
Distributed Model Serving for Real-time Opinion
Detection

Paul Pinter
TU Wien

Vienna, Austria
paul.pinter@student.tuwien.ac.at

Andrea Morichetta
Schahram Dustdar

Distributed Systems Group, TU Wien
Vienna, Austria

firstname.lastname@dsg.tuwien.ac.at

Abstract—The rapid evolution of the Web has revolutionized
communication, enabling individuals to seek advice and share
opinions on diverse subjects. However, this freedom has given
rise to deceptive practices, such as manipulating product or
business ratings through misleading reviews. While recent years
have shown significant progress in opinion-based spam detection,
the practical deployment of such systems remains a challenge,
especially on modern distributed and heterogeneous platforms
like the Web. Data distribution plays an essential role, as there
is a need to collect as much information as possible from
different sources. This paper addresses this gap by exploring the
design challenges of distributed systems tailored for opinion spam
detection. We evaluate three datasets, implement an accessible
classification service, and test its performance on three distinct
distributed system architectures. Our findings indicate the signif-
icant influence of certain features on classification performance
and demonstrate the advantages of the asynchronous batch
processing system over other architectures.

Index Terms—Distributed Intelligence, Web characterization,
Opinion spam detection, Distributed inference, Machine learning

I. INTRODUCTION

In recent years, much effort has been put into developing
counter-offensive work on different levels. Machine Learning
(ML) has become a leading solution for big-scale problems.
The advantages are several: little human intervention, preci-
sion, and the possibility to work in an automated fashion
in different locations. A vivid example of this is the field
of opinion-based spam detection, one of the most prominent
demonstrations of Internet misuse. A 2021 study [1] ana-
lyzed streams of fake reviews and found that the average
rating drops as soon as the flow of fake reviews stops.
This finding indicates that customers are tricked into buying
something they do not want or that does not reflect their
standards due to a high rating. False or misleading claims
also hurt the review hosts. Companies have taken action to
deal with fake reviews to protect the integrity of platforms.
Trip Advisor reported [2] having deleted 1 billion reviews in
2020. Furthermore, Amazon says [3] to have spent over 500
million dollars and employed 8 000 people to find unwanted
reviews. Not only companies but also governments recognize
how harmful fake reviews are. In 2021, the Competition and
Markets Authority (CMA) of the UK government launched [4]
an investigation of platforms that show reviews of goods
and services. Based on the investigation results, the UK

government has announced [5] to make posting fake reviews
illegal. In addition, the CMA plans to fine companies if they do
not take reasonable steps to check whether reviews are genuine
or not. That customers pay attention to star ratings also shows
survey [6] from Bright Local. The survey reports that only
three percent of people would engage with a business with
an average below a 3-star rating. This behavior incentivizes
bad actors to post negative reviews on the competition and
boost their products or services with positive reviews. Opinion-
based spam detection aims to find fake reviews and users with
malicious intent and exclude them from the platform.

Despite the excellent results in solving main problems for
opinion detection [7], the focus on operationalizing it on
distributed systems is missing [8]. Much of the production
effort goes into model serving, representing the industry’s
90% of output costs [9]. However, the discussion about this
topic in the organization of the Internet, specifically in opinion
spam detection, is still overlooked. Distributed ML solutions,
like Tensorflow serving, offer guarantees for handling the
execution of the models taking care of the resource man-
agement and scheduling. However, these tools are generic
and leave the users with many implementation responsibilities
and challenges [10]. In particular, specific models have some
specific requirements for where and how the data should be
collected and used for the prediction. Therefore, we aim to
provide a magnifying lens to gain insights into the aspect of
bringing models into production.

We follow a structured approach, showing the entire process
of opinion spam detection, starting from feature engineering to
model selection and operationalization. Furthermore, we con-
tribute by proposing three possible architectures. We provide
an analysis showing the advantages and disadvantages of each
methodology. We evaluate it both in terms of computational
performance and the effects of the model execution. We release
the code, making everything reproducible and transparent. In
summary, this work contributes to the field with the following:

(i) We propose a model training controller that performs
the various ML training steps and makes the best model
accessible for other applications.

(ii) Contextually, we show through experiments which feature
category delivers the most impact on the classification
performance.

64

2024 IEEE International Conference on Service-Oriented System Engineering (SOSE)

979-8-3315-3958-0/24/$31.00 ©2024 IEEE

DOI: 10.1109/SOSE62363.2024.00007

20
24

 IE
EE

 In
te

rn
at

io
na

l C
on

fe
re

nc
e

on
 S

er
vi

ce
-O

rie
nt

ed
 S

ys
te

m
 E

ng
in

ee
rin

g
(S

O
SE

) |
 9

79
-8

-3
31

5-
39

58
-0

/2
4/

$3
1.

00
 ©

20
24

 IE
EE

 |
D

O
I:

10
.1

10
9/

SO
SE

62
36

3.
20

24
.0

00
14

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on November 06,2024 at 12:12:17 UTC from IEEE Xplore. Restrictions apply.

(iii) We design and make publicly available 1 three distributed
system designs that use different communication meth-
ods.

(iv) We collect performance metrics to inspect how each
system behaves under static and dynamic scenarios.

II. BACKGROUND AND MOTIVATION

The current state of the Internet is witnessing unprecedented
scale, dimension, and pervasiveness [11]. This evolving sce-
nario poses severe challenges to who manages Internet services
and those who use them. This situation also involves leading
platforms; for example, Wikipedia has grown exponentially in
the last few years, leading to problems in managing it and
involving its users [12]. These challenges extend to every
service, network, or business involving user interaction and
to every person participating in that; nowadays, we have to
face threats of fake news [13], fraudulent shops [14], and
dishonest reviews. The rise in ML algorithms over the past
two decades can be attributed to improved data availability,
enhanced hardware, and superior technologies [15]. Though
this progress has transformed the web, it has hidden particular
obstacles. Deploying ML systems in production is intricate,
with complexities surrounding automation and accuracy [16].
MLOps, which merges DevOps techniques with ML produc-
tion, offers potential solutions across the model lifecycle [17],
[18]. Still, every use case comes with its specific challenges. In
generic solutions and models, the operational aspect of applied
ML in production is frequently overlooked [16].

The serving perspective. The significance of model serving
for enterprise ML has gained researchers’ attention, especially
in real-time contexts like the Web [9]. Various approaches
have been proposed to improve system performance and
reduce costs. While many center their studies around image
recognition, our research tries to focus on another essential
aspect of the Web, i.e., user interaction and feedback. We
target the prevalent issue of fake reviews, focusing on the
operationalization and system perspective, presenting the chal-
lenges from data representation to model serving.

Opinion spam detection. Research on opinion-based spam
detection has grown over the past two decades to ensure
online service credibility. Early works by Jindal et al. [19],
[20] focused on identifying suspicious review patterns. Since
then, advancements have spanned from data quality to sophis-
ticated linguistic and behavioral features, as well as graph-
based methodologies [21], [22], [23]. Although these studies
optimize algorithms for better threat detection, they often
neglect clarity on how to deploy these solutions in production.
Only some works touch upon operationalizing fake-reviews
detection models, an area we delve deeply into. Our research
emphasizes reproducibility and the intricacies associated with
model serving for opinion spam detection.

Distribution Aspect The mainstream adaptation of gen-
erative AI has resulted in an increase in artificial-generated
content, such as reviews. Distributed systems are essential for

1https://github.com/paulpinter/SOSE-2024-opinion-detection

opinion spam detection because they can scale horizontally,
allowing for processing large volumes of data. By dividing
the workload across multiple servers or nodes, these systems
can handle the increase of data without compromising on
performance or speed. Also distribution enhances the re-
silience. By decentralizing the operations, these services are
less vulnerable to single points of failure. In the event of a
server failure, other nodes can take over the load, ensuring
continuous system operation. This robustness is crucial for
maintaining the integrity of online services and the trust of
their users. With the increasing demand for real-time responses
in online interactions, distributed systems offer the capability
to analyze and detect spam reviews instantly. This is important
in dynamic environments where user feedback can influence
immediate purchasing decisions of products and services.
Online platforms often serve a global audience, making it
necessary to manage data across different regions while com-
plying with local data regulations. Strategically placed services
in various geographical locations to reduce latency, enhance
response times, and adhere to legal constraints regarding data
sovereignty.

III. METHODOLOGY

A. Dataset

Dataset choice is essential. Conventional scalability tests fo-
cus on volume [24], [25]. In contrast, AI classification studies
highlight dataset structure [26], [27]. Both dataset volume and
quality are essential to emulate realistic high-workload scenar-
ios for classification in distributed systems. We subsequently
assess opinion-spam datasets to fit our criteria, emphasizing
their construction and labeling. We consider three datasets.
The HSpam14 dataset [28], collected by Sedhai and Sun,
consisted of 20 million tweets from Twitter, now known as
X. Web crawlers were used to fetch tweets containing popular
hashtags from a preselected list. After excluding all non-
English tweets, about 14 million remained, hence the name
HSpam14. The tweets were grouped into clusters based on
similarity and labeled according to the following process: 1)
Tweets suggesting adult content, get-rich-quick schemes, or
promotions were marked with specific keywords. 2) A subset
in each cluster containing such tweets was manually labeled.
Labels were propagated using a k-nearest neighbors algorithm
(kNN) in clusters that had a high percentage of closely related
tweets, identified as either ham or spam. 3) All tweets were
grouped by user, clustered based on similarity, and a subset
of each cluster containing at least ten tweets was manually
labeled. 4) All tweets containing links to external resources
were grouped and a subset of them was manually labeled. 5)
Ham detection employed a classifier that was trained solely on
positive and unlabeled tweets (PU). 6) The remaining tweets
were annotated using an Expectation-Maximization Algorithm
(EM). The dataset includes the tweet ID, label, and labeling
step, with the labeling step numbered from 1 to 6 to indicate
the stage at which each tweet was labeled.

The 3-Domain-Dataset [29], consists of reviews categorized
into three distinct groups based on the type of service reviewed

65

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on November 06,2024 at 12:12:17 UTC from IEEE Xplore. Restrictions apply.

or the reviewer’s level of expertise. The services reviewed
include hotels, restaurants, and medical services, while the re-
viewers are classified as experts, customers, or crowd workers.
All crowd workers were recruited via Amazon’s Mechanical
Turk (AMT) crowdsourcing platform. The term ”experts”
refers to professionals within the specified service domains. It
is assumed that all genuine reviews are submitted by customers
who have actually visited the locations they reviewed. Reviews
sourced from websites like Trip Advisor or Yelp must be in
English, five-star rated, over 150 characters, and from users
who have reviewed previously. Spam reviews were generated
by either experts or crowd workers. While experts wrote
reviews based on their familiarity with the service, crowd
workers authored reviews without having visited the locations.

The Yelp ZIP dataset [23], compiled by Rayana and
Akoglu, aggregates popular restaurant reviews from across
the US, organized by zip codes. This dataset was created by
executing search requests with query parameters that limited
results to restaurants located within specific zip codes. Each
search result included lists of both recommended and not
recommended reviews. Subsequently, reviews from the rec-
ommended list were labeled as ’ham’, whereas those from
the not recommended list were tagged as ’spam’. This pro-
cess was repeated using previously unused zip codes until
approximately 600,000 reviews had been collected. Yelp’s
recommendation algorithm is reputed for detecting unwanted
behavior, confirmed by manual checks.

Among the datasets, HSpam14 has the most expansive
volume. However, this dataset references external content,
necessitating additional steps to re-fetch this data. Moreover,
tweets labeled as spam are more likely to have been block by
the platform, since spamming activities are against Twitter’s
policies. On the other hand, the Yelp ZIP and 3-Domain
datasets offer explicit data points. Yelp ZIP is suitable for
stress tests with possible data expansion, but its imbalanced
labels can compromise model quality. In contrast, the 3-
Domain set is balanced but less flexible for workload tests.
Yelp’s labeling process has been validated [30], while the 3-
Domain set ensures spam accuracy. The labeling process of
HSpam14 section relies on the assumption that most tweets
are not spam. HSpam14’s labeling might be skewed by its
base assumptions. Given these considerations, Yelp ZIP best
meets our study’s requirements.

B. Features

Previous works have represented the Product-Review-User
relation as a graph G(V,E). [31], [32], [33], [34]. Here, we
introduce the notation for the construction of each feature. Let
there be two different node types U and P such that:

V = U ∪ P (1)

where U = {u1, . . . , ui, . . . , un} and 1 ≤ i ≤ n are the
users and P = {p1, . . . , pi, . . . , pm} with 1 ≤ j ≤ m the
product. Each review written by a user is represented as an
edge:

u1 u2 u3 u4

p1 p2 p3 p4

e11 e12 e21 e22 e33
e41

e42

e44

Fig. 1: Product-Review-User relation as a graph G(V,E)

E = {{ui, pj} | ui ∈ U, pj ∈ P} (2)

where eij ∈ E denotes a review written by user ui ∈ U for
1 ≤ i ≤ n and product pj with 1 ≤ j ≤ m. Figure 1 shows an
example of a review graph with four users and four products.

We process the data with the r(eij), d(eij) and the t(eij)
functions. Beginning with r(eij), each rating r ∈ R =
{1, 2, 3, 4, 5} is obtained by:

r(eij) :

{
E → R

eij 7→ rij
(3)

with ui ∈ U for 1 ≤ i ≤ n and product pj with 1 ≤ j ≤ m.
Additionally a text t ∈ T is gained via the t(eij) function:

t(eij) :

{
E → T

eij 7→ tij
(4)

with ui ∈ U for 1 ≤ i ≤ n and product pj with 1 ≤ j ≤
m. Every text tij is later broken down into sentences, words,
characters, and eventually into a frequency-term-matrix (check
in Appendix A). Next, the creation date is mapped with:

d(eij) :

{
E → D

eij 7→ dij
(5)

where is ui ∈ U for 1 ≤ i ≤ n and product pj with 1 ≤
j ≤ m. The creation date is ordered. A date dab ∈ D is before
dxy ∈ D if and only if dab < dxy . A creation date dab is after
dxy when dab > dxy holds. If dab = dxy is true then the date
refers to the same day.

In the same manner the difference of dab−dxy is the number
of days of the two dates apart if dab < dxy , 0 if dab = dxy
and the negative number of days apart otherwise.

Ultimately, we use [35] star ∗ notation. Ei∗ is the set of
all reviews written by user ui ∈ U for 1 ≤ i ≤ n. E∗j
corresponds to all reviews of a product pj ∈ P with 1 ≤ j ≤
m.

In the Appendix A each feature will be constructed with
this notation. The features were derived from SPEAGLE [23].
Table I summarizes the features. The first column reports the
feature code, followed by a description and the reference of
the feature characteristic. The third column reports whether a
feature is linguistic or behavioral. Indeed, a feature can not
be both. Linguistic features are calculated from the review
text. Behavior features take ratings or dates as input. The

66

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on November 06,2024 at 12:12:17 UTC from IEEE Xplore. Restrictions apply.

III METHODOLOGY

TABLE I: An overview of the features used to train the models

Feature Description B/L I/D
ACS Average content similarity [32], [35] L D
ALW Average review length in words [36] L D
ARD Average rating deviation [35], [36] B D
BRT Burstiness [32], [35],[36] B D
ERD Entropy of rating distribution [23] B D
ETG Entropy of temporal gaps [23] B D
IPO Is positive review [37] B I
ISR Is singleton review [23] B I
MCS Maximum content similarity [37],[36] L I
MNR Maximum number of reviews written in a day [37],[36] B D
PRD Product rating deviation [38] B D
RAC Ratio of ALL-capitals words [38] L I
RBD Rank by date [20] B D
RCL Ratio of capital letters [38] L I
RES Ratio of exclamation sentences containing ‘!’ [38] L I
RLW Review length in words [38] L I
RNR Ratio of negative reviews [36] B D
RPP Ratio of 1st person pronouns [38] L I
RPR Ratio of positive reviews [36] B D
RSW Ratio of subjective words [38] L I
WRD Weighted rating deviation [32] B D

last column tells if a feature is independent or dependent. A
feature is independent if a single review determines its value.
In contrast, dependent features rely on user, product, and user-
product information.

C. Architecture

This section elaborates on our architecture. Initially, we
delve into the service responsible for model management. We
then illustrate three system designs for serving spam detection
models based on opinions.

The Model Creation Service ingests a labeled review dataset
and produces a trained classifier. Except for the database,
this is the only other component that remains unchanged
across all architectural designs. After receiving an unlabeled
review, the model creation service extracts the features from
the reviews. Since some features are dependent on other’s,
the service needs to consider the whole dataset and cannot
extract features from the review itself. As depicted in Figure 2,
the process commences by calculating a feature matrix as
per §III-B. This matrix trains several classifiers, from which
the one with the highest F1 score is selected. The F1 score was
chosen as the ranking metric because it provides a balanced
measure of a model’s recall and precision, particularly in cases
where class distributions are imbalanced. Precision is crucial in
spam detection because it measures the accuracy of the spam
predictions that the model makes, which directly affects the
user experience by ensuring that legitimate messages are not
incorrectly classified as spam. Conversely, recall is equally
important because it assesses the model’s ability to identify
all actual spam messages, which is necessary for maintaining
the usability of platforms. Handling imbalanced distributions
is relevant in spam detection, as well as in our selected
Yelp ZIP dataset, which suffers from imbalance. In scenarios
where the negative class significantly outnumbers the positive
class, traditional accuracy might not provide a true picture
of a model’s effectiveness. A classifier could perform well by
predicting the majority class, but still fail to catch a substantial
number of spam messages. By focusing on both false positives
and false negatives, it ensures that both types of errors are

Obtaining data Optimizing and tuning
the models

Clean the
data

Define
features

Extract
feature
matrix

Features engineering

Unlabeled
reviews Tuning Validating

TrainCompute

Classifier

Choose

Model
file

StoreReturn

Location

Fig. 2: Flow of the model creation service.

minimized. Ultimately the chosen classifier is serialized, and
its path is stored in a Relational Database (RDM).

A dedicated server was established for synchronous com-
munication that classifies incoming reviews as spam or ham.
Figure 3a showcases its architecture.The synchronous server
ensures that each request is processed in the order it is
received, and each response is generated after the processing of
the current request is fully complete. This model is beneficial
primarily for its simplicity and ease of debugging, making it an
excellent choice for environments where sequential processing
of data is critical. Each review is handled one at a time, which
simplifies the logic of transaction handling and error tracking.
This method reduces the complexities associated with concur-
rent data access and resource locking, which are common in
asynchronous systems. However, while the synchronous model
is advantageous for simplicity and straightforward operation, it
inherently limits the system’s throughput and scalability. This
limitation arises because the server must complete processing
the current review before it can start another, potentially
leading to increased response times and reduced overall system
performance.

The method of feature computation for this service differs
from the classifier service; it computes a feature vector for the
incoming review. Dependent features are categorized as user,
product, or user-product. User features depend on all reviews
written by a user. In the same manner, reviews that are product
features depend on all reviews written for a product. Since user
and product features depend on previously written reviews, a
subset of all stored reviews must be loaded into the request
context. Finally, user-product features are a combination of
both mentioned subsets. The combined subset gets created
by a two-step process. First, select all reviews of a user.
Subsequently, fetch all product reviews of the selected reviews.
Combining these subsets allows a feature vector to be deduced,
which is then passed to the classifier. Once labeled, a response
is dispatched to the client.

We developed two systems to explore asynchronous com-
munication. The batch system periodically polls the data
source, while the queue system employs a distributed mes-
sage queue. Unlike synchronous communication, where clients
receive an instant classification, the asynchronous methods
provide a status URL to check the review’s labeling status.

Figure 3b outlines the batch system’s architecture. Unlike
prior models, this architecture integrates a batch job and status

467

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on November 06,2024 at 12:12:17 UTC from IEEE Xplore. Restrictions apply.

Client

Server

submit
review

1

Review
DB

return label
6

store reviews,
generate id

2

load reviews for
features

3
Model

load classifier4

store label5

(a) Synchronous system architecture for spam detection.

Client

Aggregator

submit
review

1

Review
DB

return id
4

store reviews2

return id3

Status

check label8

10 return label

Model

load reviews
for features

5

label reviews

7

get label
9 Batch Job

load classifier
6

(b) Batch system’s architecture for spam detection

Client

Producer

submit
review

1

Review
DB

Queue
send id
4

Consumer

return id
5

store reviews

2

return id

3

Status

check label10

11 return label

Model

receive id
6 load classifier8

load reviews

for features7

label reviews

9

get label8

(c) Queue system’s architecture for spam detection

Fig. 3: Asynchronous communication designs.

module. Reviews are submitted to the aggregator, stored, and
later fetched by the batch service, which processes and stores
the classifier’s prediction. In the synch and the queue systems,
each review or data input is processed instantaneously, often
leading to a sparse feature set for new entities. This can
result in less accurate predictions due to the lack of historical
data. Conversely, the batch processing system collects and
stores reviews in an aggregated manner. This allows for a
more substantial compilation of data to be processed in a
single batch. For bots who may submit multiple reviews in
a short period or new products that receive a sudden increase
of reviews, this system is capable of integrating this fresh
information directly into the feature vectors during the next
batch processing cycle.

As depicted in Figure 3c, the queue system comprises
three server components. The producer receives and forwards
reviews to a queue. A consumer then retrieves, classifies, and
saves the reviews. This consumer can batch-process reviews

by collectively computing features. While the batch system
consolidates and processes reviews collectively at designated
intervals, allowing comprehensive feature vector updates, the
queue system processes data inputs continuously and indepen-
dently. This can lead to scenarios where two related reviews
are handled by different consumers. When it occurs, there is
a potential for informational loss as each consumer processes
data independently without immediate access to concurrent
submissions that might be related.

While we cannot provide specific recommendations for
query optimizations for a general architecture, we want to
highlight that optimizing the querying process for these related
reviews is crucial for enhancing server performance. Given
that the computation of feature vectors necessitates loading
a subset of all stored reviews into the request context, the
efficiency with which this data is retrieved and processed
impacts the responsiveness and scalability of the service.
Furthermore, the complexity of data retrieval escalates with
the activeness of the user or the ranking of a product. For
instance, a bot who writes numerous reviews or a product
that is highly popular and thus reviewed frequently, poses a
greater challenge in terms of computational load. With more
information available, the potential combinatorial explosion in
the user-product review graph necessitates more sophisticated
query optimization techniques to maintain performance.

IV. EVALUATION

A. Model Selection

We assess three classification algorithms: naive Bayes (NB),
logistic regression (LOG), and support vector machine (SVM)
on three Yelp datasets: ZIP, CHI [36], and NYC [23]. We
adopted Gaussian naive Bayes due to non-discrete features
in Table III-B. Naive Bayes is frequently employed in the
analysis of large datasets due to its rapid convergence proper-
ties. Initial tests on another variant, complement naive Bayes,
were halted because of poor performance. Similar to NB, LOG
can process both discrete and binary data. Additionally, LOG
typically exhibits greater resilience to outliers. Support Vector
Machines were selected for their capability to manage high-
dimensional feature spaces. However, SVMs do not converge
quickly on large datasets. In our experiments they were limited
to a linear kernel due to computational constraints.

B. Classifier Performance

Using the model creation service, we applied grid search
with F1 scoring and 10-fold cross-validation for hyperpa-
rameter optimization. Training-test split was 4:1, and cross-
validation was from the training set. Final performance was
based on test set predictions. Table II contrasts linguistic and
behavioral features. NB consistently achieved top accuracy and
precision, while LOG stood out in F1 score. Linguistic features
performed best on Yelp CHI, whereas behavioral features were
superior on the other two datasets, with a 0.05 point average
advantage. Table III highlights the comparison between in-
dependent and dependent features. NB led in accuracy and
precision, LOG in F1 score, and SVMs in recall. Dependent

68

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on November 06,2024 at 12:12:17 UTC from IEEE Xplore. Restrictions apply.

TABLE II: Performance of classifiers trained with linguistic
or behavioral features

Classifier Split Dataset Accuracy F1 Precision Recall ROC AUC
NB L CHI 0.792 0.32 0.287 0.363 0.611
NB B CHI 0.679 0.387 0.261 0.753 0.71
NB L NYC 0.863 0.142 0.195 0.112 0.53
NB B NYC 0.867 0.126 0.191 0.094 0.525
NB L ZIP 0.831 0.165 0.238 0.126 0.532
NB B ZIP 0.838 0.228 0.309 0.181 0.56
LOG L CHI 0.658 0.39 0.257 0.809 0.722
LOG B CHI 0.681 0.388 0.262 0.748 0.71
LOG L NYC 0.506 0.227 0.135 0.713 0.598
LOG B NYC 0.585 0.277 0.169 0.782 0.672
LOG L ZIP 0.572 0.275 0.177 0.612 0.589
LOG B ZIP 0.619 0.354 0.228 0.786 0.69
SVM L CHI 0.657 0.388 0.256 0.805 0.72
SVM B CHI 0.64 0.39 0.253 0.853 0.73
SVM L NYC 0.501 0.226 0.134 0.717 0.597
SVM B NYC 0.576 0.274 0.166 0.785 0.669
SVM L ZIP 0.572 0.274 0.177 0.609 0.588
SVM B ZIP 0.613 0.351 0.226 0.79 0.688

TABLE III: Performance of classifiers trained with indepen-
dent or dependent features

Classifier Split Dataset Accuracy F1 Precision Recall ROC AUC
NB CHI I 0.832 0.202 0.281 0.157 0.547
NB CHI D 0.678 0.392 0.263 0.772 0.717
NB NYC I 0.863 0.142 0.195 0.111 0.53
NB NYC D 0.867 0.122 0.185 0.091 0.523
NB ZIP I 0.84 0.136 0.24 0.095 0.524
NB ZIP D 0.82 0.274 0.295 0.255 0.581
LOG CHI I 0.693 0.388 0.266 0.722 0.706
LOG CHI D 0.661 0.403 0.264 0.85 0.74
LOG NYC I 0.687 0.235 0.156 0.471 0.591
LOG NYC D 0.574 0.276 0.167 0.795 0.672
LOG ZIP I 0.539 0.272 0.172 0.65 0.586
LOG ZIP D 0.614 0.352 0.226 0.791 0.689
SVM CHI I 0.692 0.388 0.265 0.723 0.705
SVM CHI D 0.659 0.403 0.264 0.855 0.742
SVM NYC I 0.538 0.23 0.139 0.679 0.6
SVM NYC D 0.563 0.271 0.164 0.798 0.668
SVM ZIP I 0.538 0.272 0.172 0.651 0.586
SVM ZIP D 0.606 0.349 0.223 0.795 0.686

features surpassed independent ones by an average of 0.07
points in most metrics except accuracy. The final experiment
(shown in Table IV) indicates that NB was superior in accuracy
and precision, while LOG excelled in F1 and ROC AUC
scores. SVM had the highest recall. The Yelp CHI dataset
rendered the best scores for all classifiers, despite being the
smallest dataset, implying that dataset size was not directly
linked to classifier performance.

B L I D All
Split

0.0

0.5

1.0

Sc
or

e

A F1 P R ROC AUC

Fig. 4: Performance across different feature splits

Figure 4 consolidates the experiment results, illustrating
the impact of different features on classifier performance. It
indicates that dependent features significantly influence the
results.

V. DISTRIBUTED SERVING PERFORMANCE

Experiments showed that the dependent feature split’s per-
formance closely mirrors the all-classifier’s. Recognizing the

TABLE IV: Performance of classifiers trained with all features
Classifier Dataset Accuracy F1 Precision Recall ROC AUC
NB CHI 0.683 0.393 0.265 0.761 0.716
NB NYC 0.823 0.227 0.205 0.255 0.571
NB ZIP 0.815 0.278 0.288 0.268 0.583
LOG CHI 0.68 0.405 0.27 0.807 0.734
LOG NYC 0.617 0.291 0.179 0.772 0.686
LOG ZIP 0.64 0.364 0.238 0.778 0.698
SVM CHI 0.676 0.404 0.268 0.813 0.734
SVM NYC 0.608 0.288 0.176 0.776 0.683
SVM ZIP 0.634 0.361 0.235 0.78 0.696

0 1000 2000 3000
Request

0

2.5

5

7.5

10

Ti
m

e
(M

in
)

SYNC
BATCH

QUEUE

(a) Time spend on requests with subset
constant subset size

0 1000 2000 3000
Request

0

2.5

5

7.5

10

Ti
m

e
(M

in
)

SYNC
BATCH
QUEUE

(b) Time spend on requests with grow-
ing subset size

0 25 50 75 100
Completion (%)

0

50

100

C
PU

(%
) SYNC

BATCH
QUEUE

(c) CPU usage on requests with subset
constant subset size

0 25 50 75 100
Completion (%)

0

50

100

C
PU

(%
) SYNC

BATCH
QUEUE

(d) CPU usage on requests with grow-
ing subset size

0 20 40 60 80 100
Completion (%)

0

2

4

G
iB

SYNC BATCH QUEUE

(e) Memory usage on requests with
subset constant subset size

0 20 40 60 80 100
Completion (%)

0

2

4

G
iB

SYNCH BATCH QUEUE

(f) Memory usage on requests with
growing subset size

Fig. 5: Time, CPU, and Memory performance for both constant
and growing subset size.

potency of dependent features, subsequent tests centered on
the subset size’s effects in terms of time and resources. Both
were tracked across SYNC, BATCH, and QUEUE systems, as
detailed in section III-C. Given the asynchronous nature of
the latter two systems, request time was gauged from storage
to labeling. In each scenario, 3,000 reviews were sequentially
dispatched via an HTTP client to every system.

a) Implementation
Components were stored in a PostgreSQL database and

scripted in Python 3.7. The HTTP handler used Flask, while
the message queue employed Apache Kafka. Classifiers were
built with sci-kit learn and serialized using the job lib API.
Every test utilized a Mac mini with an M1 processor and 16
GB of RAM, monitoring resources via Docker.

b) Constant subsets
Every review here had a unique user and restaurant, keeping

the subset size constant at one. This made dependent features
effectively independent, representing optimal single-review
processing. Figure 5a depicts request times: the batch system
finished in 53 seconds, the QUEUE in 113, and the synch
system in 166. CPU usage (Figure 5c) averaged 45% for

69

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on November 06,2024 at 12:12:17 UTC from IEEE Xplore. Restrictions apply.

the QUEUE, 23% for the synch system, and 20% for the
batch system. Memory consumption was consistent across
tests (Figure 5e).

c) Growing subsets
Here, every review came from the same user but for

different products. This scenario highlighted the BATCH sys-
tem’s efficiency. Figure 5b reveals the BATCH system was
notably faster, labeling reviews in 52 seconds. In contrast,
the SYNC and QUEUE systems took 281 and 572 seconds,
respectively. While the BATCH system also consumed fewer
CPU resources, memory requirements were relatively stable
across all systems.

VI. DISCUSSION

Classifiers performance: The hyperparameters were op-
timized for the highest F1 score due to their efficacy on
imbalanced datasets. Naive Bayes consistently showed the best
accuracy and precision, logistic regression led in F1 score, and
SVMs in the recall. Classifiers trained on only review and
linguistic features underperformed compared to those trained
on behavioral, dependent, and all features. The all-classifier
delivered the top F1 and combined score, closely followed
by the dependent feature-split, despite it using nine fewer
features. Grouping feature vectors streamline processing, but
parallelizing this introduces delays, potentially allowing ma-
licious actions to persist. Non-deterministic outcomes arise
when data distribution causes reviews to reside in separate
databases. Distributed serving: In scalability, the QUEUE
model outperforms due to its flexible producer-consumer pair-
ing, while the synchronous model struggles with resource
utilization. Additional safeguards are needed in the batch
job service to avoid redundant review filtering. The BATCH
system boasts superior stability, whereas the QUEUE system’s
queue is its vulnerability, although this can be mitigated
[39]. The SYNC system’s longer client-server connections
increase its susceptibility to errors. Systems evaluation: The
SYNC and QUEUE systems showed comparable performance
in constant subsets, but the QUEUE lagged in linear growing
subsets. Both these systems face a completion penalty with
larger subset sizes, not seen in the BATCH system. CPU
resource consumption during spikes was highest in the QUEUE
system. Interestingly, increasing subset size did not affect
average memory needs but did introduce variability. Overall,
the BATCH system outperformed both in speed and efficiency.

General Applicability: The architectures discussed in this
paper, while evaluated within the context of distributed spam
detection, have broader implications for distributed comput-
ing tasks. The adaptability and performance of these sys-
tems suggest potential applications beyond spam detection to
other classification tasks that require robust, scalable solutions
across distributed environments. This could include real-time
data processing for various types of network security, fraud
detection, and dynamic information filtering across platforms,
which are critical in today’s data-intensive scenarios. The
insights gained from this study could guide the design and
implementation of distributed systems for a wide range of

applications, where data volume, velocity, and variety are
major considerations.

VII. CONCLUSION

This work provides an explicit definition of 21 features
using a graph-based approach. Although the classifier did
not reach the performance of the latest research, the chosen
path was ideal for measuring the significance of distinguished
feature categories. Multiple classification techniques with dif-
ferent datasets showed that dependent features have the most
impact on classification performance. The model creation
service was born out of the necessity to automate the creation,
updates and comparison of multiple classifiers. By reasonable
assumption, this component is flexible enough to distribute
any model. Out of three architectures, the BATCH system com-
pleted the workload faster while also using fewer resources.
All three systems are classifier agnostic and are combinable
to negate their downsides. Given these strengths, the designs
are suited to serve as a blueprint for future implementations
of opinion based spam detection on distributed systems.

VIII. ACKNOWLEDGMENT

This work is funded by the HORIZON Research and
Innovation Action 101135576 INTEND “Intent-based data
operation in the computing continuum”.

REFERENCES

[1] S. He et al., “The market for fake reviews,” Marketing Science, 2022.
[2] T. Advisor. (2021) Review transparency report. [Online]. Available:

https://www.tripadvisor.co.uk/TransparencyReport2021
[3] J. Keegan. (2020) Is this amazon review bullsh*t?

[Online]. Available: https://themarkup.org/the-breakdown/2020/07/21/
how-to-spot-fake-amazon-product-reviews

[4] GOV.UK. (2020) Cma investigates misleading online re-
views. [Online]. Available: https://www.gov.uk/government/news/
cma-investigates-misleading-online-reviews

[5] ——. (2022) New rules to protect consumers’ hard-earned
cash. [Online]. Available: https://www.gov.uk/government/news/
new-rules-to-protect-consumers-hard-earned-cash

[6] J. Pitman. (2022) Local consumer review survey
2022. [Online]. Available: https://www.brightlocal.com/research/
local-consumer-review-survey/

[7] Y. Dou et al., “Enhancing graph neural network-based fraud detectors
against camouflaged fraudsters,” in Proc. ACM CIKM, 2020.

[8] C. Zhang et al., “MArk: Exploiting Cloud Services for Cost-Effective,
SLO-Aware Machine Learning Inference Serving,” in Proc. USENIX
ATC, 2019.

[9] K. Park et al., “End-to-end optimization of machine learning prediction
queries,” arXiv preprint arXiv:2206.00136, 2022.

[10] P. Barham et al., “Pathways: Asynchronous distributed dataflow for ml,”
Proc. Machine Learning and Systems, vol. 4, pp. 430–449, 2022.

[11] S. Kemp. (2022) Digital 2022: Global overview
report. [Online]. Available: https://datareportal.com/reports/
digital-2022-global-overview-report

[12] Wikipedia. (2022) Wikipedia:why is wikipedia los-
ing contributors - thinking about remedies. [Online].
Available: https://en.wikipedia.org/wiki/Wikipedia:Why is Wikipedia
losing contributors - Thinking about remedies

[13] V. Pérez-Rosas et al., “Automatic detection of fake news,” arXiv preprint
arXiv:1708.07104, 2017.

[14] L. Beltzung et al., “Real-time detection of fake-shops through machine
learning,” in Proc. IEEE BigData, 2020.

[15] A. D’Alconzo et al., “A survey on big data for network traffic monitoring
and analysis,” IEEE Trans. Netw. Service Manag., vol. 16, no. 3, 2019.

[16] D. Sculley et al., “Hidden technical debt in machine learning systems,”
Advances in neural information processing systems, vol. 28, 2015.

70

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on November 06,2024 at 12:12:17 UTC from IEEE Xplore. Restrictions apply.

A ACKNOWLEDGMENT

[17] Google. (2020) Mlops: Continuous delivery
and automation pipelines in machine learning.
[Online]. Available: https://cloud.google.com/architecture/
mlops-continuous-delivery-and-automation-pipelines-in-machine-learning

[18] G. Symeonidis et al., “Mlops-definitions, tools and challenges,” CoRR,
vol. abs/2201.00162, 2022.

[19] N. Jindal and B. Liu, “Opinion spam and analysis,” in Proc. WSDM,
2008.

[20] N. Jindal et al., “Finding unusual review patterns using unexpected
rules,” in Proc. ACM CIKM.

[21] M. Ott et al., “Finding Deceptive Opinion Spam by Any Stretch of the
Imagination,” in Proc. ACL, 2011.

[22] Q. Xu and H. Zhao, “Using Deep Linguistic Features for Finding
Deceptive Opinion Spam,” 2012, pp. 1341–1350.

[23] S. Rayana and L. Akoglu, “Collective Opinion Spam Detection: Bridg-
ing Review Networks and Metadata,” in Proc. ACM KDD, 2015.

[24] A. Al-Said Ahmad and P. Andras, “Measuring and Testing the Scalability
of Cloud-based Software Services,” 2018.

[25] D. Yang and P. Thiengburanathum, “Scalability and Robustness Testing
for Open Source Web Crawlers,” in 2021 Joint International Conference
on Digital Arts, Media and Technology with ECTI Northern Section
Conference on Electrical, Electronics, Computer and Telecommunication
Engineering, 2021, pp. 197–201.

[26] M. Gong et al., “An Attention-Based Unsupervised Adversarial Model
for Movie Review Spam Detection,” vol. PP, pp. 1–1, 2020.

[27] J. Li et al., “Fusion Convolutional Attention Network for Opinion Spam
Detection,” in ICONIP.

[28] S. Sedhai and A. Sun, “HSpam14: A Collection of 14 Million
Tweets for Hashtag-Oriented Spam Research,” in Proceedings of
the 38th International ACM SIGIR Conference on Research and
Development in Information Retrieval, ser. SIGIR ’15. Association
for Computing Machinery, 2015, pp. 223–232. [Online]. Available:
https://doi.org/10.1145/2766462.2767701

[29] J. Li et al., “Towards a General Rule for Identifying Deceptive
Opinion Spam,” in Proceedings of the 52nd Annual Meeting of the
Association for Computational Linguistics (Volume 1: Long Papers).
Association for Computational Linguistics, 2014, pp. 1566–1576.
[Online]. Available: https://aclanthology.org/P14-1147

[30] M. Luca and G. Zervas, “Fake It Till You Make It: Reputation,
Competition, and Yelp Review Fraud,” 2013.

[31] L. Akoglu et al., “Opinion fraud detection in online reviews by network
effects,” pp. 2–11, 2013.

[32] G. Fei et al., “Exploiting Burstiness in Reviews for Review
Spammer Detection,” vol. 7, no. 1, pp. 175–184. [Online]. Available:
https://ojs.aaai.org/index.php/ICWSM/article/view/14400

[33] S. Shehnepoor et al., “NetSpam: A Network-Based Spam Detection
Framework for Reviews in Online Social Media,” IEEE Trans. Inf.
Forensics Security, vol. PP, pp. 1–1, 2017.

[34] G. Wang et al., “Review Graph Based Online Store Review Spammer
Detection,” in Proc. IEEE ICDM, 2011.

[35] E.-P. Lim et al., “Detecting product review spammers using rating
behaviors,” in Proceedings of the 19th ACM International Conference
on Information and Knowledge Management - CIKM ’10. ACM
Press, 2010, p. 939. [Online]. Available: http://portal.acm.org/citation.
cfm?doid=1871437.1871557

[36] A. Mukherjee et al., “What Yelp Fake Review Filter Might Be
Doing?” vol. 7, no. 1, pp. 409–418, 2013. [Online]. Available:
https://ojs.aaai.org/index.php/ICWSM/article/view/14389

[37] ——, “Spotting opinion spammers using behavioral footprints,” in
Proceedings of the 19th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, ser. KDD ’13. Association
for Computing Machinery, 2013, pp. 632–640. [Online]. Available:
https://doi.org/10.1145/2487575.2487580

[38] F. Li et al., “Learning to Identify Review Spam.” 2011, pp. 2488–2493.
[39] M. Rostanski et al., “Evaluation of highly available and fault-tolerant

middleware clustered architectures using RabbitMQ,” in 2014 Federated
Conference on Computer Science and Information Systems, 2014, pp.
879–884.

[40] A. Esuli and F. Sebastiani, “SentiWordNet: A Publicly Available Lexical
Resource for Opinion Mining,” 2006.

APPENDIX

A. Word analysis

As mentioned in III-B, reviews will be broken down into
minor elements. Let the w(tij) with ui ∈ U and pj ∈ P return
the set of words of a given text tij ∈ T . The review length in
words is then determined by

xRLW(eij) = |{w | w ∈ w(t(eij))}| (6)

where eij ∈ E. Accordingly, the average review length
written by a user is

xALW(ui) =
1

|Ei∗|
∑

eij∈Ei∗

|w(eij)| (7)

where ui ∈ U . Despite the absolute and the average length,
words with specific properties are observed. For instance, the
ratio of subjective terms is given by

xRSW(eij) =
|{w | w ∈ w(t(eij)), w ∈ SU}|

xRLW(eij)
(8)

eij ∈ E and SU are the set of subjective terms. The collec-
tion of subjective words was used by SENTIWORDNET[40].
In contrast, the ratio of objective terms is given by

xROW(eij) =
|{w | w ∈ w(t(eij)), w ∈ OW}|

xRLW(eij)
(9)

with eij ∈ E. Naturally SENTIWORDNET also contains a
list of objective terms OW . From a grammatical point of view,
the ratio of first-person pronouns is of interest:

xRPP(eij) =
|{w | w ∈ w(t(eij)), w ∈ PP}|

xRLW(eij)
(10)

where eij ∈ E. In order to determine first-person pronouns,
each review gets POS-tagged, filtered by pronouns, and ulti-
mately compared with the list of first-person pronouns.

B. Character analysis

A more granular approach than word-based analysis is
character-based analysis. As a start, let CW be the set of all
capital words. The ratio of words that contain only upper case
letters is given by:

xRAC(eij) =
|{w | w ∈ w(t(eij)), w ∩ CW = w}|

xRLW(eij)
(11)

with eij ∈ E. Similarly let CL be the set of capital letters
and c(tij) with ui ∈ U and pj ∈ P return a list of characters
of a given text tij ∈ T such that the ratio of capital letters is
given by

xRCL(eij) =
|{c | c ∈ c(t(eij)), c ∈ CL}|

|{c | c ∈ c(t(eij))}|
(12)

with eij ∈ E. Finally, let s(tij) with ui ∈ U and pj ∈ P
return a set of sentences of a given text tij ∈ T such that each
sentence s is an ordered list of characters that represent the

871

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on November 06,2024 at 12:12:17 UTC from IEEE Xplore. Restrictions apply.

A ACKNOWLEDGMENT

sentence s. The sentence model allows checking whether an
exclamation mark is in a sentence.

xRES(eij) =
|{s | s ∈ s((e(tij)), s ∩ {‘!’} ≠ {}}|

|{s | s ∈ s(t(eij))}|
(13)

with eij ∈ E.

C. Content analysis

Most spammers post similar reviews [36]. In this work, the
likeness of the two reviews is determined with the cosine
similarity function. First, a frequency matrix is constructed
with a Bag-Of-Word model such that:

Bij,kl = bow(t(eij) ⊎ bow(t(ekl)) (14)

where bow(w(eij)) returns a word frequency vector, ⊎ is
the disjoint union and Bij,kl the term frequency matrix of
tij , tkl ∈ T . Next, the cosine similarity of the two reviews is
given by:

sim(Bij,kl) =
Bij ·Bkl

∥Bij∥∥Bkl∥
(15)

where · is the dot product Bij,Bkl frequency term vectors
and ∥x∥ the euclidian norm. Accordingly, the average content
similarity is given by:

xACS(eij) =
1

|Ei∗|
∑

ekl∈Ei∗

sim(Bij,kl) (16)

with eij ∈ E. In addition to xACS the maximum content
similarty is

xMCS(eij) = max
ekl∈Ei∗

sim(Bij,kl) (17)

with eij ∈ E.

D. Is singleton review

Behavioral Features are excerpts of the users’ actions. As an
example, the feature xISR(uij) flags users that have submitted
only one review:

xISR(uij) =

{
0 if |Ei∗| ≠ 1

1 otherwise
(18)

where uij ∈ U . Singletons are harder to judge whether their
behavior is deceptive or not as they have not produced much
data for a spam detection algorithm.

E. Is positive review

Succeeding with xIPO, the rating is transformed into a binary
feature that separates positive reviews from the rest by:

xIPO(eij) =

{
0 if r(eij) > 3

1 otherwise
(19)

with eij ∈ E. xIPO converts a rating into a thumps-up and
thumps-down model.

F. Ratio of positive reviews
A spammer’s goal is to boost a range of products with

positive reviews. Therefore capturing the ratio of positive
reviews might identify spammers that operate with that goal
in mind. Initially, the proportion of a given rating r ∈ R by a
user ui ∈ U is:

rr(ui, r) =
|{eij | eij ∈ Ei∗, r(eij) = r}|

|Ei∗|
(20)

With equation 20 the ratio of positive is calculated by:

xRPR(ui) = rr(ui, 4) + rr(ui, 5) (21)

Where a positive review refers to a rating higher than 3.

G. Ratio of negative reviews
In contrast to xRPR, the goal of a spammer might be to

discourage customers from buying from the competition. With
equation 29, the ratio of negative reviews is constructed by:

xRNR(ui) = rr(ui, 1) + rr(ui, 2) (22)

where ui ∈ U and a negative rating rij ∈ {1, 2}.

H. Product rating deviation
Influencing the average product rating might affect cus-

tomers’ buying decisions and future ratings. It is therefore
of interest to measure the absolute rating deviation of a given
product pj ∈ P :

xPRD(eij) = |r(eij)−
1

|E∗j |
∑

ekj∈E∗j

r(ekj)| (23)

with eij ∈ E.

I. Average rating deviation
Elaborating on xPRD the rating deviation of a selected user

is

xARD(ui) =
1

|Ei∗|
∑

eij∈Ei∗

xPRD(eij) (24)

with ui ∈ U . xARD explains how much the user’s opinion
differs on average from the user’s reviewed products.

J. Weighted rating deviation
Equation 28 serves as an indicator of a review’s impact, and

equation 23 describes the deviation of the user’s opinion on
the average of a single product. Both notions are combined in
the weighted rating deviation.

Initially, the weights are defined as:

w(eij) =
1

xRBD(eij)α
(25)

With α = 1.5 that is utilized as a decay rate. Next, the
weighted rating deviation is given by:

xWRD(ui) =

∑
eij∈Ei∗

xPRD(eij)w(eij)∑
eij∈Ei∗

w(eij)
(26)

with ui ∈ U . xWRD measures how much a user ui ∈ U tends
to differ on average ratings of sparsely reviewed products.

972

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on November 06,2024 at 12:12:17 UTC from IEEE Xplore. Restrictions apply.

A ACKNOWLEDGMENT

K. Entropy of rating distribution

Simple bot implementations do repeated actions over a
given set of products. To catch this pattern, the entropy of
rating distribution gets calculated:

xERD(ui) = −
5∑

r=1

rr(ui, r) log2 rr(ui, r) (27)

with ui ∈ U . The entropy rating distribution measures the
user’s rating sophistication. If xERD is low, then ui tends to
give the same rating on each review.

L. Rank by date

A single review significantly affects the product’s perception
if only a tiny amount of other reviews are present. The review’s
eij ∈ E rank of a product pj ∈ P by date is given by:

xRBD(eij) = 1 +
∑

ekj∈E∗j

[d(ekj) ≤ d(eij)] (28)

with eij ∈ E. The rank helps differentiate between reviews
that were dropped in a bucket for a highly reviewed product
and the reviews that significantly shaped the average rating.

M. Maximum number of reviews per day

As spammers are more effective by writing more reviews,
it is in the spammer’s interest to write many reviews daily.
Therefore, the maximum number of reviews written per day
is captured.

First, given a review and a day, the number of reviews
written on that day is counted by:

nr(eij) =
∑

eil∈Ei∗

[d(eil) = d(eij)] (29)

with eij ∈ E. Consequently, the maximum number of
reviews that a user has written on a day is given if

xMNR(ui) = max
eij∈Ei∗

nr(eij) (30)

with ui ∈ U .

N. Entropy of temporal gaps

Similar to the idea of xERD, the entropy of temporal gaps
detects unvarying behavior. The set of reviews that a user has
written after a specific review is constructed by:

Deij≤Ei∗ = {eil | eil ∈ Ei∗, d(eil) ≤ d(eij), eil ̸= eij} (31)

with eij ∈ E. With Deij≤Ei∗ the a temporal gap is given
by:

gap(eij) =

0 if Deij≤Ei∗ = {}
min

eil∈Deij≤Ei∗

d(eij)− (eil) otherwise

(32)
with eij ∈ E. Naturally, the entropy of temporal gaps of a

given user ui ∈ U are defined as:

xETG(ui) = −
∑

eij∈Ei∗

gap(eij) log2 gap(eij) (33)

with uij ∈ U . If xETG is low the user ui posts reviews in a
constant time interval.

O. Burstiness

Spammers often submit reviews in a short time frame and
then become inactive[32].

Consequently, short-term members get flagged by:

xBRT(ui) =

0 if min

eij∈Ei∗
d(eij)− max

eij∈Ei∗
d(eij) > τ

1−
min

eij∈Ei∗
d(eij)− max

eij∈Ei∗
d(eij)

τ otherwise
(34)

where τ = 28 and ui ∈ U . If a user has posted a review after
28 days ui the first review, the user is a long-term member.

1073

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on November 06,2024 at 12:12:17 UTC from IEEE Xplore. Restrictions apply.

