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Abstract— Complex systems such as Collective Adaptive Sys-
tems that include a variety of resources, are increasingly being
designed to include people in task-execution, and so social
computing is not a stand-alone paradigm only, but it is in-
creasingly researched within mixed-resource systems. The Social
Computing paradigm has led to significant advancements in
engaging people as resources and/services in solving tasks that
can not yet be solved by software. Collectives, encapsulating
human resources/services, represent one type of an application
of social computing, within which people with different type of
skills can be engaged to solve one common problem or work
on the same project. Mechanisms of managing social collectives
are dependent on functional and non-functional parameters of
members of social collectives. In this work, we investigate and
show experimental results of how provenance data related to
those parameters can help better visualize and extract interaction
and performance patterns during a collective’s run-time.

I. INTRODUCTION

Large-scale distributed systems, such as Collective Adaptive

Systems (CAS) are increasingly designed to include various

types of resources and stakeholders, such as Cloud resources

and services, Internet of Things (IoT) devices and services,

and in the last decade people, who are included as resources

and services for tasks that cannot yet be solved and executed

by software only. Thus, today we talk and work about mixed

systems that include hardware, software and people (e.g.,[1],

[2], [3], [4]). This work is focused on the part of these types

of systems that concerns the management of human-based

resources/services.
In line with the previous work of some of the authors of this

paper, we use the concept of Social Compute Units (SCU) to

refer to a collective of people, working for a common goal, and

who are socially connected in the context of that collective.

SCUs are collectives that can be included in socio-technical

systems for tasks intended for humans, and managed in an

automated way. We name individuals belonging to an SCU as

Individual Compute Units (ICUs). In this paper we use the

terms worker and ICU interchangeably. SCUs are introduced

in [5]. Examples where collectives such as SCUs are used

for task execution include: incident management in IT service

management [6], incident management in facility management,

software-development collectives, online language translations

[7] etc. With the SCU concept, the collectives in all of the

mentioned examples are thought to be automatically or semi-

automatically managed. In addition, SCUs are thought to be

managed elastically, similarly to the Cloud paradigm, where

workers can be added and/or excluded from an SCU at run-

time; they can be replaced if not performing as required

or they can be excluded if the capabilities that they posses

are not needed at particular points, new ICUs can be added

to the collective if new types of tasks are generated with

requirements that the members of the collective do not posses.

Thus, SCUs are elastic in multiple dimensions, such as the

number of members, topology, as well as included member-

capabilities and performance level.

While appreciable work exists on metrics, monitoring strate-

gies and adaptations for collectives such as SCUs, little

work exists on utilizing provenance data in social computing.

However, we believe that provenance data can help social

computing systems in several contexts, such as: a) extracting

different behavior patterns for workers, based on which man-

agement mechanisms can be improved; b) easier visualization

of events for business stakeholders; c) sharing of a common

provenance model by multiple social computing environments,

which would give a better overview of the capabilities of

workers, and most importantly it will allow interoperability

between different worker pool platforms so that workers from

several different provisioning platforms can be invoked to

work in a common collective.

The main contribution of this paper is to investigate how

provenance data can be used in social computing and the

benefits it can offer for task and worker management, taking

the concept of SCUs as our case study.1 A provenance data

model named PROV-DM [8] has been standardized by W3C

on which we base our discussion throughout this work. Other

models and extensions exist as well, e.g., [9].

The rest of this paper is organized as follows: Section II

presents our motivation and research questions derived from a

discussion on social-computing provisioning and management

1We do not use the term social computing here to refer to social networks
but to human-based task execution in complex systems such as CAS.
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Fig. 1: SCU environment model.

mechanisms in which provenance data can be utilized. In

section III we discuss an SCU platform and how provenance-

provisioning can fit within the model. In section IV we present

our experiments, providing a proof-of-concept implementation

of an SCU execution, including logging provenance data and

visualizing provenance-data for parts of an SCU lifecycle.

Section V discusses related work, while we conclude the paper

in Section VI.

II. MOTIVATION AND RESEARCH QUESTIONS

A. Provenance data in social-computing management-
mechanisms

We describe next, the most important cases where perfor-

mance and interaction data is crucial for social computing

systems, both from the perspective of an individual and social

collectives, such as the aforementioned concept of SCUs.

1) Individual Task-assignment and Formation of collec-
tives/Social Compute Units: Whether it is for individual

task execution or for task assignment in collectives, workers

are ranked based on several pre-set metrics regarding their

performance, with which the appropriateness for a task is

assessed. Worker selection algorithms are also run during

runtime, when a new worker is needed due to different events,

such as unexpected task generations, or insufficient capacity

of a collective to handle tasks.

2) Adaptation mechanisms for Social Compute Units:
Defining, modeling and measuring workers’ performance is

also important for novel systems that enable elastic adaptation

of Social Compute Units. Algorithms that calculate ICU per-

formance can be used with adaptation mechanisms that include

task delegations based on events. A task can be delegated

at runtime, to a worker who had not been included in the

collective from start. Consequently, with elastic-adaptations

of collectives, a worker can be added to a collective as well

as excluded from a collective at run-time [10]. After each

adaptation, and at the end of each SCU execution, worker

metrics are updated.

3) Misbehavior prevention and False negatives in Misbe-
havior detection: Worker misbehavior, such as assigning a

lower vote to another worker on purpose, tricking the sys-

tem by sometimes uploading non-complete or unsatisfactory

results and still getting rewarded and other times uploading

satisfactory results are common in human computation in

general. With available provenance data of workers over a

period of time, misbehavior detection mechanisms can be

developed, by extracting different misbehavior patterns and

models from that data. Moreover, mistakes can be treated as

a misbehavior sometimes, and if there is a way to visualize

which worker did what during an SCU execution, mistakes

can be found more easily and existing misbehavior patterns

corrected.

4) Incentive Mechanisms: Social computing systems em-

ploy monetary or non-monetary based incentive mechanisms.

Some incentive mechanisms are based on updating trust and

reputation metrics for workers, which are defined consider-

ing performance-based and interaction-based historical data

of workers, whereas some incentive mechanisms are purely

monetary. Incentive models utilize worker interests as well as

behavior over time beginning from the starting point of worker

engagement in a system, and in this way different incentive

plans for each worker can be built.

5) Compensations: Closely related to incentives, compen-

sation mechanisms are also based on monetary and/or non-

monetary rewards or sanctions, both for workers and cus-

tomers. One of the most common compensation types is

updating worker and customer reputation. Once again, these

mechanisms are based on appropriate metrics with which

worker behavior is monitored over time, as well as metrics

for customer behavior, e.g., their payment method and behav-

iors, and/or sincerity when specifying their satisfaction from

the received results. Regardless of the motivation of people,

whether they want to work voluntarily to benefit a cause, or

to get paid, workers need to have a clear overview of their

progress and of the way in which their work was rewarded or

sanctioned over time, so that they can make better decisions

as how to act in their future engagements in social computing

systems.
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Fig. 2: A graphical provenance-model based on the PROV-O specification, focusing on ICU task executions and profile updates.

B. Challenges

All of the aforementioned strategies, require data regarding

workers, and most of it depends on data that is updated

based on workers’ history of interactions and performance.

Thus, provenance can be a good fit to represent historical

data for workers. We hypothesize that with provenance-data,

the aforementioned mechanisms would serve social computing

provisioning-systems in making them more efficient by focus-

ing on providing qualitative work to get high-quality results,

in shorter time and on a lower budget, than expected from

cases when provenance data is not utilized. Several research

questions arise from our hypothesis:

• Can provenance data help us in conceiving, modeling and

defining novel metrics that could be used in worker/ICU

ranking and selection algorithms for collective formations

as well as for elastic-adaptation mechanisms? Conse-

quently, can we enhance existing trust and reputation

models, incentive mechanisms and rewarding with new

metrics derived from provenance data?

• Can we predict which ICUs collaborate well with which

ICUs based on provenance-data of their performance and

interactions within the same SCU?

• How can a worker trace his/her progress across several

SCUs and extract relevant information that would benefit

his/her future behavior in being more productive, and

contribute more efficiently in future engagements?

• Can we trace the events that brought to SCU adaptations

and the parameters of the SCU adaptation due to those

events, so that in future executions of SCUs with similar

customer requirements and constraints, adaptations could

be more efficient due to action plans that can be devised

from provenance data that trace SCU executions?

In this paper we approach the first challenge and investigate

the extraction of data that can be used in defining ICU

parameters/metrics.

III. SCU ENVIRONMENT AND PROVENANCE

Fig. 1 shows a model of an SCU provisioning platform.

We dont show specific components as this is not the focus

of this work, but some core management mechanisms of

an SCU platform are listed. SCUs have their own lifecycle,

so customers that can be companies, different organizations,

private individuals etc submit their task request to the SCU

provisioning platform, the platform then generates tasks based

on the requirements and constraints given, e.g., required skills,

cost, deadline. An ICU selection module, which is a task-to-

ICU matching module returns the most appropriate ICU for

each task. A collective formation module is a composition

module, and an orchestrator. ICUs and SCUs have their own

profile which is monitored and updated at runtime and at

the end of the SCU execution. Customers can give feedback

about the final results, and ICUs are rewarded or sanctioned

at the end of the SCU execution. Depending on the domain,

an SCU provisioning platform may have its proprietary pool

of resources, but human-based resources/services can also be

invoked from multiple external sources.
From the perspective of a specific SCU environment, a

provenance approach to logging can give an overview of

historical data useful for the mechanisms supporting social

collective provisioning and management. On the other hand, if

we assume that there can be multiple social computing milieus

and that a third-party can provide provenance storage for

multiple SCU provisioning platforms, workers can be treated

equally regardless of the fact on which platform they have been

registered, and from which SCU environment they are invoked.

This brings to interoperability of multiple SCU environments,

which will allow for a common large-scale pool of human-

based resources bringing flexibility to the types of social-

computing applications.

A. Privacy considerations
Although not specifically related to our focus in this work,

we want to make notice of privacy issues regarding provenance

data, because provenance data can be a double-edge sword.
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Current social computing systems in the industry all base their

operations of sensitive personal data, for verification of worker

and customer profiles. Some authors argue that provenance

can help reduce privacy issues by providing data that help in

authorization and access control mechanisms [11]. However,

this approach tackles access issues and protection against

access risks, while true privacy means that if a worker and/or a

customer wishes not to be identified it is his basic human right

not to be, and this should be reflected in system design. Hence,

we advocate that workers in a system be identified by Ids if

so desired, and provenance data to be captured only related

to an id, and only regarding the performance and interactions

between workers. Other authors have also argued provenance

to be a major issue for privacy in the context of produced-data

and not only of data connected to people profiles, e.g., such

as authors in [12]. Last but not the least, payment methods for

rewards present a problem, as even if no other personal data is

collected, payment methods can be used for identification. We

list this issue as an important one to approach when designing

provenance-based social computing systems which has to be

yet addressed.

IV. EXPERIMENTS

A. Setup

We have implemented a Java-based prototype that is a

simulated social-computing environment. We have modeled

an ICU with static properties such as Id and skill type, and

dynamic properties, some of which are descriptive e.g. cost per

task, and others that are mathematically defined and calculable.

Thus, we designed metrics that we have identified as relevant

for ICUs, and that serve as key performance indicators for

them as dynamic properties. The most important metrics to

mention here are: effort, productivity, willingness, reliability,

and performance trust, which is a weighted aggregate metric

of the aforementioned ones; social trust, which we define as

a weighted aggregate of votes from people that the worker

has collaborated with, and socio-technical trust which is a

weighted average mean of the aforementioned performance-

based trust and social-trust metrics. For the definitions of

the aforementioned metrics, we refer you to a previous work

of some of the authors of this work, presented in [13]. We

modeled SCUs as lists of ICUs, which in turn have their own

metrics. A task is designed with specific properties, such as

the skill type required to execute it, the cost for executing it,

and the deadline to execute it.

B. Experiment type and Result analysis

1) Dataset: To test what type of provenance data can

we store and how the visualization of this data will help

us interpret results in a social computing environment in an

efficient way, we implemented a specific task-execution and

worker/ICU management mechanism. We generated 200 ICUs

with different skill types and costs per task, as well as random

initial values for the aforementioned metrics, all of them in the

(0,1] interval. For a faster algorithm run, instead of ranking

ICUs for each task assignment, we ran a ranking algorithm

Fig. 3: ICUs across 10 checkpoints of an SCU run.

first, to rank all ICUs, regardless of their skill type, based

on the weighted values of three different metrics, given as an

input: social trust, reputation and reliability. For ranking we

implemented an algorithm based on the Analytic Hierarchy

Process model (the description of which is out of the scope

of this paper).

Next, we ran a task assignment and scheduling algorithm

as in the following: we generated a bag of tasks with 40-

50 tasks and assigned them in a FIFO order to ICUs from

the ranked list, this time matching the skills of workers with

those of the required ones for each task. The ICUs selected in

the initial assignment form an SCU. We ran sequentially 10

bags of tasks, each time assigning 40-50 tasks to ICUs, after

each execution of a bag-of-tasks. Our scheduling algorithm

was designed such that it allowed for elastic adaptation of the

initial SCU, such that tasks that reached a threshold in the

queue of an ICU were delegated to other ICUs. Delegated

tasks were assigned either to ICUs already within the SCU

or to an ICU from the pool of ICUs from the ranked list,

depending on a willingness value of ICUs for executing a

task and availability. The willingness value was set randomly

to 0 (not willing) or 1 (willing). ICUs that did not have any

task assigned in a run, were excluded from the SCU, and new

ones to whom task were assigned were added to the SCU.

Hence the number of ICUs in each run fluctuated, and with

this we updated the metrics, indicators of their performance

and interactions, after each bag of tasks that was assigned and

executed by the collective/SCU. For clarity, we denote the

update of the properties of SCU members after each bag-of-

task assignment, as a checkpoint. Thus, a checkpoint points

to one bag-of-tasks execution. We generated a log file of the

SCU execution, using the Apache log4j logging utility, storing

metric values for every SCU member for each checkpoint.

2) Provenance: Utilizing the log4j log file, we mapped

ICUs, SCUs, Tasks, and events during the SCU execution

(e.g.,task assignment, delegation and ICU profile updates)

to provenance notation. We conducted the mapping using

ProvToolbox [14], which allows for creating PROV documents

in Java. Thus, with ProvToolbox, we generated XML files
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(a) Checkpoint4

(b) Checkpoint5

(c) Checkpoint7

(d) Checkpoint9

Fig. 4: Tasks for ICU 16 and 22 at four selected checkpoints during one SCU execution.

with provenance tags, as well as provenance graphs that reflect

provenance types and relations from the mapping. Our PROV-

DM-based [8] model on which we based the mapping is shown

on Fig.2. ICUs, SCUs, Customers, and the Task Manager

and ICU Manager represent Agents. ICU and SCU profiles in

which we store data for each ICU and the SCU respectively,

as well as task-related requirements and constrains represent

Entities. In addition, task requirements are also Entities (not

shown on the figure for simplicity purposes). Activities in our

implementation are the following actions: task assignment,
task delegation, successful task execution, and ICU profile
update after each execution.

Let us examine some results and some information that

can be extracted from looking at the visualization graphs of

provenance data that we extracted from our log file. We chose

to analyze two ICUs from the provenance logs, the ICU with

Id 16, and the one with Id 22. We can see that tasks were

delegated from ICU 16 to ICU 22 during multiple time points

of the SCU execution, as follows: two tasks in the first and

the fifth checkpoint (Fig. 4b); three in the third checkpoint,

the fourth (Fig. 4a), and the seventh (Fig. 4c); one task in

the eighth, ninth (Fig. 4d) and tenth checkpoint; no delegated

tasks in the second and sixth bag-of-tasks assignment. Due to

the provenance visualization, this data can be easily inferred

without queries, which could be useful for business stakehold-

ers.

Fig. 4 presents the visualization of executed assigned tasks

as well as delegated and executed tasks for ICUs with Id 16

and 22, for a few checkpoints. Only from looking at these two

ICUs we identified two possible deductions that can be defined

as metrics. We describe them in the following subsection.

Fig. 5: ICUs and tasks during the execution of one bag-of-

tasks. The graph result of checkpoint 7.

C. Metrics based on extracted information from provenance
data

1) Delegation-based Profile similarity: The graphs in Fig.

4 show assignments and delegations for ICU 16 and ICU 22 in

four separate checkpoints. Assignment activities are denoted

with A and delegations are denoted with D. Agents are ICUs

(in orange color) shown only with their Ids, while entities on

the graphs are task descriptions, where we show only their

Ids and the specific checkpoints in which they were assigned

(in yellow oval curves). Activities show the Id of tasks and

associated ICUs. From the experiment results we can deduct

that ICUs with Id 16 and Id 22 have the same skill type,
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because tasks from ICU Id 16 were only delegated to the ICU

with Id 22. This also testifies for the consistency of ICU 22

in the sense that ICU 22 was only invoked in the SCU when

some tasks from ICU 16 needed to be delegated. It means that

ICU 22 was successful in executing the tasks delegated to it,

and thus was invoked multiple times. Fig. 5 shows the success

rate of all ICUs at four checkpoints, which also proves our

deduction from the provenance graphs, that ICU 22 executed

all delegated tasks from ICU 16, as ICU 16 has a success rate

that does not achieve a value of 1 (a value of 1 indicates that

all assigned tasks were successfully executed), while ICU 22

has a success rate of 1 at each checkpoint.

Every time tasks needed to be delegated from ICU 16, ICU

22 was included in the SCU, this means that ICU 16 and ICU

22 do not provide the same skill type only, but also that they

are close with their reputation scores (because we ranked ICUs

based on their reputation scores initially). Hence, provenance-

data regarding delegations can be a good indicator for the

fact that delegations can be used in metrics that define profile

similarity between two ICUs.

Let us elaborate more on this. Let us denote, three ICUs

v, u and w, which when mapped to our model and results, v

denotes ICU 16 which is included in the collective from start,

while u represents ICU 22 and w is another ICU with the same

skill as ICU 22. Let us define d(v,u) denoting the interaction

intensity between v and u in the [0,1] range, defined by the

number of delegation relations between v and u across multiple

checkpoints. If we denote the availability of ICUs with av , au
and aw with 0 if not available, and 1 if an ICU is available,

and the reputation of all three ICUs with rv, ru, rw, then we

can consider the following relations to be valid at one single

checkpoint: a) if au aw are both 1, and the value of d(v,u) is

within the (0,1] range, while the value of d(v, w) is 0, then we

can safely assume that the reputation relation of,v, u, w to be

rv > ru > rw, and b) if au = 0 and aw = 1, and d(v,u) has

some value from the (0,1] range, while the value of d(v, w)
is 1, then we can safely assume that the reputation score of

u and w are close ru ≈ rw, in addition of the validity of the

rv > ru > rw relation, particularly when the worker pool is

large. These conclusions are intuitive if one knows how ICUs

are ranked, because w is ranked as the next appropriate worker

after u. However, for analysts who do not know the details

behind the mechanisms of ICU selection, it can be a valuable

information. Moreover, this information is even more valuable

when the worker pool with which an SCU environment works

is comprised of workers registered on multiple platforms, and

if analytics is conducted on Big-data.

Concretely, from our algorithm, we came to formulate e

similarity metric based on reputation and skill. As afore-

mentioned, for each task, we have a ranked list of reserve

resources/workers with the appropriate skill, and they are

ranked by their reputation values in a descending order. So, we

define a similarity metrics based on reputation and skill-type,

as in the following:

svu = ranku

m ∗ dvu

tv
, (1)

where dvu denotes the number of delegated tasks from v to

u, number of total assigned tasks to v, and m is the total

number of workers in the reserve list. The rank value of the

workers, starts with the value that represents the total number

of workers in the list and continues in a descending manner.

The similarity metric can have values in the range (0,1], where

a higher value means more similar profiles (similar reputation

scores). So, for example if v is the first ranked resources in a

ranked list of 100 resources and u is the third, and v delegated

6 tasks out of 10 to u, then the similarity value between v and

u will be:

svu = 98
100 ∗ 6

10 = 0.588.

Hence, data-provenance regarding delegations can help in

defining novel metrics for ICUs, and we demonstrated this by

arguing that profile similarity with regards to two parameters,

ie. skill-type and reputation, can be defined by having a

detailed overview of task-delegations.

2) Skill utility for the SCU: By looking at the provenance-

graphs we can conclude that ICUs with Id, 0,1,2,16 posses the

core skills which are crucial for the SCU, as these ICUs were

continuously present in the SCU during its whole lifecycle.

However, we can also infer that the possession of the core

skills needed for the SCU is also true for ICU 22, based on

the fact that tasks were delegated only from ICU with Id 16

to it and not another ICU. As an illustration, if we consider a

software-development scenario, from the graphs it is possible

to conclude that the skills of ICUs that are continuously

included in the SCU are programming skills, and other ICUs

posses other skills such as for example design skills, which

need not be utilized during the whole development phase. For

comparison, Fig. 3 shows which ICUs were included at which

time-point within the SCUs runtime, where the x-axis denotes

the ten checkpoints of the SCU run. Fig. 6 shows a provenance

visualization of all ICUs, with assignments and delegations at

checkpoint 7. The graphs also show which specific tasks were

delegated to which ICUs, e.g., tasks with Ids 32, 35 and 37

were delegated from ICU 16 to ICU 22.

The results of our experiment show that provenance data

can be successfully applied to social computing environments

and the visualization of provenance data can help in deriving

interaction and performance related information about workers

in an SCU environment. This, can in turn help in deriving

novel metrics for ICUs. We discussed two deductions from the

visualization of the experiment results in provenance graphs,

providing a metric based on the appropriateness of ICUs

for specific tasks, in terms of skill and trust, and executed

delegated tasks.

V. RELATED WORK

Markovic et al. in [15] pose several research questions re-

lated the utilization of provenance in social computing, mainly

focusing on the assessment of worker trust, and selection of
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Fig. 6: ICUs and tasks during the execution of one bag-of-tasks. The graph result of checkpoint 7.

appropriate workers for tasks. In addition, by discussing a

concrete scenario of social computing, they also argument

that some concepts, such as task delegations and incentives

are still problematic to express using Prov-DM [8]. A follow

up work by the same authors presented in [16] describe an

extension to PROV-O [17] and P-PLAN intended to benefit

social computing scenarios. Data-provenance modeling for

group-centric collaborations is presented in [18].

Packer et al., discuss provenance for CAS in [19] and argue

that provenance data helps in making CAS more transpar-

ent and accountable, and also help in assessment of users’

trust. The authors argue that provenance makes systems more

accountable as provenance data provides information about

the use of data and decision-making processes. The former,

meaning the way user data is used by the system is also

connected to systems’ transparency, because users could be

provided with a timely and detailed view of which type of data

provided by them was used by the system and how. Moreover,

provenance data may be utilized for enforcing privacy rules.

The authors provide several use cases where provenance can be

beneficial, including cases where it may give enough informa-

tion so that the system users can be informed about the way

their reputation is calculated, making a similar justification

for provenance data, to one of our justifications in this work.

Authors in [20] have investigated whether existing provenance

systems are capable of handling large-size social-provenance

data and provided their own decentralized architecture model

that could better handle provenance-data as opposed to existing

ones, in terms of scalability, data quality and privacy concerns.

The work presented by authors in [21] discusses a large-

scale synthetic social provenance database, designed for social

networks, and how that provenance data can be used to define

and calculate metrics such as credibility of a person. These

type of databases can be useful to motivate research of large

scale databases for more complex social-computing systems,

A case where provenance data can be used in a specific do-

main, such as in crowdsourced data analysis tasks is discussed

in [22]. Another domain-based example regarding provenance

and related to geospatial data is given in [23], where the

authors mention processes with human-in-the-loop. Needless

to say, we mention the two latter works as two of several

existing works, which testify that provenance can also be

used in providing a better Quality of Result, in addition to

enabling more efficient management of task executions and

resources/workers.

VI. CONCLUSION

In this paper, we have discussed the most important mecha-

nisms in social computing that would benefit from provenance

data. We presented an implementation of an SCU-provisioning

and management strategy, the execution trace of which we

mapped to provenance notation based on the PROV-DM

model. Our experiment showed that provenance data can help
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in deriving information that helps in building better worker

profiles as well as more efficient management mechanisms

due to metrics that can be extracted from their provenance

data. In future work, we plan to work on provenance in

mixed systems, and investigate how management mechanisms

of mixed-resources can benefit from provenance. One concrete

challenge is to investigate whether provenance-based data can

help us detect if a resource/service is a software piece or a

human-based service.
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