
PolarisProfiler: A Novel Metadata-Based Profiling Approach for Optimizing Resource
Management in the Edge-Cloud Continnum

Andrea Morichetta†, Vı́ctor Casamayor Pujol†, Stefan Nastic†, Schahram Dustdar†,
Deepak Vij∗, Ying Xiong∗, Zhaobo Zhang∗

†TU Wien surname@dsg.tuwien.ac.at, ∗Futurewei Technologies, Inc.

Abstract—Resource provisioning is vital in large-scale, geo-
graphically distributed, and hierarchically organized infrastruc-
tures, and, at the same time, it represents one of the stiffest
challenges in their management. The goal is to optimally allocate
infrastructure resources to jobs, ensuring jobs’ Service Level
Objectives (SLOs) while retaining high resource utilization across
the entire resource pool. In this context, accurate workload
profiling is crucial to achieving optimal resource management,
giving more context to the system. However, approaches either
make static guesses or use runtime profiling – that may be
delayed by sandbox testing – and fall short in providing fast and
accurate information. We aim to overcome these challenges with
a novel profiling approach and methodology, the PolarisProfiler.
We discard the consistency assumptions and assume a broader
and less influenced perspective. We use apriori available, static
metadata to enable generic and immediate job profiling based
on historic execution traces. The PolarisProfiler proposes a novel
dynamic profiling model, a generic workload profile generator,
and a metadata-based profile classifier. We illustrate the practical
feasibility of our approach by evaluating the PolarisProfiler in a
case study. We target machine learning workloads, leveraging a
publicly available dataset from Alibaba. We offer a reference im-
plementation of our profiling methodology, combining a density-
based hierarchical clustering technique and an interpretable
decision-tree model for the classifier. We test the PolarisProfiler
for job duration estimation. Despite being based solely on static,
apriori metadata, we obtain convincing results compared to the
state-of-the-art, yielding an estimation error rate of 5% for the
80% of profiled jobs.

I. INTRODUCTION

Optimal resource provisioning in virtualized and shared

computing infrastructures is one of the main challenges faced

by infrastructure providers and operators [1]. The core ques-

tion is how to enforce Service Level Objectives (SLOs) while

retaining high resource utilization across the entire resource

pool, whether in a Kubernetes cluster in the Cloud or in

a KubeEdge [2] cluster at the Edge. Current resource pro-

visioning and management techniques try to address chal-

lenges such as workload scheduling and placement, resource

overcommitment and oversubscription models [3], resource

bursting [4], and live migration. Workload characterization

plays an important role in many of the solutions trying to

facilitate resource provisioning in the Edge-Cloud continuum.

The most notable technique for workload characterization is

so-called workload profiling.
Workload profiling: state of the art and limitations. The

main approaches to workload profiling can be classified into

one of two general categories: (a) they either attempt to exploit

available information about past workload executions (histor-

ical data) to learn the workload’s characteristics or (b) they

attempt to collect information about the workload’s properties

by actively observing it - usually by running the workload in

a sandbox and probing it with synthetic traffic. Furthermore,

they make at least one of the following assumptions: (i) Envi-
ronment consistency - that is, they assume that the sandboxed

execution environment used for profiling faithfully resembles

the production execution environment; (ii) Performance con-
sistency - that is, the runtime performance of similar workloads

will remain consistent over time. (iii) Time consistency - that

is, there are no time constraints on how long it takes to make

profiling decisions, i.e., the workload profile can be created ad

hoc when needed; (iv) Occurrence consistency - that is, the

same workload will run multiple times, and it will reoccur in

the same shared computing environment in the (near) future.

Unfortunately, these assumptions typically do not hold in

practice. (i) The execution environment is typically inconsis-

tent across multiple workload runs. The primary reason is the

infrastructure heterogeneity resulting from software and hard-

ware updates, such as adding a new generation processor [5].

Additionally, due to phenomena known as “noisy neighbors,”

the existing physical resources available in a host node can

significantly vary. This scenario can cause significant vari-

ance in workload performance, rendering the profiles useless.

(ii) Further, several authors have pointed out that the runtime

performance of similar workloads is not consistent during

their lifetime. It typically varies with time, even if the same

preconditions are met, such as using the same input data [6],

[7]. (iii) The time allocated to the profiler to generate the

workload’s profile can significantly vary. It is use-case specific

and typically inconsistent for different resource provisioning

techniques. For example, time spent profiling a workload while

it is pending to be scheduled must be orders of magnitude

shorter than profiling a workload to prevent a bootstrapping

problem when predicting SLO violations. (iv) Finally, previous

work has shown that most general-purpose workloads are

recurrent only to a limited degree, that is, only between 40%

and 60% of workloads are reported to be recurrent [8], [7], [9].

By only looking at a single workload’s history, approximately

every other workload will fail to be successfully profiled.

Research challenges and requirements. We identified the

following research challenges that result from the inherent

lack of consistency along time, performance, occurrence,

and environmental dimensions. The main research challenges

which motivate our work are: (RC-1) How can we derive

accurate workload profiles in the face of a small sample

size caused by non-recurrent workloads? (RC-2) How can we

27

2023 IEEE International Conference on Service-Oriented System Engineering (SOSE)

2642-6587/23/$31.00 ©2023 IEEE
DOI 10.1109/SOSE58276.2023.00010

20
23

 IE
EE

 In
te

rn
at

io
na

l C
on

fe
re

nc
e

on
 S

er
vi

ce
-O

rie
nt

ed
 S

ys
te

m
 E

ng
in

ee
rin

g
(S

O
SE

) |
 9

79
-8

-3
50

3-
22

39
-2

/2
3/

$3
1.

00
 ©

20
23

 IE
EE

 |
 D

O
I:

10
.1

10
9/

SO
SE

58
27

6.
20

23
.0

00
10

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on October 16,2023 at 10:02:22 UTC from IEEE Xplore. Restrictions apply.

represent profiled characteristics so that they can capture the

workloads’ performance variance? (RC-3) How can we make

the profiling process general, non-invasive, and transparent so

that it can seamlessly facilitate various resource provisioning

and management techniques?
To address the RC-1, we take a pragmatic approach to

increase the sample size by continuously analyzing all avail-

able workloads from a shared infrastructure. Our approach

must only utilize the de-facto standard data, which is typically

readily available for any virtualized computing infrastructure.

Further, to make our approach practically scalable, we need

to be able to derive the profiles in a fully automated manner.

Finally, to make our approach generic, it must not rely on any

particular assumption and precondition regarding the data and

its preprocessing or preparation, e.g., feature engineering.
Addressing RC-2 requires a novel view of profile repre-

sentation. Specifically, it is necessary to move away from

traditional profiles, which attempt to represent the workload’s

runtime properties as static profile characteristics and cannot

capture their intrinsic performance variance. Instead, we need

to adopt dynamic concepts that capture varying degrees of

confidence and naturally reflect workloads’ performance vari-

ance. Finally, to capture performance variance faithfully, we

must characterize the profiles based on actual data collected

from the production virtualized infrastructure.
Finally, we need to build agile profiling decisions to address

the RC-3 and make our approach generally useful for various

resource provisioning and management techniques. We want

to assign the profiles as soon as a new workload arrives (to

be non-invasive). Furthermore, we want to base the profile

assignment on widely adopted and well-known information,

such as the workload’s metadata (to be transparent).
Contributions. In this paper, we introduce PolarisProfiler

– a novel profiling approach that leverages apriori available,

static metadata to enable generic and immediate workload

profiling based on historic execution traces. More specifically,

the main contributions include:

• A generic workload profile generator, that automati-

cally derives workload profiles for shared computing

infrastructure, based only on the readily available re-

source usage data, without any specific assumptions (e.g.,

specifically-tailored feature engineering).

• A novel model for representing dynamic profiles, which

can be used to capture the dynamic nature of the work-

load’s runtime properties. Our dynamic profiles can be

continuously updated, even after initial workload profil-

ing, to reflect the workload’s varying performance over

time.

• A metadata-based profile classifier, which efficiently clas-

sifies new workloads and assigns runtime profiles to

them by only considering their apriori available, static

metadata. This way, new workloads get nearly instantly

assigned to profiles.

• A comprehensive case study, which describes an example

implementation of our profiling methodology. Despite

only relying on static, apriori metadata, our methodology

yields an error rate below 5% for the 80% of classified

workloads. These results are competitive with the state-

of-the-art approaches, with the difference that their spe-

cific focus is the estimation of AI workloads duration.

We publicly release the code to allow transparency and

reproducibility of our results1.

II. POLARISPROFILER MODEL & METHODOLOGY

PolarisProfiler derives profiles from a continuous and global

characterization of workloads’ infrastructure usage. The goal

of PolarisProfiler is to profile new workloads solely leveraging

information that is known at workload deployment time.

PolarisProfiler

Profile
generator

ML
model:
"BERT"

OS:
"Linux"

New workload

Apriori Metadata Workload Types

Profile 2

Profile n

Profile 1

Generated by

Generated by

Generated by

Mapped by ML

Mapped by ML

Mapped by ML

Profile
classifier

CPU usage:
max 99, std 24,

avg ...
Memory usage:
max 32, std 5,

avg ...

Fig. 1: Overview of the PolarisProfiler’s model

A. Model

Figure 1 gives an overview of the PolarisProfiler’s model.

Every profile exposes apriori, static metadata for matching

new workloads. We use the term apriori to specify that

we collect metadata information available at the submission

(deployment or provisioning) phase. Examples are user data,

application data, and OS parameters. The term static identi-

fies invariant metadata. It represents core characteristics that

remain stable during the workload life cycle. This metadata is

input for the profile classifier. This model assigns the workload

to the profile that best matches its metadata characteristics

(left side of Fig. 1). Hence, we link the submitted workload

to the profile’s dynamic characteristics. Thus, we leverage the

profile runtime information to design appropriate optimization

strategies before the workload executes.

The profiles summarize the runtime features of similar

workload traces (right side of Fig. 1). At creation time, we

look at the similarity in the workloads’ execution pattern

concerning resource usage. We collect and use a combina-

tion of resource usage records over time in aggregated form

(e.g., average, quantiles, and deviation) or raw. This way,

we have an accurate and information-rich multidimensional

representation of workloads and their behavior over time. This

approach lets us deal with RC-2, i.e., the representation of

1https://github.com/polaris-slo-cloud/Profiling/edit/master/ml data-
profiling/README.md

28

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on October 16,2023 at 10:02:22 UTC from IEEE Xplore. Restrictions apply.

profile information. This way, we know that they will end

up in a group, which includes similar processes that behave

consistently. Furthermore, thanks to the fact that we use static

and a priori metadata, we avoid sandboxing. The richness of

the proposed profile enables the extraction of n-dimensional

trends, anomalies, and seasonalities from the profile resource

records.

B. Workload profile generator
Figure 2 depicts the two main processes for generating and

assigning profiles. The first process is the Workloads’ profiles
generator (top box in Figure 2); it is in charge of generating

or updating representative profiles. The second process is the

metadata-based profiles classifier (bottom box of Figure 2);

it is responsible for associating incoming workload to the

profiles via apriori, static metadata.

Fig. 2: Overview of PolarisProfiler’s main components and

processes (partial view).

The workloads’ profiles generator uses historical workloads

usage traces to address RC-2, i.e., describe the workloads’

runtime properties. The traces include CPU, memory, GPU,

disk usage, or execution duration measures. The role of the

workloads’ profiles generator is to create profiles that summa-

rize similar workloads usage patterns. A basic approach is to

use manual labeling. This approach requires a series of well-

defined guidelines and rules to ensure accuracy and consis-

tency. Furthermore, this process requires the work of multiple

people to ensure quality, and it needs regular reviews and

updates. Although formally feasible, at-scale manual labeling

can be an impractical solution [10], [11], and rules updating

can be cumbersome. Therefore, machine learning techniques

can be more efficient and effective. A possible solution is semi-

supervised techniques [12]. We can learn underlying patterns

in the data through a small set of labeled entries. Still, label

definition is challenging and always relies on static rules.

Therefore, unsupervised learning techniques, which do not

need any previous knowledge. For example, clustering [13],

[14], [15] (eventually with the help of autoencoders [16])

represent for us the preferred solution as they can discover

patterns.

Fig. 3: High-level perspective of the methodology for resource

provisioning techniques.

Each profile contains relevant and specific workloads in-

sights gained from clustering them. At the same time, it

assembles the apriori, static metadata associated with each

workload it integrates. We use the profiles to implement

resource provisioning strategies, e.g., workload bootstrapping,

predictive monitoring, or improving resource management

by estimating workload duration, as shown in §III-D. In

summary, using the introduced mechanisms and techniques,

the Workloads’ profiles generator addresses RC-1 and RC-2
and provides the input for RC-3.

C. Metadata-based profile classifier

The next step is to guarantee the association of new

workloads to profiles through metadata. This process should

be “fast” (where this notion depends on the target goal),

scalable, and flexible. The implementation options include

manually extracting information and defining rules or using

automated mechanisms. Again, at scale, manual approaches

are unsuitable. Therefore, we look at automatable machine

learning methods to provide better results and faster updates.

Generally, we can handle this as a nearest neighbor problem

or a multi-label classification problem (e.g., through rule-

based models or decision trees). Alternatively, we can use

neural networks. However, neural networks do not guarantee

interpretability, an essential property for making decisions

transparent. For this reason, we rely on white box models;

in particular, we select a specific variation of decision trees

or random forests, eXtreme Gradient Boosting (XGBoost).

This method improves on the Gradient Boosting Tree (GBT);

it handles sparse input data and distributes and scales the

execution efficiently [17].

To conclude, we use workloads’ a priori static metadata to

classify it into a profile leveraging a decision tree method.

This process addresses RC-3 and the time and computational

constraints imposed. While we provide examples of relevant

metadata features (as in Figure 2, bottom), we do not bind our-

selves to any predefined set; an accurate metadata taxonomy

is out of this paper’s scope.

D. Application in resource provisioning techniques

For the PolarisProfiler, we envision a continuous improve-

ment process. Figure 3 clarifies our perspective, providing a

high-level overview. In such scenarios, the workload typically

arrives with a set of static metadata features and infrastructure

demands. The information flow we aim to produce with our

approach leads to two paths. First, the new workload gets a

29

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on October 16,2023 at 10:02:22 UTC from IEEE Xplore. Restrictions apply.

profile assignment that aids the system’s resource provisioning

strategies to make the best decision. At the same time, when

the workload starts, we store the workload’s runtime behavior,

thus updating and enriching the selected profiles. With this

feedback loop, we continuously improve infrastructure usage.

At the same time, by monitoring the PolarisProfile, we can

recognize when the profiles’ definition or classification is

deteriorating, thus triggering actions like re-clustering.

The PolarisProfiler aims to solve various concerns in

resource provisioning and management. First, it can help

the scheduling process by facilitating more informed deci-

sions [18]. Knowing the profile of a workload apriori can help

in sampling more suitable machines [19] and filtering and scor-

ing the ones best tailored to that model to serve the request.

Furthermore, *aaS solutions must satisfy users’ SLOs [1],

[20]. In this regard, achieving it in the bootstrapping phase

takes work. There is a need to bring an application online and

satisfy the defined SLOs by only leveraging little information.

In this context, the PolarisProfiler provides the information

needed to assess the application behavior. If we consider

FaaS, there is a gap in how to tailor the correct resources

from a heterogenous infrastructure [21], [22], [23] for specific

functions. Here, the PolarisProfiler aids in pairing the function

characteristics with the most appropriate node configuration by

highlighting patterns in node usage and application behavior.

Finally, the upsurge of machine learning (ML) is bringing in

a new, complex class of workload. As we show in this paper,

the PolarisProfiler provides tools and mechanisms to infer ML

workload characteristics, like resource usage and duration, and

use the infrastructure better.

III. CASE STUDY

We provide a reference implementation of PolarisProfiler

and its main profiling processes. Specifically, we develop a

profiling approach to optimize the scheduling of Machine

Learning (ML) workloads. In our use case, we focus on

assessing the workload duration as it is a crucial feature to

plan and schedule workloads around it, ensuring efficient use

of resources while meeting SLOs.

The rationale for targeting machine learning workload is

that it represents a current challenge for large and distributed

systems [24]. The need for a large amount of data and an

increased necessity for the computing power of energy poses

serious questions [25] and calls for optimization strategies

from the AI and systems communities. Furthermore, the

variety of algorithms and the specific behavior of ML models

push to consider more dimensions in the search for resource

usage patterns and optimize their use to guarantee the best

and the most transparent service for users [26]. Therefore, we

cannot only rely on CPU metrics.

Our study considers two months of ML job traces from

the Alibaba Platform for Artificial Intelligence (PAI) [27].

The platform’s main target is businesses within the Alibaba

group. It enables AI pipelines, offering different levels of

abstraction, from a canvas UI where the users can drag and

connect the elements for their pipeline to containers. Once

TABLE I: Stratified sampling of 100 001 elements based on

the workload metadata feature.

Workload Size Sampled size
bert 10 940 142 29 818
ctr 9 128 957 24 881
graphlearn 4 888 371 13 323
inception 10 781 289 29 385
nmt 13 537 37
resnet 60 863 166
rl 849 626 2 316
vgg 11 768 32
xlnet 15 632 43

Total size 36 690 185 100 001

submitted, the supported frameworks 2 translate each workload

into tasks with different roles, e.g., parameter servers (PS)
and workers for a training job and evaluator for inference.

Each task has one or more instances, deployed using Docker,

and can run on multiple machines. This dataset is relevant

for our case study as it shows several key characteristics.

First of all, it contains real traces, reporting real machine

usage. Furthermore, it discloses descriptive static and apriori

metadata. The most suitable metadata contained in Alibaba’s

dataset is the user’s name (user), the job name (job name), the

model used (workload), and the type of the task, e.g., if it is

training or inference and which architecture uses (task name).

Plus, the Alibaba trace comes with a group tag, i.e., meta-

information specified by tasks, such as entry scripts, command

line parameters, data source, and sinks.
We initially take an outsider perspective regarding the

Alibaba dataset, where we do not have insights about the

system. First, we construct our case study filtering out all

the jobs that are not terminated since we do not have the

resources usage information for them, obtaining circa 36

million instances. Then, we use stratified sampling to reduce

the set to a manageable size. We base the stratification on

the workload type, which, through the model names, gives

us an explicit and more transparent understanding of the jobs

and their instances. We extract a dataset D with a cardinality

|D| = 100 001 elements. Table I shows the categories and

their sampled sizes. Our goal is to create homogeneous profiles

from the infrastructure usage perspective. Thus, we rely on 17

usage metrics.3

Consequently, we need to understand if we can build a

dynamic profile model, i.e., if we can look at the historical

workload in the infrastructure and find profiles that contain

workloads that expose similar behavior. In our case, we

rely on the Hopkins statistics [28]. This test measures the

“clusterability” of data, relying on the hypothesis that the data

follows a Poisson point process. It outputs a score: if equal

or above 0.3, the data have random distribution; the closer the

values go to zero, the more the data could follow clusters. We

2PAI accepts frameworks like TensorFlow, PyTorch, Graph-Learn, and
RLlib.

3Namely: the number of instances for that job (inst num), the starting and
ending time (start time and end time), the planned resource usages (plan
cpu, plan mem, and plan gpu. Plus, the dynamic utilization metrics like CPU
usage, memory usage (average and maximum), GPU usage, GPU memory
usage (average and maximum), number of inputs and outputs (read count
and write count), number of bytes exchanged (read, and write) and the total
job duration.

30

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on October 16,2023 at 10:02:22 UTC from IEEE Xplore. Restrictions apply.

TABLE II: Results of preliminary data analysis on the most

verbose static apriori metadata features.

Metadata
feature(s)

Avg. Silhouette score
Euclidean Cosine Manhattan

Workload 0.17 0.03 0.21
Task name -0.07 -0.19 -0.10
(Workload, Task name) 0.02 -0.01 0.08

rely on the Python pyclustertend library for our analysis,

that uses as default distance “Minkowski,” which results in the

standard Euclidean distance.4, 5 For the set D, the Hopkins

score is 0.0033, letting us believe in the possibility of obtaining

meaningful profiles.

A. Fixed labeling

As we point out in the introduction, most profiling methods

rely on occurrence consistency [8], [7], [9]. Therefore, we

assemble a baseline test to evaluate the performance of single

or combined static apriori metadata if set as profile labels. The

idea is to mimic the “expert” view, which uses information

about the workload. For this task, we rely on workload and

task name, who represent the most intelligible metadata.

We analyze how well a single or a small group of meta-

data features can group workload that behave similarly, i.e.,

that is close in our 17-dimensional problem (considering the

17 resource utilization metrics). For the evaluation, we use

the well-established unsupervised metric Silhouette coefficient

(silhouette) [29] (SCscore). It tells in a [−1, 1] range how

well each point lies within its group.6 For a better assessment,

we consider three distance measures: Euclidean, Cosine, and

Manhattan. Table II summarizes the findings. The results

suggest difficulty identifying homogeneous groups, i.e., points

with the silhouette strictly greater than 0. However, workload
labels contain relevant, but not sufficient, information for

distinguishing the workloads. In this case, the Manhattan
distance performs better than the other. Having a transversal

look at the distance metrics, the Cosine distance is the one

that provides more uncertain results, probably due to its use

mainly related to categorical data. This analysis suggests that

a combination of metadata labels will be required to identify

profiles, further, leveraging workload’s historical resource us-

age will also ensure that the obtained groups are cohesive. The

goal is to have profiles that prove to be more cohesive than the

groups obtained in this baseline test using just one metadata

label.

B. Developing the workload profile generator

After establishing our baseline, we inspect methods for

generating profiles. In particular, we aim at building dynamic

profiles as previously described. In this case, we need to

explore methodologies that can help us extract homogeneous

groups in an unsupervised way. In this context, clustering is

amongst the most popular approaches. Three main categories

of clustering are partitional, hierarchical, and density-based.

4https://pyclustertend.readthedocs.io/en/master/
5https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.

BallTree.html
6values closer to 1 representing a better fit

TABLE III: Parameters for the clustering grid search.

Search Category Values

Model HDBSCAN
OPTICS

Data transformation

StandardScaler
MinMaxScaler
RobustScaler
PowerTransform

Distance metric
Euclidean
Manhattan

Min cluster points 50, 100, 200, 300, 400, 600, 1 000

Density-based methods offer two main features that fit our

case study. First, they do not require us to specify the desired

number of clusters apriori. Second, they generate an “outliers’

group,” i.e., workloads not fitting any cluster. This last charac-

teristic lets us explore irregular workloads and detect peculiar

behaviors. We aim to have fine-grained clustering; therefore,

we focus on methods that generate groups at different data

densities. The main algorithms are HDBSCAN [30], [31] and

OPTICS [32].

At first, we evaluate the best configuration for HDBSCAN
and OPTICS on the case study dataset D. The first parameter

we examine is the data transformation tool for the dynamic

workload feature. We consider the StandardScaler, the Min-
MaxScaler, the RobustScaler – particularly suitable for noisy

datasets – and the PowerTransform, which produces a mono-

tonic transformation. An essential element in clustering is the

distance metric. For our scenario, we choose the Euclidean and

the Manhattan. Finally, both HDBSCAN and OPTICS need to

input a parameter specifying the number of minimum points

per cluster, MinPoints. We choose a range that includes the

potential advantage of having many small and accurate clusters

and the possibility of large representative groups. Table III

summarizes the parameters.

We extract several statistics for each clustering result (C).

We consider the number of clusters generated, how many

outliers O the clustering detects, and the average cluster size.

Furthermore, we rely on unsupervised performance metrics,

such as the overall SCscore and the Davies Bouldin Score

(DB Score). In addition, in our use case, we want to max-

imize the number of clustered points to have a significant

representation in the profiles. Finally, we want to have an

adequate number of clusters. We want to have more than one

big group and avoid many small clusters. Therefore, we look

at having a good balance between the number of clusters

and their cardinality (mean |C|). Table IV summarizes the

main statistics for HDBSCAN and OPTICS. We can see how

HDBSCAN fits our requirements better, as highlighted in bold

in Table IV. Additionally, we show how clustering techniques

can accurately deduce profiles of homogeneous workloads.

1) HDBSCAN evaluation

Here, we inspect the results of the selected HDBSCAN

approach for generating dynamic profile models. First, we

examine the performance in terms of cluster separation, relying

again on the SCscore. We keep out from this analysis the “out-

31

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on October 16,2023 at 10:02:22 UTC from IEEE Xplore. Restrictions apply.

TABLE IV: Summary of the clustering results

#
outliers

#
clusters

mean
|C|

avg
SCscore

DB
score

HDBSCAN

mean 40331.1 68.6 1993.6 0.44 1.52
min 18059 10 254.9 0.23 1.19
max 64770 243 5859.5 0.65 2.01
std 11124.0 70.3 1509.3 0.08 0.19

OPTICS

mean 79578.3 66.2 889.5 0.60 1.19
min 66708 1 120.6 -1.00 0.98
max 98936 271 2979.5 0.81 1.40
std 7643.2 79.3 752.1 0.20 0.10

liers group.” 7 Overall, clusters 8 and 9 have a good SCscore,

despite their large size. Profiles 5, 6, and 11 are the ones that

have the best SCscore. Their low cardinality and sample fit

suggest that they represent particular and homogeneous job

instances. However, profile 10 has a significant amount of not

well-fitted samples. Even if this last behavior is not negligible,

it is unrealistic to expect perfect results with such cardinality.

Overall, the results are well grounded and show how, in the

case study, HDBSCAN is a good candidate to implement our

workload profile generator.

6 5 22241511 2 16 3 13 4 1410 0 18192023 8 25 9 7 2117 1 12 -1

Cluster labels

0

200

400

600

800

1000

C
P

U
U

sa
g
e min std = 0.8

cluster 6
max std = 197.2

outliers -1

avg std = 45.4

(a) CPU usage.

5 6 4 2114191720101118 2 1522241613 3 7 1 12 9 2325 8 0 -1

Cluster labels

0

20

40

60

80

100

120

140

G
P

U
u
sa

g
e min std = 0.0

cluster 5
max std = 15.6

outliers -1

avg std = 3.3

(b) GPU working utilization.

Fig. 4: Boxplot representing the features distribution in the

clustered profiles.

a) Dynamic infrastructure usage data
We now represent the range of workloads performance

within the profiles to understand the core dynamic profile

model. In detail, we examine the distribution of resource usage

values across the profiles and their variability in each cluster.

Figure 4 depicts the results. Due to the page limit, we focus

on the most representative features for the case study: CPU

usageand GPU utilization. The figure shows the boxplots of

the feature values grouped by the cluster labels. The plots sort

the profiles, in the x-axis, by the considered feature standard

deviation, in ascending order; higher values are at the right

of the plot. We sort by the standard deviation to highlight

7We refer to the image HDBSCAN_silh_results_box.pdf in our
repository for the visualization.

the value of cohesiveness within each profile. The y-axis

shows, for each feature, their values.The green and red text

boxes report the minimum and maximum standard deviation,

respectively. The turquoise lines and boxes show the average

standard deviation value instead.

The overall results show that most of the profiles have

relatively low variation. The exception is the “outliers group,”

labeled as “-1,” which naturally contains all the workloads that

do not fit in the main profiles. A particular case is maximum

memory usage, where profile 18 has a broader value range than

the outliers group. As a possible cause, this profile contains

few workload samples and might include peculiar workloads.

On the contrary, sizeable profiles, like 8 and 9, show a good

homogeneity, with generally few noisy points present. Overall,

this first analysis suggests that the HDBSCAN clustering has

managed to find homogeneous groups of jobs. Furthermore,

such representation demonstrates the contribution of profiles

to the estimation of the runtime characteristics of a workload.

b) Metadata
Analyzing the metadata in the clusters is essential for RC-

3, i.e., assigning profiles to new workloads. 8 For seven out

of ten jobs, most of the values end in profiles 8 and 9,

suggesting that these large groups contain various but similar

workloads. These two profiles include, for the large part, “bert”

workload. Furthermore, besides the “rl” workload, which char-

acterizes profiles 5 and 6, the other workload feature values

are scattered in the other clusters. Moreover, the clustering

approach discarded the “resnet,” “nmt,” and “vgg” values.

Looking at the cardinality of these values, which is lower

than 500 – our minimum cluster size – we can understand

why they are not in clusters. Indeed, the last four values

for task name distribution all have a cardinality below 200.

These results show how the HDBSCAN-based profiling helps

to distinguish workloads in the case study. This outcome is

significant, considering that different workloads might show

different patterns. Finally, some users and groups have a higher

representation than others in the profiles pair 8 and 9 or the

19 and 20 pair. These two groups mainly refer to “bert,” as

previously seen, and “graphlearn.” This outcome suggests that

certain users focus on specific implementations, like “bert”

and “graphlearn” and that these implementations have very

specific meta-information embedded in the “group” metadata.

Ultimately, this outline of the metadata distribution suggests

that the clustering based on dynamic data can identify patterns

in the metadata features and that combining these values in

input can lead to accurately detecting profiles.

C. Developing the metadata-based profile classifier

The final, essential step in the presented methodology is

assigning a profile to newly submitted workloads. This task has

to happen fast and by leveraging static, apriori metadata. We

illustrate through the case study how to build such a classifier

and discuss its performance. Furthermore, besides assigning

new jobs to the profiles, we aim to understand the relevance of

8Related heatmap figures in the repository.

32

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on October 16,2023 at 10:02:22 UTC from IEEE Xplore. Restrictions apply.

metadata features in the decision-making process through the

model, which maps the input to the labels. Therefore, we rely

on the interpretable eXtreem Gradient Boosting (XGBoost)

classification model due to its performance in classifying and

its white box characteristics.

1) Training the classifier
We use the dataset of clustered elements DC , leaving out

the outliers group. From each clustered workload, we extract

their static, apriori metadata features, namely: job name, user,

task name, group, and workload. Overall we obtain a set

with a cardinality of 75 398 and a dimension of 5, i.e., the

metadata features. For the model generation, we subdivide

the collection in training and validation sets, with an 80-

20 ratio. The XGBoost algorithm has limited support for

categorical data. So, we must transform the input features

into numerical ones. Valid approaches are one-hot encoding or

recurring to the embedding networks. The latter requires a long

training time; therefore, we use the former approach. After this

transformation, the set dimension grows to 21 547. We store

the data as a sparse matrix to optimize the computation. In

this case, we use the standard hyperparameters for XGBoost.

Our aim in the case study is to analyze its performance and

avoid overfitting.

Table V summarizes the results on the validation set per

profile. We can appreciate that the results are excellent for

most of the profiles, except for profile 6, where the classifier

can not correctly label any of its points. In general, we obtain

an accuracy of 95.19% and a weighted avg F1-Score of 90%.

Overall, the results show a good capability of the trained

model in predicting profiles independently from their size

and starting just from apriori knowledge about a workload

and its instance(s). This result gives us a promising path

towards reproducing the proposed profiling approach, given

the selected case study scenario where the granularity of

information is partially insightful. Furthermore, the sample

selected and the resulting profiles extracted from it are wide-

ranged enough to constitute a complex undertaking for the

model. Finally, an additional advantage of this approach is the

speed with which the model can label new workloads. We do

not need any dry runs on sandboxes or runtime profiling.

2) Results explanation
A key feature is to obtain explainable results. We achieve

that using the SHAP eXplainable AI (XAI) approach [33],

[34], of the top twenty features in the XGBoost model. 9

Particularly relevant are the task name in its “ps” value,

the graphlearn workload type, and a specific user. The task
name: “ps” category refers to using a Parameter Server (PS)

architecture for models’ training. In this case, one or more

nodes play the role of a PS, broadcasting current weights

to learners before each step and aggregating gradients from

them, which is an easy way to retain a global view [35], [36].

This behavior might represent a demarcation with other train-

ing architecture. Similarly, Graph Neural Networks (GNNs)

9The figure SHAP_summaryplot_allclasses.pdf is available in
the repository

10−2 10−1 100 101 102

RMSEperc values

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

5

(a) CDF of the RMSEperc in the
duration prediction test.

0 200100 300

RMSEperc values

0
1
7
8
9

10
12
13
14
17
18
19
20
21
23
25

P
ro

fi
le

s

(b) Boxplot of the RMSEperc aggre-
gated by the profile labels predicted for
the points in the set.

Fig. 5: Summary of the RMSEperc results for the duration

prediction test.

(workload: “graphlearn”) have a very distinct behavior as

they deal with graph data in the input. In particular, their

distributed execution using Alibaba’s developed framework

can differentiate them from other workloads. The same goes

for the NLP model labeled as (workload: “bert”), which

characterizes profiles 8 and 9. Furthermore, the job name
94b340f2cdedf37303d41bf2 is the most recurrent in

our dataset, and it occurs in profiles 5 and 6. If we link this

outcome with what we found in §III-B1, we can match that

these two clusters had very specific and defined resource usage

values with a constantly low standard deviation. Therefore,

it is easy to associate this metadata with a relevant decision

boundary. Overall, the use of the SHAP explainability tool

reinforces the idea of our profiling approach, i.e., that the static

apriori metadata represents a suitable and rich vehicle to match

jobs to distinct profiles.

D. Test case: predicting the jobs’ duration

Finally, we test the capability of profiles to embed relevant

information. To do so, we extract a set of 1 000 workloads

Jsample randomly sampling them from the dataset and making

sure they are not part of our train and validation set. Once the

classifier assigns each of the sampled workloads j ∈ Jsample

to a profile p ∈ P , we use the average duration d̂p to assign

the workload the predicted duration. Naturally, other more

sophisticated approaches can be better for the estimation other

than the mean; we leave this aspect for future research work.

Afterward, we use the normalized Root Mean Squared Error

RMSEperc to compute the loss between d̂p and the actual

job duration d̂j .

Figure 5a gives us a high-level understanding of how this

approach predicts duration values. It shows the Cumulative

Density Function (CDF) of the RMSEperc. The RMSEperc

is below the 5% for 80% of the samples, as depicted in

the highlighted blue area. 90% of the predictions have an

RMSEperc error below the 20%. However, Figure 5a high-

lights some outliers, with RMSEperc values even above 1 000

%. We aim to identify these outliers better in Figure 5b, which

shows the boxplots representing the RMSEperc values for

each profile. The outliers, rimmed by the red circle, are the

ones with RMSEperc values above 100%, as highlighted by

the green area at the left of the plot. We can see that they

33

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on October 16,2023 at 10:02:22 UTC from IEEE Xplore. Restrictions apply.

TABLE V: Class-level classification score reports.

Profile 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
macro
avg

weight.
avg

precision 0.90 0.99 1.00 1.00 1.00 0.66 0.00 0.94 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.99 1.00 1.00 1.00 1.00 1.00 0.97 0.84 0.99 0.84 0.93 0.95
recall 1.00 1.00 1.00 0.99 1.00 1.00 0.00 0.99 0.98 1.00 0.98 1.00 1.00 1.00 1.00 0.99 1.00 1.00 1.00 1.00 1.00 1.00 0.26 0.99 0.30 1.00 0.90 0.95
f1-score 0.94 1.00 1.00 0.99 1.00 0.80 0.00 0.96 0.99 1.00 0.99 1.00 1.00 1.00 1.00 0.99 1.00 1.00 1.00 1.00 1.00 1.00 0.41 0.91 0.46 0.91 0.90 0.94

support 415 1172 177 607 143 134 68 134 2509 2316 128 64 1104 468 135 158 370 116 99 435 437 57 383 1489 426 1536 15080 15080

belong to two profiles, namely, 12, and 21. Overall, these

results show both the quality of the profiling approach and

the optimization possibilities the methodology brings. In brief,

by leveraging the profiling methodology developed in this use

case and simply using the average value duration for each

profile, we have been able to predict the duration of 80%

of the workloads with an error of only 5%. This capability

opens a wide range of optimization capabilities for Cloud

infrastructure by leveraging already available metadata.

IV. RELATED WORK

A. Profiling

Building statistics and extracting workload patterns has

increased interest in the last decades. For example, Dryad [37]

extracted workload statistics for the distributed workload. The

research developed more sophisticated approaches from that

time, given new computational and methodological capabili-

ties. Ahn Vu Do et al. [38] used Canonical Correlation Analy-

sis to find the relationship between performance and resource

usage, relying on the “consistency” assumptions. In terms

of building profiles that estimate SLO-related parameters,

Sinan [39] offers an ML-fueled approach to help reduce QoS

violations. The models predict the application performance

given specific resource allocation measures. PARTIES [40]

offers online profiling. As Kairos and SLearn approach, it uses

runtime information, discarding apriori knowledge, highlight-

ing the difficulties of having information from user-submitted

workloads. On the same line, Kaushik et al. [41] profile

application at runtime for improving vertical scaling. Inagaki

et al. [42] worked on profiling microservices to detect runtime

bottlenecks. Gibilisco et al. [43] also focus on runtime profile

sampling for Spark performance. Manner et al. [44] perform

dynamic profiling through simulations. Rao et al. [45] combine

static and dynamic profiling with a focus on Spark. On the

contrary, we use available static metadata as any workload

is submitted, making the apriori matching trouble-free. Other

works [46], [47], [48] collect “offline” runtime information,

running the workloads in exclusive mode. This approach,

though, suffers from the environment’s inconsistency.

Recently, most of the research focused on characterizing

Machine Learning workload. Some works [49], [50] approach

the profiling using historical execution traces containing hard-

ware attributes and runtime data to forecast the duration of

a DNN’s training iteration. Aryl [51] leveraging the former

approach to estimate the DNN workload duration, using the

history of the runs of the same workload. SCHEDTUNE [52]

leverages historical execution traces to build profiles to predict

resource usage. Our case study differentiates from that as we

follow a more generic approach, i.e., we do not focus solely

on training and do not consider hardware assumptions.

On the contrary, we are more generic and resilient to

environmental and infrastructure changes. Based on Habitat,

EOP [53] aims at characterizing deep learning inference tasks

by looking at three main characteristics of the DNN, such

as the batch size, Height-weight-weight, and Height-weight-
weight. Again, this approach targets a narrow problem and

makes strong apriori assumptions on the features that can

better represent the workloads. Shin et al. [54] developed an

approach to profile the workload of AI applications. Their

focus is on preventing out-of-memory cases by studying Ten-

sorFlow internals. Conversely, we do not look at the internals

of a specific framework. Instead, we use static and easy-to-

obtain metadata.

Similarly to our method, Hu et al. [55] rank workloads using

GPU time, correlating it to attributes, such as workload name,

user, and submission time. They leverage these attributes to

predict the workloads’ priority in scheduling. This approach

follows a similar methodology. However, we aim to provide

a more generic approach to automatically extract these cor-

relations and patterns. InfaaS [56] proposes using statically-

profiled metadata, plus the tracking of dynamic state for high-

level-requirement-based distributed inference serving. Other

works [57], [13] use unsupervised approaches for workload

characterizations and mapping. CloudCluster [14] is instead

a method for clustering VM-to-VM traffic. Carver [58] uses

statistical approaches to extract relevant features in storage

systems. Fibratus is a method developed by Horovitz et

al. [59] to correlate service-specific protocol data patterns with

transactional flow patterns to provide additional insights for

performance profiling using a hierarchical clustering method.

While they share with our work the idea of not being in-

trusive with monitoring, they focus on clustering network

traces. Kattepur et al. [60] have a methodology in principle

similar to our approach, but, in practice, runtime based and

focusing on robotics through fog networks. However, unlike

the previous approaches, we use static, apriori, and readily

available metadata to assign the new workload to profiles.

B. Workload duration estimation

Runtime estimates are a common practice used by mod-

ern scheduling systems to make decisions. Previous work

used offline-based approaches to estimate the duration of

workloads [8], [61] These works estimate the duration by

using assumptions on specific features, e.g., task type and

dataset size. Instead, our work relies on a generic approach

that uses old dynamic information to infer the specific static

and apriori metadata features to detect homogeneous profiles.

Other approaches, like 3Sigma [6], rely on the total historical

workload duration distributions to predict how long the new

workloads will start. Similarly, Weng et al. [27] use the

Alibaba dataset past estimation and a set of fixed parameters,

34

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on October 16,2023 at 10:02:22 UTC from IEEE Xplore. Restrictions apply.

i.e., group and user, to estimate the workload completion

time. Conversely, we create specific profiles to address such

challenges. Other contributions follow different approaches.

Kairos [62] does not require any a priori knowledge of task

runtime. Instead, Kairos employs preemption to estimate the

predicted remaining runtime of tasks from when they have

already been completed. Similarly, Jajoo et al. [5] propose a

learning-in-space approach (SLearn). They select and schedule

only a portion of each workload’s tasks. This method takes ad-

vantage of the similarities between the runtime characteristics

of the tasks inside a single workload. Still, these and similar

online approaches are subject to “environment inconsistency.”

V. CONCLUSIONS

This paper introduced the PolarisProfiler, a novel method-

ology for profiling workload using only easily accessible

resource usage information to build the profiles and static

and apriori metadata features for workload assignment. We

initially took a conceptual perspective, delineating the main

characteristics of our definition of profiles. Further, we intro-

duced the main tools and methodologies. We then consolidated

our approach conceptualization, evaluating it through a case

study. We conducted a comprehensive analysis of real ML

workload traces, leveraging the Alibaba dataset. With this case

study, we delivered two primary outcomes. Firstly, we outlined

practical methods and algorithms to implement the previously

defined conceptual approaches. We showed how clustering

could help to build profiles and how white box classifiers,

like XGBoost, can map new workloads to profiles based

on metadata. Secondly, we presented how this approach can

achieve good results on coarse-grained ML workload profiles,

showing how an unsupervised, assumption-agnostic approach

can provide precise workload duration estimation. Finally, we

delineated challenges and roadmaps for future improvement

of the presented method.

In the future, we intend to utilize the PolarisProfiler to

optimize several problems. One of our future research goals

is to use our profiling approach natively when designing SLO

policies. To achieve this, we intend to embed its support in

SLO Script, a language for implementing complex cloud-

native elasticity-driven SLOs [63]. Furthermore, we want to

explore profiling in the context of serverless management,

where there is a need for better approaches for SLO aware-

ness [23]. In addition, we are applying profiling to the various

stages of scheduling, as already established in [19]. We also

intend to extend the current PolarisProfiler in several direc-

tions. An essential part of the profiles is to be dynamic and

adapt to changing workloads and environments. Therefore,

we aim to develop strategies to adjust profiles at runtime.

One way we would explore is constantly updating the profiles

with the new, related workload and periodically re-cluster the

underperforming ones. Furthermore, we want to improve the

generalization of our approach, making it work with various

objectives other than duration. This direction requires us to

consider better prediction models for both the final SLO

objective and the PolarisProfiler building blocks. For example,

we aim at improving the extraction of the profile metadata

from the clustering, e.g., employing vector-like representation

of the metadata using autoencoders.

REFERENCES

[1] S. Nastic et al., “Sloc: Service level objectives for next generation cloud
computing,” IEEE Internet Computing, vol. 24, no. 3, pp. 39–50, 2020.

[2] Y. Xiong et al., “Extend cloud to edge with kubeedge,” in 2018
IEEE/ACM Symposium on Edge Computing (SEC). IEEE, 2018, pp.
373–377.

[3] R. Householder et al., “On cloud-based oversubscription,” International
Journal of Engineering Trends and Technology (IJETT), vol. 8, no. 8,
pp. 425–431, 2014.

[4] S. M. Noonan, “Managing resource bursting,” Aug. 16 2016, uS Patent
9,417,902.

[5] A. Jajoo et al., “A case for task sampling based learning for cluster job
scheduling,” in 19th USENIX Symposium on Networked Systems Design
and Implementation (NSDI 22), 2022, pp. 19–33.

[6] J. W. Park et al., “3sigma: distribution-based cluster scheduling for run-
time uncertainty,” in Proceedings of the Thirteenth EuroSys Conference,
2018, pp. 1–17.

[7] S. A. Jyothi et al., “Morpheus: Towards automated {SLOs} for en-
terprise clusters,” in 12th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 16), 2016, pp. 117–134.

[8] A. D. Ferguson et al., “Jockey: guaranteed job latency in data parallel
clusters,” in Proceedings of the 7th ACM european conference on
Computer Systems, 2012, pp. 99–112.

[9] V. Jalaparti et al., “Network-aware scheduling for data-parallel jobs: Plan
when you can,” ACM SIGCOMM Computer Communication Review,
vol. 45, no. 4, pp. 407–420, 2015.

[10] D. Abadi et al., “The beckman report on database research,” Communi-
cations of the ACM, vol. 59, no. 2, pp. 92–99, 2016.

[11] M. Stonebraker et al., “Data curation at scale: the data tamer system.”
in Cidr, vol. 2013, 2013.

[12] T. Khan et al., “Workload forecasting and energy state estimation in
cloud data centres: Ml-centric approach,” Future Generation Computer
Systems, vol. 128, pp. 320–332, 2022.

[13] J. L. Berral et al., “{AI4DL}: Mining behaviors of deep learning
workloads for resource management,” in 12th USENIX Workshop on
Hot Topics in Cloud Computing (HotCloud 20), 2020.

[14] W. Pang et al., “{CloudCluster}: Unearthing the functional structure of
a cloud service,” in 19th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 22), 2022, pp. 1213–1230.

[15] H. Wang and B. Li, “Lube: Mitigating bottlenecks in wide area data
analytics,” in 9th USENIX Workshop on Hot Topics in Cloud Computing
(HotCloud 17), 2017.

[16] A. Ng et al., “Sparse autoencoder,” CS294A Lecture notes, vol. 72, no.
2011, pp. 1–19, 2011.

[17] T. Chen and C. Guestrin, “Xgboost: A scalable tree boosting system,”
in Proceedings of the 22nd acm sigkdd international conference on
knowledge discovery and data mining, 2016, pp. 785–794.

[18] S. Nastic et al., “Polaris scheduler: Edge sensitive and slo aware
workload scheduling in cloud-edge-iot clusters,” in 2021 IEEE 14th
International Conference on Cloud Computing (CLOUD). IEEE, 2021,
pp. 206–216.

[19] V. Casamayor Pujol et al., “Intelligent sampling: A novel approach to
optimize workload scheduling in large-scale heterogeneous computing
continuum,” in 2023 18th Annual System of Systems Engineering Con-
ference (SOSE), (to appear), 2023.

[20] T. Pusztai et al., “A novel middleware for efficiently implementing
complex cloud-native slos,” in IEEE 14th International Conference on
Cloud Computing (CLOUD), 2021.

[21] Q. Zhang et al., “Harmony: Dynamic heterogeneity-aware resource
provisioning in the cloud,” in 2013 IEEE 33rd International Conference
on Distributed Computing Systems. IEEE, 2013, pp. 510–519.

[22] S. Nastic et al., “A serverless computing fabric for edge & cloud,” in
4th IEEE International Conference on Cognitive Machine Intelligence
(CogMi), 2022.

[23] P. Raith et al., “Serverless edge computing—where we are and what lies
ahead,” IEEE Internet Computing, vol. 27, no. 3, pp. 50–64, 2023.

[24] J. Verbraeken et al., “A survey on distributed machine learning,” Acm
computing surveys (csur), vol. 53, no. 2, pp. 1–33, 2020.

35

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on October 16,2023 at 10:02:22 UTC from IEEE Xplore. Restrictions apply.

[25] E. M. Bender et al., “On the dangers of stochastic parrots: Can language
models be too big?” in Proceedings of the 2021 ACM Conference on
Fairness, Accountability, and Transparency, 2021, pp. 610–623.

[26] C. Wan et al., “Are machine learning cloud apis used correctly?” in 2021
IEEE/ACM 43rd International Conference on Software Engineering
(ICSE). IEEE, 2021, pp. 125–137.

[27] Q. Weng et al., “MLaaS in the wild: Workload analysis and scheduling in
large-scale heterogeneous GPU clusters,” in 19th {USENIX} Symposium
on Networked Systems Design and Implementation ({NSDI} 22), 2022.

[28] A. Banerjee and R. N. Dave, “Validating clusters using the hopkins
statistic,” in 2004 IEEE International conference on fuzzy systems (IEEE
Cat. No. 04CH37542), vol. 1. IEEE, 2004, pp. 149–153.

[29] P. J. Rousseeuw, “Silhouettes: a graphical aid to the interpretation and
validation of cluster analysis,” Journal of computational and applied
mathematics, vol. 20, pp. 53–65, 1987.

[30] R. J. Campello et al., “Density-based clustering based on hierarchical
density estimates,” in Pacific-Asia conference on knowledge discovery
and data mining. Springer, 2013, pp. 160–172.

[31] L. McInnes and J. Healy, “Accelerated hierarchical density based cluster-
ing,” in 2017 IEEE International Conference on Data Mining Workshops
(ICDMW), Nov 2017, pp. 33–42.

[32] M. Ankerst et al., “Optics: ordering points to identify the clustering
structure,” in ACM Sigmod record, vol. 28, no. 2. ACM, 1999, pp.
49–60.

[33] S. M. Lundberg and S.-I. Lee, “A unified approach to interpreting model
predictions,” Advances in neural information processing systems, vol. 30,
2017.

[34] S. M. Lundberg et al., “From local explanations to global understanding
with explainable ai for trees,” Nature machine intelligence, vol. 2, no. 1,
pp. 56–67, 2020.

[35] M. Wang et al., “Characterizing deep learning training workloads
on alibaba-pai,” in 2019 IEEE international symposium on workload
characterization (IISWC). IEEE, 2019, pp. 189–202.

[36] S. Li et al., “Taming unbalanced training workloads in deep learning
with partial collective operations,” in Proceedings of the 25th ACM SIG-
PLAN Symposium on Principles and Practice of Parallel Programming,
2020, pp. 45–61.

[37] M. Isard et al., “Dryad: distributed data-parallel programs from sequen-
tial building blocks,” in Proceedings of the 2nd ACM SIGOPS/EuroSys
European Conference on Computer Systems 2007, 2007, pp. 59–72.

[38] A. V. Do et al., “Profiling applications for virtual machine placement in
clouds,” in 2011 IEEE 4th international conference on cloud computing.
IEEE, 2011, pp. 660–667.

[39] Y. Zhang et al., “Sinan: Ml-based and qos-aware resource management
for cloud microservices,” in Proceedings of the 26th ACM International
Conference on Architectural Support for Programming Languages and
Operating Systems, 2021, pp. 167–181.

[40] S. Chen et al., “Parties: Qos-aware resource partitioning for multiple
interactive services,” in Proceedings of the Twenty-Fourth International
Conference on Architectural Support for Programming Languages and
Operating Systems, 2019, pp. 107–120.

[41] P. Kaushik et al., “A study of contributing factors to power aware
vertical scaling of deadline constrained applications,” in 2022 IEEE 15th
International Conference on Cloud Computing (CLOUD). IEEE, 2022,
pp. 500–510.

[42] T. Inagaki et al., “Detecting layered bottlenecks in microservices,”
in 2022 IEEE 15th International Conference on Cloud Computing
(CLOUD). IEEE, 2022, pp. 385–396.

[43] G. P. Gibilisco et al., “Stage aware performance modeling of dag
based in memory analytic platforms,” in 2016 IEEE 9th International
Conference on Cloud Computing (CLOUD). IEEE, 2016, pp. 188–195.

[44] J. Manner et al., “Optimizing cloud function configuration via local
simulations,” in 2021 IEEE 14th International Conference on Cloud
Computing (CLOUD). IEEE, 2021, pp. 168–178.

[45] B. Rao et al., “Soda: A semantics-aware optimization framework for
data-intensive applications using hybrid program analysis,” in 2021 IEEE
14th International Conference On Cloud Computing (CLOUD). IEEE,
2021, pp. 433–444.

[46] D. Narayanan et al., “{Heterogeneity-Aware} cluster scheduling policies
for deep learning workloads,” in 14th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 20), 2020, pp. 481–498.

[47] W. Xiao et al., “Gandiva: Introspective cluster scheduling for deep
learning,” in 13th USENIX Symposium on Operating Systems Design
and Implementation (OSDI 18), 2018, pp. 595–610.

[48] K. Mahajan et al., “Themis: Fair and efficient {GPU} cluster schedul-
ing,” in 17th USENIX Symposium on Networked Systems Design and
Implementation (NSDI 20), 2020, pp. 289–304.

[49] G. Yeung et al., “Towards {GPU} utilization prediction for cloud deep
learning,” in 12th USENIX Workshop on Hot Topics in Cloud Computing
(HotCloud 20), 2020.

[50] X. Y. Geoffrey et al., “Habitat: A {Runtime-Based} computational per-
formance predictor for deep neural network training,” in 2021 USENIX
Annual Technical Conference (USENIX ATC 21), 2021, pp. 503–521.

[51] J. Li et al., “Aryl: An elastic cluster scheduler for deep learning,” arXiv
preprint arXiv:2202.07896, 2022.

[52] H. Albahar et al., “Schedtune: A heterogeneity-aware gpu scheduler for
deep learning,” in 2022 22nd IEEE International Symposium on Cluster,
Cloud and Internet Computing (CCGrid). IEEE, 2022, pp. 695–705.

[53] Y. Xu et al., “Eop: efficient operator partition for deep learning inference
over edge servers,” in Proceedings of the 18th ACM SIGPLAN/SIGOPS
International Conference on Virtual Execution Environments, 2022, pp.
45–57.

[54] C. Shin et al., “Xonar: Profiling-based job orderer for distributed
deep learning,” in 2022 IEEE 15th International Conference on Cloud
Computing (CLOUD). IEEE, 2022, pp. 112–114.

[55] Q. Hu et al., “Characterization and prediction of deep learning workloads
in large-scale gpu datacenters,” in Proceedings of the International
Conference for High Performance Computing, Networking, Storage and
Analysis, 2021, pp. 1–15.

[56] F. Romero et al., “{INFaaS}: Automated model-less inference serving,”
in 2021 USENIX Annual Technical Conference (USENIX ATC 21), 2021,
pp. 397–411.

[57] D. Van Aken et al., “Automatic database management system tuning
through large-scale machine learning,” in Proceedings of the 2017 ACM
international conference on management of data, 2017, pp. 1009–1024.

[58] Z. Cao et al., “Carver: Finding important parameters for storage system
tuning,” in 18th USENIX Conference on File and Storage Technologies
(FAST 20), 2020, pp. 43–57.

[59] S. Horovitz et al., “Non-intrusive cloud application transaction pattern
discovery,” in 2019 IEEE 12th International Conference on Cloud
Computing (CLOUD). IEEE, 2019, pp. 311–320.

[60] A. Kattepur et al., “A-priori estimation of computation times in fog
networked robotics,” in 2017 IEEE international conference on edge
computing (EDGE). IEEE, 2017, pp. 9–16.

[61] K. Karanasos et al., “Mercury: Hybrid centralized and distributed
scheduling in large shared clusters,” in 2015 USENIX Annual Technical
Conference (USENIX ATC 15), 2015, pp. 485–497.

[62] P. Delgado et al., “Kairos: Preemptive data center scheduling without
runtime estimates,” in Proceedings of the ACM Symposium on Cloud
Computing, 2018, pp. 135–148.

[63] T. Pusztai et al., “Slo script: A novel language for implementing complex
cloud-native elasticity-driven slos,” in IEEE International Conference on
Web Services (ICWS), 2021.

36

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on October 16,2023 at 10:02:22 UTC from IEEE Xplore. Restrictions apply.

