
Towards a Prime Directive of SLOs

1st Victor Casamayor Pujol
Distributed Systems Group
TU Wien, Vienna, Austria

v.casamayor@dsg.tuwien.ac.at

ORCID: 0000-0003-2830-8368

2nd Schahram Dustdar
Distributed Systems Group
TU Wien, Vienna, Austria

dustdar@dsg.tuwien.ac.at

ORCID: 0000-0001-6872-8821

Abstract—The promises of the computing continuum paradigm
motivate a paradigm change for Internet-distributed computing
systems. Unfortunately, we are still far from being able to develop
computing continuum systems. We try to move one step forward
in the direction of the computing continuum systems by defining
design phases for the interconnection of the application with
its underlying infrastructure. We assume that SLOs are critical
to that endeavor. Hence, we analyze its usage in the scientific
literature. Based on the learnings obtained, we define 9 design
phases to provide homogeneity and common behaviors in large-
scale, heterogeneous, distributed, and complex systems.

Index Terms—Computing continuum systems, design phases,
SLO, elasticity strategies

I. INTRODUCTION

The Computing Continuum is a novel computing

paradigm [1], [2]. Its main objective is to unify all current

computational tiers [3], [4], namely Cloud Computing,

Fog Computing, Edge Computing, and IoT, to develop an

underlying infrastructure able to accommodate applications

that can benefit from the strengths of each tier while avoiding

their shortcomings. For example, the Cloud provides almost

unlimited computational resources, allowing us to use it for

demanding tasks. Still, it is located far from its users, dealing

with higher latency. On the contrary, the Edge is next to the

data generation, providing lower latency to applications, but

the computational resources available are constrained. Hence,

the Computing Continuum paradigm foresees applications

that benefit from the Edge’s low latency but can leverage the

Cloud in case of need.

This practical usage of the Computing Continuum raises the

relevance of the application’s underlying infrastructure at the

same level as the application itself. The application behavior

is tight to the infrastructure’s characteristics, and changes in

the infrastructure will severely affect the application’s perfor-

mance. Similarly, any change in the application will affect the

topology or scale of the infrastructure in use. Simply put, these

new applications benefiting from the Computing Continuum

seamlessly blend with the underlying infrastructure.

This breaks with current Internet-distributed systems, where

everything is defined and controlled at the application level.

This bi-directional relation between the infrastructure and

the application demands novel methods and techniques to

model and manage distributed Computing Continuum systems.

Identify applicable funding agency here. If none, delete this.

Nevertheless, some concepts inherited from Cloud computing

are expected to be helpful for the Computing Continuum.

Current Cloud systems are managed through Service Level

Agreements (SLAs). These are contracts between the in-

frastructure provider and the application developer in which

the infrastructure provider guarantees service specifications.

Whenever these are not satisfied, it has to pay a fine to

the application developer. In practice, the application devel-

oper has to choose a Service Level Indicator (SLI) that the

infrastructure provider can monitor, i.e., the availability of

a specific service or the CPU load. Then, they agree on a

Service Level Objective (SLO) for each SLI that constrains

the acceptable values. Cloud providers will trigger (reactively

or proactively) elasticity strategies to maintain the SLI within

the SLO margin. Elasticity strategies are vertical, where the

resources available for an instance are increased or decreased,

or horizontal, where instances of the same job are created or

eliminated. In distributed computing continuum systems, this

can not be a dichotomy. The constraint tiers will require other

strategies, such as migration and offloading, which are more

challenging as they need to include new active infrastructure

in the system.

We see SLOs as the mechanism to control application per-

formance over its underlying infrastructure. SLOs provide the

means to specify the application requirements and to ensure

its execution according to its expected performance properly.

Further, they have to be loosely coupled with candidate

elasticity strategies [5]. Hence, when the expected performance

is not reached, the best can be selected given the context and

trigger changes in the system, which can correct the system’s

behavior. Simply put, we want to go beyond the business

requirement for an agreement as they are now and convert

SLOs into vital elements for designing complex systems

that contain a dynamic, heterogeneous, multi-proprietary, and

interconnected computing infrastructure.

In this article, we take a DevOps perspective. We aim

to show the required phases to develop systems (pay-

load/application and platform/infrastructure) that use SLOs as

their key control elements. In the following, we focus on the

infrastructure side. In other words, SLO-based management

will appropriately link applications with their underlying in-

frastructure. SLOs can’t be isolated constraints to a system,

which are defined once the application is ready for production

deployment. They need to be well aware of the system’s

61

2023 IEEE International Conference on Software Services Engineering (SSE)

979-8-3503-4075-4/23/$31.00 ©2023 IEEE
DOI 10.1109/SSE60056.2023.00019

20
23

 IE
EE

 In
te

rn
at

io
na

l C
on

fe
re

nc
e

on
 S

of
tw

ar
e

Se
rv

ic
es

 E
ng

in
ee

rin
g

(S
SE

) |
 9

79
-8

-3
50

3-
40

75
-4

/2
3/

$3
1.

00
 ©

20
23

 IE
EE

 |
 D

O
I:

10
.1

10
9/

SS
E6

00
56

.2
02

3.
00

01
9

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on October 04,2023 at 12:48:54 UTC from IEEE Xplore. Restrictions apply.

characteristics that are under control. Further, they have to

control lower-level features, such as the energy consumption

of a certain device or service, and higher-level features, such

as the accuracy of a machine learning-based inference service.

Hence, we need to include them in the design process without

introducing extra complexity to the application developer

and to develop a new set of tools and methods to enable

them to properly hook the dynamic and complex underlying

infrastructure to the application [6].

We elaborate on the steps needed to make SLOs first-class

citizens of applications’ design for the computing continuum.

In the following, Section II visits the current usages of

SLOs in the scientific literature and provides background for

the article. Then, Section III proposes the set of phases that

we envision necessary to make SLOs first-class citizens of

computing continuum systems. Finally, Section IV presents

the discussion, elaborating on some loose ends, and we end

with the conclusion in Section V.

II. BACKGROUND

A. SLOs and applications

This section looks into the current scientific work incor-

porating SLOs to manage Internet-distributed applications.

We aim to cover research involving the low and high-level

descriptions of applications, and similarly, with the SLOs, we

look at them from different abstraction levels. It is important

to remark that we are missing in the literature a taxonomy

combining applications and SLOs, which would ease and

structure the following analysis.

Kumar et al. [7] presents a very low-level definition of

applications based on the types of logical operations, i.e., a

counter, a parallel counter, a matrix multiplication, and an I/O

heavy application. However, the SLO described is the overall

time-to-completion, a holistic measure that deviates from the

low-level granularity of the applications. From our perspective,

this deviation between the application and SLO definition is in-

convenient. In most cases, the application will contain several

of the low-level tasks explained. Hence, controlling them only

with overall time-to-completion will not allow the surgical

usage of elasticity strategies triggered by the SLO. One could

imagine that each low-level application will benefit from a

different SLO, adjusting the application performance through a

specific elasticity strategy. And then, the SLO proposed would

provide a holistic perspective on the application needs, which

would also trigger other types of elasticity strategies.

Another angle when defining applications and SLOs in

the literature is taking a workflow perspective, which is

very common in ML-specific applications. Mehran et al. [8]

describes two applications (road sign inspection and senti-

ment analysis) with all their components and relations and

model them through queue theory. Then, they define ranges

for overall resource requirements, allowing them to decide

where to schedule workflow components. As before, there

is a mismatch between the resource requirements and the

workflow description, so they need to develop a complex

queue theory system in order to infer where the elasticity

strategy needs to take place. However, ML workflows have

a fixed schema: (1) data ingestion & exploration; (2) data

preparation; (3) model training; (4) model evaluation; and (5)

model serving. [9] Hence, it is an opportunity to standardize

SLO-based requirements for each step leveraging specific

elasticity strategies instead of relying solely on an overall SLO.

Alqahtani et al. [10] developed a conceptual model to

relate SLAs with IoT applications. Interestingly, they define

SLOs at the infrastructure, service, and application levels. In

terms of hardware (infrastructure), they conceptualize SLOs

such as maximum throughput or maximum vCPU usage. At

the service level, they leverage typical IoT services for an

application to adapt SLOs to their needs. The services defined

and the associated SLOs are, for example, a sensing service

with maximum data freshness or a processing service with

minimal latency. Finally, the SLO at the application level

is end-to-end response time. This work shows an interesting

but modest approach toward a taxonomy relating SLOs and

applications by leveraging the different layers required to build

Internet-distributed applications. The work does not discuss

how elasticity strategies would be linked to SLOs, nor if SLOs

at different levels, i.e., infrastructure and service, can be related

to deal with possible inconsistencies when several SLOs are

triggered.

The work from Nguyen et al. [11] is based on an augmented

reality application, which is a latency-intolerant application.

They developed two user-defined SLOs, maximum rejection

rate, and average resource usage to control a higher level

requirement, such as motion-to-display latency. Again, we find

a mismatch between SLOs and the target to control. Hence

they need to model the system to relate the specified SLOs

with the high-level requirement. Indeed, modeling the relations

between SLOs to select the elasticity strategy consistently is

required. However, we imagine a more practical situation in

which SLOs are defined for low- and high-level requirements.

Nigade et al. [12] work on SLO guarantee for timely Edge

video analytics. They set a minimal latency to get 30 FPS

as the SLO and incorporate it as the feedback of a control

loop to adjust system parameters, which is their elasticity

strategy. This work is interesting as they use the control

loop classic structure to involve SLOs in the management

process. Interestingly, they take a reactive approach to the

elasticity strategies, which does not always provide the best

possible results. In this regard, we have discussed in previous

work (in the review process) the convenience of using a

more flexible model such as the MAPE-K. This enables us

to treat SLOs differently according to their specific needs.

We envision components requiring fast interactions where

reactivity is inevitable, while others can have more extended

periods enabling proactive approaches.

Kannan et al. [13] present GrandSLAm, which leverages

SLA definition per micro-service to gain detailed visibility on

AI/ML application performance. They model the application

architecture through a DAG and take elasticity strategy deci-

sions with respect to the micro-service and its specific place in

the DAG. Further, they have to include an end-to-end latency

62

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on October 04,2023 at 12:48:54 UTC from IEEE Xplore. Restrictions apply.

SLA to enforce the expected performance, as they claim that

micro-service analysis is not enough to enforce overall end-to-

end latency SLA. This work is interesting as they define SLAs

at different abstraction levels, keeping elasticity strategies at

both levels. Unfortunately, the work is tailored to their system

and the solution they developed, leaving out generalization

perspectives methods.

A different perspective is taken by Furst et al. [14]. They

define elastic services as those capable of elastically adjusting

their characteristics to comply with their associated SLO,

which is in terms of end-to-end latency. Elasticity strategies

are entirely integrated into the service, obtaining adaptation

capabilities such as changing the image classification model

or degrading the classifier’s parameters. Their approach is

interesting as they describe elasticity strategies tailored to

quality, which is unusual as it requires this close relation

with the service. Our perspective also envisions adding this

type of higher-level elasticity strategy. However, we think it

is necessary to define SLOs directly addressing quality, i.e.,

changing the image classification model to reduce end-to-end

latency also affects the quality of the service, which also

needs to be considered. Further, we see the SLO developer as

independent from the application developer, which in the work

of Furst et al., both seem to be the same figure. Nevertheless,

the application developer and the SLO developer have to

cooperate, and we need bridges to join their work without

the minimal overhead.

Guim et al. [15] work takes an architectural perspective for

enforcing SLOs. They present a two-tier architecture where a

global planner checks for the end-to-end compliance of SLOs,

including overall charging and billing. And a local planner,

more focused on the capabilities of the Edge platform where

the service is deployed. Again, we find a different perspective

on using SLOs to manage the life cycle of applications in this

work. We found the usage of a 2-layer control architecture

interesting, which allows them to have hierarchical relation-

ships within the SLOs. Unfortunately, the work discusses the

architecture leaving out of the scope details on the specific

implementation of SLOs with the applications.

We have found the common idea of leveraging SLOs

for application management purposes beyond the business-

oriented perspective. However, we have also found that each

research presents a different approach to using SLOs. Sim-

ilarly, their granularity and the relation between SLOs and

applications or services vary from each work. Interestingly,

the variety we found hints towards the need to define SLOs at

different abstractions, which must be aligned with the service

or application granularity they manage. Also, we found that

defining relations between SLOs is needed to better hook

applications with underlying infrastructures. We think working

on processes and definitions at the design level is necessary

to enable the future computing continuum and its manifold of

applications.

B. Background concepts

1) Markov Blanket: The Markov Blanket of a target random

variable is all those variables that provide the target conditional

independence from any other random variable [16]. This

implies that the information obtained from the Markov Blanket

variables is enough to infer the target random variable state

perfectly. Hence, they provide filtering to the target variable,

so there is no need to evaluate variables that are not part of

its Markov Blanket. Consider that when the set of variables is

minimal, it is called Markov Boundary. For simplicity, we will

call it Markov Blanket as we prefer working with the minimal

set, but it is not a strong requirement.

Interestingly, Markov Blankets are also used in neuroscience

as a mathematical artifact to separate the brain from the

external environment [17]–[19]. This research line also has an

ontological perspective and classifies Markov Blanket nodes

as sensing, which are influenced by the environment and

influence the target variable, and as acting, which is influenced

by the target variable and influences the external environment.

In our research, we take from both sides, aiming to apply

the benefits of this mathematical concept to the distributed

computing continuum systems [20], [21].

2) Causal inference: Causal inference is a technique to

infer causal relations and their consequences between vari-

ables. It is a technique developed by Judea Pearl [22]. Is it

a data-based technique, it uses data to extract the relations

between variables. Interestingly, three causal rungs are defined

depending on the type of query that you aim to solve with the

data. The first one is observational, which is the information

that you can obtain from data without influencing it. The

second one is interventional, so you need to act on the data

and learn the consequences of the performed action. The third

rung is the counterfactual, which is able to make hypotheses

about things that did not happen. Obtaining data to solve this

type of query is not obvious and might not be possible. The

explainability capacity of the method, as well as its novel

mathematical framework, make this technique very convenient

for distributed computing continuum systems.

3) DeepSLO: DeepSLOs are a construct relating to Service

Level Objectives (SLOs). In large, distributed, and intercon-

nected applications, SLOs can specify requirements for a

single element, and they can’t be related or influenced by

any other system component. From our perspective, this is

a shortcoming for SLOs. Hence, we define DeepSLOs as the

construct able to relate SLOs regardless of their abstraction

level. Indeed, relating different abstraction levels might require

intermediate steps. For example, connecting GPU usage with

inference quality requires at least an intermediate connection

which can be the inference model used. For more details,

check our previous work [2], [21].

III. DESIGN PHASES

This section delineates the phases we foresee to link the

application with the underlying infrastructure through SLOs.

There are two considerations to be clarified before diving into

the design phases. First, the amount of work on these phases

63

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on October 04,2023 at 12:48:54 UTC from IEEE Xplore. Restrictions apply.

is significant. Hence we think a new figure, i.e., the SLO
developer, is needed. This work must be done in parallel with

the application development, and we assume collaboration

and a fluid exchange of information. This brings us close

to the second consideration, which is in terms of the initial

requirements for the process. The logical system architecture

of the applications and the overall system requirements are

needed as inputs. These are the minimum requirements to

bootstrap the design phases.

At design time, the process consists of 9 phases, as seen in

Figure 1. They are briefly introduced next:

Fig. 1. Design phases for SLO management of computing continuum
applications

1) Deployment identification defines the functional infras-
tructure deployment for the application.

2) SLO description describes SLOs at infrastructure, ser-

vice, and application levels.

3) Markov Blankets definition structure system variables

to get complete definition and control for each SLO.

4) Individual behavioral models enrich each SLO with

causality-based behavioral models linking SLO states

with elasticity strategies.

5) SLO tests certify the Markov Blanket definitions to-

gether with the behavioral models.

6) Markov Blankets mosaic develops relations between

Markov Blankets.

7) DeepSLO tests assess deep (hierarchical) relations

within the Markov Blankets mosaic.

8) SLA definition validates and agrees with infrastructure

providers on the system’s control implementation.

9) Deployment conducts the actual system development

by finally integrating the application with its underlying

infrastructure.

See Figure 2 for a summary of phases 1 and 2; Figure 3 for

phases 3 to 5; Figure 4 for phases 6 and 7; and finally, Figure 5

for phases 8 and 9.

Case study - Aid system for urban mobility
A case study will be used during this section to exemplify

and help understand each of the phase descriptions. The appli-

cation example is similar to the one presented in [2]. However,

instead of checking if drivers are using a phone, we want to

depict a more distributed application through an entire city,

which understands and predicts the city mobility behavior to

provide near-real-time guiding aid to drivers and pedestrians,

and, eventually, to facilitate autonomous vehicles. We have

changed the focus of the case study to emphasize geographical

distribution, low-latency requirements, and heterogeneity of

devices.

The simplest example of this application would be a citizen

planning a trip from point A to B of the city. Then, the system

recommends alternative routes and travel modes depending

on the city’s predicted mobility situation for a planned time.

However, a more demanding example of this application would

be a near real-time assessment of the city roads’ status to

optimize autonomous mobility by providing tailored routes for

each autonomous vehicle.

A. Deployment identification

This initial phase defines the infrastructure components

that can be required for the system. We see three levels of

infrastructure definition: (1) the minimal infrastructure deploy-
ment, (2) the functional infrastructure deployment, and (3)

the complete infrastructure deployment. We expect this phase

to provide the description of the functional infrastructure
deployment. This consists of identifying where the logical

components of the system could be deployed, and functional

expresses that the only constraint taken is that the system has

to perform accordingly to the overall requirements, but there

is no other optimization required. Conversely, the minimal
infrastructure deployment is an optimization iteration over the

functional to limit the infrastructure components, which can

be interesting to reduce costs or energetic footprint. And the

complete infrastructure deployment can be achieved once all

design phases have been covered, identifying all infrastructure

components that eventually can be part of the system.

In order to successfully define the functional infrastructure de-
ployment the logical system’s architecture needs to be mapped

into actual infrastructure components. For this process, we

foresee collaboration from the application developer on as-

sessing hardware components for each application service.

It is important to remark that no optimization is expected

at this early stage. Further, several hardware options can be

considered per service, which can be discarded later or kept

as backup configurations within the complete infrastructure
deployment. In any case, the SLO developer will specify the

hardware components required. To that end, a taxonomy of

the available hardware components per provider is needed to

finalize this phase. Given the characteristics of the computing

continuum infrastructure, we envision a scattered landscape

of infrastructure providers: Cloud, Fog, Edge, IoT, network,

etc. Additionally, one can imagine 3rd party service providers

including their hardware within the package. Simply put,

if you need an ML model for your application, it can be

more convenient to use existing and trained models that a

provider can offer with their own infrastructure. Nevertheless,

we want to emphasize the need for a tight relationship with

infrastructure providers to obtain solid progress in the design

phases.

Case study: For the application depicted the functional
infrastructure deployment should include IoT sensors such as

64

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on October 04,2023 at 12:48:54 UTC from IEEE Xplore. Restrictions apply.

cameras, radars, and traffic lights. Each cluster of sensors

would require processing units (Edge nodes), to reduce com-

munication latency and to pre-process the data, performing

initial inferences. Then, the information could be aggregated

in larger computing units (Fog nodes) to perform heavier

computations and to redirect data to the application control

center and to the Cloud for storage, analytics, and long-

running ML jobs. Further, the geo-location of the autonomous

vehicles can require a special-trusted connection with them,

and further, the broadcasting of routes to these vehicles also

requires special network capabilities to ensure near real-time

connectivity for the entire city.

Considering that the infrastructure will not be built for this

specific application, we are set in a multi-tenant environment.

Further, in some situations, the usability of the device can be

complete, i.e., dedicated Edge nodes for data pre-processing,

but in other cases, a limited view can only be provided, i.e., the

video feed from street cameras can be used only if processed

in place with strict privacy policies. In brief, there’s a manifold

of different possibilities and these need to be explored at the

start of the system development.

Fig. 2. Phase 1: Deployment identification & Phase 2: SLO description

B. SLO description

This is a key phase for the design process as it deter-

mines the SLOs as the hook between the application and

the infrastructure. Hence, it takes the functional infrastructure
deployment, and for each pair, service hardware defines at least

1 SLO to control the hardware and 1 to control the service.

Further, SLO at a coarser granularity has to be defined, for

instance, at the workflow or application level, depending on

the most convenient approach for the system. Defining an SLO

involves selecting a key measurable metric for the component

performance and providing a range within its values to ensure

that performance.

At this phase, the SLO developer has to interact with the ap-
plication developer and the infrastructure providers. Basically,

finding this key metric for the component performance can be

challenging, hence the people developing the service can shed

some light on what they would need, and similarly, the in-

frastructure provider can offer some SLO descriptions that are

convenient for their hardware. In the end, the SLO developer
has to choose the best SLO for each piece, and having the over-

all picture of it can ease the process by eliminating redundancy

or using complementary metrics. Further, the collaboration

with the application developer becomes more interesting as a

key measurable metric for a service can require intentionally

offering that metric for the application management, which is

something that in current developments does not exist. Simply

put, a key metric for the ML model can be the inference

latency, but it can also be the prediction accuracy, but the

second’s observability needs to be specifically implemented

on the service.

Case study: We can imagine SLOs governing IoT devices

or services, such as continuous data availability from the

cameras. Edge nodes having a maximum processing time. We

can also increase the abstraction level of SLOs to control

Cloud storage costs, or to provide privacy guarantees through

an SLO when processing vehicles’ geo-location at fog nodes.

Privacy guarantees are tricky to address as an SLO; simply

put, how can they be measured? An option would be as

follows, privacy guarantees can be translated to privacy policy

enforcement, and hence, the SLO could be the complete

enforcement of all privacy policies. These are only 4 examples

at different abstraction levels, from processing time or service

availability to cost control or privacy protection. Key to this

phase is the capacity to conceptually enlarge the possibilities

of SLOs as control metrics for the system.

C. Markov Blankets definition

Once the key metric to control the component has been

identified, this third phase benefits from a mathematical con-

struct, the Markov Blanket, to identify all other metrics and

configurations that affect the selected key metric. Given the

characteristics of computing continuum systems, explaining

the variation of the key metric can be challenging. Hence,

defining its Markov Blanket identifies those system variables

(sensory variables) that influence it, as well as those config-

urations (acting variables) that can affect its behavior, e.g.,

configuring the usage of an old ML model can accelerate the

accuracy degradation process. The Markov Blanket ensures

that our key metric is independent of all other system variables

and configurations except the ones included. This simplifies

any analysis, easing the process of understanding the key

metric behavior.

Obtaining the Markov Blanket for each SLO previously de-

fined is a complex task. Indeed, previous knowledge of the

task can ease the process. However, this phase will most likely

become an iterative process together with the next 2 phases.

The SLO developer has to initially provide an educated guess

of the Markov Blanket variables, which in case of possessing

the system’s performance data guiding the selection. Several

algorithms can analyze data to determine the Markov Blanket

of a target variable [23], [24]. However, data might not be

65

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on October 04,2023 at 12:48:54 UTC from IEEE Xplore. Restrictions apply.

available at the early design stages.

There are two relevant considerations to describe in this phase.

The first concerns the variables of the Markov Blanket. Acting

variables can influence the behavior of the key variable (SLO),

however, they are completely dependent on the system’s

design. In other words, if the design does not include any

configuration or action capacity over a key metric, this will

not appear on the Markov Blanket, and the system will work

as expected without it. This is the opposite behavior with

respect to the sensory variables, which their omission will

not free the system behavior of their influence, leading to

a complex situation where the performance’s explainability

can be severely hampered. This behavior enforces the need

of iterating over this phase to ensure the consideration of all

sensory variables.

The second is about the idea of dynamic Markov Blankets,

these would be able to automatically change when a con-

figuration on the system or an external event changes its

behavior. Currently, there are algorithms that based on data

can define the Markov Blanket, hence, it is not difficult

to imagine an algorithm that based on new data takes a

previous Markov Blanket configuration and updates it. This

is an interesting perspective, however, the interconnectedness

of these systems can propagate changes requiring large and

deep reconfiguration with unpredictable results.

Case study: Once an SLO has been selected, e.g., Edge

nodes processing time or privacy guarantees for autonomous

vehicles, this phase has to determine the specific system

variables that directly affect (sensing variables) the SLO,

similarly, it has to identify which are the configuration pa-

rameters that can change the SLO behavior (acting variables).

In the case of having system data from prototypes, datasets,

or previous experiences structure learning algorithms can be

used to automatically detect which are the components of

the Markov Blanket. If not, the iterative process described in

this article needs to be pursued. If we take the Edge nodes

processing time in charge of pre-processing cameras data, we

can select several sensing variables such as stream FPS, image

resolution or number of incoming streams. Concerning the

acting variables one can think about limiting frame rate or

resolution, spinning a new container on the same facilities, or

splitting the processing pipeline to finish it at the fog nodes.

Privacy guarantees for autonomous vehicles, or the com-

plete enforcement of privacy policies, can have as sensing

variables the number of vehicles considered, the location(s)

where policies are enforced, or the overall time required for

their guarantee. Acting variables could consider the specific

algorithms used, their execution environment, or the total time

that the sensitive data is stored.

D. Individual behavioral models

In the previous phase, each Markov Blanket included acting

variables, described as configuration options to affect the SLO

behavior. In Cloud computing, these would be the elasticity

strategies. However, elasticity strategies are currently uncon-

sciously linked to the scaling of computing resources, but

Fig. 3. Phase 3: Markov Blankets definition. Phase 4: Individual behavioral
models & Phase 5: SLO tests

in the current scenario, we aim to expand their possibilities.

Besides the elasticity capacity, acting variables can modify

the quality of the service by changing data granularity or

the machine learning model, but they can also change the

network communication protocol or migrate the service to

another infrastructure component. This phase must define,

for each Markov Blanket, a behavioral model. This can be

simplified as the set of rules that given a specific configuration

of the Markov Blanket variables and the SLO, an acting

variable is activated. This leads to a reconfiguration of the

SLO, which will set it back to its expected range. The behav-

ioral model has a double objective, first, selecting the acting

variable that will adjust the SLO values, and second, predicting

which will be the state of the Markov Blanket variables after

the configuration change has been conducted. Remarkably,

the second objective enables optimization capabilities to the

Markov Blanket behavior, given that several acting variables

can set the SLO back to its expected range but each of them

leaves the state of the Markov Blanket differently.

Behavioral models can be defined using causal inference

methods. This technology has two main benefits; first, it

can produce explainable results, which would ensure that

the behavioral models used are accountable. And second, the

model can describe interventional causal relations, not only ob-

servational causal relations between variables, i.e., the model’s

behavior if it is not externally affected, which usually is the

scope of the available data. This means it can explain how

variables will behave after the activation of an acting variable.

Developing these models require data, further, interventional

queries on data require that these are also part of the analyzed

data. Hence, simulation can be the necessary tool for gathering

the data to understand SLO behavior. Regardless of this being

our preferred method, one can easily see techniques such as

Reinforcement learning [25] or Active inference [26], [27]

work in a simulation environment to extract similar knowledge

with causal inference. Interestingly, some research tries to

combine reinforcement learning with causal inference [28].

66

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on October 04,2023 at 12:48:54 UTC from IEEE Xplore. Restrictions apply.

Case study: We can take now one of the previously

defined Markov Blankets, e.g., Edge nodes processing time,

we can consider that if the time goes above a certain threshold

and less than 3 containers are working on it, then the best is

to add up to 3 instances. However, if there are 3 containers

already on the task, the best way to reduce the processing

time is by reducing the FPS to half. This behavior could

have been obtained from experience. If no experience is

available, then data from the system is required to take a causal

inference approach or a simulation environment to benefit from

reinforcement learning-like techniques.

E. SLO tests

At this point, we have defined for each combination of

service and infrastructure an SLO with its Markov Blanket

and its behavioral model able to control that system (service

and infrastructure) component. However, knowledge of the

system can be limited, hence this phase aims at testing the

reliability of the design decisions. Further, the data obtained

from testing can be considered to improve the two previous

phases (Markov Blankets definition & Individual behavioral
models). Both phases require data to ensure their validity and

the data from the tests can be re-injected in the process to

refine the decisions. Last, an ultimate objective of this phase

is to certify to the infrastructure provider the behavior of

the SLOs defined easing the future contractual agreement.

We envision a large and scattered landscape of infrastructure

providers for computing continuum systems. This will change

the current Cloud paradigm and we expect that cost reduction

will not be the only motivating premise. In that regard, we can

foresee infrastructure providers developing simulation tools

to enable users to test and verify their applications. This

might currently seem unrealistic, but, large system engineering

projects require many providers, and their final selection is

based on a weighted score concerning several categories.

When dealing with materials, you get samples of them; when

dealing with software, you can get a demo of it, etc. Hence,

you might get simulation tools to verify your design decisions

in an appropriate environment when dealing with infrastructure

providers. In any case, we assume that a simulation tool able to

test the design exists, and hence, each Markov Blanket is tested

until all behaviors can be properly explained leveraging these

3 stages (Markov Blanket → Behavioral model → Simulation)

iterative process.

Case study: At this stage, we would have all Markov

Blankets with their specified behaviors, and it would be the

moment of properly testing them. This process should be done

in a simulation environment due to scale and costs reasons. In

the depicted case study, where there is no prior knowledge

of the system’s behavior, the initial configuration and the

described behaviors are inaccurate. Hence, we would first use

the simulation environment to properly define the Markov

Blankets, ideally becoming a Markov Boundary (the minimal

set of variables that affect the target one). Once the Markov

Blankets (we keep this naming for simplicity) are correctly

specified, then the behavioral models can be refined, newly

discovered, or completely changed. In any case, this process

can require more than one iteration over the simulation, in the

end, it might depend on the initial discrepancy between the

Markov Blankets and the simulated system behavior.

Fig. 4. Phase 6: Markov Blankets mosaic & Phase 7: DeepSLO tests

F. Markov Blankets mosaic

Before starting this phase, each individual component of the

system governed by an SLO is working as expected. However,

the system’s behavior goes beyond the aggregation of its parts.

This phase relates all specified Markov Blankets, from the

lower-level infrastructure to the higher-level business SLOs,

developing the system’s DeepSLOs. It is important to clarify

that these relations are not about connecting all Markov Blan-

kets with all Markov Blankets, but to relating (and uniforming)

system behaviors when dealing with the same abstraction level,

and incorporating directives from application and business

purposes to different abstraction levels. Further, such relations

aim to provide priorities to the activation of acting states when

SLOs deviate from their expected range. Simply put, if an SLO

deviates from range, now that Markov Blankets are connected,

the acting states of others can also influence the deviated SLO.

Hence, we need to know which one to activate. Similarly,

higher-level SLOs can be better suited to formalize activation

priorities. There are two considerations worth discussing when

tying together Markov Blankets of different abstraction levels

(the following is less prominent at the same abstraction level).

The first is about the semantics, each abstraction can use its

own semantics conveniently for its purpose, however, when

relating them it has to be ensured that both Markov Blankets

properly understand the information passed. The second is

about the temporal scales of the Markov Blankets, intuitively

higher-level abstraction Markov Blankets will have longer

control periods than lower-level, i.e., the infrastructure-related

metrics will have shorter frequencies than the metrics related

to services, such as performing an ML inference. This will

need to be considered when relating the Markov Blankets, and

67

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on October 04,2023 at 12:48:54 UTC from IEEE Xplore. Restrictions apply.

it will, most probably, enforce a top-bottom hierarchy. All in

all, in this phase, the system becomes a mosaic of Markov

Blankets with a hierarchical structure able to make decisions

that all components take similarly obtaining a smooth and

unified system behavior.

Successfully developing the Markov Blanket mosaic is a

complex task. Hence, we also envision an iterative process

with the following phase, DeepSLO tests. In the case of

relating Markov Blankets of the same abstraction level, we

expect to find sensory and acting states that are the same,

or at least, very related. Hence, we will use them to relate

the behavioral models of each Markov Blanket. A different

case is when relating Markov Blankets of different abstraction

levels. In that situation, the most common connections will be

through the acting nodes. These can develop configurations

that relate Markov Blankets from different abstraction levels

and intentionally affect the system considering the relation

created.

Case study: In this phase, we are taking all Markov

Blankets and their behaviors, which have been properly vali-

dated, constructing system-wide homogeneous behaviors, and

prioritizing high-level strategies over lower levels by means of

hierarchical relations.

Continuing with the two Markov Blankets defined (Edge nodes

processing time and privacy guarantees), we have to prioritize

privacy guarantees over the Edge nodes’ processing times.

We can envision both services using Edge nodes and we can

also relate the processing time with the policy enforcement

system capacity. Hence, it would be convenient to prioritize

the reduction of FPS and/or the image quality before moving

the privacy guarantees process away from the Edge where

leakages can be more dangerous. Similarly, policies that incur

into lower costs can be preferred through the Markov Blanket

mosaic instead of quality-preserving directives, e.g., reducing

data granularity.

G. DeepSLO tests

Now that the system behavior is specified by constructing

the Markov Blanket mosaic, it is required to verify its correct

performance. Hence, these tests, most likely in a simulation en-

vironment, need to show that the system has unified and clear

directives showing coordinated behavior. As suggested before,

achieving such behavior is assumed to be complex due to the

scale and interconnectedness of these systems. Hence, we also

see this phase as the feedback loop to correctly generate the

Markov Blanket mosaic through an iterative process with the

previous phase. We envision that the simulation environment

used in this step could be a joint effort of the infrastructure

providers’ community. Similarly, as we have argued before, the

large and scattered landscape of providers will need to break

some of the current barriers, e.g., interoperability issues, in

order to enable computing continuum systems. Hence, building

tools that are able to simulate together providers from differ-

ent tiers can homogenize interoperability and semantics and

provide the application developers with the right environment

to have a realistic end-to-end simulation of their systems.

Simply put, the relations created will need to be triggered by

the simulation environment, showing, eventually, the expected

system behavior. In any case, the process has to generate an

input for the feedback loop.

Case study: Assuming no prior knowledge of the sys-

tem’s behavior, this phase and the previous one will require

iteration to properly construct the Markov Blanket mosaic and

its internal DeepSLO. Following the case study, simulating the

system we could observe that prioritizing lower cost policies

through the Markov Blanket mosaic leads to undesired effects

such as difficulties in timely enforcing privacy policies, hence,

risking privacy guarantees. From that learning, the lower cost

policies can be bounded to specific Markov Blankets of the

mosaic, and let the other prioritizing not a minimal cost but a

range.

Similarly, as in phase 5 (SLO tests), the extracted knowledge

in simulation is used to refine policies and develop meaning-

ful links between Markov Blankets. Once the behaviors are

obtained in the simulation environment, the Markov Blanket

mosaic can be finalized and validated.

Fig. 5. Phase 8: SLA definition & Phase 9: Deployment

H. SLA definition

This phase aims at agreeing with all infrastructure providers

on the system’s expected behavior and the economic conse-

quences if the infrastructure does not perform as expected. In-

terestingly, in such a complex environment, many contractual

clauses that we can’t still conceive can be expected depend-

ing on the type of infrastructure, e.g., limited infrastructure

tenancy, maintenance scheduling for automated vehicles, etc.

Nevertheless, it is a phase mostly driven by business issues,

however, conflict with the design decisions can arise, and

hence, it is convenient a proper interaction between the SLO
developer and the infrastructure providers from the beginning

to avoid time delays and extra costs. Related to the previous

test phases, we envision that the quality of the simulation tests

performed at the Markov Blanket and system level is enough

68

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on October 04,2023 at 12:48:54 UTC from IEEE Xplore. Restrictions apply.

to ease the contractual agreement using the obtained results as

the basis.

a) Case study: At this phase, the aid system for urban

mobility application design is ready. Hence, agreements with

all infrastructure and service providers need to be signed. We

are assuming that the results from the simulation environments

are proof of the system behavior that all parties accept.

Otherwise, the process would have required specific steps for

each of the providers. Anyhow, we can imagine interactions

with all of them: the street cameras, the autonomous vehicles,

Edge nodes, Fog nodes, the network, etc. Hence, their proper

inclusion during the design process is needed.

I. Deployment

We add deployment as a design phase because there are still

decisions to be made that can affect the system’s behavior. Up

to now, we have assumed that the design has been done for

the functional system deployment. However, depending on the

application’s reach or requirements, one might want to deploy

the complete system deployment or several instances of the

minimal system deployment. Further, it is also conceivable to

deploy some non-critical components first to ensure that the

system basics are properly up & running before deploying the

rest of the system. In any case, these decisions are concurrent

with the SLA definition, as the agreements can be dependent

on it.

Case study: At this stage, the Markov Blankets governing

the application SLOs as well as the associated services would

be deployed in the computing continuum infrastructure, and

the application would be available for users.

IV. DISCUSSION

This paper provides prime directives for a new methodology

to design distributed computing continuum systems. It is es-

sential to clarify that community agreement, new methods, and

tools are required to develop this vision further. Regardless, we

believe it is important to start pushing together in one direction

to make future computing continuum systems feasible. Having

said that, we want to shed some light on a few topics that have

been slightly covered in the previous section.

In current development approaches, the software develop-

ment is previous and independent of the final computing

infrastructure in which it will be running. The new computing

continuum paradigm requires a tight relation between the

software and its underlying infrastructure. Hence, we pro-

pose that both tasks, software development, and infrastructure

management, work together. This way better synergies and

performances can be obtained.

The SLO developer is envisioned as a new member of an

application design team. The complexity and heterogeneity of

the underlying infrastructure of distributed computing contin-

uum systems preclude adding their management responsibility

to software developers. We are not saying that software de-

velopers can not be SLO developers, just that these roles need

to be differentiated. Further, we assume that the scattered and

large-scale landscape of providers will further force the need

for the SLO developer role and new techniques to orchestrate

infrastructure from several providers.

In the provided directives, we are assuming that all SLOs

involved are determined by the application developer who will

be in charge of its performance. However, we do not discard

that infrastructure providers can also offer a set of SLOs that

the application developers can leverage. An interesting deriva-

tive is on the elasticity strategies, which are currently linked

to the SLO, but we claim that they need to be completely

decoupled [5], as there is going to be a manifold of options

to align SLOs again. Hence we expect infrastructure providers

not only to offer SLOs but also to offer elasticity strategies

independently. This way, the application developer can build

the system accordingly to their principles.

We have only briefly approached this topic, but we believe

that, with the appropriate environment, infrastructure providers

can also offer services with their infrastructure and SLOs.

We can foresee many systems making similar decisions when

thinking about the Edge and IoT. For example, street cameras

could be used for traffic monitoring, AR/VR applications,

crowd control, and many others. But it is not sustainable to

have specific hardware for each application. We are in a multi-

tenant setting. Hence, the camera owner, instead of offering

access to the camera, could offer the video stream in different

formats and with associated SLOs to satisfy any of the

applications. Similar reasoning can be given when performing

inference at the Edge so that the inference results can be given

as a service, alleviating the application of training, validating,

testing, and updating models. Indeed not all applications will

leave the inference engine to others, but depending on the

application’s core business, that can benefit them.

Last, we assume that the following life cycle phases of these

systems, e.g., run-time or end-of-life, will also require specific

processes and technologies to deal with the dynamism and

complexity of computing continuum systems. However, these

are out of the scope of this article.

V. CONCLUSION

This article has shown and discussed the prime directives

for SLOs to convert them into key elements for designing

computing continuum systems. We have reviewed the usage

in the scientific community of the SLOs and their relations

with the application. Based on this analysis, we have provided

9 design phases to leverage SLOs as the hook between the

application and the underlying infrastructure. We assume that

Markov Blankets and Causal inference are enablers for these

types of systems, and we envision methods to include them in

the design process. Further, as a case study, we have provided

an example where we have tried to shed some light on the

meaning of the described phases. Overall, we are convinced

that this is a required step to make computing continuum

systems a reality soon.

REFERENCES

[1] F. Firouzi, B. Farahani, and A. Marinšek, “The convergence and inter-
play of edge, fog, and cloud in the AI-driven Internet of Things (IoT),”
Information Systems, p. 101840, July 2021. Publisher: Pergamon.

69

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on October 04,2023 at 12:48:54 UTC from IEEE Xplore. Restrictions apply.

[2] S. Dustdar, V. Casamajor Pujol, and P. K. Donta, “On distributed
computing continuum systems,” IEEE Transactions on Knowledge and
Data Engineering, 2022. Publisher: IEEE Computer Society.

[3] A. Yousefpour, C. Fung, T. Nguyen, K. Kadiyala, F. Jalali, A. Niakan-
lahiji, J. Kong, and J. P. Jue, “All one needs to know about fog computing
and related edge computing paradigms: A complete survey,” Journal
of Systems Architecture, vol. 98, pp. 289–330, Sept. 2019. Publisher:
North-Holland.

[4] Costa Breno, B. J. Jr., d. C. L. Rebouças, and A. A. P. F., “Orchestration
in Fog Computing: A Comprehensive Survey,” ACM Computing Surveys
(CSUR), vol. 55, pp. 1–34, Jan. 2022. Publisher: ACM PUB27 New
York, NY.

[5] S. Nastic, A. Morichetta, T. Pusztai, S. Dustdar, X. Ding, D. Vij, and
Y. Xiong, “SLOC: Service level objectives for next generation cloud
computing,” IEEE Internet Computing, vol. 24, pp. 39–50, May 2020.
Publisher: Institute of Electrical and Electronics Engineers Inc.

[6] W. Tärneberg, E. Fitzgerald, M. Bhuyan, P. Townend, K.-E. Årzén, P.-
O. Östberg, E. Elmroth, J. Eker, F. Tufvesson, and M. Kihl, “The 6G
Computing Continuum (6GCC): Meeting the 6G computing challenges,”
in 2022 1st International Conference on 6G Networking (6GNet), pp. 1–
5, July 2022.

[7] R. Kumar, M. Baughman, R. Chard, Z. Li, Y. Babuji, I. Foster,
and K. Chard, “Coding the Computing Continuum: Fluid Function
Execution in Heterogeneous Computing Environments,” in 2021 IEEE
International Parallel and Distributed Processing Symposium Workshops
(IPDPSW), pp. 66–75, June 2021.

[8] N. Mehran, Z. N. Samani, D. Kimovski, and R. Prodan, “Matching-
based Scheduling of Asynchronous Data Processing Workflows on the
Computing Continuum,” in 2022 IEEE International Conference on
Cluster Computing (CLUSTER), pp. 58–70, Sept. 2022. ISSN: 2168-
9253.

[9] I. Syrigos, N. Angelopoulos, and T. Korakis, “Optimization of Execution
for Machine Learning Applications in the Computing Continuum,” in
2022 IEEE Conference on Standards for Communications and Network-
ing (CSCN), pp. 118–123, Nov. 2022.

[10] A. Alqahtani, Y. Li, P. Patel, E. Solaiman, and R. Ranjan, “End-to-End
Service Level Agreement Specification for IoT Applications,” in 2018
International Conference on High Performance Computing & Simulation
(HPCS), pp. 926–935, July 2018.

[11] C. Nguyen, C. Klein, and E. Elmroth, “Elasticity Control for Latency-
Intolerant Mobile Edge Applications,” in 2020 IEEE/ACM Symposium
on Edge Computing (SEC), pp. 70–83, Nov. 2020.

[12] V. Nigade, R. Winder, H. Bal, and L. Wang, “Better Never Than Late:
Timely Edge Video Analytics Over the Air,” Proceedings of the 19th
ACM Conference on Embedded Networked Sensor Systems, pp. 426–432,
Nov. 2021. Conference Name: SenSys ’21: The 19th ACM Conference
on Embedded Networked Sensor Systems ISBN: 9781450390972 Place:
Coimbra Portugal Publisher: ACM.

[13] R. S. Kannan, L. Subramanian, A. Raju, J. Ahn, J. Mars, and L. Tang,
“GrandSLAm: Guaranteeing SLAs for Jobs in Microservices Execution
Frameworks,” in Proceedings of the Fourteenth EuroSys Conference
2019, EuroSys ’19, (New York, NY, USA), pp. 1–16, Association for
Computing Machinery, Mar. 2019.

[14] J. Fürst, M. Fadel Argerich, B. Cheng, and A. Papageorgiou, “Elastic
Services for Edge Computing,” in 2018 14th International Conference
on Network and Service Management (CNSM), pp. 358–362, Nov. 2018.
ISSN: 2165-963X.

[15] F. Guim, T. Metsch, H. Moustafa, T. Verrall, D. Carrera, N. Cadenelli,
J. Chen, D. Doria, C. Ghadie, and R. G. Prats, “Autonomous Lifecycle
Management for Resource-Efficient Workload Orchestration for Green
Edge Computing,” IEEE Transactions on Green Communications and
Networking, vol. 6, pp. 571–582, Mar. 2022. Conference Name: IEEE
Transactions on Green Communications and Networking.

[16] J. Pearl, Probabilistic Reasoning in Intelligent Systems: Networks of
Plausible Inference. San Francisco, CA, USA: Morgan Kaufmann
Publishers Inc., 1988.

[17] M. Kirchhoff, T. Parr, E. Palacios, K. Friston, and J. Kiverstein, “The
Markov blankets of life: autonomy, active inference and the free energy
principle,” Journal of The Royal Society Interface, vol. 15, Jan. 2018.
Publisher: The Royal Society.

[18] I. Hipolito, M. Ramstead, L. Convertino, A. Bhat, K. Friston, and T. Parr,
“Markov Blankets in the Brain,” Neuroscience and Biobehavioral Re-
views, vol. 125, pp. 88–97, June 2020. arXiv: 2006.02741 Publisher:
Elsevier Ltd.

[19] E. R. Palacios, A. Razi, T. Parr, M. Kirchhoff, and K. Friston, “On
Markov blankets and hierarchical self-organisation,” Journal of Theo-
retical Biology, vol. 486, p. 110089, Feb. 2020. Publisher: Academic
Press.

[20] V. Casamayor Pujol, P. Raith, and S. Dustdar, “Towards a new paradigm
for managing computing continuum applications,” in IEEE 3rd Inter-
national Conference on Cognitive Machine Intelligence, CogMI 2021,
pp. 180–188, Institute of Electrical and Electronics Engineers Inc., 2021.

[21] V. Casamayor Pujol, A. Morichetta, I. Murturi, P. Kumar Donta, and
S. Dustdar, “Fundamental Research Challenges for Distributed Com-
puting Continuum Systems,” Information, vol. 14, p. 198, Mar. 2023.
Number: 3 Publisher: Multidisciplinary Digital Publishing Institute.

[22] J. Pearl and D. Mackenzie, The Book of Why: The New Science of Cause
and Effect. USA: Basic Books, Inc., 2018.

[23] Y. Li, K. B. Korb, and L. Allison, “Markov Blanket Discovery using
Minimum Message Length,” arxiv, July 2021. arXiv: 2107.08140.

[24] Z. Ling, K. Yu, Y. Zhang, L. Liu, and J. Li, “Causal Learner: A Toolbox
for Causal Structure and Markov Blanket Learning,” Mar. 2021. arXiv:
2103.06544.

[25] Y. Lu, A. Meisami, and A. Tewari, “Efficient Reinforcement Learning
with Prior Causal Knowledge,” in Proceedings of the First Conference
on Causal Learning and Reasoning, pp. 526–541, PMLR, June 2022.
ISSN: 2640-3498.

[26] N. Sajid, P. J. Ball, T. Parr, and K. J. Friston, “Active Inference:
Demystified and Compared,” Neural Computation, vol. 33, pp. 674–712,
Mar. 2021. Publisher: MIT Press.

[27] R. Smith, K. J. Friston, and C. J. Whyte, “A step-by-step tutorial
on active inference and its application to empirical data,” Journal of
Mathematical Psychology, vol. 107, p. 102632, 2022.

[28] M. Gasse, D. Grasset, G. Gaudron, and P.-Y. Oudeyer, “Causal Rein-
forcement Learning using Observational and Interventional Data,” June
2021. arXiv:2106.14421 [cs].

70

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on October 04,2023 at 12:48:54 UTC from IEEE Xplore. Restrictions apply.

