Platform-Agnostic MLOps on Edge, Fog and Cloud Platforms in

Keywords:

Abstract:

Industrial IoT

Alexander Keusch!, Thomas Blumauer-Hiessl?, Alireza Furutanpeyl,
Daniel Schall? and Schahram Dustdar’
Ity Vienna, Austria

2Siemens Technology, Austria

IoT, Edge Intelligence, Machine Learning, MLOps.

The proliferation of edge computing systems drives the need for comprehensive frameworks that can seam-
lessly deploy machine learning models across edge, fog, and cloud layers. This work presents a platform-
agnostic Machine Learning Operations (MLOps) framework tailored for industrial applications. A novel
framework enables data scientists in an industrial setting to develop and deploy Al solutions across diverse de-
ployment modes while providing a consistent experience. We evaluate our framework on real-world industrial
data by collecting performance metrics and energy measurements on training and prediction runs of two ML
workflows. Then, we compare edge, fog, and cloud deployments and highlight the advantages and limitations
of each deployment mode. Our results emphasize the relevance of the introduced platform-agnostic MLOps

frameworks in enabling flexible and efficient Al deployments.

1 INTRODUCTION

The vast amounts of data constantly being generated
by industrial systems(Trabesinger et al., 2020) that
are often analyzed using Artificial Intelligence (AI) or
machine learning (ML) methods, as well as the emer-
gence of edge computing systems and Al accelera-
tors, lead to the rise of edge intelligence. (Rausch and
Dustdar, 2019; Ding et al., 2022).

Edge computing meets the demands of industrial
systems by offering low latency and a privacy-aware
approach for processing and analyzing the data (Calo
etal., 2017). Despite the availability of powerful edge
devices, computational resources, such as memory or
processing power are limited(Mendez et al., 2022).
The constrained resources limit the volume of acces-
sible data for analysis on edge devices, extend the du-
ration of the analysis process, and restrict the com-
plexity of applicable algorithms. In contrast, signifi-
cantly more computational resources are available at
the cloud and fog levels. However, task offloading re-
quires sufficient bandwidth and reduces privacy (Nas-
tic et al., 2022; Mendez et al., 2022). These obser-
vations underscore the inherent advantages and limi-
tations of edge, cloud, and fog deployments. Conse-
quently, there is a need for a comprehensive frame-
work capable of facilitating the development and
deployment of Al solutions in a seamless end-to-
end Machine learning Operations (MLOps) lifecycle

Keusch, A., Blumauer-Hiessl, T., Furutanpey, A., Schall, D. and Dustdar, S.
Platform-Agnostic MLOps on Edge, Fog and Cloud Platforms in Industrial loT.
DOI: 10.5220/0012977500003825

Paper published under CC license (CC BY-NC-ND 4.0)

across these diverse layers. Several frameworks en-
compassing the entire MLOps lifecycle—from data
preprocessing and model training and validation to
model execution and monitoring—have been devel-
oped by leading cloud companies such as AWS and
Microsoft Azure. Nonetheless, these tools predomi-
nantly center around cloud-based workflows, leaving
a gap in the seamless integration of the fog and edge
layers(Kemnitz et al., 2023; Rausch et al., 2019).

To fill this gap between the cloud- and the fog-
as well as edge layer, this paper presents an MLOps
Framework, that provides an end-to-end MLOps
workflow on all of these layers. The design goals of
this framework are:

* Platform Agnosticism: The framework must
function seamlessly across edge, fog, and cloud
environments. This extends the capabilities of
MLOps lifecycle management, which are typi-
cally confined to frameworks provided by major
cloud providers, to also encompass edge and fog
layers.

* Consistent Experience: The framework must en-
sure a uniform user experience for data scientists
and operators across all layers. This entails that all
layers should be utilized in the same manner, re-
gardless of the specific deployment environment.

* Data Management: The framework should sup-
port a wide variety of data sources as input for

71

In Proceedings of the 20th International Conference on Web Information Systems and Technologies (WEBIST 2024), pages 71-79

ISBN: 978-989-758-718-4; ISSN: 2184-3252

Proceedings Copyright © 2024 by SCITEPRESS — Science and Technology Publications, Lda.

WEBIST 2024 - 20th International Conference on Web Information Systems and Technologies

models.

* Model Management: Models should be encap-
sulated in deployment packages that can be up-
loaded, utilized, and managed consistently across
all layers.

* Integration with Existing Systems: The frame-
work should seamlessly integrate with existing
systems by allowing the results to be pushed back
into these systems.

We present a framework that meets these criteria and
evaluate its performance through experiments con-
ducted in setups that simulate real-life environments.
Specifically, the Framework is deployed on all three
deployment modes, and two ML-based data analy-
sis workflows are executed using real-world industrial
data. Metrics are then collected for each run of the
workflows, which are used to compare edge, fog, and
cloud executions and discuss the advantages and lim-
itations that the deployment modes result in.
In summary, our contributions are

* introducing a novel platform-agnostic MLOps
framework

* demonstrating the practicability of the general so-
lution approach with two representative industrial
ML workflows

* contrasting the differences between deployment
on edge, fog, and cloud layers

Section 2 discusses relevant related work. Section 3
introduces the core MLOps framework. Section 4 de-
scribes the evaluation methodology and experiments.
Lastly, Section 5 concludes the work with a brief dis-
cussion on limitations and future outlook.

2 RELATED WORK

Kreuzberger et al.(Kreuzberger et al., 2023) discuss
the challenges in automating and operationalizing
machine learning projects for production, leading to
many ML endeavors failing to meet expectations.
To address these challenges, the concept of Machine
Learning Operations (MLOps) is introduced, focus-
ing on automating and managing ML workflows ef-
fectively.

MLOps emphasizes collaboration, automation
and continuous integration and delivery, drawing par-
allels with the DevOps paradigm in software engi-
neering. By leveraging insights from DevOps expe-
riences, MLOps seeks to improve the efficiency and
reliability of ML systems. Their work concludes by
emphasizing the importance of MLOps in bridging

72

the gap between ML research and practical deploy-
ment, ultimately increasing the number of ML proofs
of concept that transition to production.

This work extends on the MLOps paradigm by
providing a framework that employs the key princi-
ples in a platform-agnostic manner.

John et al.(John et al., 2020) present an architec-
tural framework for edge computing in Al. The au-
thors present five architectures that facilitate the de-
ployment of Al models on edge devices using edge-
cloud collaboration. They conducted a qualitative in-
terview to evaluate the proposed architectures. The
validation study reveals insights from experts in dif-
ferent industries regarding the applicability and chal-
lenges of each architectural alternative. Companies
prefer architectures that balance centralized and de-
centralized approaches with data collection, model
optimization, and cost-effectiveness considerations.
However, the authors do not provide a platform-
agnostic MLOps framework, which is the focus of our
work.

Raj et al. (Raj et al.,, 2021) propose an edge
MLOps framework capable of automatically deploy-
ing and managing machine learning models on edge
devices. They focus on scalability and automatization
of the deployment process. They again focus on syn-
ergizing edge and cloud computing. This paper, in
contrast, focuses on providing a framework that can
be deployed on cloud, fog and edge level individually,
without the need to use cloud resources at all.

Kemnitz et al.(Kemnitz et al., 2023) introduce a
framework for building and operating Al models at
the industrial edge, addressing challenges in deploy-
ing and managing Al applications in such scenarios.
It introduces the concept of model artifacts and dis-
cusses three industrial Al model use cases: energy ef-
ficiency monitoring, predictive maintenance, and pa-
rameter forecasting. The framework aims to stream-
line AI model deployment, operation, and manage-
ment, catering to various user roles, including data
scientists, automation engineers, and service techni-
cians. Key contributions include requirements elicita-
tion based on user roles, framework design, and qual-
itative evaluation based on implemented use cases.
The framework seeks to enable seamless integration
of edge resources into Al workflows, focusing on
scalability, ease of deployment, and operationaliza-
tion without requiring software engineering expertise.
While their work focuses exclusively on processing at
the edge, our approach includes intermediate fog and
cloud nodes to consider an edge-cloud compute con-
tinuum.

Platform-Agnostic MLOps on Edge, Fog and Cloud Platforms in Industrial IoT

3 SYSTEM DESIGN

This section describes the architecture of the
platform-agnostic MLOps framework. It shows, how
the framework can be used to deploy machine learn-
ing models on different platforms, while providing a
consistent interface for data scientists and operators.

3.1 System Architecture

Fig. 1 shows the system architecture. The MLOps
Framework can be deployed on docker-capable de-
vices, which can be a cloud server, a fog node or an
industrial edge device.

The asset, whose data is used for training and later
analyzed, is typically located on the field level. The
edge device is located on this level as well.

The asset can either output its data (examples of
such data is described in Section 4.2) directly to an
MQTT broker or an industrial edge connector can
be used to access the asset data and convert it to a
standardized format which is then forwarded to the
MQTT broker. Each deployment has an MQTT bro-
ker which has to be accessible from the field level, in
order to connect the framework to the asset. MQTT is
chosen as a protocol, as it offers a lightweight and
easy to use messaging system, however, also other
messaging solutions could be chosen.

Once the asset data is pushed to the MQTT bro-
ker it is ingested by the MLOps framework. This
then uses the data for training a machine learning
model or for generating predictions using the trained
model. These predictions might assign classes to data
points, as described in Section 4.2, try to predict fu-
ture anomalies of the asset operation or do any other
kind of analysis a data scientist might come up with.

These predictions can be pushed back to the
MQTT broker, which makes them available on the
field level. For example, to integrate them into the
Siemens Industrial Edge Platform, which offers i.e.
a dashboard for visualizing the data or connectors to
use the data for further controlling of the asset.

The MLOps framework also offers a consistent
view of the system to data scientists and operators on
all levels. Operators can use the web interface to con-
figure the data ingest via MQTT and monitor the sys-
tem’s status. Data scientists can use it to deploy their
machine learning models, packaged as zip files con-
taining the Python sources and the required libraries.
After uploading the model, the data scientists can con-
figure the model’s training, monitor its performance
and manage and monitor the prediction stage.

3.2 Application Architecture

Fig. 2 shows the internal structure of the MLOps
framework. On the left are the assets connected to
the industrial edge platform, which pushes their data
to the MQTT broker. They do this by directly con-
necting to the MQTT broker or using an industrial
edge connector. Industrial edge connectors are part
of the Siemens Industrial Edge Platform and exist for
many commonly used industrial protocols. The con-
nectors interface with the asset and read its data via
the respective protocol, converting the data to a stan-
dardized format ! and push it to the MQTT broker.

Data in this standardized format can be ingested
directly by the backend-controller service of the
MLOps framework. To directly connect to assets that
push data to the MQTT broker without using an in-
dustrial edge connector, High-Level Drivers (HLD)
are used. These custom modules can be implemented
and added to the MLOps framework. They man-
age data in any arbitrary format the asset provides
and modify it for ingestion by the backend-controller.
The connections can be configured via the web in-
terface of the MLOps framework. Examples of such
High-Level Drivers are the GENICAM HLD, which
enables communication with cameras supporting the
Genicam protocol, or the OPCUA HLD which ac-
cesses data via OPCUA.

The backend-controller is the core of the MLOps
framework. As described above, it handles the data
ingest before the data is stored in an internal database.
Furthermore, the backend-controller handles deploy-
ment, training, monitoring, and management of ma-
chine learning workflows. Workflows can be up-
loaded in a package format in the web interface, mak-
ing them available for use in the MLOps framework.
After uploading the ML workflows, training can be
started via the web interface. For this, data is se-
lected from the previously collected asset data, which
is then sent together with the ML workflow package
to the runtime, which executes the training routine
defined by the workflow on the selected data. The
trained model artifact is then returned to the backend-
controller, and the workflow is ready for use in the
prediction stage. The prediction stage can be initi-
ated via the web interface. In this stage, the backend-
controller sends the ML workflow package and the
trained model artifact to the runtime. The runtime ex-
ecutes the routine defined by the workflow package
for each relevant data point and generates a predic-
tion using the trained model. These predictions are

Uhttps://github.com/industrial-edge/common-databus
-payload-format/blob/main/docs/payload-format/PayloadF
ormat.md

73

WEBIST 2024 - 20th International Conference on Web Information Systems and Technologies

Operator
Management

Data Scientist
Model

L[]
Y

[]
A 4

Cloud Level

MLOps
i Framework-:;];

Cloud Instance

L7

Y

Fog Level

Broker

.| MLOps
MQTT ” Framework-ﬁ],

Fog Instance

MQTT
Broker

Field Level Connection

to Asset
—direct——>

.
MLOps

| Framework.,

“1 —{)nugdfl{ 7
P zation /{Systems

> IE >
Connector| aliee

Assets

Industrial Edge

Edge Services

Figure 1: System Architecture.

collected by the backend-controller and visualized via
the web interface. The predictions are also pushed
back to the MQTT broker, where they are accessible
to the industrial edge platform. The industrial edge
platform uses the predictions, i.e. for further visual-
izations or for controlling the assets.

4 EVALUATION

This section shows how different deployment modes
of the MLOps framework perform on real-world in-
dustrial data. For this, we deploy the application to
machines on the cloud, fog and edge layers and ex-
ecute two ML workflows using real-world industrial
data. The experiments should illustrate the differ-
ences between individual deployment modes. Our hy-
pothesis is that the three deployment modes—cloud,
fog, and edge—each have their own advantages and
disadvantages, with no clear overall winner, which
emphasizes the necessity for a platform-agnostic ap-
proach to MLOps.

4.1 Experiment Setup

For running the MLOps framework, a representa-
tive machine exhibiting typical performance charac-
teristics has been selected for each designated loca-
tion. The edge level is represented by a Siemens in-
dustrial PC (SIMATIC IPC427E), equipped with an
Intel Xeon CPU E3-1505L v5 @ 2.00GHz and 16
GiB of RAM. The fog and cloud locations use vir-
tual machines based on OpenStack and AWS. The
Fog VM features 8 vCPUs based Intel Xeon SP Gold

74

6230 20C/ 40T - 2,1GHz/ 3,9GHz and 8 GiB of
RAM, representing a medium-sized OpenStack in-
stance (cl.medium). On the cloud level, an AWS
EC2 instance with 2 vCPUs based on the AMD EPYC
7000 series and 8 GiB of RAM corresponds to a large
instance (t3a.large). A large instance was chosen on
the cloud level, compared to a medium instance on
the fog level, to represent the greater availability of
computing resources in the cloud.

4.2 ML Workflows

Two ML workflows that analyze industrial data are
used to run the experiments and collect metrics. The
following sections provide a quick overview about
these workflows:

4.2.1 PCB Quality Inspection

This ML-based data analysis workflow analyzes data
from a printed circuit board (PCB) manufacturing
process. In this process, solder paste is placed on
PCBs, a procedure prone to error. During this process,
16 numerical measurements are collected, which in-
clude e.g.: height, area, offset, x- & y-positions. The
ML model uses these measurements to classify the
PCBs into the classes OK, error, and pseudo-error.
The ML model uses a supervised learning approach
with labels by human inspectors for training.

4.2.2 Inertial Measurement Classification

This ML workflow detects human actions in an indus-
trial setting from sequenced events. These actions in-
clude hammering, screwing, sawing, etc. To classify a

Platform-Agnostic MLOps on Edge, Fog and Cloud Platforms in Industrial IoT

A B A

monitoring/
Data
n

setup
(Connectivity|

deploy
Models

MQTT Edge Platform

Controller

Al Runtime

PCB model

IMU model

IE
Conn- [Asset
ectivity

| Dat/
Measurements

Edge Platform MQTT Web Ul
Monitoring
Management
Asset [I
IE
Conn-
ectivity Data/ Backend
Controller
Asset [
Model |
@ € wansgement
Asset -
Data/ __ Predictions >|
Measurements I:/Iteorg_e;l
Connectivi
1y Broker
High Level Driver
OPCUA
A | Data/ High Level Driver
SSel [easurements GENICAM
Data/
High Level Driver |[—piociratonte

Figure 2: Application Architecture.

person’s actions, timeseries data is collected using in-
ertial measurement units (IMU) placed on the left and
right hands of workers. The timeseries data is man-
ually labeled for training, while the prediction stage
should assign a category to the timeseries data auto-
matically.

4.3 Experiment Runs

For evaluation, both ML workflows described above
are executed on the edge, fog and cloud deployments
of the MLOps framework. During each of two runs,
measurements are collected and used to compare the
layers. The collected measurements are as follows:

* Training Time: the time a machine needs to com-
plete the training procedure of the respective ML
workflow

* Prediction Time: the time needed to ingest and
process a data sample to generate a prediction/-
classification based on the previous training. This
is split into the time required for the system to in-
gest the data point and the time that it needs to
calculate the result.

» Communication Latency: latency of the asset to
the respective machine

* Memory Utilization: maximum memory utiliza-
tion of the MLOps framework while executing the
ML workflows

» CPU Utilization: maximum CPU usage of the ML
workflow

* Energy Consumption: the amount of energy the
machines use for training and generating predic-
tions. This is generated by code carbon?, a Python
package that estimates the amount of energy a de-
vice uses to execute a program. The values gener-
ated by code carbon are estimates based on CPU
utilization, CPU type, time of calculations as well
as CPU power tracking if available.

The experiment setup can be seen in Fig. 3. The edge
device is located directly on a shop floor in Vienna
(AUT), the fog instance (openstack-VM) is hosted in
a data center nearby located in the same building. And
the cloud instance (EC2-VM) is hosted in the nearest
AWS data center in Frankfurt (GER).

Shop Floor

virtual
Asset

Data

Network
Metrics
Collector

I

Testing
Framework

Data

Edge Device VM-openstack VM-EC2
MLOps MLOps MLOps
Framework Metrics Framework Framework
ML ML ML
J Model Model
Fog Layer Cloud Layer

Figure 3: Experiment Design.

Zhttps://codecarbon.io/
3https://mlco2.github.io/codecarbon/methodology.htm
l#power-usage

75

WEBIST 2024 - 20th International Conference on Web Information Systems and Technologies

A Testing Framework we developed is executed
on a machine located on the same shop floor as the
edge device for testing the setup. The framework
provides a virtual asset corresponding to the type of
asset expected by the respective ML workflow. e.g.:
PCB data and IMU data The testing framework also
automatically starts training runs on all deployments
and collects training time, CPU & memory utiliza-
tion, and energy consumption as described above. Af-
ter the training, a set of ten prediction cycles is started.
For this, a data point is generated by the virtual asset
and ingested into the system. A prediction is then gen-
erated, and metrics like prediction time, energy con-
sumption and CPU & memory consumption are cal-
culated. Finally, communication latency is measured
by doing a series of pings.

4.4 Results

For each workflow, two training sessions and 20 pre-
diction cycles were performed. The collected metrics
are as follows:

Table 1 shows the system measurements that have
been collected. The first column shows the commu-
nication latency from the asset on the shop floor to
the respective machines. This clearly shows the ad-
vantage of the edge device being in the same room,
causing a latency of only 8.5ms. In contrast, the fog
and cloud machines exhibit a much greater latency.

The second column shows the maximum CPU
utilization of a training/prediction cycle of the PCB
workflow. Here 100% corresponds to the complete
utilization of a single CPU core. The measurements
show a high utilization of the edge device due to the
weaker hardware, whereas fog and cloud have a lower
utilization due to more powerful hardware.

The last column shows the maximum memory uti-
lization of the PCB workflow runs. These do not show
any significant differences. As long as the application
does not exceed the available memory on the given
machine, no swapping occurs, which could influence
the memory footprint.

CPU and memory utilization were only collected
for the PCB workflow. All further measurements are
collected for both workflows and are shown in the fol-
lowing figures.

4.4.1 Training

Fig. 4 shows the training time of the PCB and IMU
workflows on the cloud, fog and edge machines. The
bar plots show the mean of the two executed runs, and
the error bars show the standard deviation.

The green bars show the training time of the PCB
workflow. Despite the different hardware equipment,

76

300 PCB IMU
254.7
250 €L

166.7 188.6

Time (seconds)
Lol N
w o
o o

100+

726 725 805
50
Ed‘ge Fég Cldud

Figure 4: Training Time.

the training time of the PCB workflow shows almost
no differences between the deployment modes. This
is because the training algorithm of the PCB work-
flow requires minimal effort. Most of the time comes
from deploying the workflow via a zip file (e.g. from
the framework extracting the file and adding it to the
Al runtime). The duration of this process seems to
depend very little on the machine’s hardware, as the
compression implementation does not utilize the full
hardware potential.

The blue bar shows the training time of the IMU
workflow. The training algorithm takes a much larger
share of the overall training effort in this workflow.
The training on the edge device takes the longest,
which is due to the weaker hardware. The training on
the fog and cloud machines is faster, however there is
only minimal difference. That the difference is not
greater is possibly due to the not fully parallelized
training algorithm. Because of this lack of paralleliza-
tion, the time depends primarily on the single core
performance of the machines, which while similar on
both machines, still differs due to the different archi-
tectures of AMD and Intel CPUs.

_s 5

2.00 %10 2.00X10

PCB IMU

1.75 1.5e-05 1.751

1.50 1.50 1.4e-03 1.4e-03
= = 1 1.2e-03
£1.25 £1.25
s = ==
= <
= 1.00 8.7e-06 = 1.00
@ =E @
50.751 6.5e-06 S 0.759

-

0.50 0.50

0.25 0.254

0.00 0.00

Edge Fog Cloud Edge Fog Cloud

Figure 5: Training Energy Consumption.

Fig. 5 shows the energy consumption of the train-
ing runs of the PCB and IMU workflows. Again, the
bar plots show the mean of the two executed runs and

Platform-Agnostic MLOps on Edge, Fog and Cloud Platforms in Industrial IoT

Table 1: System measurements.

latform latency | CPU utilization | memory consumption
PO | ms) [%] [MiB]
edge 313.5 1144
fog 173.8 150.7 1138
cloud 241.9 146 1169

the error bars show the standard deviation. The plot is
split into two diagrams, due to the different scales for
each workflow. The left plot shows the energy con-
sumption of the PCB workflow in kWh. The energy
consumption is very low because the training algo-
rithm is not very demanding. Nevertheless, it shows
that the edge device consumes the least energy, due
to the weaker hardware, while the fog machine con-
sumes a little more than the edge device. The cloud
machine consumes the most energy, due to being the
most powerful hardware.

The right plot shows the energy consumption of
the IMU workflow. Here the difference between the
edge device, which consumes the least energy, and
the fog and cloud machines, which consume more
and roughly the same amount of energy, is less pro-
nounced.

This is due to the weaker hardware of the edge
device, which on the one hand consumes less energy,
but on the other hand also takes longer to complete
the training, which in turn raises the total amount of
spent energy again.

The cloud and fog machines consume roughly the
same amount of energy, as they also consume a very
similar amount of time for training.

4.4.2 Prediction

The bars are further split into two sections. The
darker section shows the time that the respective sys-
tem uses for the calculation of the model output, while
the lighter section on top shows the time that is added
by the system to ingest the data point, therefore rep-
resenting the communication latency. Both sections
combined show the total time that is needed to gener-
ate the model output.

Both workflows show a very similar pattern. The
measurements of the edge device show that the la-
tency is very low but due to the weaker hardware, the
time that is needed for the calculation of the model
output is the highest. Therefore, the total time needed
for the prediction is the highest, as the low latency
has only a minuscule impact on the overall prediction
time. On the fog machine, the time needed for calcu-
lation of the model output is lower, due to the more
powerful hardware, but the latency is higher due to
the greater physical distance to the asset. So the im-
pact of the latency on the overall prediction time is
higher. However, the overall prediction time is still
lower than on the edge device. The cloud machine
offers the lowest overall prediction time, even though
the latency has a greater relative impact on the overall
time than on the other devices. Due to the much faster
calculation of the model output, the overall prediction
is still the fastest, however.

as x1077
PCB-calculation IMU-calculation 6.00- PCB IMU 4.5e-07
4.0 PCB-communication IMU-communcation
351 34 3.4 5.00
5 3.0 2.7 = 3.7e-07
2 2.4 4.00
5251 I < 2.3e-07
(o -
. 33.001 =
 “ [
S < -
F 154 w 1.86-07 1.8e-07
2.00 T I
10 7.7¢-08
0.6 Te-
1.00
0.5 05 mes ==
0.0 T T T 0.00 . - T
Edge Fog Cloud Edge Fog Cloud

Figure 6: Prediction Time.

Fig. 6 shows the prediction time of the PCB and IMU
workflows. The bar plots show the mean of 20 runs
that we executed, and the error bars show the standard
deviation.

Figure 7: Prediction Energy Consumption.

Fig. 7 shows the energy consumption of the pre-
diction runs of both workflows. The bar plots show
the mean of the energy consumption of 20 runs in
kWh and the error bars show the standard deviation.

77

WEBIST 2024 - 20th International Conference on Web Information Systems and Technologies

Both workflows show a similar pattern. However,
the IMU workflow shows on all platforms approxi-
mately double the energy consumption of the PCB
workflow, due to the more demanding algorithm.

The edge device consumes the least energy, due to
the weaker hardware. While the fog and cloud ma-
chines consume more energy, with the cloud machine
having the highest energy consumption.

4.5 Discussion

As demonstrated in Section 4, there are several differ-
ences when running machine learning tasks on vari-
ous deployment modes. The individual implications
of the results provided are discussed as follows:

Resource Availability: The measurements of the
training, as well as the prediction time show that the
higher levels in the deployment hierarchy can benefit
significantly from the computational resources avail-
able on these levels. The resources available on the
cloud and fog level greatly exceed the capabilities
of typical edge devices. This can benefit particu-
larly computationally demanding tasks such as ma-
chine learning. We showed that the performance ad-
vantage of cloud and fog machines can even exceed
the latency advantage provided by edge devices due
to their proximity to the assets.

Energy Consumption: The measurements conducted
within this paper show that due to the weaker hard-
ware resources of edge devices, they can execute
the ML tasks with lower overall power consumption.
This makes the usage of edge devices economical and
environmentally friendly.

The energy measurements are however limited,
as they rely on a software package that tracks CPU
and memory usage. This provides reasonably accu-
rate energy consumption estimates, but the concrete
kWh values might not be entirely correct. However,
as the same method is used for all measurements, the
relative difference between the measurements is still
valid.

Qualitative Aspects: Other differences between the
deployment levels are qualitative aspects, such as se-
curity or privacy. With edge computing and possi-
bly fog computing, the data is processed on the edge
device or fog instance, which can be beneficial for
privacy, as the data does not have to be transmit-
ted to a remote server possibly located in a different
country(Mendez et al., 2022; Satyanarayanan, 2017).
This can be especially important for industrial appli-
cations, where the data might be sensitive and strict
regulations may apply.

78

Relevance of Platform-Agnostic MLOps: These find-
ings underline the relevance of a platform-agnostic
MLOps framework that enables data scientists and
operators to deploy machine learning models on dif-
ferent platforms while providing a consistent experi-
ence. Platform-agnostic MLOps frameworks enable
users to choose the platform that best fits their require-
ments without having to adapt their workflows to the
selected platform.

Feedback for the Operator: The experiments above
show that the Testing Framework provides useful
metrics for deploying an ML task. An operator can
use the Testing Framework to get crucial insight for
assessing the performance and viability of a deploy-
ment location for a specific ML scenario. These in-
sights can be used to inform optimal deployment de-
cisions tailored to the needs of the given ML task.

Generalizability: The results of our experiments are
expected to be generalizable across various machine
learning tasks. Performance differences among the
cloud, fog, and edge layers are anticipated to be exis-
tent for most ML tasks, indicating that different tasks
may be better suited to different layers depending on
specific requirements and settings. This suggests that
a flexible, platform-agnostic approach is crucial for
optimizing MLOps across diverse scenarios.

Hybrid Deployments: Deployment is often not a bi-
nary choice; for instance, training might be best per-
formed in the cloud or fog, while inference is more
suitable for the edge. Our experimental results high-
light differences between the layers, suggesting that
hybrid deployments might be advantageous. How-
ever, these hybrid approaches are not considered in
the current study and are suggested for future re-
search.

S CONCLUSION

This work presented a platform-agnostic MLOps
framework, which can be deployed on the cloud,
fog and edge level. The framework enables users to
choose the platform that fits their requirements best,
without the need to adapt workflows and practices
to a specific deployment mode. We also evaluated
the framework on real-world ML tasks and discussed
the implications that the deployment mode has on
the given task. These results underline the need for
platform-agnostic MLOps.

Future research should explore the potential of
hybrid deployments, where different stages of the
MLOps lifecycle are distributed across cloud, fog,
and edge environments. Additionally, incorporating

Platform-Agnostic MLOps on Edge, Fog and Cloud Platforms in Industrial IoT

automatic orchestration mechanisms for detecting the
most suitable platform for each task and deploy mod-
els accordingly would enhance efficiency and perfor-
mance. This would involve developing intelligent
systems capable of dynamically optimizing deploy-
ment strategies based on task requirements and re-
source availability. These advancements could sig-
nificantly improve the flexibility and effectiveness of
MLOps frameworks.

REFERENCES

Calo, S. B., Touna, M., Verma, D. C., and Cullen, A. (2017).
Edge computing architecture for applying Al to IoT.
In 2017 IEEE International Conference on Big Data
(Big Data), pages 3012-3016.

Ding, A. Y., Peltonen, E., Meuser, T., Aral, A., Becker,
C., Dustdar, S., Hiessl, T., Kranzlmiiller, D., Liyan-
age, M., Maghsudi, S., Mohan, N., Ott, J., Reller-
meyer, J. S., Schulte, S., Schulzrinne, H., Sol-
maz, G., Tarkoma, S., Varghese, B., and Wolf, L.
(2022). Roadmap for edge Al: A Dagstuhl perspec-
tive. ACM SIGCOMM Computer Communication Re-
view, 52(1):28-33.

John, M. M., Holmstrom Olsson, H., and Bosch, J. (2020).
Al on the Edge: Architectural Alternatives. In 2020
46th Euromicro Conference on Software Engineering
and Advanced Applications (SEAA), pages 21-28.

Kemnitz, J., Weissenfeld, A., Schoeffl, L., Stiftinger, A.,
Rechberger, D., Prangl, B., Kaufmann, T., Hiessl, T.,
Holly, S., Heistracher, C., and Schall, D. (2023). An
Edge Deployment Framework to Scale Al in Indus-
trial Applications. In 2023 IEEE 7th International
Conference on Fog and Edge Computing (ICFEC),
pages 24-32.

Kreuzberger, D., Kiihl, N., and Hirschl, S. (2023). Machine
Learning Operations (MLOps): Overview, Definition,
and Architecture. /IEEE Access, 11:31866-31879.

Mendez, J., Bierzynski, K., Cuéllar, M. P., and Morales,
D. P. (2022). Edge Intelligence: Concepts, Ar-
chitectures, Applications, and Future Directions.
ACM Transactions on Embedded Computing Systems,
21(5):48:1-48:41.

Nastic, S., Raith, P., Furutanpey, A., Pusztai, T., and Dust-
dar, S. (2022). A Serverless Computing Fabric for
Edge & Cloud. In 2022 IEEE 4th International Con-
ference on Cognitive Machine Intelligence (CogMI),
pages 1-12.

Raj, E., Buffoni, D., Westerlund, M., and Ahola, K. (2021).
Edge MLOps: An Automation Framework for AloT
Applications. In 2021 IEEE International Conference
on Cloud Engineering (IC2E), pages 191-200.

Rausch, T. and Dustdar, S. (2019). Edge Intelligence: The
Convergence of Humans, Things, and Al. In 2019
IEEE International Conference on Cloud Engineering
(IC2E), pages 86-96.

Rausch, T., Hummer, W., Muthusamy, V., Rashed, A., and
Dustdar, S. (2019). Towards a Serverless Platform for

Edge {Al}. In 2nd USENIX Workshop on Hot Topics
in Edge Computing (HotEdge 19).

Satyanarayanan, M. (2017). The Emergence of Edge Com-
puting. Computer, 50(1):30-39.

Trabesinger, S., Butzerin, A., Schall, D., and Pichler, R.
(2020). Analysis of High Frequency Data of a Ma-
chine Tool via Edge Computing. Procedia Manufac-
turing, 45:343-348.

79

