
An End-to-End Framework for Benchmarking
Edge-Cloud Cluster Management Techniques

Philipp Raith, Thomas Rausch, Paul Prüller, Alireza Furutanpey, Schahram Dustdar
Distributed Systems Group, TU Wien

Vienna, Austria

lastname@dsg.tuwien.ac.at

Abstract—This paper presents a framework for defining,
performing, and analyzing distributed load testing experiments
for benchmarking edge-cloud clusters. This end-to-end workflow
helps researchers build reproducible environments to evaluate
cluster management techniques. Our implementation extends
the open source tool Galileo by adding support for distributed
execution on Kubernetes clusters, additional system monitoring
instruments, as well as out-of-the box experiment workloads.
We focus on providing tools that run across popular CPU
architectures and provide a set of representative workloads,
such as edge AI functions. We demonstrate our framework’s
capabilities in a set of experiments based on use cases commonly
found in edge computing systems research. Additionally, we show
that the resource usage of our system is minimal and that it can
run on resource-constrained devices.

Index Terms—Edge computing, Cloud computing, Benchmark-
ing, Cluster management

I. INTRODUCTION

To evaluate edge-cloud cluster management techniques,

researchers often rely on building testbeds that are tailored

to evaluate the particular technique [1]–[4]. In the absence

of publicly available edge infrastructure, testbeds are, next to

simulations [5] and emulations [6], the only way to evaluate

systems approaches. However, there is currently no gener-

ally accepted way of creating such testbeds or representative

benchmark workloads.This makes it hard for other researchers

to reproduce results and prevents the community from com-

paring works easily. Reproducible experiments for edge-cloud

clusters aid in evaluating cluster management techniques and

include the following steps: (1) setting up the testbed, (2)

generate workload patterns, (3) manage application deploy-

ments, (4) orchestrate experiments, (5) instrumentation and

monitoring, (6) analyze experiment data. Performing these

steps manually is error-prone and impedes reproducibility [7].

An experiment and analytics framework allows researchers to

evaluate their systems approaches while opening up other pos-

sibilities crucial to developing and testing cluster management

techniques. For example, some cluster management techniques

are based on optimizations that rely on historical data [8]. An

experiment framework gathers data in a streamlined way and

significantly reduces manual steps and allows scaling in terms

of applications and cluster sizes.

Reducing performance degradation caused by the inter-

ference of co-locating monitoring applications on the same

device is challenging for cloud deployments and more so for

edge-cloud clusters [9] that are typically heterogeneous and

resource-constrained. Hence, we require hardware architecture

agnostic, lightweight and non-intrusive instrumentation tools

to measure resource usage and power consumption. Further,

trace-driven simulations require real-world data to run realistic

simulations [10]. An experiment framework helps record this

data and enables the community to perform complex simula-

tions based on real-world data.

Based on the abovementioned observations and require-

ments, we conclude that such a framework should provide

scalable and reproducible experiments, simple configuration of

workload and applications, fine-grained monitoring telemetry,

storage for analysis data, and standardised analysis techniques.

To this end, we built Galileo [11], a distributed load testing

framework for edge computing environments. However, while

Galileo allows the definition and execution of experiments,

it cannot operationalize those experiments on existing cluster

testbeds nor provides a streamlined way to instrument and

collect monitoring data from such clusters.

In this paper, we present an end-to-end experiment frame-

work based on an extension of Galileo and the combination of

different components. We motivate our work by introducing

different use cases typically encountered in evaluating cluster

management techniques, demonstrating our framework’s effi-

cacy by executing them, and showcasing the results.

Edge Run1 is a collection of projects aimed to help de-

velopers create, monitor, and test applications for the edge-

cloud continuum. Part of the Edge Run project is Galileo2,

a distributed load testing framework [11]. Galileo can start

clients, generate configurable requests, and store trace and

telemetry data in a SQL database, which is unfit for high

volumes of time-series data. The caveat of Galileo is that it

requires a manual setup and does not offer any kind of integra-

tion with modern orchestration services such as Kubernetes.

In this work, we introduce a framework that extends Galileo,

solves these issues and provides an analytic framework that

completes the end-to-end framework. Further, we introduce

introduce components mimicking the characteristics of edge-

cloud clusters.

1https://github.com/edgerun
2https://github.com/edgerun/galileo

22

2022 IEEE International Conference on Cloud Engineering (IC2E)

978-1-6654-9115-0/22/$31.00 ©2022 IEEE
DOI 10.1109/IC2E55432.2022.00010

20
22

 IE
EE

 In
te

rn
at

io
na

l C
on

fe
re

nc
e

on
 C

lo
ud

 E
ng

in
ee

rin
g

(IC
2E

) |
 9

78
-1

-6
65

4-
91

15
-0

/2
2/

$3
1.

00
 ©

20
22

 IE
EE

 |
 D

O
I:

10
.1

10
9/

IC
2E

55
43

2.
20

22
.0

00
10

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on December 20,2022 at 13:11:24 UTC from IEEE Xplore. Restrictions apply.

Specifically, our contributions are as follows:

• An end-to-end experiment and analytics framework using

a container orchestration service based on Galileo.

• An open-source repository of benchmark applications that

can be used within our framework.

To evaluate and demonstrate the end-to-end process, we

conduct experiments based on representative use cases.

II. GALILEO EXPERIMENTS

This section describes the aim of our framework based on

the experiments and applications we intend to support and the

characteristics of edge-cloud clusters.

A. Aim of the framework

The framework aims to provide tools to perform bench-

marks on edge-cloud compute clusters. Benchmarks aim to

profile single devices or evaluate cluster management tech-

niques in scenario experiments. The edge-cloud continuum

deploys different types of hardware; therefore, all framework

components must run on various hardware architectures. Com-

ponents are tailored to run from resource-constrained devices

to off-the-shelf Virtual Machines hosted in the cloud. Particu-

larly monitoring components should not interfere with running

applications and cause minimal overhead. Additionally, the

framework uses a container orchestration service to automate

the deployment of components and execution of experiments.

Lastly, an integrated monitoring strategy is necessary to

provide tools for analyzing cluster management techniques.

Based on the collected monitoring data, the framework offers

features to analyze experiments. It supports commonly ob-

served key performance indicators (i.e., resource usage, CPU

consumption, scheduling behavior) out-of-the-box. We present

and evaluate in Section IV-B use cases that include these

indicators. To summarise, our end-to-end framework aims to

support users in performing experiments from the deployment

to analyzing them.

B. Galileo

Galileo [11] was created to develop and evaluate cluster

management techniques using Symmetry, a custom cluster

management system. Galileo’s main tasks are to coordinate

clients to generate requests as well as monitor and store

monitoring data in a MySQL instance.

Based on the description of our view of a modern end-

to-end experiment and analytics framework, Galileo requires

adaptions and extensions. Specifically, we intend the inte-

gration into a modern container orchestration service such

as Kubernetes. This allows us to deploy framework com-

ponents into the cluster, reducing manual steps required to

run experiments. Further, we provide a representative set of

ready-to-deploy applications (i.e., AI inference functions) to

the community for evaluation purposes and as examples for

creating custom applications. Additionally, we add to the SQL-

based data storage the time-series database InfluxDBv23. The

3https://www.influxdata.com/

SQL storage stores experiment metadata (i.e., start, end) and

data gathered during runtime is stored in InfluxDB. The fine-

grained monitoring tool, telemd, has also been extended since

its first release and now supports Kubernetes pods as well as

the recently released Pressure Stall Information (PSI)4. PSI is

available for CPU, I/O, and network. It shows the time some

or all processes have been waiting for a specific resource. We

believe using these new metrics can lead to many novel cluster

management techniques.

C. Experiments

The experimentation and analytic framework offer a stream-

lined approach for executing and measuring benchmarks. We

consider two types of experiments in this paper: scenario and

profiling.

Scenario experiments are complex scenarios to perform

resource management actions (i.e., scaling). These experiments

allow users to specify multiple application instances on nodes.

Request generation is based on workload profiles that Galileo
clients execute.

Profiling experiments are similar to scenarios but offer

reduced functionality and concentrate on executing one type

of application on one node. Profiling experiments aim to

rapidly test new applications to estimate resource usage and

performance across devices.

D. Applications

Our framework supports any containerized application

which exposes an HTTP endpoint. Though, our primary focus

while developing it was using OpenFaaS5 based functions on

different hardware. Therefore, we offer ready-to-use functions

that support all common architectures (i.e,. amd64, arm64v8

and arm32v7). The functions use the OpenFaaS watchdog6,

which uses a Go-based proxy and calls an internal Python

Flask web server to invoke the function. At the time of writing,

our function repository7 primarily consists of AI inference

functions. For example, the functions can perform object

detection (i.e., gun, human, mask), object classification, and

pose estimation.

Custom applications require implementing methods to call

the relevant service and a Kubernetes Pod factory for the

container image. This guarantees flexibility concerning future

applications and requires minimal coding efforts. Section III-C

presents details about the individual projects.

E. Edge-cloud testbeds

To ensure the reproducibility of experiments, we require

tools for setting up testbeds. However, our vision of an

edge-cloud system consists of multiple heterogeneous inter-

connected clusters with varying and adverse network condi-

tions. Consequently, we cannot rely on existing work on cloud

testbeds characterized by relative homogeneity of resources

4https://www.kernel.org/doc/html/latest/accounting/psi.html
5https://docs.openfaas.com/
6https://github.com/openfaas/of-watchdog
7https://github.com/edgerun/galileo-experiments-functions

23

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on December 20,2022 at 13:11:24 UTC from IEEE Xplore. Restrictions apply.

Backhaul

Load Balancer

Fig. 1: Edge-cloud system consisting of multiple clusters

and static and optimal network conditions. Figure 1 depicts

such an edge-cloud system with multiple clusters, where each

is assigned a load balancer.

Cluster management techniques must consider user mo-

bility since it is an important characteristic of edge-cloud

systems [12]. For example, clients move around the city and

connect to radio towers, which act as the first entry point. Each

load balancer can redirect requests to other clusters. Internet

backhauls inter-connect all clusters but introduce significant

network latency [13]. Our architecture is comparable to works

presented in [1] and [2], which evaluate cluster management

techniques in geo-distributed systems using public cloud offer-

ings. As mentioned, we use a container orchestration service to

set up the cluster. Thus, we create deployment files that must

be applied to the cluster once. This includes clients, monitoring

agents as well as load balancers, enabling users to set up our

framework on their testbed. Network latency is emulated via

linux tools and mimics the behavior of geo-distributed edge-

cloud clusters. Reproducibility is guaranteed through the usage

of linux tools and an orchestration service.

III. SYSTEM

This section introduces our experimentation framework by

describing the system architecture, explaining the experiment

workflow, highlighting important implementation details, and

presenting the testbed used to demonstrate our framework.

A. Architecture

The architecture facilitates generating requests, hosting ap-

plications, distributing messages, and storing data. We use

the lightweight edge-oriented K3s8 Kubernetes distribution

to host applications and clients. All nodes join the same

cluster; while not intuitive at first, considering we want to

create a testbed with multiple clusters, it avoids the overhead

of setting up a cluster federation. We use labels to tag

controllers, client nodes, and workers, which assign each node

cluster. Each cluster has one controller node acting as a load

balancer. WireGuard [14], a lean VPN, is used to form a

homogeneous network and tc9, the Linux network shaping

8https://k3s.io/
9https://man7.org/linux/man-pages/man8/tc.8.html

Client
(galileo)

Client
(galileo)

Client
(galileo)

Controller
(Load

Balancer)

Worker
Node

Worker
Node

Worker
Node

Worker
Node

Worker
Node

Worker
Node

etcd

RedisInfluxDB

MariaDB

Galileo
Shell

round-robin
weights

traces

telemetry

store data

subscribe
to data

telemdtelemdtelemdtelemdtelemd

telemd

Fig. 2: A high level overview of the experiment setup

tool, to introduce latency between clusters. Section IV-C

presents more details about the testbed setup. Figure 2 depicts

the described system. Workers host applications, while client

nodes run Galileo and wait for workload generation requests

published via Redis. Clients send HTTP requests to the load

balancer, which forwards them to application instances. The

controller hosts the load balancer instance. We provide a Go-

based load balancer (go-load-balancer) which implements a

weighted round-robin based load balancing strategy. Though,

users can choose to use any other L7-layer load balancer (i.e.,

Traefik10). Our experimentation framework sets initial weights

for load balancers. Users can modify weights via etcd11, a key-

value storage used by Kubernetes to store state. Each load

balancer instance watches the etcd instance for changes and

updates its internal weights accordingly. The galileo shell is

the component that initiates the experiment and subscribes to

Redis, and stores data in InfluxDB and MariaDB for post-

experiment analysis.

B. Experiment workflow

In the following, we explain how users can define and run

experiments. Figure 3 splits the experiment into three phases:

pre-experiment, runtime, and post-experiment. Users only have

to interact during the pre and post-experiment phases, while

our framework handles the system during the runtime phase.

Users have to supply the following input: workload (i.e., a

list of inter-arrival times), applications (i.e., container image),

clients (i.e., implement a method to create the HTTP request),

nodes (i.e., the testbed to perform experiments on). In the

pre-experiment phase, users can generate workloads. The

framework supports two types of workloads: parameterized

and profile-based. The parameterized approach requires three

arguments: n the number of requests, ia the inter-arrival time,

and the number of clients. Clients are asynchronous and send

n requests with a fixed inter-arrival time ia. Consequently,

experiments will stop without waiting for responses. The

10https://traefik.io/
11https://etcd.io/

24

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on December 20,2022 at 13:11:24 UTC from IEEE Xplore. Restrictions apply.

Workload
Generation

Applications
(container
images)

Clients
(how to call
and deploy

service)

Nodes
(host

applications)

Galileo
Experiments

Kubernetes

Redis

InfluxDB

MariaDB

Jupyter
Notebooks

(galileo-
jupyter)

Pre-experiment
(user defined)

Runtime
(handled by the framework)

Post-experiment
Analysis

Fig. 3: Experiment workflow

profile-based variant expects an array that contains inter-

arrival times, each array representing one client. For example,

[0.5, 1, 0.5] will send three requests: one after 0.5 seconds,

another one after 1 second, and the last after another 0.5

seconds.

Profiling and scenario experiments, as described in Sec-

tion III-B, have different parameters. The former takes both

types of workload, while the latter only supports the profile-

based approach. Additionally, profiling experiments take the

application container image, the number of application in-

stances, the host to profile, and in which cluster clients gener-

ate requests. In scenario experiments, users create a mapping

between nodes and container images, including the number

of instances. Further, scenario experiments can start clients

in different clusters, making it possible to define complex

scenarios (i.e., migrating users from one to another cluster).

After, users start the framework and enter the runtime. The

framework sets up load balancers, spawns applications, config-

ures clients, and starts the galileo shell to record all telemetry

and trace data. Finally, in the post-experiment phase, users

can analyze the results using galileo-jupyter. We categorize

Load Balancer

tstart

tend

Go Watchdog
forward

Python Flask
HTTP

Workers

Go Watchdog
return Network Latency

t0

t1

t2

Fig. 4: A detailed look into traces

analytics data into three main categories: metadata, traces,

and resource usage. Metadata consists of an experiment ID,

the creator, start and end. Additionally, the framework also

saves information about all nodes. This includes information

detailed in the telemd repository and Kubernetes labels of

each node and their allocatable resources. Figure 4 provides

a detailed description of one trace. We record: the time the

trace was created, the client sent it (tstart), it was forwarded

from the load balancer (t0), it was received by the function

t1, returned t2 and arrived back at the client tend. Based

on these timestamps, we can calculate and estimate further

measures: round-trip-time (RTT, tend−tstart), network latency

between client and load balancer (t0−t1), the network latency

between load balancer and application instance (t1 − t0) and

the execution time (t2 − t1). The execution time includes any

queuing caused by the static number of worker threads the

Python Flask server employs to handle requests. Functions

can return the function execution time in the response body.

Telemetry data consists of node-based resource usage (i.e.,

CPU usage) and per container (i.e., CPU time). We refer

readers to look up the project’s homepage for an exhaustive

list of monitored resources12.
In scenario experiments, users must deploy their own cluster

management techniques. They can create and teardown Pods

via the Kubernetes API, and the telemd-kubernetes-adapter
publishes these events, as well as telemd will monitor newly

created Pods. Further, if our go-load-balancer is used, users

must update weights manually to include new or deleted

applications.

C. Implementation
Our projects mainly use Python. Only the load balancer, a

Kubernetes adapter, and the monitoring agent are written in

Go. All projects are open source and available in the Edge

Run project. In the following, we want to give a high-level

overview of the different repositories and their functionality.
Galileo does two things: start clients and record experiment

data. It offers the essential working tools but is not automated.

Users must deploy an experiment setup manually.
Galileo Experiments contains code that invokes galileo to

start and record experiments. It also includes deployment files

for necessary components and describes in detail which other

services are required to start an experiment.
Galileo Experiments Extensions provides client implementa-

tions for our functions and serves as entrypoint for experiment

execution.
Galileo Experiments Functions contains OpenFaaS based

functions that can be deployed and benchmarked using clients

implemented in the Extensions project.
Galileo Jupyter contains gateways that allow users to easily

access data recorded during the experiments. Specifically the

K3sGateway is implemented to analyze Galileo experiments.

The galileo-jupyter project internally uses galileo-db to access

the data storages. Both projects have been extended to support

InfluxDB.
The Request Generator project provides functions to gen-

erate workload profiles that can be used in the experiments.
Go Load Balancer is a weighted round robin Load Balancer

which watches etcd for weight changes. It sets HTTP headers

to later analyze the path each request has taken to finally arrive

at an application instance.
Telemd is used as a lightweight push-based fine-grained

monitoring agent and supports resource monitoring on node

12https://github.com/edgerun/telemd/

25

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on December 20,2022 at 13:11:24 UTC from IEEE Xplore. Restrictions apply.

and application level. Users can set the interval for each

resource separately.

The framework automatically deploys the Telemd Kuber-
netes Adapter which watches Kubernetes Pods using the

official Go Kubernetes client. Any Pod lifecycle event is

reported via Redis and gets recorded during experiments. This

allows users to analyze scale events and associate telemetry

with Pods.

IV. DEMONSTRATION

This section describes possible use cases to motivate our

framework and we evaluate in Section IV-B. Afterwards, we

present our applications used to evaluate selected use cases to

show the results of framework on our testbed.

A. Use cases

Profiling experiments can be used to gather performance

measures and resource usage to help developers better under-

stand application implementations and estimate how well a

deployment might perform [7]. Especially in heterogeneous

environments, with resource-constrained devices and modern

hardware accelerators, it is essential to understand hardware

and applications [15]. Another use case for a profiling ex-

periment is the measurement of performance interference

due to multi-tenancy [9]. The scenario experiments differ in

configuration capabilities and let users define a range of initial

application instances and their location. The framework does

not offer any support for cluster management techniques, and

users must start schedulers or scalers that interact with the

cluster. Nevertheless, during the experiment, any changes to

the clusters are recorded, meaning that users can perform

cluster management actions during runtime and use our frame-

work to analyze the experiments. For example, an analytics

technique is to display when and where application instances

have been created and shut down [1].

B. Applications

We are deploying an OpenFaaS-based function, which

serves the Mobilenet neural network [16] using TFLite in

CPU mode. TFLite is a version of Tensorflow tailored towards

resource-constrained devices. The function performs object

classification on base64-encoded images. The function, as

well as the galileo experiment client application, are available

on Github. You can find the code for the demonstration on

Github13 as well. We also include an evaluation of resource

usage of telemd, our monitoring agent, the only experiment

component running on end-devices (except for kubelet).

C. Testbed

Table I displays a selection of devices in the testbed. NX,

TX2 and Nano are all Nvidia Jetson devices14. There are three

clusters in total: IoT Box, Cloudlet and Cloud. The edge-based

clusters are derived from [17].

TABLE I: Testbed

Device Arch CPU Memory Cluster

1x AsRock x86 8x Ryzen @ 2 GHz 33GB IoT Box
1x RPI 4 arm32v7 4x Cortex @ 1.5 GHz 1 GB IoT Box
1x NX arm64v8 4x Cortex @ 2 Ghz 8 GB IoT Box
1x TX2 arm64v8 4x Cortex @ 2 Ghz 8 GB IoT Box
1x Nano arm64v8 4x Cortex @ 1.4 GHz 4 GB IoT Box
1x Xeon x86 4x Xeon @ 4.6GHz 16 GB Cloudlet
4x VM x86 4x vCPU @ 2Ghz 8 GB Cloud
2x NUC x86 4x i5 @ 2.2 GHz 16 GB Clients

Fig. 5: Profiling results of the Mobilenet function

D. Experiments

1) Profiling experiment: The profiling experiment aims

to evaluate performance and resource usage across devices.

One client sends 100 requests with an inter-arrival time of

one second. We execute the experiment on four devices:

Xeon, NX, TX2 and Nano. Figure 5 shows the milli cores

used by the container, the RTT in ms, and the memory usage

in megabytes for each device. The error bars indicate the

95th mean confidence interval. While NX and TX2 have

comparable performance, the Xeon node has the lowest RTT.

The Nano performs worse, and outliers are as long as 6

seconds. A milli core value of 1000 equals one fully utilized

CPU core. The Nano performs again the worst and has the

highest CPU usage. Interestingly, the Xeon device has the

highest memory usage, while the Nano has the lowest. It is

out of scope to further discuss the results as we only intend

to demonstrate possible use cases for our experimentation and

analytics framework. The galileo-jupyter project offers many

convenience functions (i.e,. preprocessed_traces,

preprocessed_telemetry) that enable developers

to plot this chart based on the results (i.e., with Jupyter

Notebooks15).

2) Scenario: We now turn to the scenario experiment.

Specifically, we start three clients spawning 60 requests with

an inter-arrival time of 1 second. Two clients are situated

in the IoT-Box cluster and one in the Cloudlet cluster. We

also start a Python program that randomly scales up and

down in an interval of 5 seconds. With a probability of

10% it does nothing, with 40% it starts one new function

13https://github.com/edgerun/galileo-experiments-tdis-2022
14https://www.nvidia.com/en-gb/autonomous-machines/embedded-systems/
15https://jupyter.org/

26

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on December 20,2022 at 13:11:24 UTC from IEEE Xplore. Restrictions apply.

instance, and with 50% it tears one instance down. All load

balancers distributed requests in a round-robin fashion for this

experiment (i.e., from Cloudlet to Cloud). Figure 6 shows how

many function replicas have been running across the clus-

ter. This plot illustrates the behavior of cluster management

techniques and analyzing it serves as an essential task during

development. Further, our framework enables users to analyze

where requests have been generated and where they have been

processed. To sum up, our framework can perform experiments

that allow requests to be processed across the edge-cloud

continuum and offers functionality to analyze them. As before,

galileo-jupyter exposes convenience functions to support users

in developing and testing cluster management techniques (i.e.,

get_replica_schedule_statistics).

Fig. 6: Function replicas running across clusters

3) Telemd evaluation: To conclude this section, we show

our monitoring agent’s resource usage while it emits resource

metrics every second. Figure 7 displays results recorded during

a 100-second experiment. The figure shows the relative con-

tainer CPU usage of telemd. 100% CPU usage means that the

container (i.e., telemd) fully utilized all cores of the device.

Figure 7 also shows the memory usage in megabytes. Both

results show that resource usage is relatively low on all tested

devices, ranging from a Raspberry Pi 4 to a Xeon-based PC.

Users can set a different monitoring interval for each resource

to reduce resource usage further.

Fig. 7: Resource usage of telemd

V. RELATED WORK

Works have been published that provide applications (i.e.,

functions) to evaluate systems but do not propose an end-

to-end framework [18]. We can use these functions with our

framework if they expose an HTTP endpoint. Grambow et al.

[19] present a benchmarking framework for FaaS platforms.

They focus on supporting public FaaS offerings while we

present a framework for edge-cloud testbeds. Gao et al. [20]

present LinkLab, a scalable IoT testbed that supports experi-

mentation and remote development. In contrast to their work,

our framework aims to support users in evaluating cluster

management techniques and profiling applications, while theirs

focuses on developing and evaluating IoT applications. Yang

et al. [21] present EdgeTB, a hybrid testbed to evaluate

distributed machine learning applications at the edge. EdgeTB

combines emulated nodes with real ones to create a high-

fidelity and large-scale evaluation. In contrast to our work,

their framework is for AI training, while ours is flexible

regarding applications. Das et al. [22] present a benchmark

suite to evaluate commercial edge computing platforms. To

summarize, many approaches exist that build benchmarks for

FaaS or edge-cloud computing, but we specifically aim to

support the development of cluster management techniques.

VI. FUTURE WORK

The testbed configuration (i.e., labeling the nodes) is not

yet fully automatic and configuring network latency between

clusters has to be done manually. For future work, we plan

on extending Ether, Edge Run’s topology synthesizer [17], to

model the real-world testbed as code and perform configu-

rations (i.e., WireGuard) as well as set the network latency

between them. Another extension we are working on right

now is adding power measurements and using them to train

models that can predict energy consumption based on resource

usage. Using our framework, we can fully automate and

perform different experiments to gather enough data to train

our models.

VII. CONCLUSION

Evaluating edge computing systems is challenging given

both the nascence of the field, as well as the heterogeneity

of infrastructure such systems operate on. Benchmarks and

testbeds used to evaluate cluster management techniques are

often tailored to the specific technique, making it difficult to

reproduce them and therefore compare approaches. We extend

Galileo, a system for distributed load testing that enables users

to define and run reproducible benchmarks. Galileo lacks tools

to operationalize experiments, users must manually deploy

other tools to scale workers, instrument their testbed and

collect data. We extend Galileo to use Kubernetes to deploy

runtime components, and extend and create tools to offer an

end-to-end experiment and analytics framework for edge-cloud

clusters. Future work includes a code based approach to define

testbeds and dynamically create different cluster setups with

varying network latency.

ACKNOWLEDGMENT

We thank Alexander Knoll for supporting us in setting up

the hardware infrastructure, and Jacob Palecek for the code

contributions.

27

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on December 20,2022 at 13:11:24 UTC from IEEE Xplore. Restrictions apply.

REFERENCES

[1] F. Rossi, V. Cardellini, F. L. Presti, and M. Nardelli, “Geo-distributed
efficient deployment of containers with kubernetes,” Computer Commu-
nications, vol. 159, pp. 161–174, 2020.

[2] M. A. Tamiru, G. Pierre, J. Tordsson, and E. Elmroth, “mck8s: An
orchestration platform for geo-distributed multi-cluster environments,”
in 2021 International Conference on Computer Communications and
Networks (ICCCN). IEEE, 2021, pp. 1–10.

[3] B. Shayesteh, C. Fu, A. Ebrahimzadeh, and R. Glitho, “Auto-adaptive
fault prediction system for edge cloud environments in the presence
of concept drift,” in 2021 IEEE International Conference on Cloud
Engineering (IC2E). IEEE, 2021, pp. 217–223.

[4] V. Kjorveziroski and S. Filiposka, “Kubernetes distributions for the edge:
serverless performance evaluation,” The Journal of Supercomputing, pp.
1–28, 2022.

[5] K. Alwasel, D. N. Jha, F. Habeeb, U. Demirbaga, O. Rana, T. Baker,
S. Dustdar, M. Villari, P. James, E. Solaiman et al., “Iotsim-osmosis: A
framework for modeling and simulating iot applications over an edge-
cloud continuum,” Journal of Systems Architecture, vol. 116, p. 101956,
2021.

[6] R. Mayer, L. Graser, H. Gupta, E. Saurez, and U. Ramachandran, “Emu-
fog: Extensible and scalable emulation of large-scale fog computing
infrastructures,” in 2017 IEEE Fog World Congress (FWC). IEEE,
2017, pp. 1–6.

[7] D. N. Jha, M. Nee, Z. Wen, A. Zomaya, and R. Ranjan, “Smartdbo:
smart docker benchmarking orchestrator for web-application,” in The
World Wide Web Conference, 2019, pp. 3555–3559.

[8] T. Rausch, A. Rashed, and S. Dustdar, “Optimized container schedul-
ing for data-intensive serverless edge computing,” Future Generation
Computer Systems, vol. 114, pp. 259–271, 2021.

[9] D. N. Jha, S. Garg, P. P. Jayaraman, R. Buyya, Z. Li, and R. Ranjan, “A
holistic evaluation of docker containers for interfering microservices,”
in 2018 IEEE International Conference on Services Computing (SCC).
IEEE, 2018, pp. 33–40.

[10] T. Rausch, W. Hummer, and V. Muthusamy, “Pipesim: Trace-driven
simulation of large-scale ai operations platforms,” arXiv preprint
arXiv:2006.12587, 2020.

[11] T. Rausch, P. Raith, P. Pillai, and S. Dustdar, “A system for operating
energy-aware cloudlets,” in Proceedings of the 4th ACM/IEEE Sympo-
sium on Edge Computing, 2019, pp. 307–309.

[12] T. Ouyang, Z. Zhou, and X. Chen, “Follow me at the edge: Mobility-
aware dynamic service placement for mobile edge computing,” IEEE
Journal on Selected Areas in Communications, vol. 36, no. 10, pp. 2333–
2345, 2018.

[13] T. Braud, Z. Pengyuan, J. Kangasharju, and H. Pan, “Multipath com-
putation offloading for mobile augmented reality,” in 2020 IEEE In-
ternational Conference on Pervasive Computing and Communications
(PerCom). IEEE, 2020, pp. 1–10.

[14] J. A. Donenfeld, “Wireguard: next generation kernel network tunnel.”
in NDSS, 2017, pp. 1–12.

[15] S. P. Baller, A. Jindal, M. Chadha, and M. Gerndt, “Deepedgebench:
Benchmarking deep neural networks on edge devices,” in 2021 IEEE
International Conference on Cloud Engineering (IC2E). IEEE, 2021,
pp. 20–30.

[16] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang,
T. Weyand, M. Andreetto, and H. Adam, “Mobilenets: Efficient convo-
lutional neural networks for mobile vision applications,” arXiv preprint
arXiv:1704.04861, 2017.

[17] T. Rausch, C. Lachner, P. A. Frangoudis, P. Raith, and S. Dustdar,
“Synthesizing plausible infrastructure configurations for evaluating edge
computing systems,” in 3rd USENIX Workshop on Hot Topics in Edge
Computing (HotEdge 20), 2020.

[18] J. Kim and K. Lee, “Functionbench: A suite of workloads for serverless
cloud function service,” in 2019 IEEE 12th International Conference on
Cloud Computing (CLOUD). IEEE, 2019, pp. 502–504.

[19] M. Grambow, T. Pfandzelter, L. Burchard, C. Schubert, M. Zhao, and
D. Bermbach, “Befaas: An application-centric benchmarking framework
for faas platforms,” in 2021 IEEE International Conference on Cloud
Engineering (IC2E). IEEE, 2021, pp. 1–8.

[20] Y. Gao, J. Zhang, G. Guan, and W. Dong, “Linklab: A scalable and
heterogeneous testbed for remotely developing and experimenting iot
applications,” in 2020 IEEE/ACM Fifth International Conference on

Internet-of-Things Design and Implementation (IoTDI). IEEE, 2020,
pp. 176–188.

[21] L. Yang, F. Wen, J. Cao, and Z. Wang, “Edgetb: A hybrid testbed
for distributed machine learning at the edge with high fidelity,” IEEE
Transactions on Parallel and Distributed Systems, vol. 33, no. 10, pp.
2540–2553, 2022.

[22] A. Das, S. Patterson, and M. Wittie, “Edgebench: Benchmarking edge
computing platforms,” in 2018 IEEE/ACM International Conference on
Utility and Cloud Computing Companion (UCC Companion). IEEE,
2018, pp. 175–180.

28

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on December 20,2022 at 13:11:24 UTC from IEEE Xplore. Restrictions apply.

