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Abstract. Applications in ubiquitous environments need to adapt to a
range of fluid factors, like user preferences, context, and various system
configurations. In this paper, we address the problem of system adap-
tation in order to continuously achieve high user benefit while keeping
reconfiguration costs low. To this end, the presented approach leverages
not only the immediate context but also future transitions. In contrast
to existing approaches that either maximize benefit or minimize recon-
figuration costs, our proposed decision support mechanism achieves a
trade-off between those factors. Considering user preferences, deploy-
ment constraints, and probabilistic context state transitions, we propose
a multi-objective utility function to determine the best reconfiguration
choices. Experimental results show that the proposed approach achieves
high user benefit while keeping reconfigurations costs low.

1 Introduction

As ubiquitous computing is becoming more and more widespread, software en-
gineers have to deal with different variability dimensions including the system
context, users, and the system configuration itself. Changes are not always pre-
dictable since they are beyond the control of the system and they may require
human intervention. To reduce maintenance cost it is desirable to achieve au-
tomatic self-adaptations in response to various kinds of changes. Adaptations
should meet the desired quality requirements according to user preferences and
they should be performed at reasonable cost and in a timely manner.
Self-adaptive systems are able to adjust their run-time behavior in face of
changing external circumstances [I7/4I]. Software engineers define a set of al-
ternative behaviors at design time while the actual adaptation decisions are post-
poned to run-time. Context plays a key role for adaptation since it determines
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the variation of user preferences and the space for the admissible adaptation al-
ternatives. Context, thus, needs to be explicitly modeled in order to account for
the run-time adaptation as proposed in research of context-aware systems [3/10].
This paper addresses the problem of how to achieve simultaneous adapta-
tion to system execution context and user preferences. The execution environ-
ment determines the space of admissible system configurations whereas the user
determines the benefit of each available configuration. Switching between dif-
ferent configurations comes at some cost. Consequently, predictive information
promises a significant cost saving potential by making adaptation decisions aware
of probable future context changes and thereby anticipates upcoming reconfig-
uration needs. When determining system configurations, the challenge lies in
finding a suitable trade-off between two opposite objective functions: maximize
user benefit while minimize reconfiguration costs. Pure user benefit-driven se-
lection comes with high costs due to frequent reconfigurations. In contrast, pure
cost-driven adaption neglects user preferences and invariably prefers the current
configuration, thus it changes the system configuration only when absolutely nec-
essary. For balancing the two factors, we define our solution as a multi-criteria
selection problem among different system alternatives and we evaluate each of
them through an aggregating objective function that combines cost and user
benefit. Experiments based on a case study and simulation demonstrate that
our approach successfully determines Pareto-optimal configurations of high user
benefit and low reconfiguration costs. Our contributions in this paper are:

— a concrete methodology to characterize system resources and configuration
eligibility while

— defining user preferences on non-functional properties specific to distinct user
contexts (situations).

— applying probabilistic information on future context states to predict up-
coming context changes

— defining the configuration selection as a multi-criteria optimization problem.

The remainder of this paper is structured as follows: Section 2] presents a moti-
vating scenario followed by a description of our approach in Section Bl Section [
introduces the optimization framework in terms of their main components, while
Section Bl formalizes the optimization problem. Section [6l provides evaluation and
validation results based on our case study and a simulation. Section [ discusses
related work before conclusions and future work round up our paper in Section [8l

2 DMotivating Scenario

An e-Health application supports doctors’ activities by providing the most rele-
vant services to visualize per-patient case history. Patient information is available
at three levels of granularity: (i) a complete case history that includes textual
reports and medical images, (ii) a compact version with only the recent history
of reports and images, and (iii) only a textual case history. In addition images
are displayed either as black and white images, in low color (256 colors), or as
fully colored images (4096 colors).
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Doctors need to receive aggregated per-patient information to support their
activities at different locations. These activities include patient consulting, check-
up, and medical procedures such as operations. Moreover they may be involved in
emergency situations. These activities are performed at different locations such
as common visiting rooms, surgery rooms, patient home or outside the hospital
when an emergency arises. The doctor is able to visualize per-patient informa-
tion through an accessible device inside or outside the hospital. Devices differ
in their hardware resources such as bandwidth availability (netB), number of
screen colors (SC), CPU speed (CPUClockRate) and available memory (Mem).
Hardware has an impact on the available services: e.g., low bandwidth and 8 bit
colors restrict the responsiveness to retrieve the patient’s medical history and
available image quality.
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Fig. 1. User Preferences Example

Activity and location influence the doctor’s preference for displaying the
case history and image quality, see Fig. [l The doctor might prefer a respon-
sive system in case of an emergency activity. In another case, immediate re-
trieval of per-patient information is not as important as a detailed history for
consulting activities. Upon context changes, the e-Health application needs re-
configuration based on the underlying hardware resources and the doctor’s
(context-dependent) preferences.

3 Approach

From a feature engineering perspective, features are the basic unit of behavior
[6]. Breaking the system logic into feature components enables us to reduce the
impact that any change might have on the system. Thus, we represent each alter-
native system variant as a distinct configuration of features. In [9] we defined a
methodology to create the space of admissible configurations for a self-adaptive
application starting from the set of basic features. In this paper we are going to
define a decision making mechanism that is suitable for feature-based systems
having the cost of deploying a feature independent from the running configura-
tion. FigurePlvisualizes the conceptual aspects of our work. We consider for each
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configuration a set of deployment constraints to assess the configuration admis-
sibility. These constraints are evaluated against the current underlying context
(resources) to establish whether the environment can support the execution of
that particular configuration. On the other hand, we map a feature configuration
to non-functional properties to represent the configuration’s quality. This qual-
ity becomes a configuration utility (i.e., user benefit) when matched with user
preferences. For each user, we assume the availability of historical transitions
between the various context states. We also assume the time required for system
adaptation upon a state transition to be negligible compared to the frequency
of user context changes.

Dperative Context Mon‘s‘l\ I/ Systam Variant ‘\
Syslem a Non-
Context  fe=Dafined On=— %ﬁf"glyr"::“ SUIEIW p=Defined Ona functional
Enlities il S Parameters
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- User Context Madel &,
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'\ Transition To J/

Fig. 2. Conceptual Model
4 Basic Models

In this section we introduce the basic definitions and models we use to formu-
late the context-aware reconfiguration problem. System reconfiguration aims at
satisfying two objectives: user benefit and cost which arise due to system recon-
figuration. We represent each system variant in terms of a deployment constraint
and the provided non functional properties. We propose a definition of transi-
tion cost to penalize reconfigurations. In our framework, there are two types of
context models. On one hand, features express their deployment constraint as
conditions on the operative context model. In contrast, user preferences are not
static but depend on the underlying user context entities instances. Thus, the
user context model provides mean to map particular user preferences (over the
non-functional properties) to specific context instances. We exploit the operative
context model to evaluate which alternatives are admissible at a given point in
time, and the user context model to deal with the current and probable future
user preferences.

4.1 Operative Context Model

The system variants describe which resources they require for execution and
thus need to be represented in the operative context model. Each system context
entity is identified through a tag within the set Tagld = {Taglds,...,Tagld,}
and it can assume one among its admissible values contained in the corresponding
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finite domain Dy, ...,D,. We adopt the modeling approach proposed in [I3] to
represent our definition of operative context space and operative context scope.

The operative context space for the system context entities is defined as the
Cartesian product of their admissible values: O = ®D; s.t. i = 1,...,n. Each
element in O is a vector r expressing a different assignment of values, e.g. r =
(netB(100Kbps), Mem(10M B), SC(256¢olors), CPUClock Rate(100M hz)).

An operative context scope os is a subset of the operative context space O,
0s €29 e.g. 0s = (netB(100 — 200K bps), Mem(10—50M B), SC(10—20colors),
CPUClockRate(100 — 150M hz)).

4.2 System and System Variants

We have adopted the feature engineering perspective to express the system vari-
ants. Each basic unit of behavior is expressed as a feature, that is the smallest
unit of behavior that can be perceived by the user [II]. System variants are
expressed as configurations; each one obtained by combining subsets of features.
We define each configuration in terms of deployment constraints and the fitness
values for the non-functional properties.

Deployment Constraints. It is a predicate which expresses the demand to the
operative context entities for a configuration ¢, e.g. net B(5kbps) AMem(0, 1M B)
is true only with a sufficient level of bandwidth and memory. An operative
context scope os. entails the elements in O that make the predicate true. Then,
we evaluate if a configuration c is eligible in a context scope os with the function
fe which is equal to 1 only if os C 0s. and 0 otherwise. In our problem we also
exploit the function Eligible(r) to evaluate which configurations are eligible with
the context values in r.

Non-functional Properties. Each configuration for an adaptive application
provides different qualities to the user. These non-functional properties NF P =
{nfpi,nfpa,..,nfps} can be quantitatively measured to drive the adaptation
and to guarantee the user benefit. We map the properties values (defined over
finite domains) to normalized fitness values in the real range [0,1]. For each
configuration ¢, the vector fv. contains the fitness values.

Transition Cost. An important factor to consider during the reconfiguration
process is the penalty of switching from the source configuration to the tar-
get configuration. Since in our approach system configurations are made by
features, we characterize this penalty based on the distance between the two
configurations as Dist, , = [NToDeploy NToUnDeploy| expressing the num-
ber of features to deploy and un-deploy switching from y to z. The vector
FCost = [CDeployings CUnDeploying¢] contains the same cost of deploying
and un-deploying a feature. Based on the two vectors we define the transition
cost of switching from y to z as:

TC(y,z) = (Dist, , - FCost")/MaxCost (1)
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This cost is normalized to the maximum theoretical cost, which depends by the
maximum number of features to deploy and un-deploy:

MaxCost = [MaxToDeploy MaxToUnDeploy] - FCost™ (2)

This simplified cost model is sufficient for our purpose since we do not address the
problem of executing the actual system reconfiguration at the implementation
level.

4.3 User Context Model

User context entities characterize the user’s situation. As they are beyond the
control of the application, they play a key role in the adaptation process. As
mentioned in Section 2 the user’s preferences change when switching from one
user context state to another. Note that our approach is independent from the
actual user context entities and how they change as long as there is a mapping
of the various observable user context states to user preferences.

We define a mapping between the user context state UC — as defined by a set
of user context entities — and the associated user preferences. User preferences
express the importance (i.e., weight) of the various non-functional properties
in a given context state. Higher weights express higher importance applied in
the mapping functions w : NFP — [0,1]. Furthermore, we introduce a proba-
bilistic automaton to represent the changing user preferences as induced by the
underlying transitions between context states.

This automaton is defined as A = (UC, P, E) where:

— UC ={UCy,...,UC:} is the set of states expressing the space of the user pref-
erences. Each state is represented as a different combination of weights upon
the non-functional parameters: UC; = [w1(nfp1)..ws(nfps)] 7 =1,.., ¢
at each state the weights are defined as: >.;_, w;(nfp;) =1

— P is the set of transition probabilities

— E:UC x P — UC is the probabilistic transition function

This probabilistic state-based model shows how the preferences reflect the
changes of user context entities. Historical data collected during system exe-
cution allows us to determine the actual transition probabilities between user
context states. We continuously sample user context data at fixed intervals of
time so that the probability to have two or more preference changes (i.e., context
changes) within one interval is negligibly low. This process, however, is beyond
the scope of this paper. Nevertheless techniques like [12] show the possibility to
get preferences from user context, whereas methodologies like [14] define how
to build a probabilistic model and maintain it updated with current system
execution.

We expect that the various user context states come with changes in the oper-
ative context space. For example, bandwidth will not be the same in every loca-
tion. Consequently, we consider also if a particular system variant is admissible
in the observed user context state, independent from user preferences. We define
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Fig. 3. Probabilistic automaton excerpt

a mapping function to associate each state in UC with an operative context
scope within the set OS (UCR : UC — OS). This models the correspondence
between the user preferences and the observed system context entities. Fig. [3
provides an excerpt of a probabilistic automaton, detailing the mapping of user
preferences and operative context scopes to a user context state.

5 Problem Formalization

Two events trigger the optimization problem and subsequent reconfiguration.
Either the user moves into a new user context state characterized by a changing
preference or the operative context cannot support the execution of the cur-
rent system variant anymore. The best configuration to deploy depends on the
achievable user benefit and the associated costs for reconfiguring the system. A
strategy that maximizes the user benefit after each transition possibly requires
many system reconfigurations. On the other hand choosing a fixed configuration
which is always eligible throughout all states may result in possibly sub-optimal
user benefit or may not exist at all. As a consequence we have to consider a
trade-off analysis between two conflicting criteria, i.e. user benefit and reconfig-
uration costs. In the following we formalize the user benefit, the reconfiguration
cost, and describe their combination in a single utility function.

As shown in Eq[3] the component B, evaluates how well a certain configu-
ration c fits the current user context state. The user benefit at each state is the
product of the corresponding user preferences vector with the quality attribute
fu. offered by the configuration.

ch“r = UCCUTT‘ . fv?; (3)

A configuration that gives optimal user benefit for a certain state may be sub-
optimal if we consider the probable future states. Therefore we introduce an
equation component that evaluates the expected user benefit in the future as
given by the probabilistic context transitions. The cost component Br shown
in Eq/4l computes the future benefit of a configuration. We limit the calculation
of future benefit to a single hop in the transition graph. Considering additional
states (i.e., multiple hops) is expected to yield little additional benefit as each of
the reachable states will have very small probability and thus hardly any impact.

#OutLink(UCeyrr)
BF = Z p(Uccum«, UCJ) . [UCJ . f’UZ} . fC(OSj) (4)

j=1
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Br aggregates the user benefit for each subsequent user context state weighted ac-
cording to the respective transition probability. A configuration yields user benefit
only if it is eligible in the corresponding operative context scope (fc(0s;) = 1).
Ultimately, the overall user benefit equation is obtained by combining the current
and future user benefits as follows:

BAgg =h- Bcum" + (1 - h) ' BF (5)

The horizon h regulates the importance of the current user benefit compared
to the future user benefit. The horizon close to 1 expresses a preference for the
current state, whereas for h close to 0 we deem the future more relevant. Thus
for environments where the user is expected to rapidly switch between states,
the horizon configuration parameter should be closer to 0 as he/she will leave
the current state soon.

The reconfiguration cost T'C represents the cost of switching from the current
deployed configuration to the configuration ¢ (Eq. [Il). The problem of selecting
the best configuration in a operative context model state r, given a predefined
user context model, is formalized as a max optimization problem combining the
expressions defined in Eq. Bl @ I

: 'Bcurr 1— -B -(1- -T curTs
cepnax @ [h + (1 =h)-Bp]=(1—a) -TC(ccurr,c)  (6)

The parameter « regulates the trade-off between user benefit and reconfigura-
tion cost. Setting « closer to 1 makes the optimization more likely to meet the
user benefit in spite of a high cost of reconfiguration. When setting this param-
eter closer to 0, we reduce the reconfiguration cost by selecting general purpose
system variants that may be sub-optimal on the user benefit. The parameter h
enables to tune the interest between the current user preferences and the prob-
able future user preferences as explained above.

By introducing the variables a and h we make our optimization process
customizable to various environments. The horizon h enables tuning to self-
transitions in the context automata. If the resulting self-transitions are very
high but still we are interested in optimizing future preferences we need to de-
crease the value of h. On the other hand if we end up with low self-transitions
but we want to better match current preferences we have to increase the value
of h. In addition, by setting h = 1 we enable comparison to existing approaches
that are future-unaware.

6 Evaluation

This section presents two ways to evaluate our contribution. Firstly, we model
the motivating scenario in Section 2 and apply our approach to find an opti-
mal solution to the scenario. Secondly, we simulate the reconfiguration process
at large scale in order to provide general guidelines of parameter settings to
extensive application scenarios.
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6.1 Case Study

Applying the feature engineering perspective the e-Health scenario yields follow-
ing alternative features to view the per-patient case history: S = { fyicwAlirm.,
fviewLastIm7 fviewAllRepv fviewLastRem fviewSum7 fpaintBW7 fpaintCOh fpaintFCol }

Table 1. System Configurations

Configuration Deployment Constraint Non-Functional Properties
. netB(5kbps) A Mem(0, 1M B) displayModel = summary
o1 = {fviewsum} responsiveness = high
netB(20kbps) A Mem(2,5M B)A displayModel = lastHistory
€2 = {foiewrastim, foiewLastRep, fpaintnw} CPUClockRate(40M hz) responsiveness = mediumHigh
s = {f Foiew P } netB(20kbps) A Mem(2,5M B)A displayModel = lastHistory
3 = WviewLastIm, JuiewLastRep, JpaintColf  cxprrCiock Rate(50Mhz) responsiveness = mediumHigh
s = {fore o o ] ot} net B(200kbps) A Mem(40M B)A displayModel = last History
4 viewbastlm, JuiewLastRep JpaintPCol} ¢ prQlock Rate(10Mhz) A SC(4096colors) responsiveness = mediumLow
netB(40kbps) A Mem(10M B)A displayModel = complete History
&5 = {fviewautm, fuiewattneps fpaintnw} CPUClockRate(40M hz) responsiveness = medium
06 = {Foiewattim, fosewtifions foamicor} netB(40kbps) A Mem(10M B)A displayModel = complete History
view At imy Juiew AReps Jpatntto CPUClockRate(50Mhz) A SC(256colors)  responsiveness = medium
netB(800kbps) A Mem(160M B)A displayModel = complete History

e1 = {fviewantm, fviewaunep, fpaintroor} CPUClockRate(100Mhz) A SC(4096colors) responsiveness = low

Table [ lists the 7 configurations built from these proposed features. Config-
urations c¢; provides only a textual representation of the patient’s case history
(summary). The next three configurations display only the very recent case en-
tries (last History) by means of textual reports and medical images which may be
colored following the three different modes (BW, Fullycolored, Colored). The
last three configurations display the complete case history (complete History)
with a different coloring modality. The feature combination in each configura-
tion determines the responsiveness level (ranging from Low to High). In the
following we describe how the reconfiguration process takes place whenever the
user switches context. We potentially observe a change of the user preferences
when the doctor moves to a different location or engages in a different task.
If this is the case, we then have to evaluate which configuration maximizes
Eq. 6l We select the best configuration starting from the following inputs: the
set of eligible configurations in the current operative context, the user context
automata and the reconfiguration costs. In this case study, we obtain a user
context automaton with the transitions probabilities shown in Figldl by ana-
lyzing historical user data detailing the movements and the doctor’s working
timetable. Each state is characterized by different weights for each quality at-
tribute (UCy = [0.3 0.7], UC; = [0.6 0.4], UCs = [0.7 0.3], UC5 = [0.5 0.5],
UCy = [0.45 0.55], UC5 = [0.9 0.1]). The first component of each vector indi-
cates how important the displayModel property is, while the second expresses
the weight for responsiveness. In addition each user context state is associated
to a different operative context scope O5Sy, .., OSs.

Suppose the doctor changes from an emergency activity to a check-up activity
within the hospital visiting room. As a consequence the user context switches
from UCy to UCj5 and the reconfiguration process commences. Note that the user
is free to switch between context states which exhibit no corresponding transition
in the automaton. Let us suppose that the running configuration is ¢s and the
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Fig. 4. User Context Automata

operative context state is reyrr = (netB(50Kbps), CPUClockRate(100M hz),
Mem(20M B), SC(256¢olors)). We check the deployment constraints for the
configurations in Table[llagainst the state . Thus we compute the set of eligi-
ble configuration as Eligible(reyrr) = {c1, c2, c3, ¢5, ¢ }. Each configuration pro-
vides two non-functional properties NFP = {displayM odel, responsiveness}.
The first assumes one value among summary, last History and complete History
whereas the second assumes one value among low, medium Low, mediumHigh,
medium and high. Starting from the qualities offered by each configuration we
evaluate the parallel fitness vectors exploiting a possible normalization:

cl : [summary high) = fve = (0.1 0.8]
2 : [lastHistory mediumHigh] = fvee = [0.5 0.65]
3 : [lastHistory mediumHigh] = fves = [0.5 0.65]
c5 1 [complete History medium| = fves = [0.9 0.5]
c6 : [complete History medium| = fves = [0.9 0.5]

For purpose of demonstrating, we assume the cost of deploying and un-
deploying any feature is FCost = [2 1]. The distance between each admissible
Conﬁguration and the current one (02 = {fviewLastImafviewLastRepafpaintBW}) in
terms of features to deploy and un-deploy is given in Table 2l The normalized
costs of switching from the current configuration to each possible target one are:
TC(CQ,C1) = 0.555, TC(CQ,CQ) = O, TC(CQ,Cg) = 0.333, TC(CQ,C5) = 0.667,
TC(ce,c6) = 1. The maximum theoretical cost we exploit for the normalization
is evaluated as MazCost = [3 3] - [1 1]T = 6 (Eq. 2]). We solve the optimization
problem at Eqlf] considering the new user context state UCj3, the set of eligible
configurations at the operative state r¢y,», and the costs. For demonstrating our
approach we set a to 0.7 to express that the user benefit is more important than

Table 2. Distance evaluation

Dist./Conf. ¢ ¢2 ¢c3 ¢5 ¢
ToDeploy 10123
ToUnDeploy 3 0 1 2 3
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costs. We also set the variable h to 0.5 to consider equally current and future
user preferences.

Our proposed methodology enables selecting the configuration which fits bet-
ter the current preferences while considering the future user preferences. Future
preferences are determined by the probable future task and location in which
the doctor will be involved. In addition also the costs of switching configuration
are taken into account.

At the current user context state (UC3, the one where the user just arrived),
the doctor is performing a check-up activity at the visiting room where the
responsiveness and displayM odel properties are equally ranked (Figure[Il). By
looking at the automata in Figld] we reason that with very high probability the
doctor will thereafter switch to another state (UC1). This probable subsequent
state comes with different weights for responsiveness and displayModel (UCY).
As a consequence we anticipate this future transition by selecting a system con-
figuration which provides already better display modality now, even if it does
not strictly meet the current user preferences. Nevertheless, in this example the
top ranked configuration maximizes also the current preferences.

Table B presents the overall utility value for the eligible configurations ob-
tained by combining the user benefit component (Eq[) and the cost (Eq. [I).
User benefit components do not need normalization since they are evaluated
exploiting normalized user preferences and normalized quality vector. In this il-
lustrative example the best configuration is cg since it corresponds to the best
trade-off between user benefit and costs with given h and a.

Table 3. Configurations evaluation

Configuration Beurr BF Cost Overall utility
c1 = {fviewsum } 0.45 0.38 0.555 0,457

c2 = {fviewLastIm, fviewLastRep, fpaintBw } 0.575 0.56 0 0,397

3 = {fviewLastIm, fviewLastRep, fpaintcot} 0.575 0.56 0.333 0,497

¢s = {fviewAliIm, foiewAliReps fpaintBw } 0.7 0,662 0.667 0,6767

c6 = { foiewAllIm, foiewAliRep, fpaintcor} 0.7 0,662 1 0,7767

6.2 Experiment

Besides a case study, we validate our approach by simulating context changes
and the resulting reconfigurations for various parameter settings. The results
demonstrate that a predictive approach considerably improves the reconfigura-
tion process. The simulation process takes the user context automata, costs, and
a set of system variants as input. During the simulation we measure two metrics:
the achieved user benefit and the incurred reconfiguration costs.

We run the same experiment with different values for the parameters o and
h to analyze the effect on the two metrics. For each experiment we construct a
set of 200 paths of 100 hops generated according to the probabilities of a fixed
user context automata (Sec. [f]). We then generate a fixed number of alternatives
system variants. For each variant we define randomly the eligible context states
and the values of non functional properties. Each experiment consists of iterat-
ing through the context automaton according to the 200 predefined paths. At
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each state, we select the variant that maximizes Eq.[Bl For each chosen variant,
we log the current user benefit and reconfiguration cost. Finally, we evaluate the
averages of the two metrics over all paths within a single experiment configura-
tion. Then we repeat the experiment with the same paths sequences but varying
« and h values. We then compare the results for different combinations of «
and h. Setting the horizon h to 1 we simulate a future unaware reconfiguration
strategy. There was no difference in the resulting cost and benefit trends for cost
vectors F'Cost = [2 1] and FCost = [10 1]; thus we report only the results for
the former.

Normalized User Benefit 035 Normalized Reconfiguration Cost

Fig. 5. Normalized average user benefit (a) and normalized average reconfiguration
cost (b) with h = 1.0, h = 0.5 and h = 0.2 depending on utility objectives weights .

Figure Bfa) and Bl(b) show the normalized user benefit and reconfiguration
across 33 experiment configurations. Figure B{b) compares reconfiguration cost
with three different values of h. Here we observe higher reconfiguration cost if
we consider only the current user context state (h = 1). On the other hand
configurations are likely to change less frequently whenever we consider future
user preferences. This holds if we consider current and future preferences equally
(h = 0.5) as well as if we give more relevance to the future state (h = 0.2). We
can conclude that looking into the future lowers the cost. As shown in the Figure
we can reduce the reconfiguration cost by regulating h independent from «. Since
« represents the weight for the aggregated user benefit (Eq. B), it increases the
significance of user benefit over the cost when it is close to 1.

Although we can reduce the reconfiguration cost by exploiting future user
preferences, we potentially lower user benefit at the same time. A configuration
that optimizes both current and future preferences does not necessarily max-
imize current user benefit. Figure Bl(a) presents the difference of user benefit
considering the static and predictive approach with value of h. We get the best
average user benefit if we consider only the current user context state (h = 1)
while we get lower values if we consider the future user preferences (h = 0.2 and
h =0.5).

Figure [l(a) and El(b) suggest that if we consider the current and future user
preferences the relative decrease in user benefit is smaller than the reduction
of reconfiguration cost. As shown in the figures there is potential user benefit
without raising the cost. In addition, Figure Bl(a) and B(b) also suggest that
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within the user benefit component the parameter h regulates the benefit and
cost objectives. In fact setting h closer to 1 increases the cost of reconfiguration
in order to increment the benefit, whereas by setting h closer to 0 we partially
alleviate the cost of reconfiguration by accepting lower user benefit configura-
tions. The difference between « and h is that the horizon has a lower impact on
the objectives compared to a.

Pareto Optimal and Sub-optimal Configurations

068

Fig. 6. Pareto-optimal and sub-optimal Configurations

Finally, we analyze the set of Pareto optimal configurations for & = [0;0.1;0.2;
...1]and o = [0;0.1;0.2; ... 1] for a total of 121 compared configurations. Pareto
optimal points are roughly evenly distributed across h thus making it possible to
select desirable values according to the specific application. We have discovered
which range of « could be exploited to get most of the optimal points. In Figure
[6l, the Pareto optimal configurations are displayed following three different series;
red squares stand for points in the range of o = [0.5;0.7], crosses for optimal
points for a = [0;0.5] and triangles for a = [0.7; 1]. Sub-optimal configurations
are given in blue circles. As the configuration values are averaged over multi-
ple transitions (as outlined above) also sub-optimal configurations close to the
Pareto-optimal ones might me candidates. As shown in the Figure we have noted
that around 50% of optimal configurations lie in the range of o = [0.5;0.7]. We
can thus conclude that too low a values put too much weight on costs and there-
fore waste a lot of potential to improve user benefit. Hence, our approach is able
to realize considerable user benefit even in very cost-constrained environments.
Pareto optimal configurations as shown in the Figure help to decide how to set «
while leaving to the designers the choice of h for specific ubiquitous applications.

The results demonstrate that predictive approaches (h < 1) allow the reduc-
tion of reconfiguration cost while providing an acceptable level of benefit to the
user. We can conclude that our predictive approach is as good as non predictive
approaches (h = 1) whenever we want to maximize the user benefit without
focusing too much on cost. For cost-sensitive environments, a non-predictive ap-
proach fails to produce Pareto optimal points. Indeed, Pareto optimal points
with h = 1 have high « values (a = [0.7;1]).
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7 Related Work

Self-adaptive systems need automatic reconfiguration at run-time considering
the characteristics of execution environments and the user preferences. Since it
is important to make adaptation resilient to changes, it is necessary to support
the decision-making process with predictive information.

In the literature there are a number of decision making mechanisms exploit-
ing user preference to support the adaptation. Sykes et al. [I8] evaluate the
utility of each system component primarily by the user preferences upon each
non functional property. Then the overall utility degree for each system variant
is obtained as the average of each component utility. The authors define the
space of adaptation strategies without considering the environment condition
explicitly. The PLASTIC approach [2] considers how to exploit user preferences
in performing service based adaptation. The approach performs a non-functional
selection among the system variants that can be deployed in the current exe-
cution environment based on the required resources. The approach proposes a
resource model that is similar to our operative context scope since it supports
the definition of eligible configurations. However no predictive information is in-
cluded to drive their adaptation process. In the field of service discovery, Li et
al. [I3] exploit a user preference model to support the service recommendation
to the user. At run-time, services are checked with respect to their precondition
and then they are ranked based on the user preferences upon their possible out-
comes. The approach considers only a simple context model without considering
future changes. Dorn and Dustdar [7] observe the behavior of multiple users to
adapt the available software capabilities (i.e. features) to the preferences of the
whole group. Their approach, however, does not take into account operative con-
text constraints, neither do they apply predictive knowledge on potential future
context changes.

All the mentioned approaches neither consider predictive information about
the context resources nor about the user preferences. Adaptations are performed
only by exploiting information on the current context.

Cheng et al. [5] extend the Rainbow evolution framework [§] in order to ex-
ploit the predictive availability of context resources to enable the adaptations.
However they lack the notion of user preferences. Poladian et al. [I516] face the
problem of selecting a sequence of system variants for a predefined sequence of
fixed time slots, each of which is characterized by a prediction of resource avail-
abilities. The sequence which better fits the fixed user preferences at each time
slot is selected. Also a factor of cost is introduced in order to give an increased
utility to components which are already running. In addition to this work, which
is heavily focused on resource prediction, we also consider the predictive context
states and corresponding user preferences because of our intention to address
ubiquitous environments. To the best of our knowledge there are no approaches
that support system adaptation by considering run-time user preference changes,
operative context changes and cost factors coherently in one formal framework.
We claim that considering all these factors together promote better performance
of the adaptation process.
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8 Conclusions

In this paper we proposed a reconfiguration scheme for ubiquitous applications.
In our approach we considered several factors including user preferences, non-
functional properties, and reconfiguration cost, which may affect adaptation de-
cisions in response to changing context. By applying feature engineering and
context-awareness techniques, we quantified these factors and their aggregated
effects in order to provide decision support in the face of multiple adaptation
options. We conducted a series of experiments to evaluate the effectiveness of
our approach with different configuration parameters. As the analysis of Pareto
optimal solutions showed, our mechanism is able to maintain high user benefit
while significantly reducing reconfiguration costs. Results further demonstrated
that even a trade-off favoring reconfiguration costs over user benefits proves
more effective than simply focusing on reducing costs alone. Based on these re-
sults, we provided guidelines to users on how to apply different parameters in
order to weigh between user benefits and reconfiguration costs. The complete
methodology was illustrated by means of a case study in the e-Health domain.

In the future, we will measure actual reconfiguration costs coming from the
implemented case study. We also plan to integrate support for directly deter-
mining Pareto optimal solutions, thus relieving users of having to select suitable
values for « and h. Furthermore, we will conduct theoretical analysis of the con-
text state topology such as number of states, average connectivity between the
states, and transition frequency, by which we expect to open up more intelligent
and effective reconfiguration strategies.
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