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ABSTRACT | Software components within heterogeneous

devices of the Internet of Things (IoT) systems use resources

representing various computational capabilities, including

sensing or actuation end points. However, components do not

live in isolation and must be able to coordinate with others

to fulfill their goals. Satisfaction of requirements—capturing

their goals—must persist in environments that are changing,

unpredictable, and potentially unknown at system design time.

Edge computers placed near IoT devices can be leveraged for

this sort of control—providing resource management for end

devices within their operational context. We propose a method-

ology and technical framework for engineering resource coor-

dination at runtime, tailored for the decentralized, pervasive

systems of today. Our approach represents a paradigm shift in

marrying distributed systems and formal aspects of software

engineering. We adopt goal modeling to capture objectives

within the system and use bounded model checking as the

foundational technique to compute coordination plans that

satisfy device goals. This occurs opportunistically at runtime

without any knowledge about the operational status or pres-

ence of resources, but always in accordance with the edge’s

own goals. Our technical framework exhibits dependability

guarantees regarding optimality and correctness of gener-

ated plans. We evaluate the resource coordination perfor-

mance and its feasibility on low-powered ARM-based edge

devices.

KEYWORDS | Dependable systems; edge computing; Internet

of Things (IoT); model checking; software engineering

Manuscript received February 1, 2019; revised April 1, 2019; accepted May 8,
2019. This work was supported in part by the TU Vienna Research Cluster
SmartCT. (Corresponding author: Christos Tsigkanos.)

The authors are with the Institute of Information Systems Engineering,
Distributed Systems Group, TU Wien, 1040 Vienna, Austria (e-mail:
christos.tsigkanos@dsg.tuwien.ac.at).

Digital Object Identifier 10.1109/JPROC.2019.2917314

I. I N T R O D U C T I O N

Internet of Things (IoT) systems integrate heterogeneous
devices, computing infrastructure, and cloud services with
their ambient environments. New challenges and oppor-
tunities arise as rapidly growing cloud computing, mobile
devices, sensors, and networks constitute larger ensembles
of systems [1], [2]. A neighborhood, for example, may
be saturated with hundreds of networked devices pro-
viding information to roaming humans or other devices,
by combining information as they become available in the
city’s environment. Dynamic resource management [3] is
essential to achieving such pervasive behavior—it enables
devices and services making up the IoT to perceive avail-
able resources, configure them, and utilize them. Such
resources may refer to computational, sensing, or other
types of domain-specific resources that software-intensive
devices may take advantage of to achieve their
goals.

IoT applications differ in type and complexity, with
multiple system components deployed in diverse domains
and environments that are often not known beforehand.
Moreover, software components within devices making up
the system do not live in isolation and must be able to
coordinate with others to fulfill their objectives as well
as overall system-wide requirements [4]. Correct satisfac-
tion of requirements must persist in environments that
are changing, unpredictable, and potentially unknown at
system design time [5], [6].

Resources within IoT applications may represent various
computational capabilities, including sensing or actuation
end points and storage or processing facilities. Often, those
are architecturally abstracted as software services [7],
referring to some functionality that different client IoT
devices can reuse for different purposes. The concept of
an IoT resource amounts to blurring the lines between
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software services and sensor values or actuation end
points.

We are not concerned with mechanisms of access, their
interfaces or policies here, but with the fact that different
interdependent resources may be required to fulfill some
objective of a software component residing in a device.
Dependences may be in the form of certain constraints—
a resource to be operationalized may require the out-
put of another, but its availability makes other resources
additionally available. Dependences may be specified in
an implementation- and language-agnostic manner and
annotated over arbitrary resources that an application may
use. We adopt an everything-as-a-service (XaaS) abstrac-
tion to uniformly represent physical things, hardware and
software resources as microservices, irrespective of their
specific nature [8]–[10].

Recent developments within distributed systems have
led to the architectural placement of a computing entity
closer to the network edge, close to IoT end devices,
thus better satisfying system-wide goals, such as high
availability, performance, or privacy [11]. Such edge enti-
ties may offer computation and control facilities to local
devices [12]. Within a neighborhood for example, IoT
devices may utilize resources of a local edge node benefit-
ing from high connectivity to it as well as its awareness of
other IoT devices in its scope. This allows an edge device
to act as a mediator among devices, locally coordinating
them in order to satisfy their resource needs. We build
on the foundational edge concept where edge computers
are placed near IoT devices, within their local adminis-
trative domain or wireless network. We further advocate
decentralization, as the edge is a first-class entity in our
approach, responsible for IoT devices within its scope but
bearing no dependences for coordination to other edge
nodes or the cloud.

We recognize that edge computing means different
things to different people; we identify an edge node as
a low-powered computer part of an IoT deployment. The
edge node is in the scope of connected devices whose soft-
ware stacks are limited. Although the method and frame-
work proposed are hardware-architecture-free, we con-
sider low-powered edge devices that are ARM-based and
resource-constrained IoT devices such as microcontrollers
populating the system as is the case in deployments of net-
worked actuators and sensors, e.g., in smart cities. We treat
communication and operational aspects as orthogonal to
our approach; we are concerned with the core mechanisms
of coordination at runtime.

To this end, we propose a methodology and techni-
cal framework for engineering resource coordination for
the edge-enabled IoT. Our coordination approach targets
decentralized edge systems, where IoT devices advertize
and request resources at their local edge node. If an IoT
device requests an edge node for a resource that cannot be
trivially obtained from resources readily available, some
combination of resources of other IoT devices must be
derived. For example, computing a local weather forecast

in a smart agriculture setting may require temperature
readings from available sensors across a crop field. To solve
this, coordination on the part of the edge node computes
a plan, in which the requesting device can use to fulfill
its objective, in accordance with the edge’s goals. Thus,
resources are coordinated regionally within the local IoT
scope of the edge node. Overall, system-wide goals may
further be affected by coordination occurring in a scope.
Our concrete contributions are as follows.

1) We provide a methodology where semantic
annotations are specified at design time to arbitrary
resources within an IoT system. Those record
what a resource requires to be operational and
what effects its potential operationalization has on
other resources or context values. Subsequently,
the objectives of entities within the IoT system
are specified—from a requirements’ engineering
perspective, our approach is goal-driven since we
use edge and device goals to drive coordination of
resources at runtime.

2) When the IoT system is operational, a boolean sat-
isfiability problem (SAT)/satisfiability modulo the-
ories (SMT) [13] solver situated on a low-powered
edge device leverages bounded model checking
techniques [14] at runtime to fulfill the objectives of
local IoT devices by coordinating available resources
in its scope based on the currently active context.

We instrument coordination as a form of service
composition [15], but tailored for the edge-enabled IoT.
While building upon the significant state of the art of
traditional service composition, our resource coordination
technique differs for three key reasons.

1) We consider elementary IoT resources as
microservices—instead of using a service description
language [16]–[18], we adopt a lightweight
approach suitable for microservices inherent in
modern IoT architectures and applications.

2) We allow quantifiers and integer linear arithmetic
for specification due to the IoT domain.

3) We target low-powered ARM-based edge computers
for deployment.

Our approach represents a paradigm shift in mar-
rying distributed systems and formal aspects of soft-
ware engineering. Specifically, we adopt goal modeling
to model objectives within IoT. We use bounded model
checking [19] as the foundational technique to compute
coordination plans that satisfy device, edge, and system
goals. This occurs opportunistically at runtime, without
any knowledge about the operational status of the system
or which resources are present at the system’s design
time. The coordination facilities we provide are depend-
able because if there is a solution to a resource coor-
dination problem, the technique we utilize will provide
a plan for it and the plan will be optimal. This is in
contrast to other approaches utilizing other techniques
such as based on AI [20]–[22]. We acknowledge that the
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Fig. 1. IoT resources within a smart city.

technique we adopt is computationally expensive, but it
offers dependability guarantees. Thus, our evaluation tar-
gets resource coordination performance and its feasibility
on low-powered ARM-based edge devices.

The rest of this paper is structured as follows. After
a motivating example used throughout this paper in
Section II, Section III gives an overview of our approach
within edge computing. Section IV describes key modeling
and methodological aspects, goal and modeling of which
are expanded in Section V. Subsequently, Section VI illus-
trates bounded model checking for resource coordination.
Section VII provides an assessment of the feasibility and
performance of the proposed approach. A related work is
considered in Section VIII, and finally, Section IX concludes
this paper.

II. R U N N I N G E X A M P L E

As a simple scenario serving as a running example of
an IoT system throughout this paper, consider a modern
smart city containing various neighborhoods and parks
where various devices are embedded providing smart func-
tionalities. Naturally, waste bins are located in neighbor-
hoods as well as parks, and traffic lights may be deployed
to facilitate municipal vehicles; ambulances or recycling
trucks should be presented with green traffic lights when
applicable. Moreover, irrigation facilities situated in parks
should automatically be operational when the detected
soil moisture is below a threshold of 20%. However, this
should not occur when the park is crowded with visitors.
Besides ensuring municipal vehicle green lights, the city
management imposes other constraints as well, regarding
the overall system’s operation. In order to minimize citizen
disruption, irrigation and waste collection in parks must
not occur simultaneously. Moreover, irrigation should not
be active in more than one park at a time to conserve water.

Notice that the smart city presented is an instance of
the IoT; several sensing or actuating devices are needed

to realize it. Devices or certain scopes in the city (e.g.,
neighborhoods or parks) have various goals, which, when
the system is in operation, may conflict (e.g., moisture may
drop while a recycling truck arrives in a park). Moreover,
the particular conditions and configurations of IoT devices
are unknown at design time; we require no knowledge of
recycling trucks, presence or not of irrigation in parks, for
example. It is then evident that coordination among IoT
devices is required to fulfill their various goals. Note how
city goals consist of system-wide goals that may be affected
by the IoT devices and edge nodes within it.

III. C O O R D I N AT I O N O N T H E E D G E

IoT applications can be of various types, software
stacks, and complexities, with multiple system components
deployed in diverse domains and contexts. Those, however,
do not live in isolation and must be able to coordinate
to fulfill application or end-user requirements [4]. A soft-
ware component hosted on some device, for instance,
may require reading from a sensing end point in order
to perform some computation and fulfill its objective. This
problem is exacerbated within IoT deployments, as appli-
cations need to operate on diverse infrastructures and inte-
grate heterogeneous components from various providers
in a long-running system, with possibly conflicting goals
between the components.

A. IoT Resources, Services, and Goals

IoT software components provide data, sensing and
actuation, as well as computational resources to other
software components, which can be abstractly represented
with the concept of an IoT resource [10]. Within an IoT
system, components can have different software stacks
but still interact—this is widely achieved by software
services, the architectural abstraction permeating many
systems today [23]. A system’s development is then based
on writing custom business logic that utilizes services. As
IoT components are resource-constrained, services often
take the form of loosely coupled microservices, commu-
nicating with lightweight methods. Examples of this are
typically found as sensing or actuation end points—a
temperature sensor responds with a temperature value
when invoked for instance or a smart door unlocks a door
when the security system requires it to. Such functionali-
ties may be abstracted as resource microservices that the
software-enabled devices make available over their local
scope such as a wireless network.

Resources that an IoT device may need from others need
to be appropriately composed and communicated to the
device in order for it to fulfill its objective. For example,
computing a local weather forecast (i.e., an objective)
in a smart agriculture setting may require temperature
readings (i.e., resources) from available devices across
a crop field. In the general sense, resources available
within an IoT scope—some local context—need to be

PROCEEDINGS OF THE IEEE 3



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Tsigkanos et al.: Dependable Resource Coordination on the Edge at Runtime

coordinated, with the IoT device’s goal in mind. This coor-
dination essentially amounts to planning as understood
within self-adaptive systems: actively setting in motion
configuration changes to satisfy certain objectives, in this
case the goal of an IoT device that depends on other
IoT devices’ resources in its local scope. Satisfying an IoT
component’s goal, however, is challenging, as devices are
deployed in changing and unpredictable (i.e., at design
time) environments. Assumptions made at system design
time about the availability or location of resources that
a device needs may be violated. Thus, facilities providing
control and coordination must be performed at runtime
and based on the current environmental configuration,
by ensuring that the IoT system can autonomously react to
the changes in different contexts in a dependable manner.

B. Coordinating Resources on the Edge

Centralizing computation of coordination—typically in
the cloud and evident in today’s IoT-cloud architectures—
is one solution but requires cloud control structures to
be always available and within low latency. However,
novel functional and nonfunctional requirements that have
arisen in IoT systems dictate computation and control to be
situated locally near devices [2]. Centralized coordination
on the cloud is naturally possible. However, the cloud (as
a central point of failure) may not be available, it is found
within high latency from local devices and would gener-
ate impractical, unnecessary network overhead, as every
device would require coordination functionality to be
communicated to the cloud and back for every resource
request. We advocate that since the edge computing entity
is closer to end devices (and IoT application users),
there is an opportunity for situating coordination there—
something realized by empowering an edge computer to
actively coordinate resources of IoT devices within its
scope. We note that this fits the domain particularly well;
IoT devices are found within a local scope, such as a
local wireless network or a deployment within a limited
geographical region (e.g., a city neighborhood). As such,
placing an edge computing entity close to a set of locally
scoped devices providing coordination facilities is highly
feasible.

Distributed systems’ mechanisms relevant to process
coordination and control, such as service engineering and
resource management, can be adopted to identify and
discover IoT resources. Methods developed within formal
aspects of software engineering, such as requirements rea-
soning, model-driven planning, and self-adaptive systems,
are then adopted in our approach to enable coordination
of available resources at runtime. Models kept at runtime
facilitate coordination and the determination of how con-
trol actions can satisfy goals within the system. Regarding
architectural deployment, the edge is a first-class entity in
our approach, acting as a manifestation of a control agent
responsible for receiving IoT device resource requests,
observing contextual information, and inducing appropri-
ate actions to satisfy them.

C. Instrumenting Coordination

Fig. 2 shows a bird’s-eye view of our approach to
coordination at runtime on the edge. The capabilities
offered by IoT devices’ are abstracted as resources (i.e.,
microservices) and made available through the network.
In our approach, those are specified at design time for
each participating software-enabled device, together with
possible goals that the device may seek to achieve (1).
The resource configuration of the system as well as the
environment that the system may be found when opera-
tional is unknown at design time. At runtime, IoT devices
are found within some local scope and may interact with
others to utilize their resources. However, device goals
may have interdependent requirements on other resources,
so coordination is required. An edge node situated close
to the IoT end devices and managing the local IoT scope
is responsible for coordinating available resources at run-
time (2). Participating devices then interact according to
generated coordination plans to fulfill their goals (3).

Resource coordination occurs opportunistically at run-
time, for which we propose a technique based on bounded
model checking. This offers the guarantees of correct-
ness and optimality of the generated plan that satisfies a
requesting IoT device’s goal. The resource coordination we
propose extends traditional service composition [24] and
brings it into the IoT context: 1) we adopt a lightweight
approach suitable for resource-constrained IoT microser-
vices; 2) we allow quantifiers and integer linear arithmetic
for specification; and 3) we target low-powered ARM-
based edge computers for deployment. To completely real-
ize the edge-based coordination facilities advocated from
a systems’ perspective, communication and operational
aspects must be treated. This includes: 1) abstraction of
resources from a programmatic perspective (e.g., how
resources are annotated at development time); 2) how
devices and edge nodes communicate; and 3) how the
system copes with operational real-time constraints, since
those can vary per deployment. For the latter, responses
to resource requests from IoT devices must occur in a
timely manner, as the environment changes rapidly (e.g.,
the recycling truck arrives at the traffic light, see Fig. 1).

IV. D O M A I N A N D M E T H O D O L O G Y

In this section, we provide the basic abstractions and
methodological principles necessary to instrument coor-
dination within an IoT domain we are situated in. For
formalization purposes, we assume a global set of names
or key-value pairs Π that appear throughout the system.1

We begin by outlining key elements and assumptions of
our approach, upon which we define a methodology that
the system designer follows to instrument resource coordi-
nation at the edge.

1Without loss of generality, we take Π to comprise atomic proposi-
tions, essentially mapping identifiers and their values to true statements.
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A. IoT Resource

Architecturally, IoT devices are software components
deployed in different environments, each containing
resources. Generally, we assume that an IoT sys-
tem is architecturally composed of processes that are
microservices [8]–[10]. Such IoT microservices when
invoked yield resources; however, successful invocation
entails meeting the requirements of a microservice, which
may depend on others. We will refer to microservices and
the resources that they yield interchangeably. This may
occur for several sequences of resource invocations, thus
motivating the need for coordination; knowledge of which
resources are needed to operationalize a resource that
an IoT device requires entails coordination. IoT resources
within our approach are implementation- and language-
agnostic; what we require is the modeling of their pre-
conditions (i.e., what they require to be activated) and
their postconditions (i.e., how their successful activation
changes some context).

For our example, we assume that three exemplar
resources are present in the IoT system of the city, high-
lighting different modeling aspects. A recycling truck has
a recycling_truck resource, which empties waste cans in
a neighborhood where the recycling truck is present.
A smart traffic_light ensures that municipal vehicles—such
as the recycling truck—are met with green lights, and an
irrigation actuator in a park is responsible for watering it
when required. In-depth treatment of resources will be
described in Section V.

B. Runtime Edge Context

In edge computing architectures, IoT end devices inter-
act with their environment, where the edge device is by
definition located within the local domain of certain IoT
devices—one can take that as the devices being in the
logical scope of the local edge node. The status of various
devices, resources, as well as environmental information
observed during system operation and the edge node
is aware of is referred to as the runtime edge context.
Edge context is assumed to be local to some edge node
(see Fig. 2). We identify as C ⊆ Π the runtime edge
context, comprising of a set of key-value pairs within an
edge scope. A valuation of C refers to a specific moment
in time—key-value pairs reflect the runtime physical or
logical environment. While keys are unique identifiers,
the domain of their values can range. Specifically, we allow
booleans, a domain of a finite set, or arbitrary integers.
Valuation may change because of monitored information
(i.e., resulting in a change to a sensor value) or due to
exogenous to the system stimuli. However, it may also
change due to resources of IoT devices: 1) if a resource
is made available to others, this is reflected in C, and
2) if it is operationalized, it may change the values it its
context. We assume appropriate instrumentation for the
correct accounting of the various values within the edge
context.

Fig. 2. Runtime resource coordination on the edge.

For our example, neighborhoods and parks are edge
scopes, in each of which an edge node is placed, account-
ing for the current context and IoT devices that may be
nearby and, as we will observe later, coordinate their
resources. We assume that waste_cans and traffic_light are
two identifiers within the edge context of a neighborhood,
values of which are populated by sensors in the waste cans
and a traffic light IoT device, respectively [see (1)]. In the
park, we assume that a sensor detects soil_moisture and
the other senses if the park is crowded [see (2)]. Within a
neighborhood context, we can observe different domains
for values of its identifiers: while waste_cans can be true
or false, traffic_light can be either green or red. Differently,
soil moisture in a park can be some integer value

Cneighd = {waste_cans : bool, traffic_light : {green|red}} (1)

Cpark = {crowded : bool, soil_moisture : int}. (2)

C. IoT/Edge Goal

An objective that an IoT device or edge node seeks to
achieve is referred to as a goal—satisfaction of a goal
depends on available resources at its local environment.
Goals capture at different levels of abstraction, the various
objectives’ entities within the IoT system under consid-
eration should achieve, or constraints of various context
values within their control. A goal for an IoT or edge device
is a logical formula over the set Π.

Back to our running example (shaded boxes
within Fig. 1), parks should be watered, but this should
not occur simultaneously with waste collection—this
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Fig. 3. Engineering coordination: design time methodology.

entails an objective of the edge node placed in the park.
Similarly, a neighborhood edge node should ensure that if
municipal vehicles are present, green traffic lights allow
them to pass. The overall city or district containing parks
and neighborhoods imposes constraints, such as water
management. Such goals will be modeled precisely in
Section V.

D. Design Time Methodology

Our approach entails engineering resource coordination
tailored to IoT systems, and it methodologically spans both
design time and runtime. Illustrated in Fig. 3 by leveraging
design-time specifications, coordination is enabled at run-
time through the following steps.

1) Modeling IoT Resources: Language-agnostic, semantic
annotations to arbitrary IoT resources of participat-
ing devices are specified. Such annotations record
what a resource requires to be operational and
what effects its invocation has on other resources
or context variables. This step will be described in
Section V-A.

2) Modeling Device and Edge Goals: Objectives of the
various entities active within the system are cap-
tured in a goal model, which facilitates goal refine-
ment, resolution of conflicts, and goal interdepen-
dences. This step will be described in Section V-B.

3) Specification of Runtime Coordination Parameters:
The technique employed at runtime to satisfy
resource requests from IoT devices is deployed on a
resource-constrained edge device. As such, coordina-
tion parameters regarding performance aspects are
specified depending on some particular deployment
setting. The coordination technique is described in
Section VI, while useful insights about parameteri-
zation will be illustrated in Section VII.

A further necessary step—out of the scope of this
paper—are application-specific as well as architectural
deployment aspects. For a complete instrumentation of
coordination, edge nodes must be deployed and be

responsible for certain scopes; communication and net-
work management must be handled as well. We consider
such aspects as orthogonal to our approach and assume
that they are in place.

V. R E S O U R C E S A N D G O A L S W I T H I N I o T

Resources in an IoT context may be arbitrary, provided by
heterogeneous software components deployed on devices
from various vendors and architectural stacks. Within the
overall IoT collective, devices and edge nodes alike may
have objectives that they seek to achieve. In this section,
we first describe how IoT resources can be generally
represented. This includes particularly what they require
to be operationalized and what their invocation entails
for others. Second, we adopt requirements’ engineering
methods to capture objectives throughout the system by
goal modeling.

A. Modeling Resources Within IoT

To model resources within an IoT system, we advo-
cate the principle of procedural abstraction: capturing the
knowledge of IoT process internals may be impractical, but
considering the requirements and effects of IoT processes
is feasible. For example, one does not need to know how
a sensor array calculates mean temperature based on a
spatial dispersion of IoT sensors, but only that by invoking
some software service, the current average temperature is
obtained. To this end, as noted in Section IV, we assume
that a software-intensive IoT system is architecturally
composed of processes that are microservices. Such IoT
microservices, once invoked, yield resources; however, suc-
cessful invocation entails meeting the requirements of a
microservice, which in turn may depend on others. This
is where the use of preconditions and postconditions is
beneficial, which we informally refer to as what an IoT
microservice requires and what it provides. Preconditions
and postconditions are first-order logical formulas as para-
meters, with propositions in set Π. Quantifiers (over finite
sets) and integer linear arithmetic may be used for specifi-
cation.

1) Requires is a precondition directive that outlines
what conditions should be true in a given context
for a resource to become operational, essentially its
requirements.

2) Provides refers to a postcondition directive that out-
lines what conditions are true as a result of an
operationalization of a resource.

More formally, a resource is a tuple λ = 〈Rλ, Pλ〉
where Rλ and Pλ are the first-order formulas of input
and output parameters, respectively. Parameters them-
selves are sourced from the global set of propositions
Π. Without loss of generality, those are assumed to be
key-value pairs. We slightly abuse notation and refer to
parameter if parameter = �. Given the above, when a
resource λ is invoked with input Rλ, λ returns output
p ∈ Pλ. For every resource, Requires and Provides directives
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are specified at the system’s design time. For presenta-
tion purposes, we will write [Rλ] λ [Pλ] and λ = 〈Rλ, Pλ〉
interchangeably

[municipal_vehicle] allow_vehicle [traffic_light=green]. (3)

Given the above, we can model the resources of our
smart city example. Recall that traffic lights deployed facil-
itate municipal vehicles such as ambulances or recycling
trucks so that they are presented with green traffic lights.
This traffic light functionality can be represented as a
resource (i.e., that a traffic light IoT device offers), setting
the traffic light to green when applicable. Formula (3)
intuitively states that when a municipal_vehicle context
value is true, the light turns green. The context value
within a neighborhood (Cneighd) is assumed to be set by,
e.g., a truck when it is within the local scope of the traffic
light. The functionality of a recycling truck (i.e., as an IoT
device) can be similarly represented in the following:

�
traffic_light = green

∧ waste_cans = full

�
recycling_truck[waste_cans=empty].

(4)

Quantitative values can also be captured in resource
parameters—for this purpose, we support integer linear
arithmetic. For example, the irrigation resource present
in the park (i.e., due to an IoT device responsible for
irrigation) should be activated when detected soil moisture
is below a certain threshold and when the park is not
crowded. The irrigation resource can then be modeled as
in

�
¬ crowded ∧

soil_moisture < 20

�
irrigation [soil_moisture = 20]. (5)

When some context value crowded is false and some other
soil_moisture is less than 20, irrigation—if activated—
will result in setting the latter to 20; those refer
to Cpark.

In general, resource models in IoT [25] are widely
established in the literature and can be utilized to model
resources as the formulas’ tuples 〈Rλ, Pλ〉 we advocate,
since the model is quite generic. Within parameters, propo-
sitions of 〈Rλ, Pλ〉 formulas can include: 1) location,
describing the logical-physical domain where a resource
resides; 2) administrative domain, describing a reposi-
tory permitting authentication or authorization; 3) type,
characterizing a resource instance as a sensor, actuator,
or a logical entity; or 4) capability, providing special
abilities that a resource enjoys, based on some domain
ontology. All of those, including quantitative cases, can
be encoded as 〈Rλ, Pλ〉 parameters and exposed in the
namespace of an edge context using the method previously
described.

Fig. 4. Goal model capturing objectives throughout the system.

B. Modeling Goals Within IoT

Recall that both IoT devices and edge nodes may have
goals; in our context, goals are objectives within the system
that various entities seek to achieve. The role of the edge is
to facilitate goal achievement for devices within its scope.
Depending on the general state of the system, overall
system-wide goals may be affected in turn.

Goal-oriented modeling, widely used in requirements
engineering [26]–[29], is a technique that can capture,
clarify, and enable an analysis of system requirements. The
structured form of a goal model allows the refinement of
system goals to subgoals, prioritization of requirements,
as well as resolution of inconsistencies that may be due to
conflicting stakeholder viewpoints. Our intuition to model
the goals in the IoT-edge context is that edge nodes in IoT
systems are often arranged in a hierarchy, where the cloud
is the global or root entity representing the whole system,
and edge computers are found within that hierarchy with
IoT devices as end nodes. Notice that this structure is
reflected in our running example, where a district may
contain multiple neighborhoods and parks each having a
logical edge node. IoT devices are within the scope of
an edge entity leading to a tree arrangement where IoT
devices are leaves.

In our approach, we adopt a form of discrete goal model-
ing to capture the objectives of devices, edge nodes, as well
as their relationships.2 As shown in the goal model of Fig. 4
which encodes system concerns of the running example,
each goal can be refined into subgoals through an and–or
decomposition. At the leaf level of the goal model reside
IoT device goals—each leaf describes an objective of an
IoT device. As with the specification of preconditions and
postconditions, a goal for an edge device is an arbitrary
first-order logical formula E over the set of global set
of names Π; for an IoT device, we denote its goal as

2Note that weights can be assigned if quantitative aspects are desired,
leading to a weighted goal model [30] and further constraints.
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G. Quantifiers (over finite sets) and integer linear arith-
metic may be used for specification.

Goal modeling is used to: 1) provide an indication
of satisfaction of the various system objectives; 2) pro-
vide a structured way of managing relationships within
the edge-intensive system; and 3) coordinate appropri-
ate devices within edge scopes. The satisfaction status of
each (sub)goal in the goal model (e.g., in Fig. 4) can be
determined by observable runtime information or by active
operations of IoT devices. The current context status on
every edge node captures this. For example, the status of
waste cans in a neighborhood can either be monitored
(e.g., by sensors in the waste cans) or set to “empty”
by a recycling truck. The goal model structure intuitively
shows how other subgoals are affected—observe that if a
recycling truck empties the waste cans in a neighborhood,
its respective goal will be affected. Values of subgoals are
propagated upward the goal model (i.e., over a system
goal structure), affecting the satisfaction of parent goals.
Assuming a variable with values of a known finite set of
neighborhoods in a district, the system-wide goal states
that for every neighborhood, the waste cans should be
empty and that there is exactly one park such that the
irrigation is true. Similarly, a park edge subgoal captures
the fact that irrigation should not be true at the same time
where a recycling truck is present in its scope.

Edge goals govern how they coordinate resources for
requesting IoT devices—they constrain how objectives of
IoT devices are achieved. Since the runtime edge context
is unknown and coordination occurs at runtime, goal
satisfaction happens opportunistically; edge nodes’ and
devices’ goals may be satisfied depending on the presence
of other devices and runtime context values. This, in turn,
may affect other subgoals of the system—for example,
if the waste cans are emptied in a neighborhood and this
happens for every neighborhood in a city, the district’s
system-wide goal may be satisfied (the first clause in the
conjunction in Fig. 4). Goal relationships between edge
nodes are not accounted for coordination as this would
impair system performance and incur centralization—each
edge in a decentralized manner imposes its own goals
within its scope, but their resulting satisfaction is propa-
gated to parent system goals as subgoals. Thus, monitor-
ing of system-wide goals is supported. Note that impos-
ing system-wide goals to edge nodes would imply that
each edge is constrained by what occurs within another
edge’s scope, something that would require a centralized
(perhaps priority-based) strategy—we identify this as a
promising avenue of future work. Overall, the specifi-
cation of a goal model is left to the system designer,
which may specify arbitrary goals for entities in the
system.

VI. D E P E N D A B L E R E S O U R C E M AT C H -
M A K I N G

As we observed, the edge as the coordinator within its
active runtime context receives a request from a device

seeking to achieve some goal which depends on other IoT
resources or context values. Coordination then amounts to
figuring out how to combine available resources or context
values to produce a plan, which is then be returned to the
device. We call this process resource matchmaking, as it
entails making a match between the requesting device and
other devices, such that their resource combination can
achieve a goal. Matchmaking as described is a complex
problem as it amounts to NP-completeness; in this section,
we present the technique we utilize, which results in
dependability guarantees; solutions are provided always
correctly and optimally (if they exist).

To tackle resource matchmaking, after first formally
defining the problem, we demonstrate how it can be
mapped to a state-transition structure capturing the evo-
lution of resources in the system. Subsequently, we reduce
the matchmaking problem to reachability within this
state-transition structure. Finally, we provide a conjunctive
normal form (CNF) encoding of the problem that is suit-
able as an input to a solver, upon which bounded model
checking [14], [19], [31] is used to solve it, yielding a
correct and optimal solution.

A. Resource Matchmaking Problem

Recall that a resource is a tuple λ = 〈R, P〉, where R and
P are first-order formulas of input and output parameters,
respectively. We assume that when a resource λ is invoked
with the input formula R, λ returns output P (i.e., resource
microservices work correctly). To decide an invocation
relationship from resource λ1 = (R1, P1) to λ2 = (R2, P2),
it is necessary to compare the outputs P1 of λ1 with inputs
R2 of λ2. To establish a relationship, the requirements R2

of λ2 must be met. Generally, given a set of available
resources and a request resource λreq, we seek to find
a resource λ such that Rλreq ⊆ Pλ. However, there might
be the case that there is no single resource satisfying
the requirement of the requesting resource. In that case,
we seek to find a sequence λ1 · · · λk of resources where,
in each step, invocation of a resource λi occurs and the
desired objective is eventually achieved. As there can be
many such sequences, the optimal solution for the resource
matchmaking problem is to find one with the minimum
value for k.

B. Resource Evolution and Device Goal
Reachability

To enable automated reasoning, we represent the evo-
lution of resources in a state-transition system gen-
erally known as a (doubly) labeled transition system
(dLTS) [32], which is a tuple K = (S ,Π,Λ,L,A, I, G),
where Π is the global, finite set of atomic propositions, S is
a set of states, L : S → 2Π is a function that labels each
state with the set of propositions Π that are true in that
state, Λ is a set of transition labels capturing resources,
A ⊆ S × Λ × S is a 3-adic accessibility relation (if p, q ∈ S
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and α ∈ Λ, then (p, α, q) ∈ A is written as p
α→ q), and

I ∈ S is an initial state and G ∈ S is a device goal state.
States of K capture values (or parameter instantiations),
while transitions record how those can change by mov-
ing from one state to its successors by operationalizing
resources. Each state declaratively represents an instanti-
ation of resources and context values (i.e., of Π) at some
moment of time. The accessibility relation A between the
states shows how parameters’ instantiations and context
values change moving from a state s to another s′; it
corresponds to the transitions of K. Intuitively, starting
from an initial state of the system representing an initial
configuration, application of resources λi generates states
according to their Rλi and Pλi and context values.

Given an incoming request for G from a device, the ini-
tial state I ∈ S captures the context values at the edge
node at the time of the resource request (i.e., at runtime).
The goal state G captures some configuration where G

holds. Solving the matchmaking problem as presented
amounts to reachability [33] of G within dLTS K as illus-
trated in the following.

C. Resource Matchmaking With Bounded Model
Checking

As we observed, given a request for a goal G from a
device, the desired outcome for the matchmaking prob-
lem is to find a sequence of resource applications which,
starting from an initial state, bring the system to a state
where G is fulfilled. In the following, we show how this
reachability problem [33] can be solved with bounded
model checking [19], [31] through an encoding to a CNF
formula.

To formalize the reachability problem, it is first nec-
essary to introduce the following definitions. Given that
si ∈ S , 0 ≤ i ≤ n, and αi ∈ Λ, a finite computation is
defined as a finite composition of transitions

s0
α1·..·αn−−−−−→ sn =def s0

α1→ s1
α2→ · · · sn−1

αn→ sn.

The concatenation α1 ·α2 · . . . ·αn of labels (representing
resource invocations) is called a trace originating from s0.
The sequence of states s1 · . . . · sn−1 is called the sequence
of traversed states. State s0 is the originating state of the
sequence and state sn is the end state. Reachability entails
the existence of a computation I ·s1 ·. . .·sn−1 ·G. Each state
si along the computation captures available values (or
resource parameter instantiations) in time instant i. The
desired outcome is the respective trace; if the requesting
IoT device invokes the resources indicated by the trace in
series, it can reach G, where its goal G is fulfilled.

Recall that instantiated parameters and context values
as propositions that live on states S are drawn from set Π,
while labels (corresponding to resources) are from set Λ;
a relation A has the form S × Λ × S . The fundamental
intuition to obtaining the trace is establishing the rela-
tion A that represents accessibility from a state s to its

subsequent state—let s′ be this subsequent state. To do
this, we exploit the fact that a resource application oper-
ates on Rλ in a way that yields Pλ in the next state s′. Let
T be a helper function yielding true if label λ ∈ Λ and
Pλ can be combined leading to Rλ. We represent as sΠ

the propositions describing state s ∈ S as a conjunction.
E is the formulation of the goal of the edge node where
coordination takes place. Establishing A starting from the
initial state I, traversing states of the computation, and
eventually reaching the device goal state G amounts to the
following formula encoding the computation:

(IΠ ∧ E)
�

0≤i<k

T (sΠi∧E, Λi+1, s
′
Πi+1∧E)

�
GΠ ∧ E. (6)

Formula (6) starts with a conjunction of a set of proposi-
tions describing the initial state conjuncted with the edge’s
goals (recall that E itself is a first-order logical formula).
Subsequently, it encodes the existence of a computation
whose transitions are labeled according to resources Λ.
Each state s ∈ S of the computation is a conjunction
between the edge goal formula E and the propositions
describing the state. Finally, a goal state (GΠ) is reached
while maintaining the satisfaction of the edge goal E. The
edge goal acts as a further constraint on every computation
state—it must be always fulfilled as resources are invoked.
The device’s goal is the final state reached, while the edge’s
goal as well as the resource invocations governs how it is
reached.

Note that the index k represents the length of the
trace. Formula (6) is true if and only if there exists a
computation of length k from state I to goal state G of
the dLTS K. Notice that the formula is a conjunction of a
finite collection of literals, thus, in CNF form. Following
the definition of (6), a SAT/SMT solver can be used to
check its satisfiability [31] for incremental values of k.
The smallest k where the formula is satisfied represents
the optimal solution. The respective trace represents the
solution sequence of resource invocations.

For our resource coordination purposes, we essentially
ask for an assignment that satisfies the constraints of
each resource, leading to the fulfillment of the device
goal. The values of the transitions make up the coordi-
nation plan, consisting of the resource invocations that
the requesting device must perform to satisfy its goal.
Formally, the plan returned is the concatenation α1 ·
α2 · . . . · αn of labels (representing resource invocations)
amounting to the trace originating from I and leading
to a goal state G where the device’s goal G is satisfied.
Certainly, if there exists no satisfiable solution, a plan
cannot be computed. If a plan exists, however, at a minimal
length k, there are guarantees about optimality—there
is no plan at length less than k that satisfies the goal.
Given a coordination problem, computation of a plan
in practice can be achieved by employing a SAT/SMT
solver, from which a satisfiable assignment of (6) is
requested.
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Fig. 5. dLTS fragment showing an evolution of resources to a

device goal. The edge goal is in bold, as a constraint through the

states of the computation.

Fig. 5 shows the dLTS corresponding to our example;
state (a) captures the current edge context, where a recy-
cling truck arrives. Recall that the goal of the truck is to
empty the waste cans, which it communicates to the local
neighborhood edge node. The plan computed at the edge
node shows that an invocation of allow_vehicle can enable
recycling_truck, which will lead to the satisfaction of the
truck’s goal. Observe how the presence of allow_vehicle

on every computation state acts as a constraint imposed
by the edge node for the generated plan. Finally, note that
imposing system-wide goals (as illustrated in Section V-B)
to edge nodes would imply that each edge is constrained by
what occurs within another edge’s scope, something that
would require a centralized (perhaps priority-based) strat-
egy, which, for the decentralized coordination approach
presented, is not desired.

VII. E VA L U AT I O N

For evaluating the proposed approach, we developed
tool support and a proof-of-concept implementation based
on the CVC4 SMT solver [34]. Noting the absence of
approaches utilizing SMT solving on the edge, we deployed
the prototype on low-powered ARM-based devices rep-
resentative of edge nodes situated typically close to IoT
devices in wide area settings such as smart cities. The
technique we advocate for resource matchmaking is based
on bounded model checking, a highly computationally
expensive operation that is usually performed at design
time. However, we bring it to the system runtime. To this
end, our evaluation goals target realization and feasibility
of our approach for coordinating resources at runtime for
the edge-enabled IoT. Concretely, we aim to: 1) investi-
gate feasibility over concrete deployment on low-powered
ARM-based edge devices and 2) assess the performance
of SMT-based resource matchmaking over hard problem
instances.
We present our evaluation setup in Section VII-A, and the
experimental results are given in Section VII-B. We con-
clude with a discussion in Section VII-C.

A. Experiment Setup: Synthesized Resources

Our experiment setup entails: 1) generating a suitable
data set and 2) deploying the prototypical framework on

low-powered devices that serve as edge nodes. To obtain
a suitable matchmaking data set for our experiments,
we automatically generate problem instances, each con-
taining: 1) a set of IoT resource specifications; 2) some
IoT context assumed to be active when the procedure
is invoked; and 3) some resource goal that a device is
assumed to have requested. We synthesize matchmaking
problem instances, varying the number of resources avail-
able, resource preconditions, and the number of operators
among them, given a global set of names Π, where |Π| =

100. Specifically, our experimental data set comprises the
specification of a set of 200 problem instances in turn each
comprising the following.

1) A set of resources X assumed to be available within
an edge scope. Each is modeled per Section V,
as 〈Rλ, Pλ〉. The cardinality of X ranges from 10 to
50, yielding different problem instances.

2) For each problem instance I , cardinality of Rλi sets
for every resource i ∈ I ranges from 5 to 15 of
parameters, which are randomly combined with a
number of operators: 5 ≤ |Rλ| ≤ 15. Operators are
inserted randomly within Rλi . Resource postcondi-
tions are a conjunction of five parameters: |Pλ| = 5.
Rλ, Pλ ⊆ Π.

3) A context description, referring to the set of context
values when the edge node initiates the coordination
process. We assume a conjunction of |C| = 20 such
context values, where C ⊆ Π.

4) A random device goal G, which is a conjunction of
five elements of Π.

From the synthesized problem instances, we select ones
that are satisfiable to ensure coverability of the whole
process of computing coordination plans presented in
Section VI and to reduce noise in the results. Throughout
the process, we use Boolean operators only to simplify
the automated resource configuration generation, since
finding satisfiable instances on random SMT propositions
amounts to a random search. Moreover, to ensure uni-
formity, we consider instances where the optimal plan is
found at a bound of 5 (i.e., k = 5; see Section VI).
Subsequently, we deploy the reasoning machinery on an
edge device.

Our prototypical implementation employs the procedure
described in Section VI and is deployed on a low-powered
ARMv8 R-Pi3 device featuring a 1.2-GHz CPU and 1-GB
RAM, serving as the edge node. Given a resource con-
figuration, the edge node’s functionality—implemented
in Python and C—consists essentially of the following
steps: 1) the appropriate bounded model checking formula
representation [see (6)] is encoded depending on the
problem instance; 2) the CVC4 solver is invoked upon
it; and 3) the plan is computed from the satisfiability
assignment of the solver. We note that any SMT-LIB com-
pliant SMT solver can be used; the satisfiable assignment
from the solver is then used to derive the plan. Func-
tionality is exposed through lightweight REST, with which
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Fig. 6. Matchmaking problem instances; coordination time, |Rλ|, operators, and SMT symbols on an ARMv8 edge device. (a) Resource set

cardinality (|X|) of matchmaking problem instances over coordination time. Shading in points indicates the average number of operators

used in each satisfiable problem instance. (b) Mean resource dependences in matchmaking problem instances over coordination time. Points

size indicates the size of the SMT encoding of the respective bounded model checking problem.

participating devices in the edge scope update context
values and request coordination plans. The procedure
described is invoked for every requesting device, resulting
in the computation of a coordination plan. As we observed
in Section VI-C, the coordination plan consists of the
resource invocations that the requesting device must per-
form within the edge scope to satisfy its goal. Subsequently,
we evaluate how such instances perform in practice by
simulating requests from devices to the edge node. Device
requests are drawn from the problem instance data set of
the previous step.

B. Experimental Results: Resource Coordination

To obtain the experimental results based on the syn-
thesized data set, we simulate the requests from devices
to investigate the performance of the various problem
instances and account for the time taken to coordinate the
resources in every problem instance. We ignore network
overhead, and we report on the total computation perfor-
mance of the coordination plans, from a request to the plan
response by the coordinating edge node.

In Fig. 6(a), the number of IoT resources (X) over
time is illustrated—each data point is a single prob-
lem instance (i.e., a resources-context-goal configuration).
Additionally, one can observe the number of operators
used in the required dependences of (every) resource
in the configuration (shading in data points). Evidently,
the more IoT resources there are in a problem instance,
the more time it takes to coordinate. Due to the Boolean

satisfiability solving [35] that underlies the matchmaking
process, SAT/SMT problem instances with a different num-
ber of operators perform differently, although the number
of resources is kept constant [i.e., within a vertical line
in Fig. 6(a)]. For example, one can observe that in the
vertical line denoting 25 IoT resources, some problem
instance utilizing 14 operators per (every) resource per-
forms better than some particular problem instance with
ten operators. Hardness of SAT/SMT satisfiability [36] is
beyond the scope of this paper. Due to the synthesized
nature of our evaluation data set, we did not consider edge
goals as those would be defined per application. However,
those would not affect the results significantly due to the
small expected size that their encoding would add as an
overhead.

Fig. 6(b) captures the mean |Rλ| size per matchmaking
problem instance across time. Each data point is a single
problem instance—the same resources-context-goal con-
figurations of Fig. 6(a). The size of the resulting SAT/SMT
formulas in symbols [as per (6)] corresponding to the
coordination problem encoding is represented by the point
size. A number of symbols within formulas range from
4k to 14k. Naturally, as formula size increases, so does
the coordination time. We can observe that again, certain
problem instances with small average cardinality |Rλ| lead
to hard instances, and vice versa. However, the formula
size is a strong indicator of coordination time.

Based on the above-mentioned results, a system
designer can obtain insights depending on her particular
problem setting. Within a typical design process, a designer
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requires knowledge of the performance of the system due
to the definition of some service-level agreement (SLA).
Our evaluation results show that by selecting a number
of IoT resources [e.g., 20 resources in Fig. 6(a)] and an
average number of operators per resource dependences
(e.g., 10), a matchmaking performance at least 5 s is to
be expected. Then, formula size and average |Rλ| can also
give an indication of the expected time.

C. Discussion

We have demonstrated that by using our coordination
framework, coordination of IoT resources in an edge set-
ting in a dependable manner can be performed. Further-
more, we showed that our technique based on SMT-based
bounded model checking at the edge is performant and
feasible for realistic problem sizes even on low-powered
ARM-based devices. We especially note that our resource
coordination technique guarantees correct and optimal
results due to its satisfiability foundations.

We showed the performance based on synthesized IoT
resource problem instances. Our results are actionable
since a system designer can estimate the performance of
coordination based on the problem space induced in her
particular setting. This, combined with testing resource
configurations prior to deployment, can drive design deci-
sions during system development. Essentially, given a
number of IoT resources, propositions, and operators per
resource [see Fig. 6(a) and (b)], one can estimate a
time that coordination computation can be achieved. The
type of operators used within specification as well as the
formula structure obviously affects satisfiability. We plan
to investigate what type and mix of operators occur in
practice in IoT resources specification and construct the
guidelines and metrics relevant to the resource encoding
arising from our coordination technique.

Several assumptions inherent in our approach must
be further investigated. For evaluation purposes, we con-
sidered a coordination plan of length 5; however, there
may exist settings where a higher or lower plan length is
desired. Moreover, implementing the approach with opti-
mality in mind entails finding plans first on plan length 1,
then if none is found on plan length 2, etc. To optimize
this stepwise search, the SMT problem encoded can be
incrementally introduced to a solver that makes use of
past unfoldings to possibly find satisfiable solutions faster.
We identify this as future work.

Moreover, the temporal aspects of both the specifica-
tion and the overall process must be investigated. First,
the planning time plus its execution (i.e., the device
invoking the resources described in the plan) must be
faster than the rate of change of the environment—as
such, longer plans may not be advisable, and k should be
largely kept small [37]. Second, temporal aspects regard-
ing resource invocations are not captured in the model.
Algebraic operations upon countable parameters would
also be useful, as invocation of a resource microservice of
a battery-powered actuator might consume energy. In our

example for instance, irrigation in the park may take time.
We identify integrating temporal aspects both regarding
the model as well as planning and execution as a signifi-
cant avenue of future work.

Operationalization of our framework could also bene-
fit from domain-specific adjustments and heuristics. For
example, previous plans may be stored (e.g., memoized)
to avoid computing them again. The depth of the solu-
tion search may be adjusted depending on the current
edge computational load or other factors. On the prob-
lem level, grouping IoT resources in an ontology can
allow the underlying solver to disregard irrelevant or
unsatisfiable solutions faster, thus rendering our approach
capable to consider a higher number and more complex
IoT resources. Finally, we note the absence of approaches
utilizing SAT/SMT solving at the edge and underline the
opportunities that this brings for dependable edge-enabled
IoT settings.

VIII. R E L AT E D W O R K

We presented a methodology and technical framework to
engineering resource coordination for the edge-enabled
IoT, thus touching upon several research areas. Conse-
quently, we classify the related work into three categories.
First, we discuss key approaches in the conception of
resources as services within IoT. Then, we review related
techniques on service composition, as they apply to IoT.
Finally, we discuss the related engineering approaches
from the domain of self-adaptive systems, framing our
approach within the overall software engineering domain.

A. Resources as Services Within IoT

The prevalence of Internet-connected devices featuring
various actuation and sensing capabilities provides new
means for the development of composite software systems.
So far, cloud computing has been seen as a key component
for the development, deployment, and coordination of IoT
collectives.

In recent years, the paradigm of service-oriented archi-
tecture (SOA) [9], [38] has received considerable atten-
tion in the field of IoT. Spiess et al. [39] proposed an
architecture for effective integration of IoT in enterprise
services, where they are used to implement business
processes. Since the services are offered in a device level
with frequent changes, a traditional business process lan-
guage, such as BPEL, is not built to support such dynamics.
As a result, an extended version of BPEL is provided
to model business processes at design time, which sup-
ports the dynamic changes of services during process
execution. Furthermore, to satisfy the application needs
or in response to unforeseen context changes, it is pos-
sible to remotely deploy new services during runtime.
Meyer et al. [40] investigated how an “IoT device” compo-
nent and its native services can be expressed as a resource
in an IoT-aware process model. Cheng et al. [41] pro-
posed a situation-aware IoT coordination platform based
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on the event-driven SOA paradigm. The proposed system
architecture effectively utilizes SOA and EDA paradigms—
SOA is used to resolve interoperability issues among het-
erogeneous services and physical entities, while EDA is
used to address the problem of the cross-business domain.
Furthermore, Zhang et al. [42] presented an event-driven
SOA for IoT services. Sarkar et al. [43] proposed a layered
and distributed architecture for IoT, which overcomes most
of the obstacles in the process of large-scale expansion of
IoT.

In pervasive environments, selecting appropriate
resources and services that satisfy user’s requirements is a
challenge. Due to their dynamic nature, efficient resource
discovery is essential in order to achieve wide user
acceptance. A significant number of works within service
discovery have been focused on context-based approaches.
Butt et al. [44] provided a service selection technique
to offer the appropriate service to a user application
depending on the available context information. Rasch
et al. [45] proposed a proactive service discovery approach
for pervasive environments, described by a formal context
model that effectively captures the dynamics of context
and the relationship between services and context. Wang
and Chow [46] proposed an architecture for service
discovery in smart cities, focusing on taking a set of
devices around a citizen and proactively producing a list
of services that surround the user using his preferences.
Jin et al. [10] described device, resource, and service
as the three core concepts in a model that specifies
relationships among them. Moreover, the quality of service
attributes is defined, which reflects the features of physical
services. Yang and Li [47] proposed an efficient strategy
from the perspective of sensory and data selections
and aggregation, with genetic algorithms as the global
optimization method. Since we adopt the concept of
XaaS abstraction to uniformly represent physical things,
hardware and software resources as microservices, such
discussed works are relevant to our proposed approach.

Well-known approaches adopt semantic web technolo-
gies and matching techniques for effective service dis-
covery. Zhu and Meng [48] designed service discovery
in pervasive computing using the description language
OWL-S, matching services according to their category,
Input/output parameters, and QoS. Mokhtar et al. [49]
supported efficient, semantic, context- and QoS-aware
service discovery [50] on top of the existing service dis-
covery protocols (SDPs) [51]—this operates at a higher,
semantic abstraction level, and is thus independent of the
specific underlying SOA technology employed. In addi-
tion, a language for semantic service description covers
both functional and non-functional service characteris-
tics as well as a set of conformance relations and pre-
scribes the way for applying them in order to perform
service matching. Approaches related to the semantic web
technologies used for service discovery are also relevant to
our proposed approach. Since semantic service description
covers both functional and non-functional, they can be

included also to the methodology that we propose for
specifying resources.

B. Service Composition and IoT

As SOA becomes widely used, providing the right ser-
vices that satisfy a user’s goal is becoming a big challenge
in IoT environments. Due to dynamicity, heterogeneity, and
function constraints, IoT services differ from traditional
services. In addition, IoT services are related more to
the physical world by sensing state and inducing opera-
tions that will cause a state change. A great number of
approaches have been proposed to deal with such service
composition; we employ a SAT-based technique similar to
[52], where the semantic aspect is considered, enabling

the composition engine to identify correct, complete and
optimal candidates as a solution. However, we extend it
to SMT, we use linear integer arithmetic and first-order
formulas and deploy on resource-constrained edge devices
instrumented at runtime. Mayer et al. [53] presented
a consistency-based service composition approach that
serves as a unified platform. The proposed framework is
based on a declarative constraint language to express user
requirements, process constraints, and service profiles on
a conceptual level and also on the instance level. Pistore
et al. [54] proposed a solution for automated composition
at the process level using OWL-S. A composition considers
that executing a Web service requires interactions that
may involve different sequential, conditional, and iterative
steps. A process-level description of the composite service
is generated by using each individual description of ser-
vices. However, the proposed solution does not consider
selecting the services that take part in the composition.

An architectural approach to enable the automated for-
mation and adaptation of emergent configurations (ECs) in
the IoT have been proposed in [55]. An EC is formed by a
set of things, with their services, functionalities, and appli-
cations, to realize a user goal. ECs are adapted in response
to (un)foreseen context changes, e.g., changes in available
things or due to changing or evolving user goals. Hussein
et al. [56] proposed a model-driven approach to ease the
development of adaptive IoT systems. A design model is
specified based on the system requirements as well as the
system functionality and adaptations. Furthermore, it is
used to generate the system implementation, transformed
into an IoT platform-specific model. This model is used for
generating code and a deployment to a hardware platform.
After adaption is triggered, the system changes its state
based on the designed model. Urbieta et al. [57] proposed
an adaptive service composition framework. The frame-
work is based on an abstract service model representing
services and user tasks in terms of their signature, specifi-
cation, and conversation. Xinming and Yan [58] proposed
a service mining scheme based on semantic for IoT to
provide users with interesting composite services. Service
composition is achieved by combining and recommending
to users according to the calculation of service similarity—
however, not including service composition QoS.
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Ciortea et al. [59] proposed a decentralized approach
to IoT mash-up composition that considers flexibility
and responsiveness of resulting applications. Goal-driven
software agents are equipped with precompiled plans,
which cooperate with one another through sociotechnical
networks (STNs) to compose IoT mash-ups at runtime
in pursuit of their goals. Various IoT devices are mod-
eled as agents based on their capabilities. Agents are
goal-driven and rely on precompiled plans that specify
how to achieve their goals. Whenever the goal cannot
be fulfilled by a single agent, agents cooperate with one
another through STNs to compose mash-ups that achieve
the goals. In contrast, we synthesize plans at runtime
and utilizing available resources opportunistically from the
runtime edge context. Mayer et al. [60] proposed a service
composition system that enables the goal-driven configu-
ration of smart environments for end users by combining
semantic metadata and reasoning with a visual modeling
tool—instead of using predefined service mash-ups, cre-
ation of them in a dynamic manner fulfills the desired
user goal. This dynamicity is similar to our coordination
approach. Such flexibility is achieved by using embedded
semantic API descriptions. Hence, service mash-ups can
adapt to dynamic environments and are fault-tolerant.

C. Self-Adaptive Systems and IoT

Self-adaptive software becomes an inseparable part
of systems characterized by uncertain environments,
evolving requirements, and unexpected failures. In order
to meet strict functional and non-functional requirements
in applications within diverse areas, Calinescu et al. [61]
proposed a methodology and instantiation of dynamic
safety cases which allows adjusting the system during
execution while providing the intended functionality and
its requirements. Marrella et al. [62] proposed a model
and prototype process management system featuring
a set of techniques providing support for automated
adaptation of knowledge-intensive processes at runtime.
Such techniques are able to automatically adapt and
recover process instances when an exception occurs
and without the intervention of domain experts at
runtime. Chen et al. [63] proposed a runtime model-based
approach to IoT application development. The initial
step toward the proposed approach is considering that
sensor devices are abstracted as runtime models that
are automatically connected with the corresponding
systems. Based on the application scenario, a customized
model is constructed and the synchronization between
the model and the sensor device is achieved through
model transformation. As a result, the application logic
is mapped and executed on the customized model after
some definitions are given, such as group of metamodels,
mapping rules, and model-level programs.

In the context of self-management architectures, a sig-
nificant number of generic approaches have been pro-
posed. Kramer and Magee [64] proposed a three-layer

reference model to support automatic (re)configuration of
self-managed systems, consisting of a component control
layer, a change management layer, and a goal manage-
ment layer. The component layer is responsible to pro-
vide change management that reconfigures the software
components, while the change management generates the
plans to achieve system goals. An overall model relies on
a set of plans which aims to achieve the desired system
goals. Whenever new goals are introduced to the system,
the change management layer is responsible to gener-
ate new plans for achieving desired goals. Thus, we fol-
low this methodology essentially targeting low-powered
ARM-based edge computers for deployment. In addition,
the resource coordination facilities we provide are depend-
able. Weyns et al. [65] proposed an architecture-based
adaptation approach to solve the concrete problem of
automating the management of IoT. The software system
utilizes a feedback loop that employs models@runtime
and statistical techniques to reason about the system and
induce adaptation to ensure the required goals.

Software systems are deployed in dynamic environ-
ments that change over time and often have to adapt
to the changing conditions in order to meet system
goals. The well-known approaches have been developed
for runtime monitoring for different kinds of systems.
Seiger et al. [66] presented an approach for enabling
self-adaptive workflows based on the Monitor, Analyze,
Plan and Execute on a Knowledge Base (MAPE-K) control
loop for self-adaptive workflows in cyber-physical systems.
The proposed approach within MAPE-K loop monitors and
analyzes the real-world effects through sensor and context
data, which is used to check for faulty errors in the physical
world. If an inconsistency between the sensed physical
world and the assumed cyber world can be detected,
a compensation strategy is chosen and the adapted process
is executed. Cailliau and van Lamsweerde [67] proposed
obstacle-driven runtime adaptation techniques for an
increased satisfaction of probabilistic system goals. The
approach is based on the MAPE cycle and relies on a model
where goals and obstacles are refined and specified in a
probabilistic manner. However, in contrast to the proposed
approach, we guarantee the optimality and correctness
of generated coordination plans—we identify quantitative
extensions to our goal modeling as future work. The
resource coordination facilities we provide are dependable
because if there is a solution to a resource coordination
problem for a device, the technique we utilize will provide
a plan for it, and the plan will be optimal. This is in
contrast to other approaches utilizing other coordination
techniques such as based on AI [20]–[22].

IX. C O N C L U S I O N

Software components within pervasive IoT systems make
use of resources which can be various computational
capabilities, including sensing or actuation end points.
Components do not live in isolation and must be able to
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coordinate with others to fulfill their goals. Edge comput-
ers placed near end devices can be leveraged for control—
providing resource management for devices within their
active context. To this end, we proposed a methodology
and technical framework for engineering resource coordi-
nation at runtime, tailored for the decentralized, pervasive
systems of today. We adopted goal modeling to capture
objectives within the IoT and used bounded model check-
ing as the foundational technique to compute coordination
plans that satisfy device goals. This occurs opportunisti-
cally at runtime, without any knowledge about the oper-
ational status or presence of resources in the system at
the system’s design time, but always in accordance with
the edge’s own goals. Our technical framework exhibits
dependability guarantees regarding optimality and correct-
ness of generated coordination plans and is realizable on
edge nodes deployed on low-powered ARM-based edge
devices.

We believe coordination at the edge as presented paves
the way for situating control logic close to end devices,
leading to increased decentralization in edge-based sys-
tems. We plan to investigate dealing with conflicting goals,

where edge nodes or devices have requirements that over-
lap but do not agree [68] and may require negotiation to
resolve. Although goals in our approach were assumed
to be functional, if nonfunctional requirements are con-
sidered, tradeoffs may need to be made with respect to,
e.g., cost, performance, energy, and so on. We identify
integrating temporal aspects both regarding the model as
well as planning and execution performance as a signifi-
cant avenue of future work. Resources may be countable,
reflecting some limited availability such as a cost—this
requires extending the encoding. Moreover, resource invo-
cation timings can be captured in the model, as countable
parameters would be useful for quantitative requirements
specification, related to, e.g., device SLAs. Operational
aspects that need to be investigated regard that the coor-
dination process must be faster than the rate of change of
the environment. Finally, communication and operational
aspects were not treated within the dependable runtime
coordination approach presented. Considering the per-
spective of a complete realization, such distributed systems
aspects need to be treated. �
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