Demo: A System for Operating Energy-Aware Cloudlets

Thomas Rausch
TU Wien

Padmanabhan Pillai
Intel Labs

ABSTRACT

We present an end-to-end system for operating energy-aware cloudlets

with a low-footprint cluster manager and an adaptive client-side
load balancing approach. Our system is designed for small-scale
high-density compute clusters that host stateless services and have
stringent energy resource constraints. It features cluster and ser-
vice management, runtime monitoring, adaptive load balancing and
cluster reconfiguration policies. Furthermore, we present an exper-
imentation and analytics system that allows coordinated execution
of complex workload experiments to evaluate different operational
strategies.

CCS CONCEPTS

« Computer systems organization — Architectures; « Hard-
ware — Power and energy; « Information systems — Informa-
tion systems applications.

KEYWORDS
edge computing, cloudlets, energy-awareness, load-balancing

ACM Reference Format:

Thomas Rausch, Philipp Raith, Padmanabhan Pillai, and Schahram Dustdar.
2019. Demo: A System for Operating Energy-Aware Cloudlets. In The Fourth
ACM/IEEE Symposium on Edge Computing (SEC 2019), November 7-9, 2019,
Arlington, VA, USA. ACM, New York, NY, USA, 3 pages. https://doi.org/10.
1145/3318216.3363325

1 INTRODUCTION

Cloudlets are a fundamental infrastructural component for edge
computing[1], and it is crucial that they operate efficiently, espe-
cially in forward-deployed scenarios such as tactical environments
[2]. Operating efficiently means that workload is balanced across
cluster nodes as to minimize application latency, and that the clus-
ter configuration (i.e., active nodes and request routing) is adapted
during runtime to trade off latency and energy consumption.
Systems that solve similar problems in data-center scale clus-
ters [3] are not applicable to the domain of portable energy-aware
cloudlets for reasons we have outlined in a previous publication [4].
First, the operational scale impedes the use of components typical
in cloud architectures, such as dedicated L4 or L7 load balancers.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

SEC 2019, November 7-9, 2019, Arlington, VA, USA

© 2019 Association for Computing Machinery.

ACM ISBN 978-1-4503-6733-2/19/11...$15.00
https://doi.org/10.1145/3318216.3363325

307

Philipp Raith
TU Wien

Schahram Dustdar
TU Wien

Cluster nodes

Client
Router App
S rtbl Client
Power monitoring Service i
Request Galileo
Telemetry Cluster Controller
Daemon Daemon ;
: Storage .. Galileo worker
Service Pol and -
Manager Eventbus
routing:services {si1, s2, .. }
Dashboard ‘ ‘ REST API ‘ routing:hosts:si1 [h1, h2]
routing:weights:s1 [0.8, 0.2]

Symmetry (controller) Routing table

Figure 1: System architecture overview

Second, the models used for energy management in data centers
often build on assumptions that do not hold for smaller scale hard-
ware that already has very effective built-in energy management.
Third, resource management systems for cloud clusters, such as
OpenStack or Kubernetes, are often very resource intensive in and
of themselves and require powerful servers to operate.

This demo paper presents Symmetry — an end-to-end implemen-
tation of the system architecture we presented at SEC’18 [4] that
addresses the described issues. The system is designed to manage
high-density compute clusters with around 2-20 nodes, such as
a cluster prototype we have presented in [4], or an Ubuntu Or-
ange Box, and manage stateless services such as image recognition
models, database query serving, or similar applications. Symmetry
takes the role of the cluster controller, and is designed to run on
a Raspberry Pi. It features service management on top of Docker,
runtime monitoring of black-box metrics, power draw, and ap-
plication latency, client-side load balancing, and dynamic cluster
reconfiguration mechanisms. We provide load balancing and cluster
reconfiguration policies such as round-robin or reactive autoscaling,
but also give developers tools and APIs to build their own. Com-
plementary, we present Galileo — an experimentation and analytics
system for evaluating such operational policies.

2 SYSTEM DESCRIPTION

We have described details of the system design decisions for energy-
aware portable cloudlets in [4]. In this demo we showcase the
implementation and its application. Figure 1 shows the overall
system architecture. Symmetry orchestrates a cluster of low-power
compute nodes (e.g., Xeon servers). Galileo workers are physical
machines that can emulate multiple clients to generate workload.

https://doi.org/10.1145/3318216.3363325
https://doi.org/10.1145/3318216.3363325
https://doi.org/10.1145/3318216.3363325

SEC 2019, November 7-9, 2019, Arlington, VA, USA

Experiment

o3 &3

Workload configuration

(a) Experiment editor with workload profiles

Thomas Rausch, Philipp Raith, Padmanabhan Pillai, and Schahram Dustdar

(b) Galileo analytics dashboard

(c) Testbed with (1) cluster nodes, (2)
Symmetry & Galileo, (3) Galileo workers

Figure 2: The Galileo subsystem enables complex experiments on physical testbeds using client and workload emulation

All code is open source and available in our Git repositories under
the mc? — Mini Compute Cluster project umbrella.!

2.1 Symmetry: Cluster Management and
Monitoring

Symmetry comprises a set of lightweight Python components that
together make up the system control software. Cluster nodes are
server computers that host services, and require no software other
than Docker and an SSH server.

2.1.1 Command Line Interface and REST API. Operators interact
with Symmetry via a CLI to deploy services to the cluster or activate
specific load-balancing policies. REST APIs provide ways to con-
trol the cluster state and request routing, and enable the modular
development of additional operational logic. A runtime dashboard
provides insights into the current cluster utilization, power draw,
and application performance.

2.1.2 Symmetry core. The core platform component of Symmetry
is a Redis instance running on the cluster controller. All layers of
Symmetry, as well as the Galileo experiment platform, are inte-
grated via this Redis instance, which facilitates both data storage
(such as service metadata) as well as inter-process communication
using an eventbus architecture. Due to its lightweight design and
highly optimized I/O functionality, Redis performs extremely well
in this scenario.

2.1.3 Service management. Applications are hosted on cluster nodes
as HTTP services in Docker containers. Symmetry starts on each
cluster node an NGINX instance to internally route requests to the
correct container and to monitor application performance. Services
are described via YAML files that specify necessary metadata. The
CLI command symmetry deploy my-service.yml then deploys
the service to each node, starts the necessary containers, regis-
ters the service endpoints, and updates the node’s NGINX config
accordingly.

2.1.4 Telemetry daemon. The telemetry daemon aggregates run-
time metrics from various sources and publishes them as time series

Uhttps://git.dsg.tuwien.ac.at/mc2

308

data into a pub/sub topic that encodes the node and the metric, for
example, telemetry:nodel:cpu. It implements pull-style moni-
toring by connecting to the cluster nodes via SSH and executing
commands for measuring CPU utilization, CPU core frequency, or
parsing the NGINX logs. For power data it connects to an Arduino
that provides access to readings from Adafruit INA219 current sen-
sors. If a node shuts down, it informs other components via the
eventbus.

2.1.5 Cluster daemon. The cluster daemon enacts the load balanc-
ing and cluster reconfiguration policy. One policy that Symmetry
provides out-of-the-box is Reactive Autoscaling, which activates or
suspends a node if a system metric exceeds a given threshold for a
specified amount of time. For example, our default implementation
activates an additional node if the average CPU utilization is above
85% for more than 10 seconds, and suspends it if drops below 25%.

2.1.6 Client-side request routing. Making clusters appear as a sin-
gle system is typically achieved via dedicated L4 or L7 load bal-
ancers, through which all service requests are routed. Instead,
we take a client-side request routing approach that uses simple
weighted-random load balancing, where weights are updated dy-
namically by the load balancing policy in a way that meets some
operational goal. A routing table specifies for each service how
much of the workload should be directed to a given node. Updates
to the routing table are propagated to the clients via Redis pub/sub.
This way, request routing is decentralized, but simplified such that
the client components necessary to call services are kept simple.

2.2 Galileo: Experimentation and Analytics
Subsystem

The main purpose of Galileo is to simplify the development and
evaluation of different operational strategies implemented in Sym-
metry. It coordinates physical devices to emulate client workload,
and provides user-facing components to define experiments and
analyze the results. Galileo records monitoring data coming from
Symmetry into a configurable datastore, in our case a MySQL in-
stance. Figure 2 shows the frontend components of Galileo, and the
testbed we use for the demo.

https://git.dsg.tuwien.ac.at/mc2

Demo: A System for Operating Energy-Aware Cloudlets

A user can interact with the experiment platform either via the
experiment editor shown in 2a, or an interactive experiment shell
that provides commands to scale up/down the number of emulated
clients, change the load they are generating, change the balancing
policy, and control the node states via Symmetry. The shell also
acts a scripting environment and provides simple flow control via
sleep commands. Finally, the analytics dashboard shown in Figure
2b allows ad-hoc exploration of experiment result data. It shows
system metrics for each node, aggregated energy consumption,
and application performance such as processing time and queuing
delay.

The environment shown in Figure 2c hosts the presented system
and encompasses (i) the cluster infrastructure (low-power Xeon
servers), (ii) a Raspberry Pi that hosts Symmetry and the Galileo
controller, and (iii) Galileo workers for emulating clients and work-
load.

309

SEC 2019, November 7-9, 2019, Arlington, VA, USA

ACKNOWLEDGMENT

This work is supported by the Austrian Federal Ministry of Science,
Research and Economy through the Austrian infrastructure pro-
gram (HRSM 2016) as part of the CPS/IoT Ecosystem project. We
thank Silvio Vasiljevic and Jacob Palecek, who have contributed
code to the presented project.

REFERENCES

[1] M. Satyanarayanan, P. Bahl, R. Caceres, and N. Davies, “The Case for VM-Based
Cloudlets in Mobile Computing,” IEEE Pervasive Computing, vol. 8, no. 4, pp. 14-23,
2009.

G. Lewis, S. Echeverria, S. Simanta, B. Bradshaw, and J. Root, “Tactical cloudlets:
Moving cloud computing to the edge,” in 2014 IEEE Military Communications
Conference. IEEE, oct 2014, pp. 1440-1446.

A. Gandhi, M. Harchol-Balter, R. Raghunathan, and M. A. Kozuch, “Autoscale: Dy-
namic, robust capacity management for multi-tier data centers,” ACM Transactions
on Computer Systems (TOCS), vol. 30, no. 4, p. 14, 2012.

T. Rausch, C. Avasalcai, and S. Dustdar, “Portable energy-aware cluster-based edge
computers,” in 2018 IEEE/ACM Symposium on Edge Computing (SEC), 2018, pp.
260-272.

(2]

	Abstract
	1 Introduction
	2 System description
	2.1 Symmetry: Cluster Management and Monitoring
	2.2 Galileo: Experimentation and Analytics Subsystem

	References

