HPAQT: Adaptive and Interpretable High-level SLO-aware
Autoscaling with Reinforcement Learning

Robin Mayerhofer
Distributed Systems Group
TU Wien
Vienna, Austria
mayerhofer1998@gmail.com

Alireza Furutanpey
Distributed Systems Group
TU Wien
Vienna, Austria
a.furutanpey@dsg.tuwien.ac.at

Abstract

Modern distributed applications rely on virtualized infrastructures
to elastically meet their performance requirements. In this setting,
autoscaling enables elastic adaptations at runtime. While allow-
ing for the overcoming of the burden of adjusting the provisioned
resources, autoscaling shifts the problem to the definition of an ac-
curate and appropriate threshold, for example, a certain CPU usage,
which is a difficult challenge to achieve. Furthermore, defining a pri-
ori a fixed value clashes with the dynamicity of modern applications
and infrastructure, leading to inflexibility that can affect the quality
of service over time. Finally, most autoscaling techniques rely on
low, resource-level metrics, which, in complex scenarios, are diffi-
cult to gauge. In our paper, we propose HPAQT, a lightweight, stable,
and reproducible RL mechanism that self-calibrates the autoscal-
ing threshold to enforce composite, high-level objectives rather
than fixed low-level metrics. HPAQT vyields an easily interpretable,
deployable, and effective policy. In experiments, HPAQT achieves
10x fewer violations than the reference Q-Threshold and beats the
standard Kubernetes HPA, with less than 0.5% total violations in
over 12 hours, thus demonstrating practical gains.

Keywords

reinforcement learning, auto-scaling, Q-Threshold, high-level SLO,
workload, self-adaptive systems

ACM Reference Format:

Robin Mayerhofer, Andrea Morichetta, Alireza Furutanpey, and Schahram
Dustdar. 2025. HPAQT: Adaptive and Interpretable High-level SLO-aware
Autoscaling with Reinforcement Learning. In 2025 IEEE/ACM 18th In-
ternational Conference on Utility and Cloud Computing (UCC ’25), De-
cember 01-04, 2025, Nantes, France. ACM, New York, NY, USA, 9 pages.
https://doi.org/10.1145/3773274.3774274

This work is licensed under a Creative Commons Attribution 4.0 International License.
UCC °25, Nantes, France

© 2025 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-2285-1/25/12

https://doi.org/10.1145/3773274.3774274

Andrea Morichetta
Distributed Systems Group
TU Wien
Vienna, Austria
a.morichetta@dsg.tuwien.ac.at

Schahram Dustdar
Distributed Systems Group
TU Wien
Vienna, Austria
dustdar@infosys.tuwien.ac.at

1 Introduction

Virtualized platforms and environments have enabled the elastic-
ity of distributed applications, letting them adjust the computing
needs to meet quality of service requirements. In this context, au-
toscaling strategies help to dynamically allocate resources. Standard
scaling approaches, as the Kubernetes Horizontal Pod Autoscaler
(HPA) ! rely on static thresholds to implement reactive strategies.
First, while scaling removes the responsibility for the application’s
provider of assigning the infrastructure, it switches the burden
to selecting an appropriate scaling threshold metric and target.
Furthermore, the target might change together with the applica-
tion fluctuations, making static thresholds unreliable for complex,
dynamic applications. Overall, the caveat with common reactive
autoscaling strategies is that they intrinsically result in over- or un-
derprovisioning during sudden spikes. Consequently, misallocation
results in substantial monetary losses for providers.

In recent years, Reinforcement Learning (RL) (2, 10, 22, 24, 27,
30, 31] emerged as an answer to the static nature of standard au-
toscalers, pushing towards (self-)adaptive solutions. However, de-
spite a decade of considerable research, no large providers have
applied RL-based autoscalers. We argue that two underlying, but
related limitations of current RL methods prevent them from being
productively used. First is the lack of interpretability from decisions.
Even if providers can reduce wasting resources from a seemingly
reliable autoscaler, they risk unpredictable failure, leading to pro-
longed periods of Service Level Objectives (SLOs) violations or,
worse, near-complete outages. For example, if an autoscaler has
complete control over the number of replicas, it may starve services
except one it overwhelmingly favors. Hence, providers need to trust
the autoscaler and understand decisions so that careful monitoring
can yield insights about its behavior [10]. Second, is the trade-off
between domain generalization and performance, particularly for
autoscalers based on the popular Q-learning method [27]. Methods
that tightly link high-level SLOs or applications to their autoscaling
algorithm work well for their intended domain but require signifi-
cant effort to adapt them to different domains. Conversely, methods
that frame the objective of an autoscaling agent to generalize across
a wide range of domains may perform below the expectations of

Thttps://kubernetes.io/docs/tasks/run-application/horizontal- pod-autoscale/

UCC °25, December 01-04, 2025, Nantes, France

providers [27]. We argue that the cause of both limitations is the
action- and state-space explosion leading to extended learning and
improvement phases [2], [10]. This last shortcoming is in general
evident with Deep Reinforcement Learning methods, where the
use of deep learning structures can lead to long and complex train-
ing, and result in overfitting [12]. While this may be an intrinsic
limitation of RL learning methods that require complex sequences
of actions, we argue that a large action space is unnecessary for
an autoscaling agent to act on their reasoning about potential out-
comes. Furthermore, the democratization and access to distributed
resources have led the request to focus on offering higher-level
management tools to the application providers [7, 17]. They have
expectations in terms of how their applications are intended to per-
form from a high-level, business-level perspective, so, in the same
way, autoscalers must optimize what users and businesses actually
care about (latency, errors, cost, energy) rather than lower-level
metrics. In this direction, components that allow the management
through high-level, SLO-aligned metrics [23] are a necessary re-
quirement. Still, properly making sure that these high-level SLOs
translate into actionable inputs for infrastructure management is
tricky, as business-to-resource relations are not easy to derive.

Our goal is to overcome the limitations of static thresholds and
heavy DL-RL, which make autoscaling either fragile or opaque. In
this direction, we present a refreshingly simple RL-based autoscaler
from which interpretability and adaptivity arise from its drastically
reduced action space, and make its implementation publicly avail-
able. > We propose both a double-threshold and a single-threshold
autoscaling policy. Our implementation builds on the Q-Threshold
approach proposed by Horovitz et al. [10], with a focus on the fulfill-
ment of high-level requirements. The goal is to have a lightweight,
generalizable, and interoperable RL mechanism that, by only chang-
ing the threshold for the autoscaling agent’s objective, can trigger
better-scaling actions to avoid intent violations. In particular, we im-
prove on Q-Threshold by proposing a series of adaptations, which
involve reducing the state space, keeping the Q-Table values over
time, and adopting SLO-aware strategies. Leveraging Q-learning
based approaches, we guarantee the interpretability of the policy, as
action-values per state are explicitly coupled. This approach is also
stable and reproducible as it requires few implementation knobs.
Furthermore, we let our proposed approach generalize over both
low- and high-level SLO metrics for the reward calculation, creating
an effective bridge between the providers QoS requirements and
the actuation of strategies on the infrastructure.

The evaluation, performed on a realistic use case of image clas-
sification in a dynamic application with real-time guarantee re-
quirements, shows that our solution can outperform the existing
Q-Threshold approach and Kubernetes HPA. In particular, using
request duration as a SLO, HPAQT produces 10 times less viola-
tions than Q-Threshold, and improves also on the widely-used HPA
autoscaler. Furthermore, HPAQT shows to work in even with the
composite, complex cost-efficiency SLO. We allow a fair comparison
with static, reactive rules, avoiding pretraining for the RL agents
and letting them learn at runtime. The positive results provided by
HPAQT show its potential as a scalable, fast approach.

2Qur approach: https://github.com/robinmayerhofer/polaris-reinforcement-learning/
tree/main

Robin Mayerhofer, Andrea Morichetta, Alireza Furutanpey, and Schahram Dustdar

In summary, our main contributions are:

e High-level SLO-aware autoscaling via a lightweight
RL threshold tuner (HPAQT): this method allows to map
composite, complex goals (e.g., latency SLOs, cost-efficiency)
to adaptive thresholds, avoiding manual tuning and limits
of standard reactive scaling strategies.

Stability and interpretability adaptations to Q-

Threshold: by simplifying the state space and introducing

the Q-Table Memory for knowledge retention, and adjusting

the learning strategy, we offer a lightweight, yet stable and
reproducible approach to autoscaling.

e Robust evaluation in a realistic Kubernetes and
TensorFlow-Serving scenario: the evaluation highlights
that HPAQT leads to fewer SLO violations when compared
to the reference Q-Threshold RL baseline and to Kubernetes
HPA; furthermore, we include a cost-efficiency objective
study showing how HPAQT can deal with composite SLOs.

The remainder of this paper is structured as follows. Section 2
reviews related work in RL- and threshold-based autoscaling. Sec-
tion 3 formulates the problem, identifying key limitations in ex-
isting solutions. Section 4 details the proposed approach, focusing
on adaptations to Q-Threshold, including single-threshold models,
memory retention, and update strategies. Section 5 presents an
extensive evaluation comparing the proposed adaptations against
baselines, showing that the best configuration achieves up to 10x
fewer SLO violations. Section 6 concludes with future research
directions for high-level SLO-aware autoscaling.

2 Related Work

Serverless platforms. Schuler et al. [28] investigate the applicabil-
ity of Q-learning for request-based autoscaling in Knative, demon-
strating that RL can dynamically determine concurrency limits to
improve throughput and latency without prior workload knowledge.
Xue et al. [32] propose a meta RL-based predictive autoscaling strat-
egy that incorporates deep periodic workload prediction and Neural
Process models to enhance decision-making, achieving significant
performance improvements when deployed in Alipay’s cloud infras-
tructure. Agarwal et al. [1] explore recurrent reinforcement learning
(LSTM-PPO) for autoscaling in Function-as-a-Service (FaaS) envi-
ronments, modeling scaling decisions as a Partially Observable
Markov Decision Process (POMDP) and showing an 18% improve-
ment in throughput over standard PPO-based policies. Zhang et
al. [33] introduce a Q-learning-based adaptive autoscaling method
that combines horizontal and vertical scaling to optimize resource
allocation while meeting strict latency constraints, reducing costs
by 10.5% on average compared to state-of-the-art approaches. These
works collectively highlight the growing role of RL in intelligent
autoscaling for serverless applications, enabling efficient, adaptive,
and QoS-aware resource management in dynamic cloud environ-
ments.

Cloud platforms. Qiu et al. [25] introduce AWARE, an RL-based
framework for workload autoscaling in production cloud systems,
leveraging meta-learning and bootstrapping to enhance adaptation
speed and robustness, achieving a 5.5x faster policy adaptation
and reducing SLO violations by 16.9x. Xue et al. [32] propose a
meta RL-based predictive autoscaling strategy incorporating deep

HPAQT: Adaptive and Interpretable High-level SLO-aware Autoscaling with Reinforcement Learning

periodic workload forecasting and Neural Process models, which
outperforms existing methods in accuracy and has been successfully
deployed at Alipay to handle large-scale cloud workloads. Liu et
al. [16] design a meta-gradient RL-based scheduling framework for
time-critical tasks in cloud environments, significantly improving
robustness and adaptation speed while ensuring deadline guaran-
tees under dynamic workloads. Chrysopoulos et al. [5] introduce
RBS-CQL, a Deep RL system integrating offline learning for cloud
elasticity, demonstrating a 10% improvement in autoscaling effi-
ciency compared to online training for Kubernetes-based NoSQL
applications. Arabnejad et al. [2] instead focused on the RL model
performance, using fuzzification to reduce the state space (fuzzy
workload and fuzzy response time), together with a smaller action
space. Mishra et al. [18] develop a Q-learning-based RL autoscaler
that dynamically scales Kubernetes workloads beyond the limita-
tions of HPA, providing customized resource allocation based on
throughput, latency, and CPU utilization. Horovitz et al. [10] iden-
tified the issues when scaling approaches to larger environments
and proposed a simple, but effective solution called Q-Threshold to
control only the target for autoscaling and not directly the scaling
actions. Similarly, other solutions focused on offering RL algorithms
to manage autoscaling thresholds [4, 8, 11], but typically they fo-
cus on low-level SLOs and metrics. More similarly to us, Rossi et
al. [26] offered an evolution of Horovitz’s work. Different from our
approach, though, they focus more on controlling multiple metric
thresholds rather than adjusting them based on high-level SLOs.
Furthermore, their focus is on CPU and memory as scaling metrics.

2.1 Takeaways

Compared to the existing RL methods, our HPAQT approach
presents some key differences. Compared to RL-based autoscal-
ing for serverless and cloud platforms, we leverage a unique state
space design tailored for dynamic workload adaptation, optimiz-
ing decision-making without relying on workload periodicity as-
sumptions, as for example in meta-RL and LSTM-based models.
Additionally, while existing RL autoscalers often use predefined
scaling constraints or limited action spaces, our approach has a
more adaptive action space, thanks to the threshold manipulation.
This design allows for autonomous, real-time adaptation without
requiring explicit dependency models, making it more flexible for
heterogeneous cloud environments. Compared to other threshold-
manipulation methods, HPAQT stands out for its simple yet domain-
accurate approach. By relying on a minimal state space, adding a
memory for the Q-Table, and employing a simple heuristic, we offer
a precise and reliable tool for dynamic autoscaling.

3 Problem Formulation

Auto-scaling in cloud environments requires dynamically adjusting
resources to meet fluctuating workload demands while maintain-
ing performance guarantees. Traditional autoscalers rely on static
threshold values (e.g., CPU utilization) to trigger scaling decisions.
While these approaches can adequately meet demand in expected
scenarios, they fail in dynamic workloads where the scheduler
may over- or under-provision resources. In both cases, the cloud
provider incurs losses—either by wasting resources or risking SLA

UCC °25, December 01-04, 2025, Nantes, France

breaches. Conversely, RL-based autoscalers aim to reduce opera-
tional costs and improve service quality by accurately predicting
demand. Decades of research have produced methods that perform
well on benchmarks (2). However, there is currently no evidence
that they see significant real-world adoption in major cloud plat-
forms. This lack of adoption stems from a critical limitation: op-
erators cannot reliably predict or control RL scheduler behavior
in complex production systems. The unpredictability of RL-based
systems presents an unacceptable operational risk, as unexpected
scaling decisions can trigger cascading failures and widespread
outages. In other words, insufficient interpretability categorically
disqualifies RL-based autoscalers from real-world deployment at
scale. We systematically evaluate different RL adaptations (e.g.,
memory retention, threshold update strategies) and investigate their
impact on stability, interpretability, and performance. We con-
duct a comprehensive comparison against standard HPA-based
autoscaling and the original Q-Threshold model. Our evalua-
tion shows that the standard Q-Threshold, despite its theoretical
flexibility, suffers from the worst performance due to instability
and ineflicient scaling decisions. By contrast, our single-threshold
adaptation significantly improves intent compliance and stability,
demonstrating the practical advantages of simplifying RL-based
autoscaling. By bridging the gap between high-level intent-based
cloud management and practical autoscaling, this work aims
to provide an interpretable, adaptable, and production-ready
reinforcement learning-based autoscaler.

4 Approach

We approach building a self-adaptive autoscaling policy by adapt-
ing and augmenting the existing Q-Threshold method [10]. Based
on our adaptation, we implement two approaches, the first, Aug-
mented Q-Threshold, keeps the original lower- and upper-threshold
structure. In the second, HPA Q-Threshold, we instead follow the
principle of Kubernetes HPA by simplifying the policy to a single
threshold.

4.1 Original Q-Threshold

Q-Threshold is aRL-based autoscaling technique that aims to fix or
improve early-stage performance, issues introduced by convergence
speed, and worst-case performance [10]. Moreover, Q-Threshold
aims to be a solution that industry experts can trust because of
its (perceived) simplicity and similarity to the industry-standard
threshold-based autoscaling, thus reducing risk.

Environment Modeling. Q-Threshold aims to keep small
state/action spaces, because of issues identified when at least one
of them gets big. The state space contains the current number of
resources. The action space for the agent corresponds to increas-
ing/decreasing the threshold (-2, -1, 0, +1, +2). Thus, the Q-table
is very simple, as shown in 1. When an action changes the thresh-
old, then the values in the Q-table are shifted. For example, if the
action +2 is chosen, then the Q-values for the current state (before
applying the action) are shifted right twice, and two 0 values are
introduced for +1 and +2. Additionally, the agent maps each state
to a threshold used if the agent is in the given state, as shown in 2.

For the reward, they want to ensure that there are no Service
Level Agreement (SLA) violations which occur when exceeding the

UCC °25, December 01-04, 2025, Nantes, France

Resources / Action | -2 | -1 | 0 | 1 | +2

3 0 0 3.92 | -12.5 | -12.6
4 0 0 2.03 | 3.68 1.93
5 0 0.15 | 4.29 | 0.41 -0.15

Table 1: Q-table for Q-Threshold. Taken and adapted Table

VI (left) from [10].

Resources | Threshold
3 80%
4 72%
5 77%

Table 2: Mapping of the state to the threshold. Taken and
adapted Table VI (right) from [10].

configured 95:" percentile response time:
1 —p(i- resgz;ime
—e . .
o —_p =5 ,if respTime > SLO (1)
ll_fp ,if respTime < SLO

Here, p is the upper-/lower-threshold value, and p is a parameter
determining the steepness of the exponential [10]. As p is set to a
fixed value, the reward is essentially influenced by the SLO compli-
ance level and the threshold. As long as the SLO is met, the reward is
positive and only depends on the threshold (higher thresholds lead
to higher rewards). If the SLO is violated, the reward is negative.
Moreover, the reward strictly monotonically decreases based on
the SLO compliance level and is amplified by the threshold (higher
threshold, bigger negative reward).

Concept. The autoscaler manages two thresholds (and thus, also
two agents). If the lower one is passed, scaling-in happens, and
the higher one determines when scaling-out happens. Each agent
tries to adapt their thresholds to optimize the received reward.
Horovitz and Arian also proposed an algorithm determining which
Q-table (for lower/upper threshold) should be updated, Moreover,
for exploration, an e-greedy policy is chosen that is biased towards
higher thresholds, i.e., more exploration towards higher thresholds,
which results in scaling-in as early as possible and scaling-out as
late as possible.

4.2 Augmented Q-Threshold

We re-implement and extend the Q-Threshold method by intro-
ducing four adaptations to improve scalability, generalization, and
stability: the Generalizable Reward function, the Single State
(1STATE) simplification, Q-Table Memory (MEMORY), and the
Least-Extreme Then Random (LE-STRATEGY) action selection
policy. Here, we still maintain the Q-Threshold structure, depicted
in Fig. 1, and consisting of two agents, with their own Q-tables,
locally managing lower- and upper-thresholds.

4.2.1 Generalizable Reward. First, we want to generalize the Q-
Threshold algorithm to enable providing a different reward. The
original Q-Threshold algorithm relies on a reward function that

Robin Mayerhofer, Andrea Morichetta, Alireza Furutanpey, and Schahram Dustdar

extended Q-Threshold

QTable QTable
A A
| |
| uses | uses
1 1
SingleBoundary SingleBoundary
ThresholdAgent ThresholdAgent

0 0

QThreshold
Agent

é) BaseAgent

QThreshold

Agent

(O HTTPARI

Figure 1: Augmented Q-Threshold components.

hypothesizes the need to keep the target metric within certain
boundaries. This use case is typical when handling resource metrics
as CPU or memory, where lower and upper boundaries indicate
the need for scale-in (or -down) and scale-out (or -up), respectively.
This structure, however, limits the metrics the algorithm can work
with. When dealing with high-level SLOs, though, we could face
the instance of a more ambiguous metric. As an example, we can
consider cost efficiency, which is typically expressed [9, 15] as:

Successful requests per second within a threshold

Cost Effici =
o8 ceney Total workload cost

Imagine the system is experiencing high load. The RL agent ob-
serves a drop in cost efficiency. This decline could be either because
too few resources are allocated, meaning that requests are dropped
(under-provisioning), or too many resources are used without im-
proving performance (over-provisioning). However, based on cost
efficiency alone, the agent can’t tell which case it is. It may make
the wrong decision, for example, increasing the threshold when
it should be lowering it to trigger earlier scaling. We solve this by
implementing a modular component to plug in the reward. For
example, in the case of cost efficiency, we let the user define their
boundaries. This step is essential also because it enables using
(high-level) SLOs to influence the decisions of the RL agent.

4.2.2 Single State (1STATE). In the original Q-Threshold ap-
proach [10], the agent maintains a Q-table indexed by both the
current replica count and the scaling threshold. This allows the
agent to learn replica-count-specific threshold adaptation policies:
for instance, to scale in more aggressively when many replicas are
active and more conservatively when only a few remain. While
effective, this results in a larger state space and sharp changes in

HPAQT: Adaptive and Interpretable High-level SLO-aware Autoscaling with Reinforcement Learning

threshold when the replica count changes rapidly. Furthermore, it
requires maintaining an auxiliary data structure that maps each
replica count to its current threshold. The 1STATE adaptation re-
moves this dependency by reducing the Q-table to a single row and
discarding the use of replica count as state information. The agent
operates with a single, constant dummy state and learns a general
policy for threshold adaptation, independent of the current scale. In-
ternally, this is implemented by storing and retrieving the threshold
using a fixed state index, e.g., replica_count_to_threshold[@].
This simplification offers three potential benefits: (i) reduced mem-
ory and implementation complexity, (ii) faster learning due to fewer
state-action pairs, and (i) generalization across scales. However,
it also removes the agent’s ability to reason about the impact of
scaling decisions relative to system size. This trade-off is evaluated
empirically in Section 5.

4.2.3 Q-Table Memory (MEMORY). In the standard Q-Threshold
implementation, threshold adaptation is implemented as a shift
over the Q-table. For example, applying action +2 moves the thresh-
old up by two units, shifting the Q-values accordingly. Q-values
that fall outside the new window are discarded and replaced with
zeros. This can lead to a loss of accumulated knowledge and intro-
duce instability during training, mainly when threshold changes
occur frequently. To address this, we introduce a Q-Table Memory
mechanism. Instead of discarding values when the threshold shifts,
we treat the Q-table as a sliding window into a larger, persistent
memory. Q-values that move outside the current view are retained,
and if they re-enter later, their previous values are restored. This
allows the agent to accumulate and reuse long-term knowledge,
stabilizing learning and improving convergence.

4.2.4 LE-STRATEGY: Least-Extreme Then Random. In reinforce-
ment learning, multiple actions can sometimes have identical Q-
values. The original Q-Threshold method does not specify how to
resolve such ties. To introduce a consistent and conservative reso-
lution strategy, we implement the Least-Extreme Then Random
(LE-STRATEGY) policy. When multiple actions share the maxi-
mum Q-value, the agent selects the one that causes the slightest
change to the threshold (i.e., the action closest to zero). If multiple
such minimally disruptive actions exist (e.g., —1 and +1), one is
selected at random. This approach reduces the likelihood of os-
cillatory behavior and leads to smoother, more stable threshold
adjustments.

4.3 HPA-Q-Threshold (HPAQT)

Q-Threshold is designed to work with two thresholds, scale out
when the metric is above the upper one, and scale in when the met-
ric is below the lower one. This is how many traditional autoscalers
work. However, industry-standard autoscalers for containers such
as HPA from Kubernetes use a single threshold - they maintain a
desired metric value. This allows to scale out or in faster because
multiple instances could be added/removed at the same time. More-
over, it is more straightforward as it only requires maintaining
a single Q-table instead of two. Thus, we want to evaluate both
Q-Threshold with a single threshold and with two thresholds. Fig. 2
shows the components that build HPAQT. Furthermore, in Alg. 1 we
highlight the main steps. First, the RL agent monitors the current

UCC °25, December 01-04, 2025, Nantes, France

HPA Q-Threshold

gJ

QTable

SingleBoundary
ThresholdAgent

. BaseAgent

HPA il
QThreshold
Agent

O BaseAgent

O HTTRARI

Figure 2: HPA-Q-Threshold components.

state, then, based on its current strategy, takes an action. If this
action triggers the change of a threshold’s value, then HPA checks
whether this leads to an autoscaling. Eventually, the number of
replicas will be adjusted accordingly. Finally, HPAQT updates the
Q-Table memory.

4.4 Summary

We design a set of adaptations for Q-Threshold autoscaling that
are (i) application-agnostic, i.e., adapting to an ever-changing
landscape, where each service has different requirements and SLOs
to fulfill. Furthermore, (ii) we want to allow high-level SLOs to
be used to scale services. The mechanism also has to be (iii) in-
terpretable, as the autoscaling solution needs to be trustworthy.
In addition, the approach should be (iv) easily configurable and
provide an excellent autoscaling policy. Our solution should require
(v) no additional sandboxed environments to evaluate an ap-
plication before deploying it, as it would represent a slowdown.
As updates and up- and downstream dependencies can influence
the performance of an application, an autoscaling solution must
be able to (vi) react to such changes and be able to update its
policy when needed to ensure appropriate performance. All of these
requirements are related, and it is possible to (vii) make trade-offs
for one or the other. If a solution already has excellent worst-case
performance, then early-stage performance, by definition, is also
good, and slower convergence is a minor issue. On the other hand,
(extremely) fast convergence helps to neglect the bad early-stage
and worst-case performance issues.

UCC °25, December 01-04, 2025, Nantes, France

Algorithm 1: HPA-Q-Threshold (HPAQT): General Control
Loop with 1STATE, MEMORY, LE-STRATEGY
Input: Discrete threshold indices 7~ = {0, . . ., Timax }; actions
A ={-2,-1,0,+1, +2}; replica bounds [Npin, Nmax]
Input: Learning rate a, discount y, exploration ¢ with
decay; controlled metric m; SLO definition
Data: Q-Table Memory (MEMORY):
Q[0..Tnax] [a € A] « 0 (persistent across threshold
shifts)
1 Initialize threshold index ¢ <« tini (1STATE); € « éstart.
2 while system running do
// 1) Observe (1STATE)
3 obs « ReadMonitoring(); x « obs[m];
n « current replicas
// 2) Action selection with LE-STRATEGY
4 a « LESelect(Q[t][-], A, ¢)
// 3) Threshold index update
5 ' —a
// 4) Index — target and HPA actuation
6 n* —
HPAComputeDesiredReplicas(t’, n, Nmin» Nmax);
// 5) Next observation and SLO-aware reward
7 obs’ « ReadMonitoring(); r < Reward(obs’, SLO)
// 6) Q-update in MEMORY (tabular Q-learning,
1STATE)

8 Ql[t][a] « shift

5 Evaluation

In this section, we evaluate our Reinforcement Learning (RL) au-
toscaling solution by setting up a comprehensive testbed and exe-
cuting a series of experiments against established baselines using a
specific use case.

5.1 Evaluation Testbed Setup

We evaluate our RL autoscaling solution using TensorFlow Serving
(ModelNetV2) for image classification in a Kubernetes environment.
This use case is essential as many modern applications might need
to classify images to make crucial decisions at runtime. One relevant
use case is disaster rescue [3, 6, 29]. Here, we envision that the
application owner executes the logic for detecting if, in emergencies,
flying drones have detected people or human-owned equipment. In
this scenario, it is fair to believe that the stakeholder would ask for
performance guarantees, where they want the drones to receive a
label for the images they capture from a model served through a
real-time cloud platform. A real-time constraint can be translated
into a high-level objective of 500ms request duration [14] (using the
95th percentile information that we collect from the monitoring
tools), i.e., guaranteeing that the system would process two frames
per second, which is going to be our main target. In Fig. 3, we
depict how our strategies are applied to orchestrate the containers.
Each experiment ran for twelve hours with varying load patterns
to allow the RL agent to learn scaling policies. The testbed included

Robin Mayerhofer, Andrea Morichetta, Alireza Furutanpey, and Schahram Dustdar

a 22-core, 32GB RAM VM with MicroK8s, Prometheus, NGINX, and
Kubecost for metrics collection and cost monitoring.

5.2 Request duration SLO

Here, we compare HPAQT with the baseline methods on the target
SLO of request duration and use CPU as a scaling metric. The
reward is calculated on the SLO, but the threshold is based on the
CPU usage values. We use CPU usage as a target, as it is typically
used in related works. To this end, we aim to offer a comprehensive
comparison, measuring the difference between the Kubernetes HPA
and the Q-Threshold baseline against our adapted formats.

The first dimension for the evaluation is the request duration
SLO. In the tests summarized by Fig. 4 and Fig. 5, we compare
how much the autoscaling approaches help reduce the number
of violations and how overall the request duration values are kept
within acceptable boundaries. Our proposed HPAQT algorithm (in
red) widely outperforms all the other approaches. Considering the
violation (see Fig. 4), HPAQT fails to fulfill the SLO target only 0.49%
of the time, more than half of the time compared to the second best,
HPA (in blue), which generates 1.04% of violations. The impact of
our augmentations is also visible when comparing the augmented
Q-Threshold (in green) with its baseline model. The difference is
stark, with 6.83% of violations with our proposed improvements,
versus 31.51% without, almost five times less. This difference is also
highlighted by the boxplots in Fig. 5. There, we can see how HPAQT
keeps the good values for the request duration. In particular, at the
bottom of Fig. 6, we can see that, especially for HPA and HPAQT, the
most significant magnitude in the SLO violation is in the beginning.
The explanation is that the first request to a new TensorFlow serving
pod takes more than 2.5 seconds, while subsequent requests can
generally be much faster.

We dive into the various policy performances by inspecting the
number of pods generated over time and the CPU usage. Fig. 7
shows that HPAQT, starting with a lower threshold, guarantees
a steady performance, with only a few CPU usage peaks above
50%; HPA is also balanced. Interesting is the behavior for the Q-
Threshold implementations; the baseline has an overall intense CPU
usage, which likely leads to the large number of violations. Instead,
the augmented Q-Threshold shows high variability, with extreme
peaks and lows. Fig. 8 allows us to examine how the approaches
scale the workload. We can see how the baseline and augmented
Q-Threshold are more conservative; they scale less often and to a
smaller extent. Conversely, HPA and the proposed HPAQT show
swift variations, with HPAQT scaling up to 10 replicas. These au-
toscaling performance differences clearly impact the overall SLO
fulfillment, as discussed above.

5.3 Cost efficiency high-level SLO

Here, we perform a test where we consider an even higher level SLO
as a reward for the RL agent. In particular, as we discussed in Sec. 4,
we only have a lower boundary in this case. Therefore, any action
that can increase the cost efficiency shouldn’t be penalized. For
this reason, we show how our single threshold HPAQT approach
performs. To do so, we introduce a cost efficiency target. We set
the target equal to 10, implying that at least one pod should, on
average, process at least two requests per second. Of course, the

HPAQT: Adaptive and Interpretable High-level SLO-aware Autoscaling with Reinforcement Learning

UCC °25, December 01-04, 2025, Nantes, France

ComposedMetricSource

Uses _ _ _ _ _ _ _ _ _ _ _ __ Uses
S --=== ~ T
| I I
Elasticity Strate
Y ay ‘ CpuUsage ‘ ‘ Latency ‘ ‘ Reward ‘
i i i ce

Reinforcement Learning
Agent

g] OrchestratorClient

(O HTTPAPI
o 2]

LatencyMetric RewardMetric

RLHori O
ElasticityStrategyController

RLF
ElasticityStrategyController

— HPA QT-Baseline —— QT-Augmented —— HPAQT

~ 301
& 254
g 20+
5 10]
S e
S 5

01

Oh 2h 4h 6h 8h 10h 12h

Figure 4: Violations over time for the four evaluated algo-
rithms.

_1.25 -

)

s :

2% 0.50

Lo -
0.00 "

. I I T I
vaf—aa‘—'ce)\%r_fugmef“ed i

Figure 5: Boxplots of request duration values across the ob-
servation period.

more the load is supported, the better. Furthermore, we introduce a
different scaling metric that the agent can control, i.e., by directly
limiting the request duration. We compare it with the control on
CPU usage. As we can see, the number of violations for HPAQT is
overall higher than when targeting the request duration. Still, the
violation rate is a maximum of 2.5% every two hours, which is still
sustainable and can be adjusted by the service owner. At the same
time, we can notice the difficulty of scaling by tuning the threshold
of a higher-level target, such as request duration.

RLHorizontal
ElasticityStrategyController

Figure 3: Architecture of our elasticity controller.

5.4 Discussion

While HPAQT has shown promising results, more effort is neces-
sary to enhance the robustness of our solution. One of the weak
aspects highlighted in the evaluation concerns the least-extreme
strategy. While this approach guarantees more stability, it leads to
conservative actions, limiting the impact of the agent’s decision.
Therefore, we can consider other heuristics, such as oscillation re-
duction, and augment domain-specific information, e.g., whether
the cluster has capacity to fulfill the requests. Furthermore, we
can enable more purposeful actions by gathering data over a more
extended timeframe (e.g., 30 minutes), by performing loops and col-
lecting reward locally, and only actually update the thresholds after
the action is consolidated. Another limitation is that the success of
the scaling mechanism, being it static or relying on RL, depends on
the initial threshold value. For this reason, in the next steps we plan
to integrate the autoscaler with profiling information [19, 20] that
can help to have a good understanding of what the general runtime
patterns are. Furthermore, leveraging runtime predictions [13, 21]
on the SLO fulfillment can aid the RL agent to take more informed
decisions. In this direction, we could explore expanding our HPAQT
to be model-based, i.e., include a wider understanding of the en-
vironment, by leveraging side modeling. This approach can allow
to have more control over the domain, with the side effect of in-
troducing higher computing complexity. Finally, while the current
evaluation setup offers a compelling test scenario, extending the
analysis to more applications and infrastructures will offer a more
robust assessment of HPAQT.

6 Conclusion

This paper presents HPAQT, an innovative approach to autoscal-
ing. HPAQT is motivated by the need for trustworthy, low-
overhead autoscaling that self-calibrates thresholds to meet high-
level SLOs—improving compliance and cost without sacrificing
interpretability. One of our core contributions lies in developing
a reinforcement learning (RL) augmentation for autoscaling, al-
lowing for a more flexible target definition, guaranteeing to map
high-level requirements to appropriate actions at the resource level,

UCC °25, December 01-04, 2025, Nantes, France

Robin Mayerhofer, Andrea Morichetta, Alireza Furutanpey, and Schahram Dustdar

“L”, 1.0 HPA “g 1.0 QT-Baseline “g 1.0 QT-Augmented “ﬁ 1.0
¢5 ¢5 65 ¢ 5
22 0.57 Y LAkl 280571 | " 1 2% 0.57 A 2805
ggOO g200 §r§00 gEOO
""0h 4h 8h 12h ""0h 4h 8h 12h “0h 4h 8h 12h "0h 4h 8h 12h
Figure 6: Request duration values for the different algorithms over the observation period.
100 HPA 100 QT-Baseline 100 QT-Augmented 100 HPAQT
X X
o o
© ol v ; Ho 9 ol y ; r ; v ; ' 0~ y - '
Oh 4h 8h 12h Oh 4h 8h 12h Oh 4h 8h 12h Oh 4h 8h 12h
Figure 7: Comparative plots of CPU usage in the observation period.
HPA T-Baseli T-A ted HPAQT
. 10 . 10 QT-Baseline ., 10 QT-Augmente . 10 Q
e © © ©
* 0 * 0 * 0 * 0
Oh 4h 8h 12h Oh 4h 8h 12h Oh 4h 8h 12h Oh 4h 8h 12h
Figure 8: Comparative analysis of autoscaling performance, as the number of active pods over time.
—— CPUscaling —— Latency scaling research will focus on advancing Q-Threshold approaches by in-
15.01 vestigating alternative RL algorithms to refine threshold control.
9 1251 25 g Another promising area of exploration is the decoupling of the au-
o 10.0- 20 E toscaling control loop. This could involve extending data collection
2 7.51 15 § timeframes and updating thresholds less frequently to optimize
< 5.07 10 o efficiency and accuracy.
S 2.5 5 «
0.0+ 0

Oh 2h 4h 6h 8h 10h 12h

Figure 9: HPAQT violations on the target cost efficiency met-
ric, using CPU or latency as a scaling metric.

and improving the adaptability and reusability of the autoscaler.
The framework’s ability to define and use high-level intents sig-
nificantly enhances the autoscaler’s functionality. Centrally, we
mitigated the issues in defining the RL agent’s state, actions, and
rewards by simplifying the RL agent’s control over the threshold
and employing a lightweight Q-learning approach. Additionally,
the design contemplates the complexities of building an autoscaler
independent of Horizontal Pod Autoscaler (HPA) norms, incorpo-
rating strategies to reduce oscillation and improve scaling decisions.
A key aspect of our approach is the emphasis on interpretability in
autoscaling. By adopting a simplified approach and maintaining a
small state/action space, our research advances the interpretability
of RL-based autoscaling. This simplicity, derived from industry-
standard approaches, ensures ease of understanding and fosters
trust in deploying such autoscalers in practical applications. Future

Acknowledgments

This work is funded by the HORIZON Research and Innovation
Action 101135576 INTEND “Intent-based data operation in the
computing continuum.”

References

[1] Siddharth Agarwal, Maria A. Rodriguez, and Rajkumar Buyya. 2024. A Deep
Recurrent-Reinforcement Learning Method for Intelligent AutoScaling of Server-
less Functions. IEEE Transactions on Services Computing 17, 5 (Sept. 2024), 1899—
1910. doi:10.1109/TSC.2024.3387661

[2] Hamid Arabnejad, Claus Pahl, Pooyan Jamshidi, and Giovani Estrada. 2017. A
Comparison of Reinforcement Learning Techniques for Fuzzy Cloud Auto-Scaling.
In 2017 17th IEEE/ACM International Symposium on Cluster, Cloud and Grid
Computing (CCGRID). 64-73. doi:10.1109/CCGRID.2017.15

[3] Bartosz Balis, Tomasz Bartynski, Marian Bubak, Daniel Harezlak, Marek Kasztel-
nik, Maciej Malawski, Piotr Nowakowski, Maciej Pawlik, and Bartosz Wilk. 2017.
Smart levee monitoring and flood decision support system: reference architec-
ture and urgent computing management. Procedia computer science 108 (2017),
2220-2229.

[4] Priscilla Benedetti, Mauro Femminella, Gianluca Reali, and Kris Steenhaut. 2022.
Reinforcement learning applicability for resource-based auto-scaling in serverless
edge applications. In 2022 IEEE international conference on pervasive computing
and communications workshops and other affiliated events (PerCom Workshops).
IEEE, 674-679.

[5] Miltiadis Chrysopoulos, Ioannis Konstantinou, and Nectarios Koziris. 2023. Deep
Reinforcement Learning in Cloud Elasticity Through Offline Learning and Return
Based Scaling. In 2023 IEEE 16th International Conference on Cloud Computing
(CLOUD). IEEE, Chicago, IL, USA, 13-23. doi:10.1109/CLOUD60044.2023.00012

—

HPAQT: Adaptive and Interpretable High-level SLO-aware Autoscaling with Reinforcement Learning

[6] Patrizio Dazzi, Luca Ferrucci, Marco Danelutto, Konstantinos Tserpes, Antonios

Makris, Theodoros Theodoropoulos, Jacopo Massa, Emanuele Carlini, and Matteo
Mordacchini. 2024. Urgent edge computing. In Proceedings of the 4th Workshop
on Flexible Resource and Application Management on the Edge. 7-14.

Nikos Filinis, Ioannis Tzanettis, Dimitrios Spatharakis, Eleni Fotopoulou, Ioan-
nis Dimolitsas, Anastasios Zafeiropoulos, Constantinos Vassilakis, and Symeon
Papavassiliou. 2024. Intent-driven orchestration of serverless applications in
the computing continuum. Future Generation Computer Systems 154 (May 2024),
72-86. doi:10.1016/j.future.2023.12.032

Manuel Gotin, Felix Lésch, Robert Heinrich, and Ralf Reussner. 2018. Investi-
gating performance metrics for scaling microservices in cloudiot-environments.
In Proceedings of the 2018 ACM/SPEC International Conference on Performance
Engineering. 157-167.

Tor Atle Hjeltnes and Borje Hansson. 2005. Cost effectiveness and cost efficiency
in e-learning. QUIS-Quality, Interoperability and Standards in e-learning, Norway
34 (2005).

Shay Horovitz and Yair Arian. 2018. Efficient Cloud Auto-Scaling with SLA
Objective Using Q-Learning. In 2018 IEEE 6th International Conference on Future
Internet of Things and Cloud (FiCloud). 85-92. doi:10.1109/FiCloud.2018.00020
Abeer Abdel Khaleq and Ilkyeun Ra. 2021. Intelligent autoscaling of microservices
in the cloud for real-time applications. IEEE access 9 (2021), 35464-35476.

Ezgi Korkmaz. 2024. A survey analyzing generalization in deep reinforcement
learning. arXiv preprint arXiv:2401.02349 (2024).

Anna Lackinger, Andrea Morichetta, and Schahram Dustdar. 2024. Time series
predictions for cloud workloads: A comprehensive evaluation. In 2024 IEEE

UCC °25, December 01-04, 2025, Nantes, France

[27] Fabiana Rossi, Matteo Nardelli, and Valeria Cardellini. 2019. Horizontal and

Vertical Scaling of Container-Based Applications Using Reinforcement Learning.
In 2019 IEEE 12th International Conference on Cloud Computing (CLOUD). 329-338.
doi:10.1109/CLOUD.2019.00061

Lucia Schuler, Somaya Jamil, and Niklas Kiihl. 2020. Al-based Resource Allocation:
Reinforcement Learning for Adaptive Auto-scaling in Serverless Environments.
doi:10.48550/arXiv.2005.14410 arXiv:2005.14410 [cs].

Geng Sun, Long He, Zemin Sun, Qingqing Wu, Shuang Liang, Jiahui Li, Dusit
Niyato, and Victor CM Leung. 2024. Joint task offloading and resource allocation
in aerial-terrestrial UAV networks with edge and fog computing for post-disaster
rescue. IEEE Transactions on Mobile Computing 23, 9 (2024), 8582-8600.
Pengcheng Tang, Fei Li, Wei Zhou, Weihua Hu, and Li Yang. 2015. Efficient
Auto-Scaling Approach in the Telco Cloud Using Self-Learning Algorithm. In
2015 IEEE Global Communications Conference (GLOBECOM). 1-6. doi:10.1109/
GLOCOM.2015.7417181

Yi Wei, Daniel Kudenko, Shijun Liu, Li Pan, Lei Wu, and Xiangxu Meng. 2019.
A Reinforcement Learning Based Auto-Scaling Approach for SaaS Providers in
Dynamic Cloud Environment. Mathematical Problems in Engineering 2019 (Feb.
2019), €5080647. doi:10.1155/2019/5080647

Sigiao Xue, Chao Qu, Xiaoming Shi, Cong Liao, Shiyi Zhu, Xiaoyu Tan, Lintao
Ma, Shiyu Wang, Shijun Wang, Yun Hu, Lei Lei, Yangfei Zheng, Jianguo Li, and
James Zhang. 2022. A Meta Reinforcement Learning Approach for Predictive
Autoscaling in the Cloud. In Proceedings of the 28th ACM SIGKDD Conference on
Knowledge Discovery and Data Mining. ACM, Washington DC USA, 4290-4299.
doi:10.1145/3534678.3539063

International Conference on Service-Oriented System Engineering (SOSE). IEEE, [33] Zhiyu Zhang, Tao Wang, An Li, and Wenbo Zhang. 2022. Adaptive Auto-Scaling
36-45. of Delay-Sensitive Serverless Services with Reinforcement Learning. In 2022 IEEE

[14] Allan Lago, Sahaj Patel, and Aditya Singh. 2024. Low-cost real-time aerial object 46th Annual Computers, Software, and Applications Conference (COMPSAC). IEEE,
detection and GPS location tracking pipeline. ISPRS Open Journal of Photogram- Los Alamitos, CA, USA, 866-871. doi:10.1109/COMPSAC54236.2022.00137
metry and Remote Sensing 13 (2024), 100069.

[15] Zheng Li, Liam O’brien, He Zhang, and Rainbow Cai. 2012. On a catalogue
of metrics for evaluating commercial cloud services. In 2012 ACM/IEEE 13th
International Conference on Grid Computing. IEEE, 164-173.

[16] Hongyun Liu, Peng Chen, and Zhiming Zhao. 2021. Towards A Robust Meta-
Reinforcement Learning-Based Scheduling Framework for Time Critical Tasks
in Cloud Environments. In 2021 IEEE 14th International Conference on Cloud
Computing (CLOUD). IEEE, Chicago, IL, USA, 637-647. doi:10.1109/CLOUD53861.
2021.00082

[17] Thijs Metsch, Magdalena Viktorsson, Adrian Hoban, Monica Vitali, Ravi Iyer,
and Erik Elmroth. 2023. Intent-driven orchestration: Enforcing service level
objectives for cloud native deployments. SN Computer Science 4, 3 (2023), 268.

[18] Pratik Mishra, Sandeep Hans, Diptikalyan Saha, and Pratibha Moogi. 2024. Opti-
mizing Cloud Workloads: Autoscaling with Reinforcement Learning. In 2024 IEEE
17th International Conference on Cloud Computing (CLOUD). IEEE, Shenzhen,
China, 217-222. doi:10.1109/CLOUD62652.2024.00033

[19] Andrea Morichetta, Victor Casamayor-Pujol, Stefan Nastic, Schahram Dustdar,
Deepak Vij, Ying Xiong, and Zhaobo Zhang. 2023. PolarisProfiler: A Novel
Metadata-Based Profiling Approach for Optimizing Resource Management in
the Edge-Cloud Continnum.. In SOSE. 27-36.

[20] Andrea Morichetta, Stefan Nastic, Victor Casamayor Pujol, and Schahram Dustdar.
2025. Formal and Empirical Study of Metadata-Based Profiling for Resource
Management in the Computing Continuum. arXiv preprint arXiv:2504.20740. To
appear in ACM Transactions On Internet Technology (minor revision). (2025).

[21] Andrea Morichetta, Thomas Pusztai, Deepak Vij, Victor Casamayor Pujol, Philipp
Raith, Ying Xiong, Stefan Nastic, Schahram Dustdar, and Zhaobo Zhang. 2023.
Demystifying deep learning in predictive monitoring for cloud-native SLOs. In
2023 IEEE 16th International Conference on Cloud Computing (CLOUD). IEEE,
1-11.

[22] Seyed Mohammad Reza Nouri, Han Li, Srikumar Venugopal, Wenxia Guo,
MingYun He, and Wenhong Tian. 2019. Autonomic Decentralized Elasticity Based
on a Reinforcement Learning Controller for Cloud Applications. Future Genera-
tion Computer Systems 94 (May 2019), 765-780. doi:10.1016/j.future.2018.11.049

[23] Thomas Pusztai, Andrea Morichetta, Victor Casamayor Pujol, Schahram Dust-
dar, Stefan Nastic, Xiaoning Ding, Deepak Vij, and Ying Xiong. 2021. A Novel
Middleware for Efficiently Implementing Complex Cloud-Native SLOs. In 2021
IEEE 14th International Conference on Cloud Computing (CLOUD). 410-420.
doi:10.1109/CLOUD53861.2021.00055

[24] Haoran Qiu, Subho S. Banerjee, Saurabh Jha, Zbigniew T. Kalbarczyk, and Ravis-
hankar K. Iyer. 2020. FIRM: An Intelligent Fine-grained Resource Management
Framework for SLO-Oriented Microservices. In 14th {USENIX} Symposium on
Operating Systems Design and Implementation ({OSDI} 20). 805-825.

[25] Haoran Qiu, Weichao Mao, Chen Wang, Hubertus Franke, Alaa Youssef, Zbig-
niew T Kalbarczyk, Tamer Basar, and Ravishankar K Iyer. 2023. {AWARE}:
Automate workload autoscaling with reinforcement learning in production cloud
systems. In 2023 USENIX Annual Technical Conference (USENIX ATC 23). 387-402.

[26] Fabiana Rossi, Valeria Cardellini, Francesco Lo Presti, and Matteo Nardelli. 2022.
Dynamic multi-metric thresholds for scaling applications using reinforcement
learning. IEEE Transactions on Cloud Computing 11, 2 (2022), 1807-1821.

