEEE Xplore. Restrictions apply.

1939-1374 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2018.2889087, IEEE
Transactions on Services Computing

13

system that served successfully its purposes for literally
decades does not seem to be advisable, independently from
how much support is received by top management.

Instead of starting with several services, developing
functionalities in a single one allows the team and the orga-
nization to uniform the vision, but also the understanding
of the specific approach and of the coding standard. A
split into two or more services will then appear natural.
Second, use of agile methodologies, in any declination of
the concept, suits particularly well the migration process.
However, for this to be effective it is necessary that the
company has already an established agile culture, otherwise
risks and threat to success may sum up. In this sense the
incremental approach and the agile culture go together,
operating the development sprint by sprint.

Third, DevOps and MSA appear to be an indivisible
pair for organizations aiming at delivering applications and
services at high velocity. The philosophy may be introduced
in the company with adequate training, but only if certain
technological, organizational and cultural prerequisites are
present [35]. If not, the prerequisites should be developed.
Investing in DevOps is a good idea in general, and after a
migration of this kind is even more crucial.

Fourth, the order in which the migration is performed
is important. Even if the whole system will be migrated, it
is advisable to focus first on those parts that are important
for relevant stakeholders and their specific business. In this
case, we designed and implemented one business function-
ality at a time, following an order defined together with
forex traders, and iteratively integrated them accordingly to
the level of priority for the business itself.

Fifth and last, although somehow obvious, things should
follow appropriate communication patterns. This is a pre-
rogative of any business and any process, so it does not add
much to the discussion, but it is important to organize the
channel through which the information is passed, in order
to avoid work duplication or lack of synchronization.

The future will see a growing attention regarding the
matters discussed in this paper, and the development of new
programming languages intended to address the microser-
vice paradigm [8]. Object-Oriented programming brought
fresh ideas in the last decades, and the expectation is that
a comparable shift may be just ahead of us. Innovative
engineering is always looking for adequate tools to model
and verify software systems, as well as support developers
in deploying correct software. As we have demonstrated
in this paper, MSA is an effective paradigm to cope with
scalability. However, the paradigm still misses a conceptual
model able to support engineers since the early phases of
development. In the following, we describe a set of research
challenges that a complete software-engineering approach
(within the microservices field) must cover in the next years.

To make the engineering process of a microservices-
based application efficient, we need a uniform way to model
autonomous and heterogeneous microservices, at a level of ab-
straction that allows for easy interconnection through dy-
namic relations. Each microservice must have a partial view
on the surrounding operational environment (i.e., system
knowledge) and at the same time must be able to be spe-
cialized/refined and adapted to face different requirements,
user needs, context-changes, and missing functionalities.

An important feature of dynamic and context-aware
service-based systems is the possibility of handling at
run-time extraordinary/improbable situations (e.g., context
changes, availability of functionalities, trust negotiation),
instead of analyzing such situations at design-time and
pre-embedding the corresponding recovery activities. The
intrinsic characteristics of microservice architectures make
possible to nicely model run-time dependability concepts,
such as “self-protecting” and “self-healing” systems [36]. To
make this feasible, we should enable microservices to mon-
itor their operational environment and trigger adaptation
needs each time a specific system property is violated. To
cover the aforementioned research challenges, we already
started to define a roadmap [37] that includes an initial in-
vestigation on how Domain Objects [38] could be an adequate
formalism both to capture the peculiarity of MSA, and to
support the software development since the early stages.

REFERENCES

[1] E. S. de Almeida, A. Alvaro, D. Lucrédio, V. C. Garcia, and
S. R. de Lemos Meira, “Rise project: Towards a robust framework
for software reuse,” in Proceedings of the 2004 IEEE International
Conference on Information Reuse and Integration, IRI - 2004, November
8-10, 2004, Las Vegas Hilton, Las Vegas, NV, USA, 2004, pp. 48–53.

[2] M. C. MacKenzie, K. Laskey, F. McCabe, P. F. Brown, R. Metz, and
B. A. Hamilton, “Reference model for service oriented architecture
1.0,” OASIS Standard, vol. 12, 2006.

[3] Z. Yan, M. Mazzara, E. Cimpian, and A. Urbanec, “Business
process modeling: Classifications and perspectives,” in Business
Process and Services Computing: 1st International Working Conference
on Business Process and Services Computing, BPSC 2007, September
25-26, 2007, Leipzig, Germany., 2007, p. 222.

[4] M. Mazzara, “Towards abstractions for web services composi-
tion,” Ph.D. Thesis, University of Bologna, 2006.

[5] N. Dragoni, S. Giallorenzo, A. Lluch-Lafuente, M. Mazzara,
F. Montesi, R. Mustafin, and L. Safina, “Microservices: yesterday,
today, and tomorrow,” in Present and Ulterior Software Engineering,
B. Meyer and M. Mazzara, Eds. Springer, 2017.

[6] F. Montesi, C. Guidi, and G. Zavattaro, “Service-Oriented Pro-
gramming with Jolie,” in Web Services Foundations. Springer, 2014,
pp. 81–107.

[7] L. Safina, M. Mazzara, F. Montesi, and V. Rivera, “Data-driven
workflows for microservices (genericity in jolie),” in Proc. of The
30th IEEE International Conference on Advanced Information Network-
ing and Applications (AINA), 2016.

[8] C. Guidi, I. Lanese, M. Mazzara, and F. Montesi, “Microservices:
a language-based approach,” in Present and Ulterior Software Engi-
neering. Springer, 2017.

[9] E. Evans, Domain-driven design: tackling complexity in the heart of
software. Addison-Wesley Professional, 2004.

[10] N. Dragoni, I. Lanese, S. T. Larsen, M. Mazzara, R. Mustafin, and
L. Safina, “Microservices: How to make your application scale,”
in A.P. Ershov Informatics Conference (the PSI Conference Series, 11th
edition). Springer, 2017.

[11] A. Balalaie, A. Heydarnoori, and P. Jamshidi, “Microservices archi-
tecture enables devops: Migration to a cloud-native architecture,”
IEEE Software, vol. 33, no. 3, pp. 42–52, May 2016.

[12] D. Taibi, V. Lenarduzzi, and C. Pahl, “Processes, motivations, and
issues for migrating to microservices architectures: An empirical
investigation,” IEEE Cloud Computing, vol. 4, no. 5, pp. 22–32,
September 2017.

[13] H. Knoche and W. Hasselbring, “Using microservices for legacy
software modernization,” IEEE Software, vol. 35, no. 3, pp. 44–49,
May 2018.

[14] P. D. Francesco, P. Lago, and I. Malavolta, “Migrating towards
microservice architectures: An industrial survey,” in 2018 IEEE
International Conference on Software Architecture (ICSA), April 2018,
pp. 29–2909.

[15] A. Levcovitz, R. Terra, and M. T. Valente, “Towards a technique
for extracting microservices from monolithic enterprise systems,”
in III Workshop de Visualização, Evolução e Manutenção de Software
(VEM), 2015, pp. 97–104.

Authorized licensed use limited to: Universitaetsbibliothek der TU Wien. Downloaded on May 04,2020 at 08:50:54 UTC from IEEE Xplore. Restrictions apply.

1939-1374 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TSC.2018.2889087, IEEE
Transactions on Services Computing

14

[16] A. Balalaie, A. Heydarnoori, and P. Jamshidi, “Migrating to cloud-
native architectures usingmicroservices: An experience report,” in
Advances in Service-Oriented and Cloud Computing, A. Celesti and
P. Leitner, Eds. Cham: Springer International Publishing, 2016,
pp. 201–215.

[17] A. Balalaie, A. Heydarnoori, P. Jamshidi, D. A. Tamburri, and
T. Lynn, “Microservices migration patterns,” Software: Practice and
Experience, July 2018.

[18] A. Furda, C. Fidge, O. Zimmermann, W. Kelly, and A. Barros,
“Migrating enterprise legacy source code to microservices: On
multitenancy, statefulness, and data consistency,” IEEE Software,
vol. 35, no. 3, pp. 63–72, May 2018.

[19] Kubernetes, “Kubernetes - production-grade container orchestra-
tion,” http://kubernetes.io.

[20] I. Mesosphere, “Marathon: A container orchestration platform for
mesos and dc/os,” https://mesosphere.github.io/marathon/.

[21] I. Docker, “Swarm mode overview - docker,” https://docs.docker.
com/engine/swarm/.

[22] A. Michlmayr, F. Rosenberg, C. Platzer, M. Treiber, and S. Dustdar,
“Towards recovering the broken soa triangle: A software engineer-
ing perspective,” in 2Nd International Workshop on Service Oriented
Software Engineering: In Conjunction with the 6th ESEC/FSE Joint
Meeting, ser. IW-SOSWE ’07, 2007, pp. 22–28.

[23] HashiCorp, “Consul by hashicorp,” https://www.consul.io/.
[24] I. Pivotal Software, “Rabbitmq - messaging that just works,” https:

//www.rabbitmq.com.
[25] redis.io, “redis,” http://redis.io.
[26] A. MacEachern, “How are international exchange rates

set?” http://www.investopedia.com/ask/answers/forex/
how-forex-exchange-rates-set.asp.

[27] S. Smith, “Don’t repeat yourself,” http://programmer.97things.
oreilly.com/wiki/index.php/Don%27t Repeat Yourself.

[28] M. Fowler, “Snowflakeserver,” http://martinfowler.com/bliki/
SnowflakeServer.html.

[29] T. Inc., “Gocd, open source continuous delivery service,” https:
//www.gocd.io.

[30] E. Brewer, “Pushing the cap: Strategies for consistency and avail-
ability,” Computer, vol. 45, no. 2, pp. 23–29, Feb. 2012.

[31] I. Pivotal Software, “Rabbitmq - clustering and network parti-
tions,” https://www.rabbitmq.com/partitions.html.

[32] R. Hat, “Openshift: Paas by red hat, built on docker and kuber-
netes,” https://www.openshift.com/.

[33] I. Docker, “Overview of docker hub - docker,” https://docs.
docker.com/docker-hub/.

[34] O. C. Initiative, “About, open container initiative,” https://www.
opencontainers.org.

[35] M. Mazzara, A. Naumchev, L. Safina, A. Sillitti, and K. Urysov,
“Teaching devops in corporate environments: An experience
report,” CoRR, vol. abs/1807.01632, 2018. [Online]. Available:
http://arxiv.org/abs/1807.01632

[36] N. Dragoni, F. Massacci, and A. Saidane, “A self-protecting and
self-healing framework for negotiating services and trust in au-
tonomic communication systems,” Computer Networks, vol. 53,
no. 10, pp. 1628 – 1648, 2009.

[37] K. Mikhail, A. Bucchiarone, M. Mazzara, L. Safina, and V. Rivera,
“Domain objects and microservices for systems development: a
roadmap,” in Proceedings of 5th International Conference in Software
Engineering for Defence Applications, 2017.

[38] A. Bucchiarone, M. D. Sanctis, A. Marconi, M. Pistore, and
P. Traverso, “Incremental composition for adaptive by-design ser-
vice based systems,” in IEEE ICWS 2016, San Francisco, CA, USA,
June 27 - July 2, 2016, pp. 236–243.

AUTHORS’ BIOGRAPHIES

Manuel Mazzara is Professor of
Computer Science at Innopolis University
(Russia) with a research background in
software engineering, service-oriented
architectures, concurrency theory, formal
methods and software verification. He
cooperated with European and US
industry, plus governmental and inter
governmental organizations.

Nicola Dragoni is Associate Professor
in Distributed Systems and Security at
DTU Compute, Technical University of
Denmark, and Professor in Computer
Engineering at Centre for Applied
Autonomous Sensor Systems, Örebro
University, Sweden. His main research
interests lie in the areas of pervasive

computing and cyber-security, with focus on Internet-of-
Things, fog computing, and mobile systems.

Antonio Bucchiarone is a senior
researcher of FBK in Trento, Italy. His
main research interests are: self-adaptive
systems, applied formal methods, run-
time service composition and adaptation,
specification and verification of

component-based systems, dynamic software architectures.
He has been actively involved in various research projects
in the context of service-based adaptive systems.

Alberto Giaretta received his M.Sc.
degree in Computer Science from the
University of Padova, Padova, Italy, in
2016. He is currently a PhD Student
at the Örebro University, Örebro,
Sweden, under the supervision of Prof.
Nicola Dragoni and Prof. Amy Loutfi.
His main interests include Security,
Internet of Things, and Bio-inspired
Networks.

Stephan Thordal Larsen is software
engineer at Danske Bank, Copenhagen,
Denmark. In 2017, he got a MSc in
Computer Science and Engineering at
Technical University of Denmark. He has
been the key actor in the Danske Banks
transition of their FX Core system to a
microservice architecture, showing that

this transition significantly yields increased scalability over
their legacy monolithic architecture.

Schahram Dustdar is Full Professor of
Computer Science and head of The Dis-
tributed Systems Group at the TU Wien,
Austria. He is an Associate Editor of
IEEE Transactions on Services Computing,
ACM Transactions on the Web, and ACM
Transactions on Internet Technology and

on the editorial board of IEEE Internet Computing and IEEE
Computer. Dustdar is recipient of the ACM Distinguished
Scientist award (2009), the IBM Faculty Award (2012), an
elected member of the Academia Europaea: The Academy
of Europe, and an IEEE Fellow (2016).

Authorized licensed use limited to: Universitaetsbibliothek der TU Wien. Downloaded on May 04,2020 at 08:50:54 UTC from IEEE Xplore. Restrictions apply.

http://kubernetes.io
https://mesosphere.github.io/marathon/
https://docs.docker.com/engine/swarm/
https://docs.docker.com/engine/swarm/
https://www.consul.io/
https://www.rabbitmq.com
https://www.rabbitmq.com
http://redis.io
http://www.investopedia.com/ask/answers/forex/how-forex-exchange-rates-set.asp
http://www.investopedia.com/ask/answers/forex/how-forex-exchange-rates-set.asp
http://programmer.97things.oreilly.com/wiki/index.php/Don%27t_Repeat_Yourself
http://programmer.97things.oreilly.com/wiki/index.php/Don%27t_Repeat_Yourself
http://martinfowler.com/bliki/SnowflakeServer.html
http://martinfowler.com/bliki/SnowflakeServer.html
https://www.gocd.io
https://www.gocd.io
https://www.rabbitmq.com/partitions.html
https://www.openshift.com/
https://docs.docker.com/docker-hub/
https://docs.docker.com/docker-hub/
https://www.opencontainers.org
https://www.opencontainers.org
http://arxiv.org/abs/1807.01632

