
Intent-based Management for the Distributed
Computing Continuum

Andrea Morichetta†, Nikolaus Spring∗, Philipp Raith†, Schahram Dustdar†
Distributed Systems Group, TU Wien

† surname@dsg.tuwien.ac.at, ∗ e11908527@student.tuwien.ac.at

Abstract—Managing digital and connected systems has become
increasingly challenging in the past decade due to their scale and
complexity. A new perspective is required to manage these sys-
tems, considering the infrastructure and components from edge
to cloud, i.e., in the distributed computing continuum. Serverless
computing offers improved scalability and cost efficiency, but
balancing and coordinating serverless systems remain complex.
Intent-based systems, popular in networking, can provide a
solution by translating stakeholder inputs into actions that
meet Service Level Objectives (SLOs). Their application in the
computing continuum can be highly beneficial, but it has yet to
be deeply explored.

To bridge this gap, we propose a methodology for deploying an
intent-based system for the computing continuum. We implement
an architectural framework leveraging the serverless paradigm.
Furthermore, we focus on defining and implementing the main
components for translating the management requirements into
actions executed by serverless functions inspired by a three-
layer model. Through a Proof of Concept (PoC) deployed in
Amazon’s AWS cloud and detailed simulations, we showcase how
such an approach can resolve conflicts in a complex system,
i.e., balancing efficiency and availability. Our work aims to
contribute to effectively managing the computing continuum and
highlight the potential of intent-based systems in this domain.
The experiments’ results show our framework’s ability to make
appropriate scaling decisions, fulfilling both objectives.

I. INTRODUCTION

In the last decade, the scale of digital and connected systems

has reached the point where direct management is unfeasible.

Global platforms like Google, Amazon, and Meta highlight

the diversity and pervasiveness of infrastructure components,

showing the complexity of their management [8], [53]. How-

ever, if we aim to handle these systems’ complexity effectively,

we must take a perspective where we consider their elements

as part of a continuous entity. We call this entity the computing

continuum, i.e., the ensemble of resources that spawn from

the edge to the cloud. In the frame of the computing contin-

uum, we have to work to develop efficient and autonomous

management methods and strategies. Contextually, serverless

computing, or Function as a Service (FaaS), has emerged as a

promising paradigm for deploying complex systems applica-

tions. It offers various benefits [5] such as improved scalability

and cost efficiency. In contrast to other cloud models, such as

Platform as a Service, customers do not need to manage any

infrastructure. Instead, they solely need to package their code

as functions and upload it to the platform. In turn, the platform

adapts the function deployments according to the workload.

These characteristics make FaaS a candidate paradigm for

the computing continuum [4]. Platform providers can run as

many functions as possible, saving resources and maximizing

profit. Furthermore, thanks to the lightweight functions, they

can more easily schedule workload on heterogeneous nodes,

even resource-constrained ones. Jointly, customers achieve

better performance and availability [34]. Therefore, the “divide

and conquer” approach relieves stakeholders from manag-

ing a monolithic infrastructure by guaranteeing fine-grained

access to resources [40]. These characteristics facilitate the

disaggregation of work units and allow a focus shift toward

how to define Service Level Objectives (SLOs). Still, effec-

tively balancing and coordinating system and infrastructure

objectives through serverless is a hard problem [28]. Indeed,

there is the need to increase the optimization of such plat-

forms, from operationalization to intelligent placing, scaling,

and routing [46]. Open-source serverless solutions, such as

OpenFaaS or Knative, offer such flexibility. Still, they require

appropriate scaling methods to provide resource-efficient and

highly available deployment. Achieving these goals takes work

and should be handled by the platform. As discussed earlier,

developers and infrastructure engineers should only express

their SLO intents (e.g., efficiency, availability), letting the

platform autonomously adapt. These strategies are complex as

they must operate in a dynamic environment where the infras-

tructure nodes change. Furthermore, they need to communicate

to solve conflicting objectives. That brings us to find ways

to manage that, which translates into the need for algorithms

capable of handling this complexity in (near-) real-time.

In this direction, one of the main tasks to solve is to encode

mechanisms that can transform applications and management

objectives into actions understandable by methods that run

on the infrastructure nodes, thus coordinating appropriate

responses. Intent-based systems are gaining popularity in

this regard. The aim is to translate high-level inputs from

stakeholders, e.g., using natural language, into actions that

some automated function can apply to the system to satisfy

the objectives. This approach offers high-level system-wide

objectives or goals that tell the system what to do rather than

how to achieve it [38]. Despite the increasing interest for

intent-based approaches for the computing continuum and first

attempts towards it [29], [27], [51], most of the applications

are limited to the area of networking world [49], [60]. The

aspects that emerge from this overview are naturally weaving

with machine learning advances, where novel mechanisms

like few-shot learners or self-supervised systems can aid

239

2023 IEEE International Conference on Service-Oriented System Engineering (SOSE)

2642-6587/23/$31.00 ©2023 IEEE
DOI 10.1109/SOSE58276.2023.00035

20
23

 IE
EE

 In
te

rn
at

io
na

l C
on

fe
re

nc
e

on
 S

er
vi

ce
-O

rie
nt

ed
 S

ys
te

m
 E

ng
in

ee
rin

g
(S

O
SE

) |
 9

79
-8

-3
50

3-
22

39
-2

/2
3/

$3
1.

00
 ©

20
23

 IE
EE

 |
 D

O
I:

10
.1

10
9/

SO
SE

58
27

6.
20

23
.0

00
35

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on October 16,2023 at 10:05:16 UTC from IEEE Xplore. Restrictions apply.

Intents

Edge

Fog

Cloud

Serverless
functionsTranslation

Feedback

Fig. 1: Representation of the proposed framework. The aim is

to set the foundation for handling the computing continuum

complexity. We envision the possibility of achieving that

through intent-based management of serverless functions.

in understanding and predicting complex dynamics in data.

In particular, the computing continuum is a scenario where

we must achieve a global equilibrium, balancing objectives,

infrastructure changes, and dynamic behaviors [14]. Achieving

this system-wide balance requires building a set of specialist

models, the agents, that can examine the different aspects of

the system [41]. However, these agents can only coexist if

they “speak” the same language [32]. That is why having

systems that can translate high-level objectives into “words”

understandable by the agents in the system is essential.

To address this gap, we propose an architectural frame-

work for intent-based management of serverless systems in

the computing continuum. Our work focuses on identifying

and implementing the components for translating stakeholder

requirements into actions. Figure 1 depicts our proposal. We

aim at having serverless functions controlling the infrastructure

in the computing continuum and the applications running on

top of it. We envision the computing continuum built by

various geographical and regions that we want to coordinate

and manage harmonically. We achieve this control through the

translation of high-level intents into actions that the agents

running in the serverless function will implement on the plat-

form, e.g., by scaling the replicas of an application or by re-

structuring some infrastructure components. This task requires

identifying an appropriate infrastructure and developing the

correct components and their interconnection. In particular, the

emphasis is on managing the agents that implement the actions

needed to satisfy the SLOs using serverless functions for the

computing continuum scenario, made of various regions. To

this end, we propose a platform based on a three-layer intent-

based architecture. We present a multi-objective use case in

which we test our Proof of Concept (PoC), where conflicting

SLOs must coexist, and the system needs to maintain its

balance. To this end, we leverage a polynomial regression

model to predict the system’s behavior. We deploy the platform

in Amazon’s AWS cloud, showing how the proposed tools can

integrate. We perform detailed simulations, hinting at how our

approach can guarantee the resolution of conflicts in a complex

system.

The structure of this paper is as follows. We investigate the

focus of previous research and related work in Section II. Sec-

tion III clarifies fundamental concepts and technologies needed

for implementing such a system. In addition, we present our

approach to specifying and working with intents, together

with its architectural design and deployment on the public

infrastructure provided by AWS. In Section IV, we evaluate

the proposed Proof of Concept (PoC) through an extensive

simulated environment. Later, in Section V, we discuss our

contribution, pointing out both the positive outcomes and the

limitations. Finally, Section VI concludes the paper.

For the sake of reproducibility and transparency, and to

foster new developments, we publicly release the code and

the data of our experiments. 1

II. RELATED WORK

A. Management frameworks for the computing continuum

Rohan Kumar et al. [30] focus on developing a framework

for the computing continuum. They offer the integration of

algorithms for executing management functions for handling

function execution timing. To do that, they rely on federated

function execution. However, their focus is not on conflicting

objectives and the possible definition of intents. Other frame-

works aim at doing that, focusing on specific functionalities for

individual use cases. For example, Balouek et al. [6] propose

a streaming data workflow and fast response framework. They

aim to improve real-time data analytics for fast and effective

earthquake management. Still discussing specific use cases,

Peltonen et al. [43] propose an agenda for collaborative real-

time learning in the Edge-cloud continuum in vehicular com-

puting. Similarly, Torres et al. [54] propose a methodology for

real-time monitoring and predictions using Kafka-ML. Zanella

et al. [59] showsa framework for cloud continuum runtime

management, focusing on dynamic and performance-aware

task allocation policy. They, however, do not focus on intents

or FaaS. Pilot-Edge, by Luckow et al. [31], provides a FaaS

interface for application-level tasks, focusing on evaluating

task placement. Ferrer et al. [17] envision a Cognitive cloud

continuum with swarms for organizing the execution over the

continuum. However, they do not focus on high-level SLOs.

Pereira et al. [44] instead focus on the computing continuum

availability guarantee, proposing a hierarchical approach. We

take a different perspective, centering the framework on the

intents and their definition and translation.

B. Intent-based systems

a) Translation: One of the most explored aspects of

intent-based systems is the capability of translating intents

expressed in natural language into rules applicable to the sys-

tem [39], [21]. The current development in terms of language

1https://github.com/nspring00/three-layer-intent-based-networking-
architecture-poc

240

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on October 16,2023 at 10:05:16 UTC from IEEE Xplore. Restrictions apply.

models opens new frontiers in this direction. However, given

the particular scenario, there is a need for ontologies and

accurate models. For example, some work leverage predefined

intent categories [24] or define specific languages [23], [57].

Other approaches leverage pre-trained models [33] or build

intent translation on top of NLP algorithms [47], [52], [16].

b) Intent-driven platforms and frameworks: Mays et al.

[36] specify resources and QoS requirements as non-functional

intents for microservices. They formulate a minimization

problem based on latency, CPU resources, and network traffic.

Barrachina-Mu noz [7] focuses on end-to-end latency intent in

Kubernetes. Mercian et al. [37] infer network intents from

existing policies. Metsch et al. [38] enforce SLOs using

intents in cloud-native deployments via Kubernetes, using

an optimization approach and an A* algorithm. Kretsis et

al. [29] propose an intent-driven edge-cloud platform called

SERRANO. Kokkinos et al. [26] introduce a UI to create

intent-based application requirements and propose a feedback-

driven loop for workload optimization. Dzeparoska et al.[15]

implement a management system that abstracts complexities

using intents as inputs, featuring a policy abstraction and

an API layer. Blum et al.[11] propose an SOA intent-based

API for orchestrating NGNs, emphasizing collaboration with

3rd party services. Rafiq et al.[45] provide a user-friendly

graphical interface and simplified input for end-to-end service

orchestration and modeling of VNF descriptors. Paganelli et

al.[42] present a two-layer network service description model

for service provisioning and orchestration in SDN. Aklamanu

et al.[2] automate network slicing through intents, while Abbas

et al.[1] develop a network slicing platform with a GUI

for inputting QoS requirements. Wang et al.[56] propose an

intent-based “smart” slicing framework for vertical industries,

and Chirivella-Perez et al.[13] present an E2E network slice

management framework. Mascarenhas and Cruz [35] use an

“intent-based” approach and autonomic computing concepts

for autonomous cloud deployment management. Callegati et

al.[12] propose a VIM POC for controlling SFC performance,

and Beshley et al.[10] propose a switch migration approach

considering QoS priorities.

C. Serverless solutions

Despite the advancement of serverless computing platforms,

such as AWS Lambda 2, OpenFaaS 3, and other prototypes,

only a few approaches currently allow stakeholders to define

and implement objectives for the applications running on the

platforms. For example, Klingler et al. [25] introduce code an-

notations that assist developers in optimizing function resource

configuration, including memory allocation and addressing

cold starts. At the same time, other approaches focus on

reducing the resource footprint [9], [58] or managing resources

at runtime, i.e., during function scaling and placement. In

terms of location awareness, both commercial and open-source

platforms offer limited support. Hu et al. [20] have developed

2https://aws.amazon.com/lambda
3https://www.openfaas.com

a Domain-Specific Language (DSL) that allows developers to

specify whether function execution should occur at the Edge or

in the Cloud in a UAV system. Smith et al. [50] enable clients

to indicate the execution area through invocation requests for

network traffic optimization.

D. Gap and Opportunities
Whereas these results set good standards for managing dis-

tributed systems in a computing continuum, they are primarily

limited to evaluating just a fragment of the overall scheme.

Furthermore, most of the approaches focus on network prob-

lems. While it is true that internet networks embed much com-

plexity and that VNFs have gained popularity, it is essential

to expand this view on distributed systems at large. In fact,

computing continuum systems face increased complexity due

to the higher dynamic nature and the variety of applications

and objectives connected to them. In addition, few proposals

consider FaaS’s necessity for opportune management; how-

ever, this characteristic is essential for us. Finally, most papers

we report propose a PoC without deploying them in actual

infrastructures. On the contrary, we test the solution on AWS.

However, the scenario we build represents the majority of use

cases, i.e., where the intent and business logic has to live in

a public infrastructure with other application concurring for

using resources.

III. METHODOLOGY

In our investigation, we focus on the design of a FaaS intent-

based framework. First, it is essential to clarify that multiple

technological and architectural approaches exist to designing

intent-based systems, which mostly share a standard base

structure. Their differences lie in the usage and interconnection

of specific components and technologies. In our work, we

choose the 3-layer architecture [60]. We further clarify why

we chose this model and define its main components. Later,

we present our implementation, clarifying the development

choices. Lastly, in our case study, we set the main points for

the evaluation we investigate in Section IV.

A. 3-layer Intent-based architectural approach
The 3-layer architecture, introduced by Zeydan [60], rep-

resents the most opportune model on top of which we can

build our framework. The rationale is that it comprehends

all the most relevant features, allowing flexibility in adapting

the framework to various requirements. Indeed, due to its

general features, this model already establishes a baseline

for other architectures, such as the VIS [49] or end-to-

end architecture [55]. That is why implementing and open-

sourcing such an architecture represents an essential baseline

for more complex applications for the computing continuum.

In Figure 2, we depict the 3-layer architecture. We can see

how we can develop a system that can interact with the

stakeholders at the higher level. This top layer abstracts

away the logic of managing a computing continuum system,

where user requirements and observations collected from the

infrastructure help the algorithms make decisions and perform

actions on the infrastructure.

241

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on October 16,2023 at 10:05:16 UTC from IEEE Xplore. Restrictions apply.

Intents
Translation

Feedback

Dynamic
update Composition

Request

Knowledge

Data Agent

Modelling

Business
Layer

Intent
Layer

Infrastructure
LayerActions

Computing continuum

Observations

Fig. 2: Illustration of the 3-layer architecture with the main

interaction of its components.

a) Business Layer: Users can interact with the business

layer to declare intents by specifying high-level metrics, i.e.,

an SLO, and triggering SLAs and other processes, goals, or

objectives. Therefore, the business layer enables the high-level

guidance of the whole system [60] and automatic detection

and resolution of clashes between conflicting intents. As

previously discussed, this layer can leverage language models

for translation.

b) Intent Layer: The intent layer is essential, holding the

logic for managing the computing continuum infrastructure.

It primarily focuses on the re-evaluation and re-planning of

the single steps during the execution of a sequence. These

steps follow an accurate procedure. First, it detects what is

happening in the system. Given this information and the user-

defined intents, it defines some potential actions. Then, if it

approves the action, it requests the procedure to apply it to

the infrastructure. Multiple coupled components take care of

managing this pipeline:

• the Knowledge component is responsible for processing

and interpreting observations based on the defined intents.

This component considers the relation between system

elements, leveraging the actual state and performing

inference.

• the Agent component is responsible for translating the in-

tents received from the business layer into policies, acting

as the communication interface towards the devices and

transferring these translated policies to the infrastructure.

In other words, it applies the decision outputted by the

Knowledge.

• the Data component continuously observes the infras-

tructure nodes and has information on its topology and

inventory. Additionally, they store the state of each intent,

and upon any changes, the data model gets evaluated as

accurately as possible. Therefore, upon any infrastructure

state changes, they get forwarded to the Knowledge, and

Infrastructure
Layer

Continuum Devices - simulated

Business Layer

Intent Layer

Knowledge

Data Agent

Network Layer Manager

Client

Min/Max KPIs

PER REGION
Device Count

Efficiency
Total Availability

Device Count
Efficiency

Total Availability

Add devices / Remove devices X, Y, Z

Fetch NL topology: device ids, ...

Request reasoning

Action required for region

Check if action is required
for own region

RabbitMQ

Total workload
Average workload

Scale up/down
by N devices

Poll for region update

Fig. 3: Architecture overview of the PoC implementation.

the updated state reaches the Agent.

c) Infrastructure Layer: The bottom layer is where phys-

ical nodes and computing continuum elements reside. The

data about the infrastructure state gets abstracted into a formal

representation before supplying it to the intent layer. It gets

affected by the policies received from the Agent, which in this

layer are further translated into concrete actions leveraging

and translating abstract information on the hardware. The

computing continuum system can be organized into multiple

regions (or groups) depending on the infrastructure and or

the services running on top of it. Therefore, we need to

deploy as many Infrastructure layer managers as the number

of regions. Albeit there might be regions, the computing

continuum system must operate as a unique, organic entity,

B. Framework Implementation

The PoC implementation architecture (Figure 3) delineates

the strategy of our interpretation of the 3-layer architecture. It

consists of several components, each serving a specific purpose

in the intent-based self-management system.

1) PoC implementation: First, it is worth reasserting that

we do not focus on intent translation in this work. Therefore,

the Business layer implementation focuses solely on defining

the intents. From this point, the Knowledge component takes

over and provides a RESTful API for intent management.

Contextually, the Data component periodically fetches infor-

mation about the infrastructure state. In this case, we use gRPC

to request updates from the infrastructure nodes. The choice

of gRPC allows excellent flexibility and performance, which

is needed when dealing with a heterogeneous infrastructure.

Once the Knowledge component processes the data, it sends

a notification to the Agent, containing information about the

eventual intent violation and triggering appropriate responses

from the Agents. At the lower layer, an Infrastructure compo-

242

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on October 16,2023 at 10:05:16 UTC from IEEE Xplore. Restrictions apply.

AWS Cloud

VPC

Knowledge

gRPC

gRPC

Data

Network Layer

gRPC

gRPC Agent Lambda

SQS Queue

HTTPS

HTTPS

gRPC
gRPCgRPC

REST + gRPC

Load balancer User

Fig. 4: Architecture of the Amazon Web Services (AWS) cloud

deployment.

nent manages physical nodes and exposes gRPC services for

data retrieval and command forwarding.

2) Deploying to the cloud: We implement the PoC to the

AWS cloud due to its rich capabilities and tools. We implement

the PoC using C# 11. 4. The individual services rely on the

ASP.NET Core 6 framework 5 and on Docker containers, 6

The latter facilitates the deployment to the cloud and the ser-

vices’ orchestration during testing through Docker compose.

Internally, the services communicate via Remote Procedure

Calls (RPC) using gRPC. Figure 4 depicts the deployment.

ECS takes care of the container orchestration. The messaging

takes place through SQS. 7 The Agent component leverages

AWS Lambda. Furthermore, Lambda function replicas are

automatically scaled to the number of events that trigger the

code execution, i.e., messages from Amazon Simple Queue

Service (SQS) created by the Knowledge component. The

user interface to the intent management leverages a RESTful

API. All services are deployed inside an Amazon Elastic

Container Service (ECS) cluster, which hosts a CloudMap

instance responsible for internal and external service discovery

using the defined service discovery entries. To conclude, the

overall functioning translates to how we envision our PoC.

C. Evaluation

We simulate the dynamic behavior of the system’s man-

aged devices, loading resource usage data into the execution

environment. We provide the simulation data to allow repro-

ducibility. The specific dataset consists of a description of how

the individually monitored metrics behave over time. Using a

seeded random generator, we add a maximum of 5% jitter to

each device simulation to ensure a more realistic environment.

4https://docs.microsoft.com/en-us/dotnet/csharp/tour-of-csharp/
5https://docs.microsoft.com/en-us/aspnet/core/introduction-to-aspnet-

core?view=aspnetcore-6.0
6https://docs.docker.com/get-started/overview/
7https://aws.amazon.com/sqs/

Core logic

Trend analysis via
poynomial regression

Current SLO values
Current number of devices

SLO target
violation

Check against SLO
targets (per SLO)

SLO targets (min/max)
from user

Compute amount to
scale up/down

Considers all SLOs

Scale up/down
requestSimulated devices

Input dataset

Fig. 5: Dataflow and core logic of the Knowledge component

for the proposed case study simulation.

Since efficiency depends on the workload per device, and

the device counts value at a specific time is unknown before

executing the simulation, we specify CPU and memory targets

as total workload values, which are then equally distributed

across all devices. We express availability in the dataset using

the average value. For simplicity, we assume that CPU and

memory have the same values. Additionally, the currently

active row in the dataset is iterated on each access. Indeed,

every access to the dataset returns the next row. We conduct

the simulation locally, using Docker Compose. Throughout the

simulation, we consider just one region at a time, assuming

regions are isolated and independent. In addition, one region

can theoretically have several Network Layer managers, but we

reduce this number to one during the simulation. This decision

limits the ability to evaluate the Agent’s decision process on

which Network Layer manager to scale if there are multiple for

one region. However, we leave this aspect to future analyses.

Finally, to better frame the work, we keep the definition of

intents static throughout the simulation. Future experiments

can consider varying intents over time. In the following, we

report the evaluation of the simulations where we consider

efficiency and availability in isolation. Later, we combine the

two KPIs and analyze the effect of conflicting intents.

IV. CASE STUDY

In this case study, we aim to investigate how well the

architecture works in real-life situations. The rationale is

checking if different components can communicate efficiently

and handle their respective tasks properly. We also examine

how intents are specified and enforced and the deployment

strategy. In the case study, we perform various simulations.

First, we envision stakeholders defining conflicting intents (or

SLOs), i.e., availability and efficiency, for their computing

infrastructure. In the simulation, we focus on these intents, one

region at a time, although our system design would support

multiple regions. Figure 5 gives an overview of the experimen-

tal flow, which we detail in the results. The process includes

creating and using simulated data and how the Knowledge

component manages the output of the Agents’ activity in the

simulated architecture.

243

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on October 16,2023 at 10:05:16 UTC from IEEE Xplore. Restrictions apply.

A. Intents definition

In general, intent-based systems support the declaration of

predefined intents. Additionally, they are, for example, based

on SLOs, which need to be implemented individually in the

system. We limit the scope of the project, supporting two

SLOs, efficiency and availability.

Efficiency is defined by the application’s resource capacity,

e.g., if it uses 50% of the available CPU capacity, CPU

efficiency equates to 50%. We use a weighted sum of two

different efficiencies to calculate the total system efficiency,

which is used: CPU and memory. Although memory efficiency

is relevant, computationally-bound tasks are more common.

Therefore, in our paper, the CPU efficiency makes up 70% of

the total efficiency weight. Further analyses, albeit essential,

are out of the scope of this paper. Thus, EFF = 0.3 ∗
EFFMEM +0.7∗EFFCPU gives the total system efficiency.

Although EFFmin and EFFmax can be at most 1, the

calculated EFF might exceed 100% because the workload

can be more than the current number of devices can process,

as the PoC implementation assumes that a device has precisely

the capacity to manage one workload.

Availability is the second crucial metric. We measure it

by dividing the time the system operates by the overall time.

For example, during 10 hours of operation, the system shuts

down for 30 minutes, achieving 9.5
10 = 95% availability. The

system can replicate the service instances to increase its total

availability. The availability increases with the number of

service replicas r and can be calculated using the average

availability [19] AV = 1 − (1 − AVavg)
r. For example, if

a single service has 95% availability, three replicas would

increase the service’s availability to around 99.988%. As

described before, the number of SLOs is limited by the scope

of the implementation. However, using two separate SLOs still

allows for studying conflict resolutions.

B. Inference model for the Knowledge component

Our strategy to implement these intents first analyzes the

system’s current state to predict how the monitored values will

develop. This strategy compares the predicted results against

the intents, deciding the number of active devices which fulfill

the minimum and maximum intended target intent values. We

predict the next step value for the SLOs by modeling the

available data as a second-degree polynomial via polynomial

regression, taking the last five average values of the monitored

resources per region. The decision to consider the last five time

stamps get considered stems from an empirical evaluation in

the early phase of setting up the evaluation. We choose second-

degree polynomial regression over the linear and the third-

degree polynomial approaches as it appropriately models the

oscillation of workload and availability during the simulation

execution [3], [22]. Predicting the future resource values serves

to extract the number of devices the system can support. Each

SLO has its strategy for computing the Device Count (DC). In

particular, for Efficiency: Let 0 <= EFFmin, EFFmax <=
1 denote the boundary values specified by the intents, while

DCcur denotes the current DC. The DC bounds are given

by:

DCmin = �DCcur ∗ EFFcur

EFFmax
�

DCmax = �DCcur ∗ EFFcur

EFFmin
�

For example, assume DCcur = 300 and EFFcur = 70%.

A minimum target efficiency of EFFmin = 80% would set

the upper bound DCmax = 262. Note, that DCmin actually

depends on EFFmax, while DCmax is influenced by DCmax.

For availability: Let 0 <= AVmin, AVmax <= 1 denote

the boundary values specified by the intents, and AVavg the

average availability trend. Additionally, an extremely small

ε > 0 is introduced to avoid computing log(0). The DC
bounds are given by:

DCmin = � log(1 + ε−AVmin)

log(1 + ε−AVavg)
�

DCmax = � log(1 + ε−AVmax)

log(1 + ε−AVavg)
�

Again, an example can help understand the bigger picture.

Unlike efficiency, the availability metric is not dependent

on the DC because it uses the average availability. Assume

AV cur = 55% and AVmin = 99.9%. The goal requires at

least DCmin = 9 replicas.

If all bounds are compatible, i.e., there is at least one value

in the range of all bounds, the system takes its decision. If there

are conflicting bounds, this conflict must be resolved while

creating the slightest deviation possible from the intended

state. Our approach is to prioritize minimum DC targets over

maximum bounds. Due to this fact, the largest minimum DC
bound is chosen as the new DC target. We express this

target as DCtarget = max(DCEFFmin
, DCAVmin

), where

DCEFFmin
and DCAVmin

denote the minimum device bounds

of efficiency and availability respectively. In this way, our

approach prioritizes the maximum efficiency bound. This

strategy works well because the maximum efficiency threshold

should not be exceeded, preventing extreme device loads. At

the same time, a lower value, like in the availability scenario,

only leads to more costs.

C. Simulation

1) Efficiency simulation: Efficiency is the first SLO we

evaluate. In this simulation, we determine the total workload at

each step and use it to calculate the final efficiency per device.

The minimum efficiency target controls the maximum toler-

ated number of devices, as increased devices would lower the

efficiency. The maximum efficiency target works vice-versa.

The workload behavior follows a sinus-shaped curve of the

form WL(t) = sin(2π
400 ∗t)∗200+450. That means one cycle

has 400 steps. The Data component updates the Knowledge

after every fourth update cycle, i.e., 100 total updates and up

to 100 total changes in the number of devices per cycle. For

this evaluation, the minimum and maximum efficiency intent

244

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on October 16,2023 at 10:05:16 UTC from IEEE Xplore. Restrictions apply.

(a) Efficiency behavior.

(b) Device Count behavior.

Fig. 6: Efficiency simulation

values are Effmin = 85% and Effmax = 90%. The rationale

is that they let the system operate efficiently while keeping

extra resources left.

Figure 6a depicts the minimum and maximum efficiency

values as grey horizontal lines and the light blue area. The

efficiency values over time are in blue. After an initial adapta-

tion phase, the system keeps the efficiency between the given

bounds. We can notice the points where the Knowledge scales

the device pool, i.e., when efficiency gets close to the lower

bound. Furthermore, the system decides not to scale if this

is unnecessary. The following scaling only occurs when the

efficiency gets close to the bound opposite to the one from

before.

In Figure 6b, we can examine the variation of the device

count number. The progression is bounded by the minimum

and maximum Device Count (DC) in dark and light grey, and

the light blue area. These last two curves directly correlate with

the development of the workload WL, as DCmin = WL
Effmax

and DCmax = WL
Effmin

. This plot better shows the efficiency

development over time and the actual DC during execution

time. The scaling operations of the Knowledge are visible,

as the device count only changes when it hits DCmax. In

conclusion, the system effectively enforces efficiency intents

on its managed devices. Outside of the startup phase, the

efficiency is always within bounds.

2) Availability simulation: The second simulation inspects

the availability SLO. Availability AV measures the uptime of

a system given requests coming from the applications. In this

case, the maximum availability target affects the maximum

tolerated DC, so accordingly for the minimum target.

The availability simulation follows a sinus-shaped curve of

the form AV (t) = sin(2π
400 ∗ t) ∗ 0.1 + 0.3, similarly to the

previous experiment. The average availability of the system

alternates between 20% and 40%. Although these numbers

appear low, they still resemble a valid scenario where mobile

devices can lose connectivity. This simulation value better

(a) Availability behavior.

(b) Device Count behavior.

Fig. 7: Availability simulation

highlights the effects on availability when increasing the DC.

For example, a system with an average availability of 40% and

five replicas already has around 92.2% total availability. In

contrast, an average availability of 95% would lead to a value

of around 99.99997% with the same number of devices. This

evaluation’s target availability is between AVmin = 99.99%
and AVmax = 99.9999%. The idea is to target the high

availability behavior of a system that must operate (almost) at

all times. Even though we cannot reproduce the exact behavior,

we obtain realistic results due to the 4-byte floating point

precision [18].

Figure 7a shows the current total availability, marked in

green, and its bounds in grey, with a light green area. The

jitter generates minor random deviations since scaling and total

availability depend on the trend. Nevertheless, the approach ef-

fectively limits the number of bounds violations and deviations

from the intended behavior. The time between timestep 100

and 499 equals one complete cycle of the dataset. During this

time, the total availability only exceeds the intended maximum

19 times and undercuts the minimum 23 times. Thus, out of

400 timesteps, only 42 slightly deviate, at most by an absolute

value of about 2.65e−5. Lastly, Figure 7b shows the DC
development and its bounds during the availability evaluation.

Similarly to the efficiency case, scaling is only performed

when the DC exceeds or undercuts the respective bounds;

otherwise, no action is performed. To conclude, simulating

only availability constraints works very well in isolation. The

targeted availability range can only sometimes be adhered to

mainly due to the jitter and the low DC. However, the system

quickly recovers and corrects this deviation.

3) Combining multiple SLOs: Combining multiple SLOs,

efficiency Eff , and availability AV can show how the system

behaves in a more complex scenario, where conflicts may ap-

pear. Due to the inherent complexity of the setup, we carry two

simulations. First, we aim to understand the basics of using

multiple intents, studying the case of synchronized behavior

245

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on October 16,2023 at 10:05:16 UTC from IEEE Xplore. Restrictions apply.

for efficiency and availability. Later, we create the environment

for conflicts to further aid in evaluating the resolution of

conflicting intents. During the following two simulations, the

intent targets are the following: the average efficiency should

be between Effmin = 75% and Effmax = 95%. The

total availability should be between AVmin = 99.99% and

AVmax = 99.9999%.

a) Synchronous SLO behavior: For the “sync” simu-

lation, the workload and average availability simulation are

precisely the same as in the isolated scenarios. One of them

needs to behave in a mirrored way to behave synchronously.

We can achieve his behavior by offsetting the sinus cycle by

half a cycle.

First, we analyze the actual DC and its bounds for ef-

ficiency and availability (see Figure 8a). The actual DC
tries to stay within the minimum DC bound, which is our

target behavior. Therefore, minimum DC bounds take priority

over maximum DC bounds, with the largest minimum DC
bound as the target. The system aims to scale operations

only when necessary. In the timestep interval 170–440, as

the workload increases, the system focuses on reaching the

largest minimum DC (DCminEff
). When both metrics de-

crease, the DC remains stable until action is required to

meet DCmaxAV
or DCmaxEff

. There is no conflict within

this range, as the largest minimum DC bound is lower than

the smallest maximum DC bound. A slight conflict arises

between timesteps 50–150 and 450–550 due to the simula-

tion restarting after timestep 400. In this range, DCmaxEff

is lower than DCminAV
, necessitating a higher number of

devices to meet the minimum availability bounds. Looking

at efficiency, it generally stays within the required range.

However, around timestep 50 to 150, a conflict between the

two SLOs leads to lower efficiency. The maximum efficiency

DC bound is disregarded due to the higher importance of

minimum availability DC, resulting in a temporary drop in

efficiency until the system resolves the conflict. While the

system prefers availability over Efficiency (Figure 8b), it

does not degrade the performance too much. Furthermore, as

shown in Figure 8c, availability remains within the intended

bounds. Only occasionally, particularly after conflicts begin

(e.g., around timestamp 65), there is a slight decrease in

availability, amounting to approximately 3.48e−5. Overall, the

system performs as expected, keeping all SLOs within their

bounds when no conflicts exist. If conflicts arise, it handles

them according to the specified requirements.

b) Asynchronous SLO behavior: This scenario aims to

simulate an asynchronous behavior of the two SLOs efficiency

and availability compared to each other. Further, this simu-

lation purposely generates conflicts between the two intents

to analyze the system’s behavior under this stress. Regarding

the SLO behavior, the behavior of the average availability

stays exactly the same like in the last simulation at AV (t) =
sin(2π

400 ∗ t) ∗ 0.1 + 0.3. On the other hand, the frequency of

the workload behavior is doubled and the original offset gets

removed. This is given by WL(t) = sin(2∗ 2π
400 ∗ t)∗20+30,

where the amplitude and the span of results still stay the same

as before.

When looking at the development of the DC over time,

visualized in Figure 9a, one can notice a suboptimal start.

There is also an immediate conflict between efficiency and

availability. Whereas the availability took precedence in the

previous scenario, this time DCminEff
> DCmaxAV

around

timestep 20 to 110. The system behaves as intended and

scales the system to account for DCminEff
. Additionally,

when the workload drops starting around timestep 50, the

system underprovisions resources regarding efficiency because

it detects a further drop in workload for the next timesteps.

After a short period without conflicts around timesteps 110 to

125, DCminAV
> DCmaxEff

holds, and availability takes

precedence over efficiency. The next conflict starts around

timestep 220 and only takes a comparatively short amount

of time, during which DCminEff
> DCmaxAV

. Addition-

ally, when the system resolves the conflict, one can notice

the system’s intended behavior to scale as late as possible.

Figure 9b shows as well some of these conflicts. There are two

significant drops in efficiency starting at timesteps 125 and

290, respectively. Both account for the timespans discussed

above, where availability takes precedence over efficiency, and

the Efficiency DC target is ignored. Nevertheless, efficiency

almost always stays in its DC bounds. There is a light case of

underprovisioning on the DC when the workload is sinking,

and there is a conflict, which causes the efficiency to be too

high for a short time, starting around timestamp 60 (or 460).

Finally, Figure 9c shows the overall availability. At first sight,

there is a drop in availability around timestep 360 beneath the

minimum availability bound. Such deviations may happen pri-

marily due to jitter. Still, the absolute value of such deviations

is shallow. On the other hand, there are some increases in DC
which exceed DCmaxAV

dramatically (see Figure 9a). This

slight behavior happens when efficiency takes precedence over

availability. Overall, the system fulfills its intended behavior.

Isolated intents are fulfilled with minor temporary deviations,

while more complex setups using multiple intents are also

handled well, showing promising results.

V. CHALLENGES AND LIMITATIONS

In this paper, we attempt to deploy a realistic PoC and offer

a comprehensive case study. Still, many challenges are related

to the prototype’s design, implementation, or evaluation.

A. Case study setup

The framing of this work surrounds the implementation

of the three-layer intent-based pattern. Therefore, we had to

limit the scope of the paper to better focus on an in-depth

analysis of the results. First, we do not deploy the system on an

actual infrastructure. We perform the analysis on a simulated

environment with a controlled amount of devices, which means

no unexpected malfunctions, unanticipated anomalies, or en-

ergy consumption, instead essential in a real scenario [55].

The current setup is also homogeneous, i.e., every pod has

the same CPU and memory capacity. Therefore, availability

or efficiency measures are independent of the type of work

246

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on October 16,2023 at 10:05:16 UTC from IEEE Xplore. Restrictions apply.

(a) Device Count behavior. (b) Efficiency behavior. (c) Availability behavior.

Fig. 8: Multi-SLO simulation (sync)

(a) Device Count behavior. (b) Efficiency behavior. (c) Availability behavior.

Fig. 9: Multi-SLO simulation (async)

currently done on the device, and there is no way of specifying

refined requirements. Conversely, in a real scenario, with

heterogeneous applications, there could be different device

groupings, e.g., targeting specific classes of applications.

B. Intent specification and application

Another challenge is to deal with multiple conflicting in-

tents, eliminating or weakening some of them while preserving

the original meaning and achieving the best overall result.

The number of negotiations increases when using a layered

architecture. Therefore, the layers must also resolve conflicts

between each other [60]. The given PoC simplifies these

complex processes and executes all its reasoning and intent

applications in the Knowledge component. Thus, there can

not be any conflicts between layers, and no negotiations are

necessary.

The system’s support for the efficiency and availability

SLOs provides an incomplete picture, requiring additional

intent evaluation for behavior, application, and conflict resolu-

tion. However, intent-based systems are complex and tailored

to specific use cases, limiting their reuse for other scenarios.

Additionally, the number of supported intents is limited, as

the system can only support intents with developer foresight

and a limited learning aspect [48]. The efficiency intent

is composed of fixed CPU and memory values, but future

proposals could allow for dynamic metric selection with higher

importance. In the simulation, availability does not depend on

device utilization. We should also consider treating outliers

differently. For example, we can remove them from the short

record of the last measurements.

C. Framework implementation

Regarding implementing the framework itself, we had to

limit the scope. Therefore, we do not consider sophisticated

error handling, which would be essential in production. In

addition, we primarily use synchronous gRPC for communi-

cation. Despite the excellent performance, we could bring loser

coupling among components using asynchronous communica-

tion. We did not introduce resilience where we use messaging,

i.e., SQS; additional measures, like Dead-Letter queues, could

help filter out messages. Regarding orchestration, we could

geographically distribute Agents to allow for less latency

when communicating with the lower Layer managers, e.g.,

by assigning an Agent to a specific region. Currently, we

use replication for adjusting the DC. However, we do not

handle the scaling components replication, which is essential

to prevent failures in production. Lastly, we use Docker

Compose, but future versions could leverage Kubernetes.

D. Simulation

First and foremost, being a simulation, we do not react to

actual application needs and infrastructure. The workload and

availability values stored in the dataset are isolated from each

other and can change arbitrarily. A richer model could address

the two metrics being not independent and help inspect better

algorithms for reasoning. We assume an evenly distributed

workload across all devices, but this may only sometimes

be true. If not, the system behaviors would require further

adaptations. Furthermore, we limit the simulation to one region

with a single Infrastructure Layer manager. While this does not

directly impact the evaluation, it would be more valuable to

see how the system handles multiple regions concurrently, e.g.,

checking how to distribute workload across multiple managers.

VI. CONCLUSIONS

Using intents can represent an essential step for controlling

complex distributed systems, such as the computing contin-

uum. This approach becomes even more crucial when using

the serverless paradigm, which intrinsically holds intricacies

in its management. In systems where the intents are first-class

citizens, stakeholders can define what to do at a high level

247

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on October 16,2023 at 10:05:16 UTC from IEEE Xplore. Restrictions apply.

without worrying about the details of how the infrastructure

tackles that. In turn, the platform owners have more flexibility

in managing the infrastructure due to the flexibility guaranteed

by FaaS. This paper presented a detailed approach to designing

and implementing an intent-based system for systems man-

agement, primarily based on the 3-layer architecture initially

described in [60]. This PoC aims to create an intent-based

solution for the computing continuum’s main management

challenges. Overall, the proposed framework achieves its goal

of managing the infrastructure, i.e., the devices, effectively

and reliably based on the high-level intents – efficiency and

availability. The system reacts autonomously and executes

self-correcting actions to satisfy the previously defined SLOs.

In particular, we address intents specification and application

in the PoC through a simplified device model. Furthermore,

we design the whole application as a set of containerized

microservices. Therefore, the PoC can be seamlessly deployed

to the cloud and efficiently use managed services on cloud

platforms like AWS. Future improvements to our work include

adding complexity in the evaluation, testing our system in

production environments, and making the deployment more

resilient to work in production. Finally, exploring NLP algo-

rithms for user intents translation would be valuable.

VII. ACKNOWLEDGMENTS

We would like to sincerely thank Nikolaus Spring for his

valuable contribution, and commitment to this paper. His

dedicated work and experimentation were crucial in advancing

our research and achieving meaningful results.

REFERENCES

[1] Khizar Abbas, Muhammad Afaq, Talha Ahmed Khan, Adeel Rafiq, and
Wang Cheol Song. Slicing the core network and radio access network
domains through intent-based networking for 5G networks. Electronics
(Switzerland), 9(10):1–25, 2020.

[2] Fred Aklamanu, Sabine Randriamasy, Eric Renault, Imran Latif, and
Abdelkrim Hebbar. Intent-based real-time 5g cloud service provisioning.
In 2018 IEEE Globecom Workshops (GC Wkshps), pages 1–6. IEEE,
2018.

[3] Animesh Agarwal. Polynomial Regression. https://towardsdatascience.
com/polynomial-regression-bbe8b9d97491, 2018. Accessed: 2022-10-
26.

[4] Mohammad S Aslanpour, Adel N Toosi, Claudio Cicconetti, Bahman
Javadi, Peter Sbarski, Davide Taibi, Marcos Assuncao, Sukhpal Singh
Gill, Raj Gaire, and Schahram Dustdar. Serverless edge computing:
vision and challenges. In 2021 Australasian Computer Science Week
Multiconference, pages 1–10, 2021.

[5] Ioana Baldini, Paul Castro, Kerry Chang, Perry Cheng, Stephen Fink,
Vatche Ishakian, Nick Mitchell, Vinod Muthusamy, Rodric Rabbah,
Aleksander Slominski, et al. Serverless computing: Current trends and
open problems. Research advances in cloud computing, pages 1–20,
2017.

[6] Daniel Balouek-Thomert, Ivan Rodero, and Manish Parashar. Harnessing
the computing continuum for urgent science. ACM SIGMETRICS
Performance Evaluation Review, 48(2):41–46, 2020.

[7] Sergio Barrachina-Muñoz, Jorge Baranda, Miquel Payaró, and Josep
Mangues-Bafalluy. Intent-based orchestration for application relocation
in a 5g cloud-native platform. In 2022 IEEE Conference on Network
Function Virtualization and Software Defined Networks (NFV-SDN),
pages 94–95. IEEE, 2022.

[8] Ali Basiri, Niosha Behnam, Ruud De Rooij, Lorin Hochstein, Luke
Kosewski, Justin Reynolds, and Casey Rosenthal. Chaos engineering.
IEEE Software, 33(3):35–41, 2016.

[9] David Bermbach, Jonathan Bader, Jonathan Hasenburg, Tobias Pfandzel-
ter, and Lauritz Thamsen. Auctionwhisk: Using an auction-inspired
approach for function placement in serverless fog platforms. Software:
Practice and Experience, 52(5):1143–1169, 2022.

[10] Mykola Beshley, Andrii Pryslupskyi, Oleksiy Panchenko, and Mar-
ian Seliuchenko. Dynamic switch migration method based on qoe-
aware priority marking for intent-based networking. In 2020 IEEE
15th International Conference on Advanced Trends in Radioelectronics,
Telecommunications and Computer Engineering (TCSET), pages 864–
868. IEEE, 2020.

[11] Niklas Blum, Simon Dutkowski, and Thomas Magedanz. Insert an
intent-based service request api for service exposure in next generation
networks. In 2008 32nd Annual IEEE Software Engineering Workshop,
pages 21–30. IEEE, 2008.

[12] Franco Callegati, Walter Cerroni, Chiara Contoli, and Francesco Foresta.
Performance of intent-based virtualized network infrastructure manage-
ment. In 2017 IEEE International Conference on Communications
(ICC), pages 1–6. IEEE, 2017.

[13] Enrique Chirivella-Perez, Pablo Salva-Garcia, Ruben Ricart-Sanchez,
Jose Alcaraz Calero, and Qi Wang. Intent-based E2E network slice
management for industry 4.0. 2021 Joint European Conference on
Networks and Communications and 6G Summit, EuCNC/6G Summit
2021, pages 353–358, 2021.

[14] Schahram Dustdar, Victor Casamayor Pujol, and Praveen Kumar Donta.
On distributed computing continuum systems. IEEE Transactions on
Knowledge and Data Engineering, 35(4):4092–4105, 2022.

[15] Kristina Dzeparoska, Nasim Beigi-Mohammadi, Ali Tizghadam, and
Alberto Leon-Garcia. Towards a self-driving management system for
the automated realization of intents. IEEE Access, 9:159882–159907,
2021.

[16] Adriana Fernandez-Fernandez, Estefania Coronado, Alberto Erspamer,
Georgios Samaras, Vasileios Theodorou, and Shuaib Siddiqui. Unlock-
ing the path towards intelligent telecom marketplaces for beyond 5g and
6g networks. IEEE Communications Magazine, 2023.

[17] Ana Juan Ferrer, Sören Becker, Florian Schmidt, Lauritz Thamsen, and
Odej Kao. Towards a cognitive compute continuum: an architecture for
ad-hoc self-managed swarms. In 2021 IEEE/ACM 21st International
Symposium on Cluster, Cloud and Internet Computing (CCGrid), pages
634–641. IEEE, 2021.

[18] David Goldberg. What every computer scientist should know about
floating-point arithmetic. ACM computing surveys (CSUR), 23(1):5–48,
1991.

[19] Michael Haken. Availability and beyond: Understanding and improving
the resilience of distributed systems on aws. Technical report, Amazon
Web Services, November 2021.

[20] Justin Hu, Ariana Bruno, Brian Ritchken, Brendon Jackson, Mateo
Espinosa, Aditya Shah, and Christina Delimitrou. Hivemind: A scalable
and serverless coordination control platform for uav swarms. arXiv
preprint arXiv:2002.01419, 2020.

[21] Jiaorui Huang, Chungang Yang, Shiwen Kou, and Yanbo Song. A brief
survey and implementation on ai for intent-driven network. In 2022 27th
Asia Pacific Conference on Communications (APCC), pages 413–418.
IEEE, 2022.

[22] IBM Corporation. What is linear regression? https://www.ibm.com/
topics/linear-regression#:∼:text=Resources-,What%20is%20linear%
20regression%3F,is%20called%20the%20independent%20variable.,
2022. Accessed: 2022-09-14.

[23] Arthur Selle Jacobs, Ricardo José Pfitscher, Ronaldo Alves Ferreira,
and Lisandro Zambenedetti Granville. Refining network intents for self-
driving networks. In Proceedings of the Afternoon Workshop on Self-
Driving Networks, pages 15–21, 2018.

[24] Mariam Kiran, Eric Pouyoul, Anu Mercian, Brian Tierney, Chin Guok,
and Inder Monga. Enabling intent to configure scientific networks
for high performance demands. Future Generation Computer Systems,
79:205–214, 2018.

[25] Raffael Klingler, Nemanja Trifunovic, and Josef Spillner. Beyond@
cloudfunction: Powerful code annotations to capture serverless runtime
patterns. In Proceedings of the Seventh International Workshop on
Serverless Computing (WoSC7) 2021, pages 23–28, 2021.

[26] Panagiotis Kokkinos, Dionisis Margaris, and Dimitris Spiliotopoulos.
A quality of experience illustrator user interface for cloud provider
recommendations. In HCI International 2022 Posters: 24th International
Conference on Human-Computer Interaction, HCII 2022, Virtual Event,

248

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on October 16,2023 at 10:05:16 UTC from IEEE Xplore. Restrictions apply.

June 26–July 1, 2022, Proceedings, Part I, pages 308–315. Springer,
2022.

[27] Henna Kokkonen, Lauri Lovén, Naser Hossein Motlagh, Juha Partala,
Alfonso González-Gil, Ester Sola, Iñigo Angulo, Madhusanka Liyanage,
Teemu Leppänen, Tri Nguyen, et al. Autonomy and intelligence in the
computing continuum: Challenges, enablers, and future directions for
orchestration. arXiv preprint arXiv:2205.01423, 2022.

[28] Samuel Kounev, Cristina Abad, Ian Foster, Nikolas Herbst, Alexandru
Iosup, Samer Al-Kiswany, Ahmed Ali-Eldin Hassan, Bartosz Balis,
André Bauer, Andre Bondi, et al. Toward a definition for serverless
computing. 2021.

[29] Aristotelis Kretsis, Panagiotis Kokkinos, Polyzois Soumplis, Juan
Jose Vegas Olmos, Marcell Fehér, Márton Sipos, Daniel E Lucani,
Dmitry Khabi, Dimosthenis Masouros, Kostas Siozios, et al. Serrano:
transparent application deployment in a secure, accelerated and cognitive
cloud continuum. In 2021 IEEE International Mediterranean Confer-
ence on Communications and Networking (MeditCom), pages 55–60.
IEEE, 2021.

[30] Rohan Kumar, Matt Baughman, Ryan Chard, Zhuozhao Li, Yadu Babuji,
Ian Foster, and Kyle Chard. Coding the computing continuum: Fluid
function execution in heterogeneous computing environments. In 2021
IEEE International Parallel and Distributed Processing Symposium
Workshops (IPDPSW), pages 66–75. IEEE, 2021.

[31] Andre Luckow, Kartik Rattan, and Shantenu Jha. Pilot-edge: Distributed
resource management along the edge-to-cloud continuum. In 2021 IEEE
International Parallel and Distributed Processing Symposium Workshops
(IPDPSW), pages 874–878. IEEE, 2021.

[32] Xuewen Luo, Hsiao-Hwa Chen, and Qing Guo. Semantic communi-
cations: Overview, open issues, and future research directions. IEEE
Wireless Communications, 29(1):210–219, 2022.

[33] Hocine Mahtout, Mariam Kiran, Anu Mercian, and Bashir Mohammed.
Using machine learning for intent-based provisioning in high-speed
science networks. In Proceedings of the 3rd International Workshop
on Systems and Network Telemetry and Analytics, pages 27–30, 2020.

[34] Anupama Mampage, Shanika Karunasekera, and Rajkumar Buyya. A
holistic view on resource management in serverless computing envi-
ronments: Taxonomy and future directions. ACM Computing Surveys
(CSUR), 54(11s):1–36, 2022.

[35] Manuel Duarte Mascarenhas and Rui Santos Cruz. Int2it: An intent-
based tosca it infrastructure management platform. In 2022 17th Iberian
Conference on Information Systems and Technologies (CISTI), pages 1–
7. IEEE, 2022.

[36] AL-Naday Mays, Tom Goethals, and Bruno Volckaert. Intent-based
decentralized orchestration for green energy-aware provisioning of fog-
native workflows. In 2022 18th International Conference on Network
and Service Management (CNSM), pages 184–190. IEEE, 2022.

[37] Anu Mercian, Faraz Ahmed, Puneet Sharma, Shaun Wackerly, and
Charles Clark. Mind the semantic gap: Policy intent inference from
network metadata. In 2021 IEEE 7th International Conference on
Network Softwarization (NetSoft), pages 312–320. IEEE, 2021.

[38] Thijs Metsch, Magdalena Viktorsson, Adrian Hoban, Monica Vitali, Ravi
Iyer, and Erik Elmroth. Intent-driven orchestration: Enforcing service
level objectives for cloud native deployments. SN Computer Science,
4(3):268, 2023.

[39] Gilbert Moisio, Alexandre Gonzalvez, and Noam Zeitoun. Introduction
to the artificial intelligence that can be applied to the network automation
journey. arXiv preprint arXiv:2204.00800, 2022.

[40] Gabriele Morabito, Christian Sicari, Armando Ruggeri, Antonio Celesti,
and Lorenzo Carnevale. Secure-by-design serverless workflows on
the edge–cloud continuum through the osmotic computing paradigm.
Internet of Things, 22:100737, 2023.

[41] Andrea Morichetta, Victor Casamayor Pujol, and Schahram Dustdar. A
roadmap on learning and reasoning for distributed computing continuum
ecosystems. In 2021 IEEE International Conference on Edge Computing
(EDGE), pages 25–31. IEEE, 2021.

[42] Federica Paganelli, Francesca Paradiso, Monica Gherardelli, and Giulia
Galletti. Network service description model for vnf orchestration
leveraging intent-based sdn interfaces. In 2017 IEEE Conference on
Network Softwarization (NetSoft), pages 1–5. IEEE, 2017.

[43] Ella Peltonen, Arun Sojan, and Tero Päivärinta. Towards real-time
learning for edge-cloud continuum with vehicular computing. In 2021
IEEE 7th World Forum on Internet of Things (WF-IoT), pages 921–926.
IEEE, 2021.

[44] Paulo Pereira, Carlos Melo, Jean Araujo, Jamilson Dantas, Vinı́cius
Santos, and Paulo Maciel. Availability model for edge-fog-cloud
continuum: an evaluation of an end-to-end infrastructure of intelligent
traffic management service. The Journal of Supercomputing, pages 1–28,
2022.

[45] Adeel Rafiq, Asif Mehmood, Talha Ahmed Khan, Khizar Abbas,
Muhammad Afaq, and Wang-Cheol Song. Intent-based end-to-end
network service orchestration system for multi-platforms. Sustainability,
12(7):2782, 2020.

[46] Philipp Raith, Stefan Nastic, and Schahram Dustdar. Serverless edge
computing—where we are and what lies ahead. IEEE Internet Comput-
ing, 27(3):50–64, 2023.

[47] Mohammad Riftadi, Jorik Oostenbrink, and Fernando Kuipers. Gp4p4:
Enabling self-programming networks. arXiv preprint arXiv:1910.00967,
2019.

[48] Ilja Shmelkin, Daniel Matusek, Tim Kluge, Thomas Springer, and
Alexander Schill. Intent-based adaptation coordination of highly decen-
tralized networked self-adaptive systems. In Mikhailo Klymash, Mykola
Beshley, and Andriy Luntovskyy, editors, Future Intent-Based Network-
ing, pages 69–100, Cham, 2022. Springer International Publishing.

[49] Amritpal Singh, Gagangeet Singh Aujla, and Rasmeet Singh Bali. Intent-
based network for data dissemination in software-defined vehicular edge
computing. IEEE Transactions on Intelligent Transportation Systems,
22(8):5310–5318, 2021.

[50] Christopher Peter Smith, Anshul Jindal, Mohak Chadha, Michael
Gerndt, and Shajulin Benedict. Fado: Faas functions and data orches-
trator for multiple serverless edge-cloud clusters. In 2022 IEEE 6th
International Conference on Fog and Edge Computing (ICFEC), pages
17–25. IEEE, 2022.

[51] Hui Song, Ahmet Soylu, and Dumitru Roman. Towards cognitive self-
management of iot-edge-cloud continuum based on user intents. In
2022 IEEE/ACM 15th International Conference on Utility and Cloud
Computing (UCC), pages 1–4. IEEE, 2022.

[52] Sondes Bannour Souihi, Hai-Anh Tran, Sami Souihi, et al. When nlp
meets sdn: an application to global internet exchange network. In ICC
2022-IEEE International Conference on Communications, pages 2972–
2977. IEEE, 2022.

[53] Jörg Thalheim, Antonio Rodrigues, Istemi Ekin Akkus, Pramod Bha-
totia, Ruichuan Chen, Bimal Viswanath, Lei Jiao, and Christof Fet-
zer. Sieve: Actionable insights from monitored metrics in distributed
systems. In Proceedings of the 18th ACM/IFIP/USENIX Middleware
Conference, pages 14–27, 2017.

[54] Daniel R Torres, Cristian Martı́n, Bartolomé Rubio, and Manuel Dı́az.
An open source framework based on kafka-ml for distributed dnn
inference over the cloud-to-things continuum. Journal of Systems
Architecture, 118:102214, 2021.

[55] Luis Velasco, Marco Signorelli, Oscar González De Dios, Chrysa
Papagianni, Roberto Bifulco, Juan Jose Vegas Olmos, Simon Pryor,
Gino Carrozzo, Julius Schulz-Zander, Mehdi Bennis, Ricardo Martinez,
Filippo Cugini, Claudio Salvadori, Vincent Lefebvre, Luca Valcarenghi,
and Marc Ruiz. End-to-end intent-based networking. IEEE Communi-
cations Magazine, 59(10):106–112, 2021.

[56] Dong Wang, Ruiran Su, and Shenhu Zhang. An intent-based smart slic-
ing framework for vertical industry in b5g networks. In 2021 IEEE/CIC
International Conference on Communications in China (ICCC Work-
shops), pages 389–394. IEEE, 2021.

[57] Tomasz Winiarski, Wojciech Dudek, Maciej Stefańczyk, Łukasz
Zieliński, Daniel Giełdowski, and Dawid Seredyński. An intent-based
approach for creating assistive robots’ control systems. arXiv preprint
arXiv:2005.12106, 2020.

[58] Rich Wolski, Chandra Krintz, Fatih Bakir, Gareth George, and Wei-
Tsung Lin. Cspot: Portable, multi-scale functions-as-a-service for iot.
In Proceedings of the 4th ACM/IEEE Symposium on Edge Computing,
pages 236–249, 2019.

[59] Michele Zanella, Filippo Sciamanna, and William Fornaciari. Barman: A
run-time management framework in the resource continuum. Sustainable
Computing: Informatics and Systems, 35:100663, 2022.

[60] Engin Zeydan and Yekta Turk. Recent advances in intent-based net-
working: A survey. In 2020 IEEE 91st Vehicular Technology Conference
(VTC2020-Spring), pages 1–5, 2020.

249

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on October 16,2023 at 10:05:16 UTC from IEEE Xplore. Restrictions apply.

