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Abstract—The growing amount of data generated at the edge
of the network, e.g., by Internet of Things (IoT) devices, made
it indispensable to relocate computational power close to the
data source. Meanwhile, data tends to accumulate in chunks
and is frequently subject to resource-intensive transformations,
such as privacy enforcement. These phenomena, which are
summed up as “data gravity” and “data friction”, have an
impact on data processing and the overall system. However,
whereas cloud centers are able to dynamically adapt services,
e.g., by provisioning additional resources, edge devices provide
fewer options to react to changing workloads. To retain the
option to process data locally, we present the idea of control-
ling data gravity and friction with Service Level Objectives
(SLOs). We introduce Markov SLO Configurations (MSCs) as a
novel approach to organizing performance metrics and elasticity
strategies. MSCs, in conjunction with our presented architecture,
enable the evaluation of SLOs, the context-based selection of
elasticity strategy (i.e., corrective measures), and the execution
of strategies directly on edge devices. Thus, we lay the foundation
for a new generation of SLOs that can operate across multiple
elasticity dimensions, e.g., by scaling quality of service (QoS).

Index Terms—Data Gravity, Data Friction, Service Level
Objectives, Elasticity, Computing Continuum, Context Awareness

I. INTRODUCTION

A Service Level Objective (SLO) is a commitment to

maintaining a system in a desired state over a certain period

of time [1]. It determines a system’s status by evaluating one

or more Service Level Indicators (SLIs), usually performance

metrics, and compares the result against a benchmark. If

they diverge, the SLO is violated, which is corrected by a

chain of countermeasures (i.e., elasticity strategies [2]). SLOs

thus provide a system with “elasticity” – a degree of self-

determination to adapt to changes in workload [3]. Elasticity

strategies can span multiple dimensions, for example, by

adjusting the amount of resources provisioned or by scaling the

quality of service (QoS) [4]. However, to date, most SLOs are

tied to a single elasticity strategy (e.g., scale resources in AWS

EC21) and are thus limited to one elasticity dimension [5].

This drastically limits the versatility of SLOs to react to more

complex behavior within distributed systems, for example,

compensating data gravity and data friction.

Data friction is a resistance that impedes data transfer be-

tween systems. It may be caused, for example, by incompatible

data formats or privacy enforcement, resulting in processing

1https://aws.amazon.com/ec2/

delays, increased costs, and higher energy consumption [6].

Data gravity refers to the tendency of data to accumulate

and attract further data and applications; thereby, it becomes

increasingly difficult and costly to move the data. To cope

with this, there is a tendency to relocate processing facilities

to the edge of the network, i.e., where data is created [7], [8].

Processing data close to its source is motivated by numerous

benefits, such as low latency and high bandwidth [9]. Friction-

generating tasks (e.g., privacy enforcement) are equally as-

sumed by edge or fog devices because, thus, unprotected data

is less exposed to unauthorized access.

However, edge devices provide few options to scale pro-

visioned resources [10]. To retain the option of processing

data locally, edge devices must limit data gravity and data

friction; otherwise, they find themselves unable to deal with

growing data chunks and resource-intensive transformations.

This inability to scale resources makes it attractive to explore

other elasticity dimensions, e.g., by scaling the quality of

generated data [11]. In this context, we present the idea of

limiting data gravity and data friction by employing SLOs

that extend into multiple elasticity dimensions. Our work

conceptually builds upon the state of the art for constructing

SLOs, in this case, the Polaris framework [5], and addresses

challenges that arise when attempting to control data gravity

and friction with SLOs. Within the presented paper we did not

evaluate these concepts but laid the foundation for an upcom-

ing implementation in future work. Our main contributions

towards SLOs for data gravity and friction include:

1) A mechanism to generate SLO configurations, which uses

Markov blankets (MB) for evaluating a system according

to SLOs. This novel approach constructs around a central

entity (e.g., data gravity) a graph of relevant metrics,

elasticity strategies, and contextual information.

2) The Markov SLO Configuration (MSC) as a method to

organize the SLO lifecycle from the collection of metrics

to the enforcement of elasticity strategies. Information

contained by the MSC (i.e., which metrics to collect and

which elasticity strategies to apply) can be administered

within a distributed system to create hierarchical SLOs

that extend into the computing continuum [12].

3) The context-based planning of elasticity strategies, which

regards the edge environment to select an elasticity

strategy. Thus, it becomes possible to compare elasticity
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strategies that operate in different elasticity dimensions

and pick one, e.g., depending on the corrective impact.

Although the goal of this work was to limit data gravity and

friction, the results are transferable for SLOs that pose similar

requirements, e.g., planning multidimensional elasticity strate-

gies or orchestrating strategies directly on edge devices.

II. BACKGROUND

We consider data gravity and data friction to be fairly new

concepts for most readers; therefore, we use this section to

provide background information about these phenomena and

explain in more detail how they impact data processing. To

illustrate the need for SLOs based on data gravity and friction,

we further present (1) an exemplary use case that is referenced

within the remainder of the paper and (2) an overview of

motivating research challenges for creating SLOs that treat

data gravity and friction.

A. Data Gravity and Friction

Data gravity describes the tendency of data to attract

additional data. It is based on the idea that the more data

and applications are stored at a particular location, the more

attractive it becomes for other data to be stored there [13]. This

phenomenon usually draws data toward the cloud but could

occur anywhere along the computing continuum, e.g., the

network edge. It promotes the creation of central data storage,

which provides numerous benefits [14]: fewer inconsistencies,

data unification, and improved security due to fewer attack

vectors. Services and applications are equally drawn to larger

amounts of data, which is motivated by two essential benefits:

low latency and high bandwidth [13]. For measuring data

gravity, the authors in [15] provide a formula based upon four

network metrics: (1) data mass, i.e., the size of data; (2) data

activity, i.e., the number of movements and interactions with

the data; (3) bandwidth; and (4) latency. The authors raised

these metrics for thousands of enterprises to compare data

gravity between different countries and regions.

Data friction is a resistance that impedes data transfer, for

example, when exchanging data between institutions [6]. It

is frequently generated by preprocessing tasks, such as data

enrichment [16] and privacy enforcement [11]. Data friction

can be introduced by either socioeconomic or regulatory

factors. Socioeconomic factors can be different understandings

of data or metadata in scientific environments [17], or, more

culturally, the simple desire to keep personal information con-

fidential. Regulatory factors, on the other hand, are introduced

to provide legal guidance, for example, the EU’s General

Data Protection Regulation (GDPR) [18]. When transferring

information, data friction demands additional resources, such

as time, computational power, or personal effort. Consider, for

example, privacy enforcement for a data stream: Transforming

data according to privacy policies provides benefits to stake-

holders [19], it is thus evident that the transformation cannot

be omitted. Nevertheless, data friction can be optimized by

employing more efficient techniques or dividing it between

Fig. 1: Decrease data gravity and friction by applying SLOs

individual nodes. On the lines of data gravity, such a phe-

nomenon must be measurable using a set of metrics, which

will be explored further in Section IV.

B. Illustrative Scenario

To underline the benefits that emerge from SLOs on data

gravity and friction, we embed the following research in a

motivating example. Although the scenario is tailored to smart

health, the concepts introduced can be applied to any field

that uses distributed edge architectures, such as industrial

automation or smart cities. For now, imagine a scientific

institution conducting medical experiments; therefore, they

require medical data from patients who are located in hospitals

or home care. Depending on the experiment, different data

is required, for instance, internal values (e.g., pulse, blood

pressure, etc.) or skin mutations. The first is provided as a

numeric stream, and the second as an image stream. Data

is provided by IoT devices that are equipped with sensors,

which stream it to the institution. Within the institution, data

is accumulated until the experiment is evaluated and closed.

Patients agreed to participate if personal information was

removed from the data; therefore, medical data must be

transformed according to privacy policies before being stored

centrally. To prevent unauthorized access to personal data, this

transformation must occur directly on the IoT device. Tech-

nically, the smart health device could also provide additional

data that is not part of the experiment, though this data is not

authorized to leave the device. However, patients can decide to

accumulate such data locally on the device, creating a personal

data lake [14], and contribute this data to another experiment.

This may be motivated by a monetary incentive.

However, IoT devices can be very restricted in terms of stor-

age and computational power. Devices that fail to transform the

data within a given time frame are facing “high data friction”.

The personal data lake on the IoT device further complicates

the situation because increasing amounts of data become more

difficult to manage. This can be summarized as “high data

gravity.” To deal with these issues, we introduce SLOs on

data gravity and data friction. We organize IoT devices into

clusters by grouping devices that perform similar tasks and

have low latencies to each other. As far as possible, we add

fog nodes (e.g., gateways and routers) to each cluster. Within
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each cluster, we elect the most powerful device as the cluster

leader [20], which will be responsible for evaluating SLOs and

orchestrating elasticity strategies.

The scenario is depicted in Fig. 1: Medical IoT devices

are grouped into a cluster, which contains a fog device that

assumes the role of the cluster leader. To evaluate the SLOs,

IoT devices provide metrics to the cluster leader, which,

once combined, reflect the high data friction and gravity.

Due to this result, the cluster leader suggests the following

elasticity strategies: (1) Transforming data is now performed

nearby on a more powerful device, reducing data friction

perceived by low-resource IoT devices; (2) scaling down the

QoS (i.e., the data quality) reduces the data size and thus

also data gravity within the personal data lake. The SLOs

thus provided measures to detect and control high gravity and

friction through multidimensional elasticity strategies. This

improves the self-healing abilities of IoT devices [21].

C. Research Challenges

Our approach aims at addressing main research challenges,

which include:

RC-1: Performance metrics for gravity & friction: Since

data gravity was presented in [13], it has been used to

describe data-centric phenomena [7], [14], but only the

author in [15] would propose a formula for measuring

gravity. Data friction, presented in [6], would be used for

a wider range of socioeconomic phenomena [22]–[24],

but never be measured within a system. We envision a set

of metrics that reflect their behavior within a cluster of

edge devices. Thus, exploring the factors that influence

data gravity and friction, and creating the possibility to

monitor a novel set of network properties.

RC-2: SLO composition for data gravity & friction: Next-

level SLOs [5] comprise multiple low-level metrics to

provide advanced guidelines on how a system should

behave. As such, next-level SLOs could also be used to

capture data gravity and friction, which are considered

to be complex network behavior [7], [18]. However,

composing SLOs on friction and gravity requires

mechanisms to collect and accumulate metrics from edge

devices. Based on this data, the SLO could be composed,

evaluated, and paired with elasticity strategies.

RC-3: Multidimensional elasticity strategies on the edge:
Cloud computing solutions (e.g., AWS EC2) provide

customers with an environment that can scale according

to changing demands, mitigating the risk of under- or

overprovisioning resources. Although this concept is

well established in the cloud [10], [25]–[27], there are

few options to orchestrate elasticity strategies at the

edge [11]. However, by evaluating SLOs on a device or

cluster level, we would create the possibility of reacting

to more fine-grained changes in the network behavior.

Elasticity strategies could scale the system in various

dimensions, for example, by adjusting the quality of a

sensor [11] or by offloading processing [28].

III. RELATED WORK

Although there exists work on data gravity and data friction

that discusses their institutional and technical impact (see

Background II-A), as of our knowledge, none of them is

related to their implementation as SLOs. Identifying metrics

that reflect these forces can be compared to the work in

[25], [29], which discusses performance metrics for cloud

computing environments. However, they focused solely on

the computational load of the system to scale resources, thus,

only operating in one elasticity dimension. This is similar to

[30], where the authors discuss metrics for the elasticity of

cloud databases. Complementarily, Fürst et al. [11] introduced

a programming model that supports dynamic adaptations

(comparable to elasticity strategies) within edge environments.

Depending on the resource consumption of an IoT device, it

was possible to dynamically adjust the QoS; however, it lacked

the options to consider other elasticity dimensions.

The Polaris SLO Cloud project2 provides a runtime en-

vironment that enables the combination of custom SLOs

and elasticity strategies. Their work in [2], [5], [10], [31]

provides fundamental concepts that are reused and extended

over the course of this paper: Within [5] they introduced next-

level SLOs, that is, SLOs that compose multiple low-level

metrics. Data gravity and data friction demand such measures

because, as explained in Section II-A, it requires a combination

of metrics to capture such complex network behavior. The

authors in [26] also support this thought; they state that “elastic

behavior should be determined by a combination of factors”,

which is similar to next-level SLOs.

A central component for evaluating next-level SLOs is the

SLO Controller presented in [2] and [31], which provides

the following features: i) Create and update mechanisms for

SLOs, configurations can thus change over time; ii) SLOs and

elasticity strategies are loosely coupled, that is, SLOs and

elasticity strategies can be replaced and reused in multiple

SLO mappings; iii) SLOs are evaluated periodically according

to a configurable interval; iv) metrics required for the SLO

evaluation are queried through a service that relies on native

DB controllers; and v) elasticity strategies are translated to

orchestrator-native representations, which are submitted to

the orchestrator through an integrated controller. For the

specification and configuration of SLOs, the authors have

provided a language called SLO Script [2]. It is an extensible

framework built on TypeScript, which provides type safety,

that is, ensuring compatibility between SLOs and elasticity

strategies at the time of configuration.

Existing work provided a framework for creating complex

SLOs [5], measures for dynamically adapting services based

on the system state [11], and identified the rising importance

of treating data gravity and data friction [7], [17] at its

source, i.e., the network edge. However, we can conclude from

the presented related work that there exist no solutions that

evaluate and resolve data friction or gravity within a distributed

system, which we aim to address with the proposed SLOs.

2https://polaris-slo-cloud.github.io
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(a) (b)

Fig. 2: Constructing a Markov Blanket for (a) Data Gravity (b) Data Friction

IV. MODELLING NEXT-LEVEL SLOS AND THEIR

ELASTICITY STRATEGIES

Although mostly used in statistics and machine learning so

far, we introduce Markov Blankets (MBs) [32] as a structured

approach for exploring composed network metrics, such as

data gravity and friction. Within an MB, we include the metrics

required to determine the state of an SLO, elasticity strategies

to correct a faulty system state, and contextual information

for selecting between these strategies. For constructing an

MB we assume a Directed Acyclic Graph (DAG), in which a

central node x is connected to a set of incoming and outgoing

nodes, i.e., its parents and children. Each parent node p1...pn
represents a random variable that influences the state of x at a

certain time n; if for an arbitrary node y there exists no edge

y → x in the graph, it means that y does not have an influence

on the state of x at the time n.

To form an MB of data gravity, we (1) establish data gravity

as central node x, and (2) arrange the metrics of Section II-A

as parent nodes p1...p4. Each of these parent nodes has an edge

p → x that expresses its direct influence on the data gravity.

Child nodes of x are random variables that are influenced by

the state of x; thus, we (3) introduce elasticity strategies to

treat data gravity. To construct a Markov blanket for a node

x, we must further include parents of its children; we thus

(4) identify additional factors that influence the probability

of performing elasticity strategies. The resulting DAG is

shown in Fig. 2a, which is created by performing steps (1-

4): Data gravity as our composed metric (red); its parent

variables that directly influence the gravity (green); further

factors related to random variables (gray); however, these are

not necessarily part of the MB since their influence can be

derived indirectly through the colored nodes; child variables

that contain elasticity strategies (purple); factors that provide

contextual information for these strategies (yellow).

By definition, the MB must contain all colored nodes from

Fig. 2a; thus including network metrics, elasticity strategies,

and factors that influence these strategies. We define such

a selection as Markov SLO Configuration (MSC), a set of

variables that provides sufficient information for evaluating an

SLO and planning which elasticity strategies to apply based on

the context. Equally, Fig. 2b contains the DAG for constructing

an SLO for data friction, i.e., all information required to build

an MSC. The graph follows the same color code as Fig. 2a;

any set that includes at least all colored nodes meets the

requirements of an MB.

While an MSC determines how an SLO is evaluated and

executed at a time n, this configuration can change over

time, including: (1) adding or removing metrics; (2) adding

or removing factors influencing the elasticity strategies; or (3)

adding or removing entire strategies. Every change is tracked

and indexed with the time nx of the change, which determines

how the system behaves until a new change is reported. The

MSC can thus adapt over time.

V. FROM METRICS TO ELASTICITY STRATEGIES

Based on the information contained in an MSC, it becomes

possible to evaluate an SLO and plan which elasticity strate-

gies to apply. However, from a technical perspective, there

remain a variety of challenges to implementing these SLOs,

including the following:

1) SLOs were traditionally based on metrics that are gen-

erated in the cloud, for example, resource consumption

[25]. SLOs on data gravity or friction are based on

metrics generated on the edge. To that extent, it requires

the possibility of collecting metrics from edge devices,

accumulating them close to the data source, and accessing

them where the SLO is evaluated.

2) Continuously collecting metrics produces a considerable

amount of data. Transferring this information to the cloud

for evaluation increases the overall network traffic. To that

extent, it lacks an architecture that collects metrics and

evaluates SLOs directly on the network edge. Evaluating

SLOs close to where metrics are created would also foster

timely reactions to SLO violations.

3) Traditionally, only a single predefined elasticity strategy

is applied to return the system to its desired state [5].

Contrarily, with the multitude of elasticity strategies

contained in the MSC, it becomes possible to select the

most suitable one. However, there exists no mechanism

to compare elasticity strategies and select one of them.

4) Elasticity strategies proved useful for cloud-based pro-

cessing (e.g. provisioning virtual resources); however,

elasticity strategies that scale the QoS must be enforced

directly at the data source, i.e., at the network edge. To

that extent, it requires an architecture that evaluates SLOs

along the computing continuum, from where elasticity

strategies can be orchestrated to edge devices.

The given challenges can be summarized by the MAPE+K

(Monitor, Analyze, Plan, Execute, Knowledge) cycle [21],

which the authors in [31] used to capture all phases of an

elastic cloud application. The cycle consists of (1) monitoring
the system and collecting metrics, (2) analyzing whether the

SLO is fulfilled based on this information, (3) in case the SLO

was violated, planning which elasticity strategy to apply, and

(4) executing the strategy to restore the system state. To pass

information between the stages, but also to persist knowledge-

based information, a state is shared between the stages.

In the remainder of the chapter, we move through the

MAPE+K cycle and address the given challenges in their

respective phases. We assume that the network is structured
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(a) (b)

Fig. 3: (a) Collecting and evaluating metrics from edge devices (b) Context-
based planning of elasticity strategies

as presented in Section II-B: edge devices and fog nodes are

combined into clusters, each containing a powerful cluster

leader. We use the Polaris runtime from Section III as a

technical reference for specifying SLOs with SLO Script and

evaluating and enforcing SLOs with their SLO Controller.

A. Metrics in the Computing Continuum

Collecting metrics requires a data store deployed close to

the data source. To that extent, each cluster leader hosts

(1) Prometheus3, a time-series database (DB) used to store

metrics, and (2) an instance of the SLO Controller, which will

be required to evaluate the SLO. Unlike some edge devices,

the cluster leader provides sufficient resources to run the SLO
Controller and Prometheus, thus covering heterogeneity within

the edge environment. The structure of the cluster is shown in

Fig. 3a: Device metrics and operational metrics are generated

on the edge devices and continuously ingested into the time-

series DB on the cluster leader.

Following our approach, we collect metrics close to where

they are created and provide them to the SLO Controller
whenever the SLO is evaluated. We would thus solve challenge

(1), by capturing metrics that represent data gravity and

friction and accumulating them close to the edge device.

B. SLO Specification and Analysis

The second step in the MAPE+K control loop consists of

analyzing the system state, i.e., evaluating the SLOs based

on the provided metrics. As depicted in Fig. 3a, this is the

responsibility of the SLO Controller: It first queries low-level

metrics from a configurable data source, composes the SLOs

of data friction and gravity, and then compares the result

against a benchmark. The central entity in the SLO Controller
would be the DataGravitySLO or DataFrictionSLO
class, a direct representation of the SLO logic. It includes

for each low-level metric a reference to a data source (i.e.,

Prometheus) and how it can be extracted.

Within the DataFrictionSLO, metrics are combined as

shown in (1) and (2): processingDelay and cpuLoad are

multiplied to accumulate their values. The cpuLoad maintains

a neutral factor until it rises above a certain degree (tx); only

then does it have a decisive impact on the composed metric.

While processingDelay and cpuLoad are a representation

3https://prometheus.io/

of the metric parameters, the target CPU load (tx) can be

configured freely.

processingDelayms × f (cpuLoad%) (1)

f(x) =

{
(x/tx)

2
, if x ≥ tx

1, otherwise
(2)

We use SLO Script to configure the SLO and link it to an

elasticity strategy. Listing 1 shows how DataFrictionSLO
is mapped to SensorQualityScale, the corresponding

elasticity strategy. Whether the SLO is met or not, is specified

through frictionThreshold; the desired CPU utilization

over targetDeviceLoad. Although the configuration in

Listing 1 statically maps a single elasticity strategy to the out-

come of the SLO evaluation, we will break up this connection

in the planning phase.

export default new DataFrictionSloMapping({
metadata: ...
spec: new DataFrictionSloMappingSpec({

targetRef: ...
elasticityStrategy:

new SensorQualityScale(),
sloConfig: {

frictionThreshold: 50,
targetCPULoad: 70} }) });

Listing 1: Configuring an SLO on data friction with SLO Script

Following the architectural consideration presented, we

evaluate the SLO directly on the edge, close to where the

metrics were created and stored; thus, solving challenge (2).

C. Context-aware Planning of Elasticity Strategies

Suppose that an SLO on data gravity or friction was

violated, the third stage of the MAPE+K cycle consists of

planning corrective measures. To select between multiple elas-

ticity strategies, we introduce a component that receives the

result of the SLO evaluation, queries contextual information,

and identifies the most beneficial elasticity strategy. Depending

on the scenario, “beneficial” could mean e.g., lowest energy

consumption or highest corrective impact on the system.

The architectural extension is illustrated in Fig. 3b: Instead

of mapping only one strategy to an SLO, an array of strategies

can be supplied. The Strategy Planner resolves contextual

information (e.g., costs for relocating data) through the Context
Provider. Static configurations (e.g., quality measures) are

queried from a separate DB, which can be hosted in the cloud.

Since this information rarely changes, it can be cached in the

Context Provider and updated by a trigger function.

Based on contextual information, the Strategy Planner com-

pares the impact of elasticity strategies and selects one. Thus,

we answer challenge (3). As a side note, the Strategy Planner
could even indicate the top n strategies to accumulate their

effects on the system. However, for now, we assume that ei-

ther SensorQualityScale or TaskOffloadKind was

planned to decrease data gravity or friction.
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Fig. 4: Distribute MAPE+K steps over computing continuum4

D. Distributed Execution of Elasticity Strategies

After planning an elasticity strategy, it must be orchestrated

for edge devices; therefore, two components were added to

the architecture depicted in Fig. 3b: the Device Connector and

the Edge Controller. The Device Connector is hosted on the

cluster leader and is responsible for communicating elasticity

strategies to edge devices, where they are received by the

Edge Controller. In the planning phase, the Strategy Planner
picked as elasticity strategy either SensorQualityScale
or TaskOffloadKind, which are described below:

Quality Scaling adjusts the quality of the data that is

produced on an edge device. Processing a stream of lower

quality has been shown to decrease the computational load of

devices [11], [33]; thus, reducing the data friction perceived

by these devices. The managed IoT device must therefore

support dynamic changes in the generated stream. Decreasing

the quality of data reduces its size (i.e., mass); in cases where

data is accumulated locally on the edge device, this decreases

data gravity at the same time.

Task Offloading moves processing to a different device

in the cluster, such as powerful fog nodes [34]. Offloading

processing is motivated primarily by minimizing the streaming

delay, but it can consider other factors, such as lower energy

consumption [28], [35]. Offloading load to more powerful or

less used devices relieves individual devices of excess load,

while at the same time decreasing latency [36]. This reduces

overall data friction within the cluster because devices are less

likely to be pushed beyond their operational limits.

The two strategies presented can correct high gravity or high

friction within a distributed system. For orchestration, they rely

on the SLO Controller, which communicates the instructions

to edge devices. Therefore, we declare challenge (4) as solved.

E. Knowledge Transfer and Markov SLO Configurations

Components involved in SLO enforcement frequently need

to share information with each other; for example, the result

of the SLO evaluation must be communicated from the SLO

4The graphic is an extension of the master-worker pattern presented in
[37], our main modification is the concept of maintaining knowledge-based
information (K) separately and providing it to the remaining steps.

Controller to the Strategy Planner. This type of information is

transient and can be passed between components without per-

sisting. However, if we consider the content of an MSC (i.e.,

metric composition and elasticity strategies), this information

must be federated between cluster leaders and manageable

somewhere along the computing continuum [38]. Whenever

the MSC changes, e.g., by adding new types of metrics or

elasticity strategies, cluster leaders must be able to retrieve

the latest version of the SLO configuration.

Fig. 4 visualizes how edge devices and the cluster leader

exchange information depending on the MAPE+K stages:

Edge devices monitor the status of the system (M) by ingesting

metrics to intermediary storage. These metrics, along with

other knowledge-based information (K), are accessible through

an interface in the cluster leader. Whenever the system status

is analyzed (A), metrics are queried to evaluate the SLO.

Supposed the SLO was violated, contextual information is re-

garded to select an elasticity strategy (P). Eventually, elasticity

strategies are orchestrated to edge devices for execution (E) to

move the system back into its desired state.

The MSC can be administered by another entity, which

hierarchically stands above the cluster leader, e.g., in the cloud.

Thus, it becomes possible to erect multiple layers of SLOs that

each react to changes in their respective environments.

VI. CONCLUSION & FUTURE WORK

In this paper, we presented the autonomous control of data

gravity and data friction through SLOs. This was motivated

by increasing data gravity, which requires relocating computa-

tional power to the network edge, and ubiquitous data friction,

which demands additional resources when transferring data.

To construct SLOs based on data gravity and friction, we

introduced Markov blankets as a novel approach to identify

metrics, elasticity strategies, and contextual factors. Thus,

our approach provides all information needed to evaluate

the SLOs. Selecting a preferred elasticity strategy (i.e., one

that operates in a certain elasticity dimension), considers the

context of the edge environment. Evaluation of SLOs, planning

of an elasticity strategy, and orchestration of a strategy are as-

sumed by a single powerful node. This responsibility can rotate

within the distributed system, cluster leaders can maintain a

state and recover SLO configurations in case of failure. Thus,

we foster the creation of hierarchically organized SLOs that

each react to changes in their respective environments.

For future work, we plan to provide a prototype that

combines the presented components and features the entire

MAPE+K lifecycle of an SLO. Certain aspects, such as the

accumulation of multiple elasticity strategies, will further

require a sophisticated orchestration model.

ACKNOWLEDGMENT

Research received funding from the EU’s Horizon Europe

Research and Innovation Program under Grant Agreement No.

101070186. EU website for Teadal: https://www.teadal.eu/

48

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on October 10,2023 at 13:54:07 UTC from IEEE Xplore.  Restrictions apply. 



REFERENCES

[1] A. Keller and H. Ludwig, “The WSLA Framework: Specifying and
Monitoring Service Level Agreements for Web Services,” Journal of
Network and Systems Management, vol. 11, no. 1, pp. 57–81, Mar. 2003.

[2] T. Pusztai, A. Morichetta, V. C. Pujol, S. Dustdar, S. Nastic, X. Ding,
D. Vij, and Y. Xiong, “SLO Script: A Novel Language for Implementing
Complex Cloud-Native Elasticity-Driven SLOs,” in 2021 IEEE Interna-
tional Conference on Web Services (ICWS). Chicago, IL, USA: IEEE,
Sep. 2021, pp. 21–31.

[3] N. Herbst, S. Kounev, and R. Reussner, “Elasticity in cloud computing:
What it is, and what it is not,” International Conference on Autonomic
Computing, pp. 23–27, Jan. 2013.

[4] S. Dustdar, Y. Guo, B. Satzger, and H.-L. Truong, “Principles of Elastic
Processes,” Internet Computing, IEEE, vol. 15, pp. 66–71, Nov. 2011.

[5] S. Nastic, A. Morichetta, T. Pusztai, S. Dustdar, X. Ding, D. Vij, and
Y. Xiong, “SLOC: Service Level Objectives for Next Generation Cloud
Computing,” IEEE Internet Computing, vol. 24, no. 3, pp. 39–50, May
2020.

[6] P. N. Edwards, A vast machine: computer models, climate data, and the
politics of global warming. Cambridge, Mass: MIT Press, 2010, oCLC:
ocn430736496.

[7] M. Campbell, “Smart Edge: The Effects of Shifting the Center of Data
Gravity Out of the Cloud,” Computer, vol. 52, no. 12, pp. 99–102, Dec.
2019.

[8] S. Dustdar, V. C. Pujol, and P. K. Donta, “On Distributed Computing
Continuum Systems,” IEEE Transactions on Knowledge and Data
Engineering, vol. 35, no. 4, pp. 4092–4105, Apr. 2023.

[9] W. Shi and S. Dustdar, “The Promise of Edge Computing,” Computer,
vol. 49, no. 5, pp. 78–81, May 2016.

[10] S. Nastic, T. Pusztai, A. Morichetta, V. C. Pujol, S. Dustdar, D. Vii,
and Y. Xiong, “Polaris Scheduler: Edge Sensitive and SLO Aware
Workload Scheduling in Cloud-Edge-IoT Clusters,” in 2021 IEEE 14th
International Conference on Cloud Computing (CLOUD). Chicago, IL,
USA: IEEE, Sep. 2021, pp. 206–216.

[11] J. Fürst, M. Fadel Argerich, B. Cheng, and A. Papageorgiou, “Elastic
Services for Edge Computing,” in 2018 14th International Conference
on Network and Service Management (CNSM), Nov. 2018, pp. 358–362,
iSSN: 2165-963X.

[12] V. Casamayor-Pujol, P. K. Donta, A. Morichetta, I. Murturi, and S. Dust-
dar, Distributed Computing Continuum Systems – Opportunities and
Research Challenges, Mar. 2023.

[13] D. MacCrory, “Data Gravity – in the Clouds – Data Gravitas,”
Dec. 2010. [Online]. Available: https://datagravitas.com/2010/12/07/
data-gravity-in-the-clouds/

[14] H. Alrehamy and C. Walker, “Personal Data Lake With Data Gravity
Pull,” Aug. 2015.

[15] Digital Realty, “Data Gravity Index DGx,” Tech. Rep. V1.5, 2022.
[Online]. Available: https://www.digitalrealty.com/platform-digital/
data-gravity-index

[16] F. Xhafa, B. Kilic, and P. Krause, “Evaluation of IoT stream processing
at edge computing layer for semantic data enrichment,” Future Gener-
ation Computer Systems, vol. 105, pp. 730–736, Apr. 2020.

[17] P. Edwards, M. Mayernik, A. Batcheller, G. Bowker, and C. Borgman,
“Science Friction: Data, Metadata, and Collaboration,” Social studies of
science, vol. 41, pp. 667–90, Oct. 2011.

[18] J. Bates, “The politics of data friction,” Journal of Documentation,
vol. 74, Aug. 2017.

[19] S. Gritzalis, E. R. Weippl, S. K. Katsikas, G. Anderst-Kotsis, A. M. Tjoa,
and I. Khalil, Eds., Trust, Privacy and Security in Digital Business: 16th
International Conference, TrustBus 2019, Linz, Austria, August 26–29,
2019, Proceedings, ser. Lecture Notes in Computer Science. Cham:
Springer International Publishing, 2019, vol. 11711.

[20] I. Murturi, “Resource Management and Elasticity Control in Edge
Networks,” Ph.D. dissertation, 2022, p. 38-44.

[21] J. Kephart and D. Chess, “The vision of autonomic computing,” Com-
puter, vol. 36, no. 1, pp. 41–50, Jan. 2003.

[22] V. Aula, “Institutions, infrastructures, and data friction – Reforming
secondary use of health data in Finland,” Big Data & Society, vol. 6, p.
205395171987598, Jul. 2019.

[23] K. Eschenfelder and K. Shankar, “Of Seamlessness and Frictions:
Transborder Data Flows of European and US Social Science Data,” Mar.
2020, pp. 695–702.

[24] G. Panagiotidou, J. Poblome, J. Aerts, and A. Vande Moere, “Designing
a Data Visualisation for Interdisciplinary Scientists. How to Transpar-
ently Convey Data Frictions?” Computer Supported Cooperative Work
(CSCW), pp. 1–35, Jul. 2022.

[25] M. Beltrán, Defining an Elasticity Metric for Cloud Computing Environ-
ments, Nov. 2016, vol. 2, journal Abbreviation: EAI Endorsed Transac-
tions on Cloud Systems Publication Title: EAI Endorsed Transactions
on Cloud Systems.

[26] M. M. Bersani, D. Bianculli, S. Dustdar, A. Gambi, C. Ghezzi, and
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