2024 IEEE International Conference on Service-Oriented System Engineering (SOSE)

Diffusing High-level SLO in Microservice Pipelines

Boris Sedlak, Victor Casamayor Pujol, Praveen Kumar Donta, and Schahram Dustdar

Distributed Systems Group, Vienna University of Technology (TU Wien), Vienna 1040, Austria.
{b.sedlak, v.casamayor, pdonta, dustdar}@dsg.tuwien.ac.at

Abstract—Complex interactions within microservice architec-
tures obfuscate the implications of individual services to high-
level requirements. This becomes even more grave for multi-
tenant and multi-vendor scenarios, like Edge computing, where
different stakeholders might specify opposing Service Level
Objectives (SLOs), e.g., minimizing both energy consumption and
response time. To avoid contradictions within SLOs and to infer
how SLOs can be fulfilled, this paper presents a methodology that
diffuses high-level SLOs into multiple lower levels of SLOs and
parameter assignments. Thus, it becomes clear how individual
sub-processes contribute to high-level SLOs, and how these
must be configured to foster their fulfillment. We evaluated
our methodology for several microservice pipelines, where the
challenge is to ensure multiple high-level SLOs (e.g., customer
satisfaction) by finding and constraining all influential factors.
The results show that by inferring multiple layers of lower-level
constraints, we can fulfill high-level SLOs up to 100%. Notably,
we could extract that the restrictiveness of low-level SLOs and the
occurrence of conflicts have a severe impact on SLO fulfillment.

Index Terms—Service Level Objectives, Microservices, Intelli-
gent Systems, Edge Computing, Requirements Assurance

I. INTRODUCTION

Many current internet-based applications are composed
of a network of microservices, each providing a specific
functionality to the application; common instances are data
transformation pipelines or machine learning pipelines. These
instances benefit particularly from service-oriented architec-
ture [1], which improves both modularity and flexibility, while
keeping services loosely coupled — boosting scalability. How-
ever, each service’s performance depends on its neighboring
services, i.e., those that send or receive data from it. Hence, if
its performance deteriorates, this affects neighboring services
and, ultimately, the overall application performance.

To assess the application’s overall performance, Cloud com-
puting uses Service Level Objectives (SLOs); typical SLOs
are response time or availability, which refers to the entire
application, but not to individual services [2]. Whenever an
SLO is violated, services are scaled to reestablish the expected
performance level. However, Cloud providers are generally
unaware of which services should actually be scaled; simply
scaling all services (or candidates) can turn out extremely
inefficient. In this sense, there exist works that pinpoint which
services to scale by finding applications’ critical path [3]
or performing causal analysis on service architectures [4].
Applying such methods requires considerable time, which can
propagate failures in large and distributed applications [5].

However, when looking into novel computing paradigms,
such as Edge computing [6] or the computing continuum [7],
some Cloud-based rules simply do not apply: First, only parts

2642-6587/24/$31.00 ©2024 IEEE
DOI 10.1109/SOSE62363.2024.00008

of their infrastructure can be scaled; secondly, both paradigms
assume a multi-tenant and multi-vendor scenario [8], i.e., in-
frastructure is used to host multiple applications, which belong
to different stakeholders. When stakeholders set their SLOs,
it is challenging to identify whether these are compatible; in
many cases, SLOs of different stakeholders can be opposing —
causing conflicts. For instance, infrastructure providers could
aim at hosting several applications on devices, and hence limit
processing time available per tenant (i.e., the applications);
application developers, on the other hand, want maximum
quality for end users. Attempts to satisfy both will result in a
contradiction, which must be circumvented to avoid undesired
system behavior, or even worse, breakdown.

SLOs can be used to constrain different levels of abstraction,
from high-level goals such as response time and client satis-
faction, down to hardware utilization of individual devices.
For application stakeholders, the most intuitive choice is to
start posing SLOs that look at the overall performance of the
system [9]; we call the resulting constraints “high-level SLOs”.
These high-level SLOs can target different aspects of QoS
or Quality of Experience (QoE), such as high video stream
resolution, or decreased energy consumption, but also cost.
The question remaining is how to determine under which con-
ditions a system can actually fulfill them. For example, what
does it take to minimize energy consumption? The answer
might be to restrict CPU load or other resource utilization; we
call these derivative constraints “low-level SLOs”. However,
it is tedious for application developers to specify SLOs for
increasingly large microservice applications; in most cases,
they would also lack in-depth knowledge of how to diffuse a
high-level SLO into the corresponding low-level SLOs.

To decrease the overall complexity of system design, we
present a 3-step methodology that diffuses high-level SLOs
throughout an application, which means splitting them up into
a set of lower-level SLOs. To control all of these SLOs and
maintain them within bounds, the methodology identifies pa-
rameters that causally influence the required SLO fulfillment,
and how they should be assigned. Finally, the methodology de-
tects conflicts caused by high-level SLOs, which might occur
at any abstraction level. If possible, these conflicts are resolved
autonomously; otherwise, it is indicated to stakeholders that
they require amendment. Thus, the contributions of this article
are the following:

1) A service-oriented methodology that describes applica-
tion requirements through multiple layers of SLOs. This
enables fine-grained control of the overall system in
multi-tenant and multi-vendor scenarios.

2) A diffusion mechanism that propagates high-level SLOs
into lower-level ones. To fulfill the associated high-level
SLOs, the algorithm defines adequate performance ranges
for lower-level SLOs. Further, it identifies parameters (if
they exist) that are able to control lower-level SLOs.

A conflict identification algorithm for high-level SLOs
based on diffused lower-level SLOs. The algorithm is able
to resolve conflicts (if they can be solved autonomously),
and otherwise alert stakeholders.

3)

The remainder of the paper is structured as follows: Sec-
tion II introduces background knowledge and related work;
Section III presents our methodology for diffusing SLOs,
which is implemented and evaluated in Section IV. Finally,
Section V, concludes our paper with a future scope.

II. PRELIMINARIES

This section provides an overview of background knowledge
on Bayesian networks and how these can be used to specify
SLOs. Furthermore, it contains related work that applies SLOs
and Bayesian networks for describing system requirements.

A. Background

Bayesian Networks (BNs), as applied by Pearl [10], are
structural causal models that can be represented as Directed
Acyclic Graph (DAG); see Figure 1 for an example graph that
is trained in Section IV-C. Nodes in a BN represent random
variables (e.g., cpu), whereas an edge between two variables
(e.g., cpu — energy) indicates a conditional dependency,
i.e., cpu has an impact on the states that energy takes.
For example, given that we observe a variable assignment
cpu = z, the BN can provide the probability that a dependent
variable is in a respective state energy y; this can be
expressed using Bayes’ theorem as shown in Eq. (1).

P(cpu | energy) x P(energy)
P(cpu)

BNs are used to model real-world processes: numerous
works (e.g., [11]-[13]) train BNs from historical observations
(i.e., metrics) to model the probabilities of different system
states. Thus, BNs can answer how likely it is to observe
a certain variable assignment, e.g., a system runtime state,
given historical observations. Spinning this thought further,
in previous work [14], [15] we applied BNs to predict SLO
fulfillment of microservices. In particular, we constructed
high-level SLOs around BN variables, e.g., energy < 10W,
to infer the probability of SLO violations under different
assignments of dependent variables. Thus, we found satisfying
service configurations (i.e., parameter assignments) by repeat-
edly evaluating queries like P(energy > 10 | cpu =).

The respective SLO descriptions contain the following three
parts: a random variable (var), a conditional relation (rel),
and a threshold (thresh), where var € BN, rel € {<,>},
and thresh € Q; hence, possible examples are latency < 10,
or cpu < 95. The second SLO type requires an objective
(obj) and a variable (var), where obj € {min, maz}; such
objectives, e.g., max(QoF), are optimized during operation.

P(energy | cpu) = (D

StreetAnalysis VéhicleRoutihg ~ IsentropicPrint@Fog |sentropicPrint@Fog

delta cummulative_dglay gpu memory
Nnalysis@oﬂn
& \
StreetAnalysis@Orin V hic/eRoutﬁvg WeatherSensors IsentropicPrint@Fog
cpu \ energy / data_size delta
C P N /
StroatAnah ',,\5{ fps IsentropicPrint@Fog IsentropicPrint
’ \ cpu isent_level
memory

IsentropicPrint
ig_size

VéhicleRouting,
viewer_satisfagtion

pixel

Fig. 1: Combined BN for a microservice pipeline that consists of the
following evaluate services: VehicleRouting (yellow center), CameraWrapper
and StreetAnalysis (left), and WeatherSensors and IsentropicPrint (right)

Noteworthy, within [14] we presented BNL — a customized
algorithm for Bayesian Network Learning (BNL) — which will
be applied later in the methodology of this paper.

Given a BN, such as Figure 1, we note two fundamental
properties that will be exploited in this paper: (1) any variable
(v) that describes a high-level SLO is a leaf node, i.e., it
has only incoming edges, otherwise, v’s child (or grandchild)
would be constrained; since BNs are acyclic, there is always
a leaf. Hence, edges in BNs point toward the high-level SLO,
which means that fulfilling them is a consequence of main-
taining all parent variables in a desired range — these are low-
level SLOs. Further, (2) parameters are root nodes, i.e., without
incoming edges, because they are conditionally independent of
other variables; if there were some, actively setting a parameter
would remove any parent edge. The diffusion algorithm in
Section III-C will build upon these properties.

B. Related Work

In the context of this paper, we identified two main areas
of related work that intersect with our research: (1) SLO-
aware service description to continuously ensure system re-
quirements, and (2) modeling systems as large-scale BNs to
estimate how changes propagate or can be countered.

1) SLO-Aware Service Description: Pusztai et al. [9], [16],
[17] provide next-level SLO descriptions, i.e., such that are
composed of multiple variable thresholds; hence, SLOs can
reflect more complex conditions. Their central contribution
— an edge-based workload scheduler — is similar to Guan
and Boukerche [18]; the latter present QoS-aware processing
methods through different AI methods, though BNs were not
discussed. To ensure latency SLOs, Seo et al. [19] provide
a dynamic decomposition of ML tasks into smaller subtasks;
however, SLOs were not diffused further. Cao [20] outlines
a research agenda for an SLO-oriented management layer
for cloud-edge infrastructure; Cardelli et al. [21] design an
autonomous elasticity mechanism to ensure QoS in cloud-edge
service chains. The authors in [22] discuss the importance of
controlling distributed systems with DeepSLOs, i.e., such that
span multiple abstraction layers; their vision, however, was not
implemented yet, as counts for [23].

Given these works, we summarize that SLOs are the state-
of-the-art solution to specify requirements for cloud comput-

#1: Bayesian Network Learning

Processing Delay

Latency SLO

#2: Diffusion of High-level SLOs

0
)

Fig. 2: 3-Step methodology for ensuring high-level SLOs through diffusion

#3: Conflict Management

ing; nevertheless, there is an ongoing translation of SLOs from
the cloud to the edge. Although authors like [18] and [19]
recognize the importance of Al to ensure edge-based SLOs,
none of the presented would further diffuse high-level SLOs
to identify respective lower-level SLOs.

2) Large-scale Bayesian Network Modelling: Yazdi et
al. [11] presented a dynamic BN to assess the resilience of
a pipeline system — providing insights under which conditions
QoS can be assured. Extending to compound systems, Chen et
al. [4] provided a dynamic causality graph called Causelnfer
that pinpoints issues during runtime. Causelnfer uses a two-
tier mechanism to split a system into device and service layers.
Wang et al. [24] transformed a dynamic fault tree into a BN to
trace fault propagation within a vehicle control network. This
could infer the probability of faults under different hypotheti-
cal setups. BNL is still an actively developing field: Kitson et
al. [25] provide a comprehensive overview of techniques and
algorithms that create accurate causal models, whereas Vowels
et al. [26] provides a survey on that topic.

Given these works, we conclude that numerous works focus
on training accurate BNs from observations; the use cases
behind them are manifold. Although most of them apply the
BN to extract some sort of knowledge, none of them used
its conditional dependencies to infer how target states can be
assured through lower-level requirements.

III. METHODOLOGY

In this section, we start by presenting a set of research
questions. Then, we illustrate our 3-step methodology that
ensures high-level requirements by disseminating them into
lower-level subcomponents; it first trains a BN for a service
composition or pipeline, then diffuses low-level SLOs and
parameter assignments, and lastly indicates and resolves con-
flicts within low-level SLOs and parameters. Figure 2 provides
an overview of this methodology; the sequential steps are
embedded into the respective subsections III-B to III-D.

For all following algorithms, Table I presents a summary of
variable notations used in this methodology section.

A. Research Questions

In the following, we describe three research questions
extracted from the introduction, each accompanied by a
motivating description. These questions will guide both the
methodology as well as its evaluation

TABLE I: Frequently used variable notations

Notation

S
M

Meaning

An individual microservice

Multidimensional metrics describing s state
Wrapper for all metrics in the application
Training data set joint for all services
Bayesian network graph trained from D

List of all high-level SLOs

An individual high-level SLO ¢ € Q

The parent node of another variable (e.g., q)
A grandparent node, i.e., parent of p

List of desired states to fulfill SLOs

A state of a high-level SLO variable

A state of a lower-level parent variable

Total probability of fulfilling g with p = Il
Dictionary to store llq according to I
Probability threshold for including a state [l
Hyperparameter to customize acceptance range
List of raw low-level SLOs and parameters

A random variable in GG, might be g, p, etc
Duplicate constraints for v in L

Intersection between multiple constraints

List of constraints without duplicates (easy)
List of constraints that presented minor conflicts
List of low-level SLOs and assignments (final)
List of major conflicts that were not resolved

QQCUB???@ N X

RQ-1) How can high-level SLOs be translated to lower-level
objectives? Fulfillment of high-level SLOs emerges from a
wider equilibrium among the system components; this can be
ensured by maintaining sub-processes (or components) under
the respective conditions that foster this. However, to the best
of our knowledge, there exist no mechanisms that translate
stakeholders’ high-level SLOs into lower-level SLOs. As an
answer to that, our methodology should infer low-level SLOs
by leveraging in-depth knowledge about system dynamics.

RQ-2) How restrictive should low-level SLOs be? The
more hierarchical and dense a list of SLOs becomes, the less
trivial it is what values a low-level SLO should assume to
fulfill high-level ones. In reality, predicting the behavior of
complex systems will not yield a single possible outcome, but
a probabilistic list of states. To that extent, low-level SLOs can
hardly be expressed in “black-or-white logic”, but the question
is how to decide if a low-level state is desirable or not.

RQ-3) Where do conflicts among SLOs occur and how
can they potentially be resolved? When reasoning rationally,
it is intuitive that a system cannot fulfill two competing
requirements at the same time, e.g., minimizing energy while
maximizing customer_satisfaction. However, with an increas-
ing number of SLOs, stakeholders cannot always maintain an
overview; hence, the question is in which part of the system
conflicts will actually occur, and to what extent, or under
which conditions, they can be resolved autonomously.

B. Bayesian Network Learning

Given a microservices application, e.g., a sequential pro-
cessing pipeline, the objective of this first methodology step is
to provide a causal understanding of the dependencies between
the services. To achieve this, we reveal the relations of differ-
ent services through BNL — this combines all their variables in
one graph. Before that, however, we must collect the necessary

training data. Therefore, we observe all applied microservices
during runtime and collect multidimensional metrics (M) that
describe each service’s (s) internal processes.

Training data can be collected periodically or in one opera-
tion; in any case, the data from all microservices is combined
within D. Notice, that metrics from different services must be
captured under equal configurations, e.g., if a pipeline contains
two sequential microservices CameraWrapper — StreetAnal-
ysis, the streaming data produced by CameraWrapper must
be the exact same received and processed by StreetAnalysis.
This can be assured by (1) capturing both services’ metrics at
the same time and joining rows over their timestamp, or (2)
maintaining comparable conditions for data sets and joining
them over interface variables, i.e., such that describe the same
transmitted data on both sides, like video resolution.

Next, metrics are processed with BNL to turn them into a
composite graph; this is reflected by Algo. 1 (Lines 1-4), which
also provides the wrapper for the overall methodology. While
BNL is known from Section II-A, JOIN combines training
data of different services incrementally into one data set (D);
feeding D to BNL turns it into a graph G. Afterward, G
contains the dependencies between service variables and their
conditional probabilities of assuming certain variable states.

Algorithm 1 Wrapper for the 3 methodology steps

Require: M, @ {Service metrics and high-level SLOs}
Ensure: U, C' {Low-level SLOs, params, and conflicts}
. L,D—

2: for each M, in M do

32 D« JOIN(D, My)

4: end for

5: G «— BNL(D) { — Step 1}

6: L — HLD(G,Q, ,) { — Step 2}
7: U,C «— CIR(L) { - Step 3}

8: return U,C

C. Diffusion of High-level SLOs

The diffusion requires the BN (G) from the previous step
and a list of high-level SLOs ()) — the shape of individual
SLOs is as introduced in Section II-A. In the following, we
start traversing G from nodes that represent high-level SLOs
and then gradually visit their ancestors (i.e., nodes with an
edge pointing to them). To fulfill high-level SLOs, each node
is extended with a threshold it must ensure; if it is a root
node, it is called a “parameter”, otherwise a “low-level SLO”.
This is shown in Fig. 3, where high-level SLO variables are
located on the right (purple); by traversing its parents, the
middle column is constrained to certain thresholds, which are
reached through the parameter assignments on the left (i.e.,
grandparents). Visiting variables more than one time can lead
to conflicts — this is discussed further in Section III-D.

The diffusion’s abstract implementation is shown in Algo. 2,
which accepts two additional input parameters: a parent node
(p) and a list of target states (Sp;). However, these are

Processing Delay Latency SLO
3] el >
—>
Min (Energy)
R
CPU Load
Video Resolution f Max (QoE)
—
S|

Conflicting High-Level SLOs

Fig. 3: Diffusing high-level SLOs into lower-level SLOs and assignments

only set in subsequent recursions. The start case (Lines 2-
5) is simple: for every high-level SLO (g), find all states
hl € STATES(G, q) that satisfy ¢’s target condition (Line 4).
For example, given an SLO latency < 10, Sp; summarizes
all known states of latency that meet this threshold. Next, in
Lines 18-20, find ¢’s parents and constrain each parent node
(pp) by inferring respective low-level states that cause S;.

Traversing ¢’s parents instantiates multiple recursions (Lines
6-14): for every parent variable (p), find p’s states that (likely)
fulfill ¢; in other words, this is the low-level SLO or parameter
assignment. This can be inferred from a BN through variable
elimination [27] (VE) — an instance of exact Bayesian infer-
ence. For every low-level state [l € STATES(G,p), we call
VE(G, ¢q,p = ll), which returns the probability of different
outcomes (i.e., that a high-level state ¢ = hl occurs) when
assigning p = [l; in Algo. 2, we abbreviate this P(¢ = hl | p =
Il) as z. However, if observing ¢ = hl is actually desirable, is
determined by hl’s occurrence in the list of target states (Line
9). For every state [/, the probability of p = [l causing a desired
outcome (i.e., fulfilling ¢) is summarized (Il,;) and appended
to X — a temporary storage to collect these probabilities.

Whether a state [/ is included in the low-level SLO, is
determined by I, — its probability of causing ¢ to be fulfilled.
In particular, [l, must meet the acceptance threshold (¢),
which is calculated relative to the state with the highest
probability (Line 15). The acceptance range can be customized
through the hyperparameter A € (0,1] — higher A raises ¢
proportionally; hence, the acceptance range becomes more
narrow, meaning fewer states can satisfy it. The accepted states
constitute either a low-level SLO or a parameter assignment
of p; what follows, is that these constraints are appended to
L, as done for recursively visited nodes.

After all high-level SLO variables and their ancestors were
visited, L contains all low-level SLOs and parameters that
were inferred from G; however, it potentially includes du-
plicate entries for variables that were visited multiple times.
This methodology step addressed (RQ-1) by presenting a
diffusion mechanism for high-level SLOs; (RQ-2) was equally
addressed by specifying the acceptance threshold A. Never-
theless, for both of them, the evaluation must provide further

Algorithm 2 High-level SLO diffusion (HLD)

Algorithm 3 Conflict identification and resolution (CIR)

Require: G,Q,p, Sp; A\ (global)
Ensure: L {List of low-level SLOs and parameters}
1: for each ¢ in @) do

2: ifp:@vShl:@then

3: p—q

4: Shi — {hl | hl € STATES(G, q), q(hl) = True}
50 else

6: for each [l in STATES(G,p) do

7: ly <0

8: for each (hl,2) in VE(G,q,p =) do
9: if hl € Sy; then

10: Uy <1y +2

11: end if

12: end for

13: X[l < (1L,1y,)

14: end for

15: t — mazx(X) x A

16: S — {UL] (I,1l,) e X,y =t}

17: end if

18: for each p, in PARENTS(G,p) do

19: L — HLD(G, ¢, pp, Sn) v L

20: end for

21: end for

22: return L U (p, Shy)

details on their influence on high-level SLO fulfillment.

D. Conflict Management

After inferring low-level SLOs and parameter assignments,
the entire collection (L) is post-processed to identify and
resolve conflicts. Generally, if a variable v € G was visited
n times, then L contains n constraints for v — what differs are
the imposed thresholds, each according to another high-level
SLO. Recall Fig. 3, where the grandparent on the left (i.e.,
fps and video_res) were visited two, and respectively, three
times; the colored arrows in the variable range indicate from
which high-level SLO the constraint originated. The central
difference between the two cases is the following: for fps
there exists a satisfying intersection of its constraints (red N
green), whereas the constraints of video_res are disjoint and
not satisfiable. In the following, we resolve the former case as
“minor conflict”, and indicate the latter as “major conflict”.

This behavior is expressed in more detail in Algo. 3; in
particular, all entries in L are traversed to determine if there
are conflicts, and whether they can be resolved. In the simplest
case, a variable (v) is only present once in L; all variables that
fulfill this condition are collected in A (Line 4). Otherwise, for
a list of duplicate constraints (L,), the intersection between all
the variables’ constraints is calculated according to Eq (2).

n
INTER(Ly) = (| LinL;#Q
i.j=1Lii%j

2

If there exists an intersection (k), this resolves the conflict
and k is appended to B (Line 8) — the list of minor conflicts.

Require: L {List of low-level SLOs and parameters}
Ensure: U, C' {Unique constraints and conflicts}

1: A,B,C— g

2: for each (v, Sy;) in L do

3: if COUNT(L,v) =1 then
4 A%(U,Sh,g)uA

5: else

6: k «— INTER(DUPL(L,v))
7 if £ # ¢ then

8 B« (v,k)uB

9 else

10: C—ovuC

11: end if

122 end if

13: end for

14: return Au B,C

Otherwise, if the constraints are disjoint, v is appended to C'
(Line 10) — the list of major conflicts. Finally, Algo. 3 returns
a list of unique constraints (U), which combines A u B; C'is
maintained separately so that these conflicts can be indicated
to application developers. Algo. 1 returns the same lists.

With the presented methodology, conflicts occur indepen-
dently of the order in which high-level SLOs are traversed;
it is not the case, for example, that the first high-level SLO
visiting a variable is prioritized. However, resolving major
conflicts would inevitably require some sort of hierarchy
among the high-level SLOs, otherwise there cannot be any
satisfying variable assignment. Hence, we answered what
kinds of conflicts can be resolved (RQ-3); the evaluation
will provide further details on where conflicts actually occur.
This concluded the presented methodology, which started by
training a BN from metrics, inferring low-level SLOs, and
finally, in this subsection, resolving conflicts as far as possible,
or at least indicating them to the application developer.

IV. EVALUATION

To evaluate the ideas presented in this paper, we focus on
the individual steps of the methodology and highlight whether
the outcome fulfills the research questions. For this, we first
outline how the evaluation scenarios were set up and how the
methodology was implemented; then we present the results of
our experiments and discuss their implications.

A. Evaluation Scenarios

We evaluate our methodology multiple times under different
scenarios; each scenario consists of a microservices applica-
tion, where individual services are chained together to form a
composite pipeline. Please refer to Table II for a list of all mi-
croservices. The presented services are categorized into three
types: (1) producer services provide sensor data, (2) worker
services run data processing, and (3) consumer services face
clients and determine how the pipeline is perceived; hence,
stakeholders would place high-level SLOs for consumers.

TABLE II: Microsevices available for evaluation

ID | type param / var host
TrafficSensors [28] | Producer 1/1 Xavier
HistoricDB | Producer 2/2 Server
CameraWrapper [29] | Producer 2/2 Nano
WeatherSensors [30] | Producer 1/1 Xavier
AnomalyDetection [28] ‘Worker 0/5 Fog
HistoricProvision Worker 2/17 Server
StreetAnalysis [31] ‘Worker 0/4 Orin
PrivacyTransform [29] Worker 0/6 Orin
IsentropicPrint [30] Worker 2/6 Fog
TrafficPrediction | Consumer 0/2 Fog
VehicleRouting | Consumer 0/3 Orin
LiveMonitoring | Consumer 0/3 Server

Jetson Xavier
Latency < 110

MAX(QoE) ‘
Cloud Server

HistoricDB ;
LiveMonitoring «—
DataProvisioning

J

CameraWrapper ‘

Jetson Orin

StreetAnalysis

wioysuel | Aoeaud

VehicleRouting

Fog Node A

J
£ Jetson Nano

TrafficPrediction sentroplcPrint '—

Anomaly Detection

‘ WeatherSensors

o
‘ TrafficSensors

Latency <45
MIN(energy)

Latency <40

MIN(energy)

Fig. 4: Logical microservice architecture with the respective hosting devices

The internal state of each service is described by a set
of variables, which can be collected and analyzed through
metrics. Some variables can actively be set by the stakeholder
to change the resulting service; we call those variables “pa-
rameters”. Each service in Table II features a column that
specifies the ratio between parameters and variables. For Isen-
tropicPrint, the param/var ratio 2/5 indicates that it features
5 variables, of which 2 are parameters. The last table column
specifies at which host'the services are executed; please refer
to [14] for additional information on device capabilities.

Hosting devices have direct implications on SLO fulfillment,
for example, due to heterogeneous hardware capabilities [32].
Among the specified hosts, some devices are more restricted
than others; as an example, Server dwarfs all Jetson devices
(i.e., Nano, Orin, and Xavier). Nevertheless, in this paper, we
assume that deployments of individual services are predeter-
mined. Consequently, this also defines the networking delay
between services, which in turn, affects the overall execution
time for service pipelines distributed over multiple hosts.

In particular, Figure 4 shows the logical distribution between
services and hosts, i.e., where individual services are deployed.
Microservices are connected alongside the arrows, where data
flows in the pointing direction. This creates pipelines from
the producers (blue), over the workers (red), to the consumers

(yellow). For instance, using VehicleRouting and all its parent
nodes, it is possible to assemble a smart city application that
consumes road conditions to reroute traffic.

In the following, the objective will be to diffuse the high-
level SLOs for each consumer application and its dependent
services. The grey hexagons in Figure 4 represent high-level
SLOs that stakeholders specified for every consumer service.
For instance, to evaluate LiveMonitoring, its high-level SLOs
are diffused over all parent services it depends upon: Isen-
tropicPrint, WeatherSensors, PrivacyTransform, StreetAnaly-
sis, and CameraWrapper. Thus, we provide evidence of how
these services contribute to the posed high-level SLO.

B. Implementation

We provide a Python-based prototype’that implements all
aspects of our methodology; apart from that, the repository
contains all microservices used to generate BNL training
data. Notice that, as depicted in Table II, microservices were
adopted from existing research as far as possible. As discussed
in Section II-A, the applied BNL algorithm also originates from
previous work; noteworthy, for this paper, we implemented
the algorithm with pgmpy [33] — a python framework. To
ensure that the trained BN models all applied microservices
precisely, the services were configured to evaluate all possible
parameter permutations during runtime. While this presents a
limitation to the applicability of our methodology, it can be
circumvented with alternative approaches, e.g., interpolating
between empirically visited configurations [32].

Metrics created by each service are collected in CSV files:
80% are used for BNL, whereas the remaining 20% are
retained for evaluation purposes. For each application, we first
use the training set to train a BN, which is then used to execute
our methodology. Afterward, any resulting SLO fulfillment
was measured for the test data set; the scripts to create results,
images, or tables are all contained in the repository.

C. Results

In the following, we address the three research questions
that were posed in Section III-A. For each question, we explain
how it was evaluated, and then discuss the respective results.

1) SLO Diffusion (RQ-1): A consequence of successfully
translating high-level SLOs to low-level ones would be to find
system configurations (i.e., parameter assignments) that fulfill
high-level SLOs; hence, we will analyze the resulting SLO ful-
fillment as an indicator for a correct diffusion. To that extent,
we diffuse the respective high-level SLOs over each consumer
service and infer low-level SLOs and parameter assignments.
We configure the system according to the inferred constraints
and analyze whether this could control SLO fulfillment.

The first step is to train a BN for each application; as
an example, Figure 1 shows the BN for VehicleRouting and
all microservices it depends on. Grey nodes reflect high-level
SLOs, green ones low-level SLOs, and purple nodes parame-
ters; each service also features a unique symbol. For example,

ZPrototype artifact available at GitHub, accessed Apr 10th 2024

TABLE III: SLOs and parameters inferred for VehicleRouting

Microservice Variable States SLO / Param
cumm_delay < 45 ms
VehicleRouting energy <19W High-level
viewer_sat
StreetAnalysis delta < 35 ms
StreetAnalysis cpu (Orin) <21 %
StreetAnalysis gpu (Orin) <40 % Low-level
IsentropicPrint delta < 37 ms
IsentropicPrint cpu (Fog) <17%
CameraWrapper pixel =480 p
CameraWrapper fps =15f
IsentropicPrint fig_size <50p Parameter
IsentropicPrint isent_level < 200 k
WeatherSensors data_size < 30 pi

TABLE IV: High-level SLO fulfillment of inferred and alter-
native assignment for all three evaluated applications

Microservice High-level SLO ‘ % Min % Fulfill % Max

. . cumm_delay < 45 0.00 0.94 1.00
VehicleRouting min(energy) ‘ 053 099 1.00
TrafficPrediction cumm_delay < 40 \ 0.00 0.83 0.90
LiveMonitorin cumm_delay < 110 | 0.13 0.93 1.00

g max(viewer_sat.) 0.00 1.00 1.00

the fulfillment of the central energy SLO is dependent on
the variables that have an edge directed to it, i.e., the gpu
of StreetAnalysis, and the cpu from both StreetAnalysis and
IsentropicPrint. Apart from them, there exist nodes that do
not impact high-level SLOs (i.e., they have no directed path
to grey nodes), which will not be traversed by Algo 2.

The resulting constraints are shown in Table III, which con-
tains all low-level SLOs and parameter values that were dif-
fused from the high-level SLO; notice how viewer_satisfaction
was not constrained in this scenario. Given the high-level
SLOs (i.e., first two rows), the low-level SLOs (i.e., second
part) present indicators for preferable variable distributions,
which are best assured by assigning parameters as specified.
Parameters such as pixel and fps are assigned to one value,
whereas the latter three can assume arbitrary values in a range
— each value supposedly fulfills low-level SLOs to a degree
>). For instance, any data_size < 30 causes cpu and delta
(check dependencies from Figure 1) to stay in bounds, while
keeping energy at 19W — the lowest possible assignment.

For all three applications, we configured the parameters
according to the inferred thresholds and evaluated the SLO
fulfillment; the respective results are contained in Table IV.
The maximum (or minimum) values reflect possible values
from alternative parameter combinations (i.e., permutations);
orange cells indicate cases where our methodology could not
infer assignments that maximize high-level SLO fulfillment.
These discrepancies occur either due to (1) flexible boundaries,
e.g., fig_size = 50 is an acceptable assignment >)\, although
cumm_delay would be more likely fulfilled with fig_size = 10,
or (2) conflicts within high-level SLOs, e.g., LiveMonitor-
ing cannot ensure both maximum viewer_satisfaction and

1.0

"'"-1--——*__ e ———
—
E 0.9 A
€
E 089 — VehicleRouting HL
= -—-=- VehicleRouting LL
2 0.7 4 |— TrafficPrediction HL r
% - -~ TrafficPrediction LL / ’\
LiveMonitoring HL
0.6 '4 LiveMonitoring LL
of1 012 013 014 015 016 017 018 019 1.0

State Acceptance Rate (A)

Fig. 5: SLO fulfillment (high/low-level) of different applications and As

cumm_delay < 110 for 100 % of observations. Nevertheless,
we showed that our approach can reach SLO fulfillment of up
to 100 %; the lower bound here was given by the cumm_delay
SLO of TrafficPrediction, which reached 83 %.

2) Acceptance Range (RQ-2): The acceptance range (\)
determines the degree of freedom for low-level SLOs and pa-
rameter assignments. A narrow margin promises less tolerance
for SLO violations but at the same time risks SLO conflicts
due to disjoint inference results. To answer what A is optimal
for each application, we vary A and highlight its effect on
high-level and low-level SLO fulfillment.

We apply our methodology with A € {0.1,0.2,...,1.0}
and collect the resulting parameter assignments and low-level
SLOs. Then, we configure the system according to these
constraints and evaluate all SLOs: Figure 5 visualizes both
the high-level and the low-level SLO fulfillment (dashed or
solid lines) for different A values. The SLO fulfillment (y-axis)
is calculated as the average of all microservices included per
application, e.g., VehicleRouting and all its parents.

We observe, that low-level SLOs are always fulfilled to
a higher degree than high-level SLOs, which supports the
claim that high-level fulfillment is a consequence. Further,
increasing A had a positive effect on the SLO fulfillment
(transition from 0.1 to 0.7); however, as the acceptance range
becomes too narrow, LiveMonitoring runs into SLO conflicts,
indicated by fulfillment = 0. The optimal A\ was different for
each application; hence, it needs a dynamic mechanism that
maximizes A without risking conflicts.

3) Conflicts (and Resolution) (RQ-3): The missing piece
for this RQ is to answer where in the BN conflicts actually
occur. To that extent, we prepare different combinations of
high-level SLOs, provide them to the diffusion algorithm,
and analyze for each application whether conflicts occur, and
where they occur. Still, whenever possible, conflicts should be
resolved automatically, otherwise indicated to stakeholders.

The DAG for LiveMonitor equals in large parts the one
of VehicleRouting in Figure 1, which is why we reuse it for
the following explanations. To show how and when conflicts
occur, we focus our evaluation on LiveMonitor: we provide
three high-level SLOs, various thresholds for each of them,

TABLE V: Conflicts among high-level SLOs for LiveMonitor

cumm_delay | min(energy) | max(customer_sat) | both

<120 ms | v v #{fps}

< 100 ms | #{pixel} v £{A U pixel}
<50 ms | #{A U fps} #{gpu, pixel, fps} | #{~ U gpu}
<40 ms | £{A U batch} | #{r} H{A U fig_size}
<25ms | #{A} #{An U cache_db} | #{A U cache_db}

and combine them as depicted in Table V. The cumm_delay
is always included in the diffusion but combined either with
min(energy), max(customer_sat), or both of them.
Depending on the combinations of high-level SLOs and the
threshold of cumm_delay < {120,100, 50,40, 25}, different
variables start to show conflicts. In particular, Table V also
shows for each combination of high-level SLOs whether it
creates any major conflict, which is indicated by a ¢/ symbol.
While cumm_delay < 120 did not produce conflicts with
either min(energy) or max(customer_sat), applying both im-
mediately causes a conflict for fps. In the rows below, smaller
cumm_delay gradually leads to more conflicts; A indicates
that all conflicts from the above line are propagated, hence,
< 25 and min(energy) led to three conflicting variables. Thus,
conflicts can be identified prior to runtime, which is useful to
indicate what type of high-level SLOs can be combined.

D. Limitations

When diffusing high-level SLOs, the complexity of Algo. 2
is dominated by the number of STATES of high-level SLO
variables (h) and their ancestors (), leading to a complexity
of O((h x I x @)™). Hence, this approach works well for
variables that have few discrete states, or continuous variables
that are binned into a low number of bins; how much precision
this sacrifices depends on the use case. Apart from that, the
complexity is determined by the depth of ancestors (m).

Various optimizations could be applied to Algo. 2, one of
them would be to “fold up” longer subtrees in the BN that
are single-parented, i.e., do not have other parent nodes. This
means, that none of them would have to be extended with a
low-level SLO, except for the root node and its direct children
(not grandchildren); thus, the list of SLOs could be simplified.
However, this condition did not occur in the evaluation, which
shows that we must also aim for more complex use cases to
improve our methodology further.

Lastly, the algorithm puts a lot of emphasis on the quality of
the BN: if G does not accurately reflect reality, e.g., edges are
missing or pointing in the wrong direction, the outcome of the
algorithm will deviate. Although BN quality was not the focus
of this paper, the evaluation indicated that BNs are a bottleneck
for the methodology. In particular, the applied techniques often
fluctuate regarding the direction of edges. These minor issues
can prove fatal for the results of the algorithm, hence, we
tried to pin respective edges according to expert knowledge
to create a stable evaluation environment. Nevertheless, the
results of different BNL techniques and their impact on high-
level SLO fulfillment must be the focus of future work.

V. CONCLUSION & FUTURE WORK

This paper presented a diffusion mechanism that translates
stakeholders’ high-level SLOs into lower-level constraints. For
a composition of microservices, it becomes thus clear how
individual sub-processes contribute to high-level objectives,
and how these must be configured to ensure SLO fulfillment.
In particular, we presented a 3-step methodology that infers
this knowledge from a Bayesian network, while resolving
potential conflicts among competing SLOs as far as possible.
The evaluation showed how multiple high-level SLOs, each
targeting different QoS or QoE aspects, can be diffused over
four different microservice pipelines. For each application, the
inferred constraints could exert direct control over high-level
SLO fulfillment, which was consequently satisfied between
83 % to 100 % of observations. Further, we could show the
impact that the “restrictiveness” of low-level SLO assignments
has on higher-level SLOs and how conflicts that occur can
endanger these values. In that regard, future work will use
these insights to improve the methodology further.

ACKNOWLEDGMENT

Research received funding from the EU’s Horizon Europe
Research and Innovation Program under Grant Agreement No.
101070186. EU website for Teadal: https://www.teadal.eu/

REFERENCES
[1]

M. Huhns and M. Singh, “Service-oriented computing: key concepts
and principles,” IEEE Internet Computing, vol. 9, no. 1, pp. 75-81, Jan.
2005, conference Name: IEEE Internet Computing.

Z. Zhang, Y. Zhao, and J. Liu, “Octopus: SLO-Aware Progressive
Inference Serving via Deep Reinforcement Learning in Multi-tenant
Edge Cluster,” in Service-Oriented Computing, Cham, 2023.

Z. Zhang, M. K. Ramanathan, P. Raj, A. Parwal, T. Sherwood, and
M. Chabbi, “{CRISP}: Critical Path Analysis of {Large-Scale} Mi-
croservice Architectures,” 2022, pp. 655-672.

P. Chen, Y. Qi, and D. Hou, “Causelnfer: Automated End-to-End
Performance Diagnosis with Hierarchical Causality Graph in Cloud
Environment,” IEEE Transactions on Services Computing, 2019.

J. Soldani, G. Montesano, and A. Brogi, “What Went Wrong? Explaining
Cascading Failures in Microservice-Based Applications,” in Service-
Oriented Computing, J. Barzen, Ed. Cham: Springer International
Publishing, 2021, pp. 133-153.

W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu, “Edge Computing: Vision
and Challenges,” IEEE Internet of Things Journal, vol. 3, no. 5, pp.
637-646, Oct. 2016.

S. Dustdar, V. Casamayor Pujol, and P. K. Donta, “On Distributed
Computing Continuum Systems,” IEEE Transactions on Knowledge and
Data Engineering, vol. 35, no. 4, pp. 4092-4105, Apr. 2023.

V. Casamayor Pujol, P. K. Donta, A. Morichetta, I. Murturi, and
S. Dustdar, “Edge Intelligence—Research Opportunities for Distributed
Computing Continuum Systems,” IEEE Internet Computing, vol. 27,
no. 4, pp. 53-74, Jul. 2023, conference Name: IEEE Internet Computing.
S. Nastic, A. Morichetta, T. Pusztai, S. Dustdar, X. Ding, D. Vij, and
Y. Xiong, “SLOC: Service Level Objectives for Next Generation Cloud
Computing,” IEEE Internet Computing, vol. 24, no. 3, May 2020.

J. Pearl, “Causal inference in statistics: An overview,” Statistics Surveys,
vol. 3, no. none, pp. 96-146, Jan. 2009.

M. Yazdi, F. Khan, R. Abbassi, and N. Quddus, “Resilience assessment
of a subsea pipeline using dynamic Bayesian network,” Journal of
Pipeline Science and Engineering, vol. 2, no. 2, p. 100053, Jun. 2022.
M. Odiathevar, W. K. Seah, and M. Frean, “A Bayesian Approach To
Distributed Anomaly Detection In Edge Al Networks,” IEEE Transac-
tions on Parallel and Distributed Systems, Dec. 2022.

M. Togacar, “Detecting attacks on IoT devices with probabilistic
Bayesian neural networks and hunger games search optimization ap-
proaches,” Transactions on Telecommunications Technologies, 2022.

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

(11]

[12]

[13]

[14]

[15]

[16]

(17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]
[27]
[28]

[29]

[30]

[31]

[32]

[33]

B. Sedlak, V. C. Pujol, P. K. Donta, and S. Dustdar, “Designing
Reconfigurable Intelligent Systems with Markov Blankets,” in Service-
Oriented Computing, 2023, pp. 42-50.

B. Sedlak, V. Casamayor Pujol, P. K. Donta, and S. Dustdar, “Controlling
Data Gravity and Data Friction: From Metrics to Multidimensional
Elasticity Strategies,” in /EEE SSE 2023, Chicago, IL, USA, Jul. 2023.
T. Pusztai, A. Morichetta, V. C. Pujol, S. Dustdar, S. Nastic, X. Ding,
D. Vij, and Y. Xiong, “SLO Script: A Novel Language for Implementing
Complex Cloud-Native Elasticity-Driven SLOs,” in 2021 IEEE ICWS.
Chicago, IL, USA: IEEE, Sep. 2021, pp. 21-31.

T. Pusztai, S. Nastic, A. Morichetta, V. C. Pujol, P. Raith, S. Dustdar,
D. Vij, Y. Xiong, and Z. Zhang, “Polaris Scheduler: SLO- and Topology-
aware Microservices Scheduling at the Edge,” in I5th International
Conference on Utility and Cloud Computing, Dec. 2022, pp. 61-70.

S. Guan and A. Boukerche, “Intelligent Edge-Based Service Provision-
ing Using Smart Cloudlets, Fog and Mobile Edges,” IEEE Network,
vol. 36, no. 2, pp. 139-145, Mar. 2022.

W. Seo, S. Cha, Y. Kim, J. Huh, and J. Park, “SLO-Aware Inference
Scheduler for Heterogeneous Processors in Edge Platforms,” ACM
Transactions on Architecture and Code Optimization, vol. 18, no. 4,
pp. 1-26, Dec. 2021.

Y. Cao, “Better Orchestration for SLO-Oriented Cross-site Microservices
in Multi-tenant Cloud/Edge Continuum,” in Proceedings of the 24th
International Middleware Conference, New York, USA, Dec. 2023.

V. Cardellini, T. Galinac Grbac, M. Nardelli, N. Tankovié, and H.-L.
Truong, “QoS-Based Elasticity for Service Chains in Distributed Edge
Cloud Environments,” in Autonomous Control, 2018.

V. C. Pujol and S. Dustdar, “Towards a Prime Directive of SLOs,” in
2023 IEEE International Conference on Software Services Engineering
(SSE), Jul. 2023, pp. 61-70.

J. Walter, D. Okanovi¢, and S. Kounev, “Mapping of Service Level Ob-
jectives to Performance Queries,” in Proceedings of the 8th ACM/SPEC
on International Conference on Performance Engineering Companion,
ser. ICPE ’17 Companion. New York, NY, USA: Association for
Computing Machinery, Apr. 2017, pp. 197-202.

C. Wang, L. Wang, H. Chen, Y. Yang, and Y. Li, “Fault Diagnosis of
Train Network Control Management System Based on Dynamic Fault
Tree and Bayesian Network,” IEEE Access, vol. 9, pp. 2618-2632, 2021.
N. K. Kitson, A. C. Constantinou, Z. Guo, Y. Liu, and K. Chobtham, “A
survey of Bayesian Network structure learning,” Artificial Intelligence
Review, vol. 56, no. 8, pp. 8721-8814, Aug. 2023.

M. J. Vowels, N. C. Camgoz, and R. Bowden, “D’ya like DAGs? A
Survey on Structure Learning and Causal Discovery,” Mar. 2021.

N. Zhang and D. Poole, “A simple approach to Bayesian network
computations,” in Engineering-Economic Systems, Stanford, 1994.

I. G. Wambui, “Improving Traffic Flow Using LSTM Networks in
Python: A Step-by-Step Guide,” Aug. 2023.

B. Sedlak, I. Murturi, P. K. Donta, and S. Dustdar, “A Privacy Enforcing
Framework for Transforming Data Streams on the Edge,” IEEE Trans-
actions on Emerging Topics in Computing, 2023.

R. May, S. Arms, P. Marsh, E. Bruning, J. Leeman, K. Goebbert,
J. Thielen, Z. Bruick, and M. D. Camron, “MetPy: A Python Package
for Meteorological Data,” Apr. 2024.

B. Sedlak, V. Casamayor Pujol, P. K. Donta, and S. Dustdar, “Markov
Blanket Composition of SLOs,” in 2024 IEEE International Conference
on Edge Computing and Communications (EDGE), Shenzhen, China,
Jul. 2024.

B. Sedlak, V. C. Pujol, P. K. Donta, and S. Dustdar, “Equilibrium in the
Computing Continuum through Active Inference,” Future Generation
Computer Systems, May 2024.

A. Ankan and J. Textor, “pgmpy: A Python Toolkit for Bayesian
Networks,” Apr. 2023.

