
Mobility-Aware Serverless Function Adaptations
Across the Edge-Cloud Continuum

Philipp Raith
Thomas Rausch

Schahram Dustdar
Distributed Systems Group, TU Wien

Vienna, Austria

lastname@dsg.tuwien.ac.at

Fabiana Rossi
Valeria Cardellini

DICII, University of Rome Tor Vergata
Rome, Italy

{f.rossi, cardellini}@ing.uniroma2.it

Rajiv Ranjan
School of Computing, Newcastle University

Newcastle upon Tyne, England

raj.ranjan@newcastle.ac.uk

Abstract—Serverless functions have emerged as a useful ab-
straction to manage the complexity of distributed and heteroge-
neous edge-cloud infrastructure. Current cloud-centric orches-
tration services and serverless platforms are not suitable for
the edge-cloud continuum due to their mobility-unawareness. In
this paper, we present a mobility-aware framework for edge-
cloud systems, where the operational mechanisms of placement,
scaling, and routing of serverless functions work in tandem. To
that end, we formulate the concept of pressure that captures
complex system behavior in a single metric. The pressure-based
framework handles geo-distributed workload and user mobility
by reducing overall function latency and increasing data through-
put while efficiently using edge resources. Our contributions
include a novel framework revolving around pressure and a real-
world proof of concept evaluation. Our approach combines the
benefits of a centralized control-plane with a decentralized data-
plane. The results show the efficacy of the platform to address
operational goals and make effective and deterministic tradeoffs
between system utilization and application performance. The
novel concept of pressure shows great extensibility and builds
the base for a plethora of future works.

Index Terms—Edge Cloud Continuum, Serverless Computing,
Function as a Service, Edge Intelligence

I. INTRODUCTION

Serverless functions encapsulate business logic into atomic

units of deployment that are autonomously managed by

platforms to hide computing infrastructure from application

developers. The platform’s main responsibilities of scaling,

placing, and routing requests need to consider the mobility

of users in modern edge-cloud scenarios [1]. The server-

less paradigm can help manage the complexity of operating

applications on the edge-cloud continuum, where the geo-

distributed and heterogeneous nature of infrastructure presents

unique challenges and opportunities [1]. Applications across

the edge-cloud continuum include low latency applications

spanning various domains, such as autonomous vehicles [2],

or augmented urban reality [3]. These use cases share two

common characteristics that are particularly challenging to ad-

dress: geo-distribution and user mobility [4]. Service migration

tackles the problem of user mobility and requires platforms to

constantly re-allocate resources [5]. Edge-cloud systems are

This project has received funding from the European Union’s Horizon 2020
research and innovation programme under grant agreement No 871403.

]

ECU 2
(RSU)

CCU

ECU 1
(RSU)

fndeploy

place fn

fn

Fig. 1: Scenario

composed of multiple compute units to enable computation

in proximity independent from where the requests come [6].

Thus, users constantly re-connect to the nearest access point,

making mobility-aware serverless function adaptations neces-

sary for future applications across the edge-cloud continuum.

Existing efforts to extend serverless systems (e.g., Kubernetes)

to the edge [7] have only recently begun to address how to

adapt cloud-based serverless adaptations [6], [8] and cloud-

centric solutions are not feasible [5]. Serverless adaptations

include scaling and placement of application instances (i.e.,

function replicas) and the routing of incoming user requests.

Figure 1 presents a scenario from the domain of autonomous

vehicles in which cars are connected to the closest Road Side

Unit (RSU). Specifically, the system is composed of different

compute units. Namely a central Cloud Compute Unit (CCU)

and two Edge Compute Units (ECU). In our case the ECUs are

RSUs and offer limited hosting capabilities. Cars automatically

connect to the closest one and offload tasks to the ECU. Tasks

include assisted driving, traffic management, and infotainment

[9]. In our case, tasks are processed by stateless functions that

are deployed by a developer in the CCU and placed from there

across the edge-cloud continuum. The issue is that functions

need to be adapted to migrate along the users’ trajectory.

Specifically, ECU 1 does not host the needed function and

needs to re-route the task to ECU 2, where it can be processed.

Naturally, if functions do not migrate, the invocation suffers

from long network latency trips. Thus, serverless platforms

require scaling, placement and routing strategies to migrate

123

2022 IEEE/ACM 15th International Conference on Utility and Cloud Computing (UCC)

978-1-6654-6087-3/22/$31.00 ©2022 IEEE
DOI 10.1109/UCC56403.2022.00023

20
22

 IE
EE

/A
C

M
 1

5t
h

In
te

rn
at

io
na

l C
on

fe
re

nc
e

on
 U

til
ity

 a
nd

 C
lo

ud
 C

om
pu

tin
g

(U
C

C
) |

 9
78

-1
-6

65
4-

60
87

-3
/2

2/
$3

1.
00

 ©
20

22
 IE

EE
 |

D
O

I:
10

.1
10

9/
U

C
C

56
40

3.
20

22
.0

00
23

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on April 26,2023 at 11:42:27 UTC from IEEE Xplore. Restrictions apply.

functions according to the users’ mobility. This entails the

consideration of non-negligible network delays, varying work-

load conditions, resource usage, and user mobility. To that

end, we propose a mobility-aware framework based on the

novel concept of pressure - a metric that measures the force

between compute units based on locality and demand. Our

framework implements a network-aware offloading strategy

and pressure-based scaling and placement that work in tandem.

The pressure is highly extensible, and we show this using

two pressure formulations that deterministically yield expected

results. Additionally, the pressure-based approach significantly

reduces communication between compute units, which other-

wise might result in a bottleneck on the network layer [10],

[11]. Evaluation on a testbed shows that our performance-

oriented pressure reduces the 90th percentile Round-Trip Time

(RTT) by up to 77%, and network latency can be reduced by

up to 92% compared to the default Kubernetes Autoscaler.

The resource-efficient pressure reduces the average number of

running containers by 83% in comparison to the performance-

oriented variant while still reducing the RTT by 60% and the

network latency by 74%. Inter-network traffic is reduced by

92% and 67%, respectively.

The main contributions of this paper are as follows.

• We propose a novel joint scale & placement and routing

framework for serverless functions across the edge-cloud

continuum.

• We implement two different pressure calculations show-

ing deterministic behavior and good results.

• Our open source proof-of-concept implementation1 works

in tandem with Kubernetes.

The rest of the paper is organized as follows. Section II

discusses related works and highlights issues around them

and differences to our work. Afterward, Section III briefly in-

troduces Function-as-a-Service (FaaS) and our system model.

Section IV introduces the pressure, and Section V the pressure-

based serverless platform, of which we describe our proof-

of-concept (PoC) implementation in Section VI. Section VII

outlines our methodology for evaluating the proposed sys-

tem. Section VIII highlights the key performance indicators,

displays the results of our experiments on the testbed, and

discusses advantages and disadvantages. Section IX concludes

our work and gives a perspective for future works.

II. RELATED WORK

The related work is split into three categories. First, we look

into works that investigate offloading and service migration

solutions. Afterward, we focus on solutions that propose edge-

cloud serverless function platforms. Then, we consider works

that tackle mobility issues.

A. Mobility-aware offloading and service placement

Labriji et al. [9] propose a proactive VM service migra-

tion scheme in the Internet of Vehicles. Tang et al. [12]

investigate Quality of Service (QoS) requirements in vehicle

1https://github.com/phip123/mobility-aware-faas

fleets. Using virtualization, they reduce resource provisioning

costs while ensuring QoS requirement satisfaction. Sun et al.

[13] formulate a mix-integer non-linear stochastic optimization

problem to optimize resource usage and task placement jointly.

Maia et al. [14] tackle the joint issue of request routing

and service placement using limited look-ahead control and

a genetic algorithm. These approaches and more [15]–[17]

propose mobility-aware solutions to routing and placement,

but evaluate their approaches solely in simulations. While they

show promising results, our work differentiates by solving

these issues for serverless functions using an integration into

Kubernetes.

B. Serverless adaptations in edge-cloud systems

The authors of [8] use a distributed Reinforcement Learning

(RL) approach to manage applications in Kubernetes using

decentralized request dispatchers and a centralized service

orchestrator. This design is similar to ours but differs from

the approach to minimize data communication between edge

and cloud. Their approach uses Graph Neural Networks to

encode the system’s state while our scale and placement

components work on the aggregated complex pressure metric.

Rossi et al. [6] use an RL agent to scale applications and

schedule on a geo-distributed system using a network-aware

placement heuristic, but do not propose a solution to request

routing. Tamiru et al. [18] extend Kubernetes to manage mul-

tiple clusters and re-route traffic across all clusters, but focus

neither on low latency applications nor the characteristics of

edge computing. Other papers that evaluated orchestration

services lack edge-based load balancing strategies [19], [20].

Baresi et al. [21] propose a serverless platform for edge

computing for which they also build a prototype based on the

open-source FaaS platform OpenWhisk. Their architecture is

based on a decentralized approach containing a self-contained

serverless platform per region (e.g., per city). In contrast to

our work, they do not explicitly tackle placement, scaling,

and routing but resort to measuring the idle memory footprint

and performance in a static environment (i.e., without scaling).

Further, these works have not been evaluated in the context of

mobility in edge-cloud systems.

C. Mobility-aware serverless function deployments

Few works have approached the task of implementing

and evaluating mobility-aware serverless function solutions.

Wang et al. [22] propose an RL approach that explicitly tackles

user mobility issues but do not jointly investigate placement

and routing. Baresi et al. [23] present NEPTUNE, a network

and GPU-aware serverless function adaptation platform which

is location-aware and built on top of Kubernetes. They use

Mixed Integer programming to perform placement decisions

and split the system into separate communities (similar to our

compute unit definition). In contrast to our work, communities

are not aware of each other. That causes the system to fail if

a community is overloaded and has to be reconfigured. Our

approach differentiates us by presenting a novel pressure-based

framework for serverless functions.

124

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on April 26,2023 at 11:42:27 UTC from IEEE Xplore. Restrictions apply.

III. BACKGROUND

FaaS platforms offer convenient deployment of serverless

functions by requiring only a containerized stateless applica-

tion to scale, place and route requests autonomously. While

there are many issues regarding serverless computing (e.g.,

cold starts [24]), we specifically focus on these three base

function adaptations. We build our platform on Kubernetes,

a commonly used orchestration service among open-source

serverless frameworks [25] and research [6], [18], [23]. This

paradigm requires that applications offer a single stateless

function that can be invoked over the network (i.e., HTTP).

While serverless platforms abstract away the details from

users, default components are not suited for modern edge-

cloud scenarios. Especially when facing mobility, cloud-

centric approaches (i.e., scaling and request routing) fail to

ensure user requirements. The serverless paradigm promises to

abstract the underlying infrastructure away from the platform

users and therefore deployment should only require minimal

deployment information. Therefore, we provide a novel server-

less platform to perform dynamic mobility-aware function

adaptations. Based on the example in Figure 1, we introduce

our notation for the system. As mentioned, we envision edge-

cloud systems to consist of one or multiple CCUs with

unlimited hosting capabilities but experience non-negligible

network delays to users (i.e., cars). ECUs are deployed at

the edge, comprised of resource-constrained devices, and in

proximity to users. Our approach is dynamic and does not

differentiate between these two compute units. Therefore, the

platform manages a set of compute units C. Each compute

unit c ∈ C contains multiple nodes n ∈ N and exactly one

gateway. The gateway acts as a request router and has function

adaptation capabilities, such as the aggregation of fine-grained

monitoring data and the local placement of functions. Platform

customers deploy functions with resource requirements for

CPU and memory (CPU req
f and MEMreq

f , respectively). A

function replica running on node n is denoted as fi, where

i is a unique index, and we can look up the node for each

fi. Users u ∈ U generate requests and invoke the deployed

functions. A compute unit c receives requests from user u of

the given function f (Ru,c,f). We also denote requests that

are being re-routed from compute unit x to compute unit y
with Rx,y,f . Table I lists all symbols.

IV. PRESSURE

Pressure is an abstract metric composed of multiple low-

level metrics and does not impose requirements regarding its

definition. Therefore it is versatile and can be formulated

toward specific use cases. As our evaluation shows, the

pressure can be composed of well-known low-level metrics

(i.e., resource utilization). The combination of them positively

influences dynamic function adaptations. In the following, we

introduce our vision of pressure based on an example scenario.

A. Example scenario

Figure 2 depicts a system consisting of three compute

units: ECU1, ECU2, and a cloud (CCU). The scenario

highlights how the pressure can guide function adaptations

and make them mobility-aware. It is based on our introductory

example in Section I. At the beginning (t1), one function

replica is available in CCU . Thus, the car is offloading

requests to ECU1 that are being re-routed to CCU , because

no function replicas are running on ECU1. The network

latency negatively impacts different factors (i.e., performance,

bandwidth usage), and ECU1 should process requests. The

platform has to adapt the function deployment and place a

new function replica in ECU1. The pressure captures this

mismatch, resulting in a high value between ECU1 and CCU .

At step t2, the system starts a function replica on ECU1 and

incoming requests can be processed internally (resulting in

low pressure). As no requests are being processed in CCU ,

the replica can be shut down. In the next step, t3, the car moves

away from ECU1 and connects to ECU2. ECU2 does not

host the function and therefore has to re-route them to ECU1.

In contrast to cloud-centric load balancers, a mobility-aware

platform has to consider network latency between compute

units when re-routing requests. As depicted in the figure,

ECU2 is closer to ECU1 than CCU (e.g., consider replicas

running in CCU). In t3, the pressure between ECU2 and

ECU1 is high again, and the platform has to adapt the

function deployment dynamically.

This scenario highlights the following important aspects:

(1) the platform efficiently places the function from the cloud

along the car’s path, (2) unused functions are shut down,

and (3) the pressure gives direction and enables a joint scale

and place algorithm, allowing us to make mobility-aware

decisions.

fn
CCU

ECU 1

CCU

t1 t2

t3 t4

ECU 2

CCU

CCU

ECU 2

ECU 2 ECU 1
fn

fn

ECU 1
fnf

ECU 2

ECU 1

Fig. 2: Scenario

B. Definition

The pressure is calculated for each pair of compute units

(i.e., ECU1, ECU2 and CCU) and for each function f ,

where requests were re-directed from one compute unit to

another. We denote the pressure as pECU1,ECU2,f , which

translates to requests being sent from the origin compute unit

125

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on April 26,2023 at 11:42:27 UTC from IEEE Xplore. Restrictions apply.

(i.e., ECU1) to the target compute unit (i.e., ECU2). The

pressure is directed (i.e., pECU1,ECU2,f �= pECU2,ECU1,f).

Note that the same compute unit puts pressure on itself (i.e.,

pECU1,ECU1,f). This is important to adapt compute units

independently and ensures requirement satisfaction. Gener-

Variable Description

C Set of compute units
F Set of deployed functions
N Set of nodes
CPUreq

f CPU requirement of function f

MEMreq
f Memory requirement of function f

CPU rel
fi

CPU usage of function fi
fi Function replica f with index i
U Set of users sending tasks (i.e., a car)
Ru,c,f Set of requests from user (or compute unit) u received by c
pco,ct,f The pressure from co on ct for function f
d(n1, n2) Network latency between nodes n1 and n2

trttf Target round-trip time of function f

pREQ
x,y,f Request pressure between compute unit x and y

pRES
x,y,f Resource pressure between compute unit x and y

pRTT
x,y,f Performance pressure between compute unit x and y

pperf Performance-oriented pressure definition

peff Resource efficient pressure definition
wfi,c Routing weight of replica fi for gateway in compute unit c

TABLE I: Symbols

ally, we expect a high pressure between two compute units

when the latency between them is high (which has to be

defined for each function individually) and a relatively large

quantity is re-routed, causing performance degradation for

many users. On the other hand, if the network latency is

negligible, the pressure should be low (i.e., pECU1,ECU1).

Additionally, each compute unit should be able to calculate

it based on local compute unit metrics and requests. This

minimizes communication costs between compute units and

the centralized control plane. Before introducing our pressure-

based platform, we give details about the pressure formulations

used in our evaluation.

C. Pressure formulations

We introduce two different pressure formulations: peff and

pperf that are composed of three and two low-level compo-

nents respectively: (1) the request distribution (pREQ
x,y,f), (2) the

performance (pRTT
x,y,f) and (3) the resource usage (i.e., average

CPU usage) of the target compute unit y (pRES
x,y,f).

pREQ
x,y,f captures the request distribution, the relative amount

of requests spawning from x and being processed by y.

It is formulated as follows, Cy contains all compute units

(including y) that have sent function requests to y and Rx,y,f

is the number of requests sent from compute unit x to y.

We divide the result by the highest ratio to normalize values

between [0, 1].

Ry,f =
∑

c∈Cy

Rc,y,f ;uy,f =
Ry,f

|Cy| (1)

wmax = maxc∈Cy
(
Rc,y,f

uy,f
) (2)

pREQ
x,y,f = (

Rx,y,f

uy,f
)/(wmax) (3)

pRTT
x,y,f anticipates applications that require a specific RTT.

As network and performance fluctuate during workloads, we

formulate a pressure that models this circumstance. It is

based on the RTT and a user-specified requirement (trttf).

Specifically, we use the 99th percentile of the RTT of function

f from x to y (RP99
x,y,f). The pressure increases when compute

unit x sends requests to far away, or overloaded compute units.

This allows to fine-tune each function and gives the ability to

adapt the importance of performance dynamically. We use a

logistic-based function (Eq. 4) to act as a cost function to

assess the current state.

l(d) =
(L− b)

1 + e−k(d−trttf)
+ b (4)

pRTT
x,y,f =

l(RP99
x,y,f)

L
(5)

We use the following parameter values:

L = 250, b = 1, k = 0.2, trttf = 70 (6)

Figure 3 shows the resulting pressure function pRTT
x,y,f which

stays in the range [0, 1]. In case no traces exist, we set

the pressure to 0. The parameters were chosen to penalize

(i.e., calculate a high pressure) for requests with an RTT

that violates the threshold and favor (i.e., calculate a low

pressure) if the RTT is below the threshold. Future works

can include investigating which parameters are suitable for

different applications.

Fig. 3: pRTT - pressure function

pRES
x,y,f is based on the ratio between requested CPU usage

and current average CPU usage over all function replicas in the

target compute unit y (CPUmean
f,y). This approach is similar to

how Kubernetes’ Horizontal Pod Autoscaler (HPA) calculates

the ratio for scaling applications and is in contrast to the others

not influenced by the origin compute unit x. pRES
x,y,f can yield

higher values than 1. We want to note here that this pressure

component can be easily extended to include other resources

(e.g., GPU, I/O), but our evaluation application mainly uses

CPU.

pRES
x,y,f =

CPUmean
f,y

CPU
req
f

(7)

126

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on April 26,2023 at 11:42:27 UTC from IEEE Xplore. Restrictions apply.

We calculate each pressure component and multiply them

to create the final pressure value. The pressure formulation

can be easily adapted and weighted towards different goals

and allows generalization across different infrastructures. To

demonstrate the adaptability, we use in our experiments two

different formulations: a pressure that contains all components

(efficient), and one that omits the pRES
x,y,f component to scale

and place with a focus on performance (see equations 8 and

9, respectively). The presented pressure formulation is our

initial evaluation of this concept and can be extended to more

sophisticated variants in future work (e.g., weighted sum).

peff
x,y,f = pREQ

x,y,f · pRTT
x,y,f · pRES

x,y,f (8)

pperf
x,y,f = pREQ

x,y,f · pRTT
x,y,f (9)

V. PRESSURE-BASED SERVERLESS PLATFORM

Scaler Global
Placement

 Check pressures
Pass pressure

threshold violations

ECU 1

Router
Optimizer

Gateway

ECU 2

Gateway Local
Placement

CCU

Fig. 4: Framework

Figure 4 shows the components of our pressure-based

serverless platform and highlights interactions between them.

We employ a joint scale and placement system to dynamically

manage the function lifecycle and a network-aware router

optimization component. The centralized scale component

finds pressure threshold violations. These are passed to the

placement component, which consists of a global and local

component. The global placement component determines in

which compute unit a new function replica should be spawned,

and the local one selects the node. The router optimizer

frequently updates the gateways in the system.

A. Scaling

The framework uses a reactive threshold-based strategy

to scale functions. The component periodically receives the

pressure (pc,x,f) for each pair of function and compute unit

and checks for any threshold violations. In case the pressure

is too high (i.e., pc,x,f > thrmax), it will scale up, and in

case the threshold falls below (i.e., pc,x,f < thrmin) it will

trigger a scale down action. The number of replica to scale

up or down is currently statically set to one. If the pressure is

0, but replicas are pending to start, we do not take any scale

down actions. Additionally, we identify zero sum actions to re-

use existing resources efficiently. This lets the system identify

scaling decisions that would scale down a replica in a compute

unit in which we want to schedule a new one. The scaler

outputs a list of tuples containing the violating compute unit

(c) and the corresponding function (f), which is passed on to

the global placement component.

B. Placement

Our work proposes a two-level decentralized placement

approach. The global placement component determines the

compute unit, and the local placement one selects a specific

node. The global placement component has to resolve two

kinds of events: scale-up and scale-down. In case of a scale-

down event, the pressure pc,x,f was lower than thrmin, and the

current selection strategy chooses the replica with the lowest

resource usage (i.e., CPU) in c. In the case of a scale-up event,

the pressure pc,x,f was higher than thrmax. Therefore, the

global placement policy receives a list of pressure violations

S and the set of compute units C (see Algorithm 1). Each

pressure violation in S consists of the violating compute unit

c and the function f . First, it decides whether c can host

another replica (line 4). Otherwise, it selects the next best

compute unit using latency and pressure (lines 6-20). First,

we sort all compute units in ascending order based on the

network latency relative to compute unit c (line 8). We assume

that the global component is aware of the underlying network

topology. In the next step, we check for each possible target

compute unit x if it can host another replica of f and check

if the pressure threshold (thrmax) is violated based on pc,x,f .

If not, we select x to spawn a new replica. If no compute

unit was found, we select the nearest one that can fit another

replica (line 17). The pressure allows us to avoid overloading

compute units by selecting the nearest one. Afterward, the

target compute units and functions (stored in M∗) are passed

on to the local placement component. The local placement
component receives the functions and compute units to spawn

new replicas and prepares for each pair one replica. This

component, situated directly in the compute unit (i.e., on the

gateway), can make fine-grained decisions to place the replica

on the best-fitting node. We do not propose a sophisticated

local placement heuristic in this work and resort to the default

Kubernetes scheduler. Our framework intends to focus on the

global level leaving fine-grained decisions open for custom

solutions. Note that the local placement component has much

more information available, and fine-grained telemetry data

does not have to be propagated to the global components

(as depicted in Figure 4). This also increases the system’s

scalability as the global component does not have to compute

the pressure but instead selects the compute unit to place

the next replica. The routing optimizer includes the newly

spawned replica and routes traffic to it.

C. Router Optimizer

The gateways route, based on a weighted-round-robin

technique, and the router optimizer periodically updates the

weights based on network latency and resource usage. It

calculates the weights for all replicas running in the compute

unit and for external compute units hosting the function. For

127

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on April 26,2023 at 11:42:27 UTC from IEEE Xplore. Restrictions apply.

Algorithm 1: Placement

1 Function globalPlacementPolicy(S, C):
Input: S,C: S contains the pressure violations,

and C is the set of compute units

Output: M∗: set containing the target cluster for

each function

2 M∗ ← Ø
3 foreach (c, f) ∈ S do
4 if canHost(c, f) then
5 M∗ ←M∗ ∪ {(minc, f)}
6 else
7 minc ← null, C∗ ← C \ c
8 C∗ ← sortByLatencyAscending(c, C∗)
9 foreach x ∈ C∗ do

10 if canHost(x, f) then
11 if pc,x,f < thrmax then
12 minc ← x
13 break

14 end
15 end
16 if minc = null then
17 minc ← firstThatCanHost(c, C∗, f)
18 end
19 M∗ ←M∗ ∪ {(minc, f)}
20 end
21 end
22 return M∗

23

each deployed function f , compute unit c, and function replica

fi, it calculates the weight wfi,c as follows:

cpudiff
fi

= 1− CPU rel
fi (10)

latfi,c = max(0.01, l(d(nfi , nc))) (11)

wfi,c = (cpudiff
fi
· latfi,c) · 100 (12)

CPU rel
fi

denotes the replica’s CPU usage relative to the

number of available cores and is normalized in the range

of [0, 1]. In case no CPU usage is available for a replica,

we assume the load is 0. Equation 11 uses the previously

defined logistic-based cost function (see Equation (4)). trttf is

a parameter that users have to provide. Equation (11) uses

the dynamically updated mean network latency, obtained via

the distance function d, between the replica’s node (nfi) and

the compute unit’s gateway node (nc). We avoid weights of

0 and use 0.01 as a fallback value. The final weight for

replica fi (wfi,c) is calculated in equation 12. We multiply by

100 because our weighted round-robin implementation expects

integers. The presented strategy favors replicas with low CPU

usage and low network latency.

wx,c = ceil[wmean
x · latx,c] (13)

Equation 13 shows the weight calculation to re-route re-

quests from one compute unit c to another compute unit x. It

takes the average over all weights (wmean
x) in compute unit x

and weights it with the network latency between the compute

units x and c. This optimization requires compute units to

interact with each other.

VI. PROOF-OF-CONCEPT IMPLEMENTATION

All components run as Python daemons and cache any

events published through Redis. The gateway router is im-

plemented in Go2 and listens on weight changes via etcd, a

distributed key-value storage. The PoC implementation does

not deploy multiple local schedulers but uses a centralized unit

(default Kubernetes scheduler). It also does not calculates the

pressure decentralized, in contrast to our vision that dictates

each compute unit’s gateway to calculate it. However, this does

not influence our evaluation, and we consider this as future

work. Resource usage is pushed from each node via telemd3

through Redis, and the workload is generated by the distributed

load testing framework galileo4 [26]. In the following, we

present the RTT and network latency details. Figure 5 depicts

a request that is forwarded from the ECU 2’s gateway to

the ECU 1’s gateway and finally arrives at a replica, which

contains an OpenFaaS watchdog5. The request is forwarded to

an internal Python-based Flask HTTP server that can process

up to four requests in parallel. Based on the automatically set

timestamps, we can calculate RTT (tstart − tend), an estimate

for the network latency between nodes (t1 − t0) and the

execution time (t3 − t2). Further, the figure highlights the

different network connections: internet, inter-network, and

intra-network. We consider the internet to be all external traffic

paid by the client. Inter-network is the most expensive for

the platform provider and is the traffic between two networks

(i.e., compute unit-to-compute unit connection). Intra-network

traffic stays in one network and is cheap.

ECU 1
Gateway

ECU 2
Gateway

tstart

tend

Go Watchdog
forward

Python Flask
HTTP

Workers

Go Watchdog
return

Replica

Network Latency

t0 t1
t2

t3

Internet

Inter-network

Intra-network

Fig. 5: Lifecyle of a trace and network types

A. Testbed

The testbed includes a variety of devices, and each is

assigned to one compute unit, see Table II for further infor-

mation. It is set up using the lightweight Kubernetes distri-

2https://github.com/edgerun/go-load-balancer/
3https://github.com/edgerun/telemd/
4https://github.com/edgerun/galileo
5https://github.com/openfaas/of-watchdog

128

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on April 26,2023 at 11:42:27 UTC from IEEE Xplore. Restrictions apply.

TABLE II: Testbed

Device CPU RAM Cluster

1x AsRock 8x Ryzen @ 2 GHz 32GB IoT Box
1x RPI 4 4x Cortex @ 1.5 GHz 1 GB IoT Box
1x TX2 4x Cortex @ 2 Ghz 8 GB IoT Box
1x Nano 4x Cortex @ 1.4 GHz 4 GB IoT Box
1x Xeon 4x Xeon @ 4.6 GHz 16 GB Cloudlet
4x Xeon 4x Xeon @ 3.4 GHz 8 GB Cloudlet
4x VM 4x vCPU @ 2 Ghz 8 GB Cloud
2x NUC 4x i5 @ 2.2 GHz 16 GB Clients

Cloud

Gateway

Worker
Worker

Worker

30ms
Latency

Internet

Inter-
network

Intra-
network

Backhaul
(Wireguard)

K3s
Master

15ms Latency

Gateway

Worker Client

Cloudlet
Gateway

Worker Client

IoT Box

Fig. 6: Testbed setup

bution K3s6. There are three compute units in total: IoT Box,

Cloudlet, and Cloud. IoT Box and Cloudlet are considered to

be ECUs and the Cloud, a CCU. The edge-based compute

units are derived from [27]. We emulate the network latency

between the compute units in our system using the Linux

network traffic shaping tool tc. Network latency is based on

a study by Braud et al. [28]. A request from the edge to the

cloud has a network latency of 60ms, and between the ECUs

30ms. The intra-network latency remains untouched, as well

as the connection between users and ECUs (≤ 10ms). Figure 6

depicts the basic structure of our testbed.

VII. EXPERIMENTAL SETTING

A. Workload

The generated workload emulates a typical scenario for our

use case: cars move around and connect to different compute

units over time. This is done by first sending requests to the

IoT Box and afterward to the Cloudlet. Figure 7 depicts the

requests over time and highlights the origin compute unit

(i.e., which compute unit the users are connected with and

send the request to). First, users send requests to the IoT Box
and then move on to the Cloudlet. In the end, both compute

units receive requests. The experiments last around 9 minutes,

processing 6000 requests (up to 35 per second). The deployed

function busy waits 50ms and consumes 100% CPU during

execution. The 50ms stem from our preliminary results that

investigated the function execution time using a container that

6https://k3s.io/

utilizes a modern hardware accelerator to execute an AI-based

object detection (Google’s EdgeTPU7). This work disregards

the performance heterogeneity of compute units and focuses

on evaluating our initial pressure definitions in a mobility-

driven scenario.

Fig. 7: Workload over a 5 second rolling window during the

9 minute experiment.

B. Comparison strategies

We compare our solution with four different scaling and

placement strategies. They are split into two groups, which

affects the replica they observe: central and compute unit-
level. The approaches are based on the official Kubernetes

algorithms but are re-implemented in Python. This decision

was made in order to guarantee equality concerning the

monitoring data that is used to evaluate the compute unit state.

In the central approach, the scaling component observes all

replicas, no matter the compute unit they are in. This is the

typical compute unit-unaware approach that scales and places

without considering the difference in network latency between

the compute units. The formulation to get the target number of

replicas required to run to satisfy the CPU and RTT thresholds

is as follows:

target = ceil[|replicas| · (currentMetric

targetMetric
)] (14)

We denote these approaches as HPA (CPU) and HLPA
(RTT). In contrast to the compute unit-unaware central ap-

proach, the compute unit-based approach evaluates the HLPA
per compute unit. This approach is denoted as HLCPA and

scales each compute unit individually, thus unaware of other

compute units. Again, we implemented this approach for our

testbed in a centralized manner, but in a real world scenario,

a scaling component runs in each compute unit. Further, each

compute unit runs at least one function instance to avoid cold

startup (because the minimum of running replicas is set to

1). It does not re-route across compute units which entails

that if the compute unit is full, there is no mechanism to

allocate new resources in another compute unit. If the compute

unit is full, it would need additional logic to select the next

”best” compute unit. During the evaluation, all approaches use

the presented network-aware routing strategy. This evaluation

setup is similar to Baresi et al. [23], who also propose a

serverless platform for edge-cloud systems.

129

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on April 26,2023 at 11:42:27 UTC from IEEE Xplore. Restrictions apply.

Parameter Value Description

thrmin 0.1 Minimum pressure threshold

thr
perf
max 0.5 Max. pressure threshold for pperf

threff
max 0.3 Max. pressure threshold for peff

trtt 70 Target RTT in ms
trttrouter 35 Target RTT in ms for router optimization
CPUreq

f 1000 CPU millis requested from eval. function

MEMreq
f 512 MB requested form eval. function

tCPU 60 Target CPU usage of HPA

TABLE III: Evaluation parameters

C. Parameters

We repeat each experiment five times and set the scaler’s

reconciliation interval to 15 seconds while the router optimizer

runs every second. In contrast, the Perf. experiments run the

optimization every 5 seconds to overcome the limitation of

only scaling up functions by one replica. The reconciliation

interval for the scale/placement components is based on the

Kubernetes default. All other parameters are shown in Ta-

ble III.

VIII. RESULTS

A. Resource Usage and Scheduling

It is essential to understand when and where replicas were

placed to understand the experiments’ performance and data

throughput aspects. The left side of Figure 8 shows the CPU

usage per replica over all experiments as boxplots. We observe

that the HLCPA, HLPA, and Perf. approaches have the lowest

CPU utilization. The low CPU usage can be explained due to

the short function execution time (50ms) and the high number

of replicas deployed. The Eff. approach has on average a 20%

CPU usage while the HPA approach has the highest one with

around 40-50% on average.

Fig. 8: CPU usage and mean number of replicas

Figure 8 also depicts the average number of replicas running

per second in the right plot. This figure explains the low and

high CPU usage for each approach. For example, HPA and Eff.
have less than three replicas running per second, whereas the

other approaches use more than 12. That means requests in the

former cases are distributed over a few instances, causing them

to process requests concurrently. While in the latter, the request

7https://coral.ai/

distribution leads to a lower invocation rate per replica. It also

shows that even though our application uses 100% CPU during

execution, the HPA approach did not scale often and makes

CPU-based scaling not feasible for the evaluated application.

A scaling approach based on the queue length of the functions

might be a better indicator.

Fig. 9: Replicas running per cluster

To deepen the analysis w.r.t. placement, we include Figure 9

that shows the number of containers during the experiments.

We exclude the HPA approach because it scaled up the

function only once and placed the container in the Cloudlet.
The results demonstrate the dynamic aspect of our pressure-

based approaches as they remove replicas from the IoT-Box
while users move to the Cloudlet (visible around minute 2).

The HLPA approach also scales down during this time but ran-

domly selects replicas to remove. This highlights a pressure-

based framework’s ability to adapt functions regarding user

mobility. While HLPA, HLCPA and Perf. mostly scale up to

the maximum number of replicas, the Eff. approach keeps the

number of containers below five replicas while maintaining

good performance.

B. Performance

Figure 10 displays on the left side the average 90th per-

centile of RTT and on the right side, the network latency across

all experiments. The error bars show the 95% confidence

interval in which the true mean lies based on a bootstrap

sample of 1000. Note that we exclude a small percentage

of outliers (around 30 from 6000 requests) that were caused

by timeouts through the early tear-down of replicas that were

still processing requests. While HPA had the highest RTT and

network latency, the Eff. approach still violates the latency by

having requests longer than 150ms. Interestingly the HLCPA
experiments had trouble maintaining a low RTT. We argue

that this circumstance happened because it took the system

some time to scale up in the IoT Box because resources

were slowly released from the Cloudlet (see Figure 9 from

minute 4). In contrast, the Perf. approach was able to scale

up resources quicker in the IoT Box and also has a much

130

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on April 26,2023 at 11:42:27 UTC from IEEE Xplore. Restrictions apply.

lower RTT. The HLPA has the best results in terms of RTT,

and network latency, followed closely by the performance-

oriented pressure-based approach (Perf.). While HLPA had

the best performance, the resource usage results showed that

it randomly tore down replicas across all clusters. Thus, it

does not adapt efficiently to user mobility as pressure-based

approaches.

Fig. 10: P90 RTT and network latency over all experiments

C. Network traffic

In terms of cost, the communication between clusters is the

most expensive and therefore is examined in the following.

The network latency (see Figure 10) of HPA is the highest

because only the initial replica in the Cloud and one in

the Cloudlet were running, leading to many requests being

forwarded to the Cloud. HPA also has the highest number of

inter-network requests (5542). The Eff. approach also expe-

rienced high network latency caused by the relatively slow

resource migration but was able to select clusters determin-

istically. The average number of inter-network requests are:

Eff. (1783), Perf. (426), HLPA (300) and HPA (5542). The

HLPA can only maintain the low network latency because of

deploying as many replicas as possible. Due to the testbed’s

size, it is enough to serve the workload adequately. Our

approaches show that mobility-aware scaling and placement

reduce network latency and cost. These results also prove

the effectiveness of our network-aware routing scheme used

throughout the experiments. Even though function replicas are

running across the system, inter-network traffic is kept to a

minimum.

D. Pressure

In the following, we discuss the different pressure formula-

tions in terms of interpretability and offer a detailed compari-

son between the approaches. Figure 11 shows various metrics

across evaluation scenarios and the pressure in relation to other

metrics concisely. The figure shows from top to bottom: the

RTT, the performance-oriented pressure (pperf), the efficient-

based pressure (peff), total number of replicas, and the request

pattern for each approach across the experiments (i.e., the total

number of requests sent from that compute unit). Note that

the shown values are aggregated over the whole system and

contain values across clusters. Figure 9 shows that metrics vary

Fig. 11: Metrics across all experiments.

heavily between clusters. First, the number of total replicas

and the RTT highlight differences between the two approaches

(Eff. and Perf.). The Eff. approach tried to keep a balance be-

tween total replicas and RTT, while the Performance approach

focused solely on performance and disregarded resource effi-

ciency. The Eff. approach strikes a good balance between the

number of running replicas and the performance. It can keep

the pressure below the used maximum threshold of 0.3 and has

a low number of replicas running throughout the experiment.

This shows that the pressure-based approach can minimize the

number of replicas while maintaining good performance. The

Perf. approach keeps a low number of replicas during the peak

workload at around 4 minutes, whereas the HLCPA uses up all

available resources. The HLPA approach reduces the number

of replicas, but this happens in a seemingly random fashion.

Looking at the efficient pressure plot, we can see that the

HPA and Eff. approaches have the highest pressure throughout

the experiments, and the Eff. approach can quickly reduce it.

Other approaches have a very low efficient pressure due to

the low CPU usage caused by deploying many replicas. We

think a different resource pressure component might be better

suited (i.e., the number of replicas). On the other hand, the

performance pressure shows that the HPA and Eff. approaches

131

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on April 26,2023 at 11:42:27 UTC from IEEE Xplore. Restrictions apply.

violate the RTT constraints while the other approaches keep

it at around 0.5. This shows that we can use the pressure

as a valid estimation for the system’s performance and state.

The reason lies in the RTT pressure component (pRTT), as

it quickly penalizes requests that take longer than the target.

Both pressures show the inability of the default cloud-centric

HPA approach to adapt the system experiencing high pressure

across the experiments successfully. We conclude that each

pressure definition can reach its respective goal and serve

as a complex metric to evaluate the system’s state. Further,

results also showed that the dynamic function adaptations are

mobility-aware and suitable for scenarios with moving users.

IX. CONCLUSION

Managing hybrid edge-cloud systems, where mobility, la-

tency, and data throughput play an important role, is complex

and, therefore, should be done autonomously by platform

providers. Current operational mechanisms of cloud-centric

serverless computing lack awareness of geo-distributed setups

and the problem of fluctuating workload due to user mobility.

We presented a pressure-based joint scaling and placement

framework and a network-aware routing strategy. We evaluated

a PoC of our framework using two different pressure formu-

lations. They have shown deterministic behavior regarding the

final system performance based on simple low-level metrics.

The efficiency-oriented pressure reduced resource usage by

up to 83%, while the performance-oriented pressure used the

available resources to reduce the RTT by up to 92% to cloud-

centric solutions. Showing that the pressure can act as a viable

proxy that encapsulates cluster state and workload, minimizing

communication costs towards a central management unit.

We conclude that the pressure can efficiently guide function

adaptations and enables mobility-aware scaling and placement

of serverless functions. The novel concept of pressure is highly

extensible and can be adapted for various application types.

Besides sophisticated local placement strategies, future work

comprises proactive approaches based on historical pressure

data and large-scale simulations.

REFERENCES

[1] M. S. Aslanpour, A. N. Toosi, C. Cicconetti, B. Javadi, P. Sbarski,
D. Taibi, M. Assuncao, S. S. Gill, R. Gaire, and S. Dustdar, “Serverless
edge computing: vision and challenges,” in 2021 Australasian Computer
Science Week Multiconference, 2021, pp. 1–10.

[2] Y. C. Hu, M. Patel, D. Sabella, N. Sprecher, and V. Young, “Mobile edge
computing—a key technology towards 5g,” ETSI white paper, vol. 11,
no. 11, pp. 1–16, 2015.

[3] Q. Liu, S. Huang, J. Opadere, and T. Han, “An edge network orchestrator
for mobile augmented reality,” in Proc. of IEEE INFOCOM’18, 2018,
pp. 756–764.

[4] L. Tong, Y. Li, and W. Gao, “A hierarchical edge cloud architecture for
mobile computing,” in Proc. of IEEE INFOCOM’16, 2016.

[5] T. Ouyang, Z. Zhou, and X. Chen, “Follow me at the edge: Mobility-
aware dynamic service placement for mobile edge computing,” IEEE
Journal on Selected Areas in Communications, vol. 36, no. 10, pp. 2333–
2345, 2018.

[6] F. Rossi, V. Cardellini, F. Lo Presti, and M. Nardelli, “Geo-distributed
efficient deployment of containers with kubernetes,” Computer Commu-
nications, vol. 159, pp. 161–174, 2020.

[7] Y. Xiong, Y. Sun, L. Xing, and Y. Huang, “Extend cloud to edge with
kubeedge,” in Proc. of IEEE/ACM SEC’18, 2018, pp. 373–377.

[8] Y. Han, S. Shen, X. Wang, S. Wang, and V. C. M. Leung, “Tailored
learning-based scheduling for Kubernetes-oriented edge-cloud system,”
in Proc. of IEEE INFOCOM’21, 2021, pp. 1–10.

[9] I. Labriji, F. Meneghello, D. Cecchinato, S. Sesia, E. Perraud, E. C.
Strinati, and M. Rossi, “Mobility aware and dynamic migration of mec
services for the internet of vehicles,” IEEE Transactions on Network
and Service Management, vol. 18, no. 1, pp. 570–584, 2021.

[10] D. Garg, P. Shirolkar, A. Shukla, and Y. Simmhan, “Torquedb: Dis-
tributed querying of time-series data from edge-local storage,” in Euro-
pean Conference on Parallel Processing. Springer, 2020, pp. 281–295.

[11] A.-V. Michailidou, A. Gounaris, M. Symeonides, and D. Trihinas,
“Equality: Quality-aware intensive analytics on the edge,” Information
Systems, vol. 105, p. 101953, 2022.

[12] G. Tang, D. Guo, K. Wu, F. Liu, and Y. Qin, “Qos guaranteed edge
cloud resource provisioning for vehicle fleets,” IEEE Transactions on
Vehicular Technology, vol. 69, no. 6, pp. 5889–5900, 2020.

[13] X. Sun, J. Zhao, X. Ma, and Q. Li, “Enhancing the user experience
in vehicular edge computing networks: An adaptive resource allocation
approach,” IEEE Access, vol. 7, pp. 161 074–161 087, 2019.

[14] A. M. Maia, Y. Ghamri-Doudane, D. Vieira, and M. F. de Castro,
“Dynamic service placement and load distribution in edge computing,”
in Proc. of IEEE CNSM’20. IEEE, 2020, pp. 1–9.

[15] S. Ge, M. Cheng, and X. Zhou, “Interference aware service migration
in vehicular fog computing,” IEEE Access, vol. 8, pp. 84 272–84 281,
2020.

[16] E. F. Maleki, L. Mashayekhy, and S. M. Nabavinejad, “Mobility-aware
computation offloading in edge computing using machine learning,”
IEEE Transactions on Mobile Computing, 2021.

[17] Q. Yuan, J. Li, H. Zhou, T. Lin, G. Luo, and X. Shen, “A joint
service migration and mobility optimization approach for vehicular edge
computing,” IEEE Transactions on Vehicular Technology, vol. 69, no. 8,
pp. 9041–9052, 2020.

[18] M. Tamiru, G. Pierre, J. Tordsson, and E. Elmroth, “mck8s: An orches-
tration platform for geo-distributed multi-cluster environments,” in Proc.
of ICCCN’21, 2021.

[19] S. Pasteris, S. Wang, M. Herbster, and T. He, “Service placement with
provable guarantees in heterogeneous edge computing systems,” in Proc.
of IEEE INFOCOM’19, 2019, pp. 514–522.

[20] D. Haja, M. Szalay, B. Sonkoly, G. Pongracz, and L. Toka, “Sharpening
kubernetes for the edge,” in Proc. of the ACM SIGCOMM’19, 2019, pp.
136–137.

[21] L. Baresi and D. F. Mendonça, “Towards a serverless platform for edge
computing,” in Proc. of IEEE ICFC’19, 2019, pp. 1–10.

[22] S. Wang, Y. Guo, N. Zhang, P. Yang, A. Zhou, and X. S. Shen,
“Delay-aware microservice coordination in mobile edge computing:
A reinforcement learning approach,” IEEE Transactions on Mobile
Computing, 2019.

[23] L. Baresi, D. Y. X. Hu, G. Quattrocchi, and L. Terracciano, “NEPTUNE:
Network- and gpu-aware management of serverless functions at the
edge,” in Proc. of ACM SEAMS’22, 2022, p. 144–155.

[24] I. Baldini, P. Castro, K. Chang, P. Cheng, S. Fink, V. Ishakian,
N. Mitchell, V. Muthusamy, R. Rabbah, A. Slominski et al., “Serverless
computing: Current trends and open problems,” in Research advances
in cloud computing. Springer, 2017, pp. 1–20.

[25] A. Palade, A. Kazmi, and S. Clarke, “An evaluation of open source
serverless computing frameworks support at the edge,” in Proc. of IEEE
SERVICES’19, vol. 2642, 2019.

[26] T. Rausch, P. Raith, P. Pillai, and S. Dustdar, “A system for operating
energy-aware cloudlets,” in Proc. of ACM/IEEE SEC’19, 2019, pp. 307–
309.

[27] T. Rausch, C. Lachner, P. A. Frangoudis, P. Raith, and S. Dustdar,
“Synthesizing plausible infrastructure configurations for evaluating edge
computing systems,” in Proc. of USENIX HotEdge’20), 2020.

[28] T. Braud, Z. Pengyuan, J. Kangasharju, and H. Pan, “Multipath com-
putation offloading for mobile augmented reality,” in Proc. of IEEE
PerCom’20, 2020, pp. 1–10.

132

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on April 26,2023 at 11:42:27 UTC from IEEE Xplore. Restrictions apply.

