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Abstract—Edge Intelligence is the umbrella term for new types
of applications, which are being created due to the advent of
Internet of Things and the resulting Edge Computing paradigm.
Computing resources are pushed to the edge of the network
to overcome the massive amounts of generated data, enable
ultra low latency applications and guarantee privacy. Edge
Intelligence use cases are based on context-aware AI applications
and generate new knowledge from heterogeneous data sources.
While the promise of these new applications sounds appealing,
the reality is that we are still in the infant stage of building such
platforms. We motivate the design of this platform by presenting
a motivating use case that spans from Food Computing to Smart
Health. Based on this, we identify main tasks encountered in the
development of AI applications, describe issues related to Edge
Intelligence, and present our vision of an Edge Intelligence as a
Service platform.

Index Terms—Edge Intelligence, Edge Intelligence as a Service,
Elasticity, Edge Computing, Food Computing, Elasticity as a
Service

I. INTRODUCTION

We have seen the rise of highly capable AI in recent

years, powered by computational capabilities of hardware

accelerators, and the consequential research of neural network

architectures. AI starts to infiltrate our daily life, covering all

important aspects (i.e., health, cities, agriculture). Applications

range from personalized food recommendations [1], real-time

video analytics [2] and irrigation scheduling predictions [3].

Important characteristics are: context-awareness, ultra-low-

latency, large amounts of sensor data, and confidentiality.

The emerging Edge Intelligence (EI) paradigm fulfills all the

conditions by extending the currently popular cloud-centric

infrastructure to the edge of the network. Edge Intelligence

is meant to build an unified platform for AI on edge applica-

tions with yet unseen capabilities by intelligently leveraging

resources in near proximity to users [4]. To train models

with context in mind, we need to deploy applications where

the data originates from. Zhou et al. [5] define six levels of

Edge Intelligence characterizing where training and inference

is happening. While Level 1 considers a central training in

cloud and using resources at the edge for inference, Level 6
imagines all tasks to happen on user devices which reduces

the amount of data offloading to a minimum and guarantees

confidentiality of personal data. In contrast to AI on edge,

AI for edge focuses on developing strategies for platforms

to intelligently manage applications as intended by users [4].

Intentions can have different forms and are not limited to

guarantee service metrics (i.e., response time) but extend to

providing relevant data and context-aware execution. There-

fore, Edge Intelligence as a Service platforms (EIaaS) need to

allow developers not only to specify service metrics but also

to add contextual information, such that intelligent strategies

transparently manage deployments.

In general, the platform can be envisioned by deploying

a sensing and compute fabric [6]. The former represents the

abundance of deployed sensors (i.e., IoT) while the latter acts

on the emitted data. The computing fabric is based on the

Edge Computing (EC) paradigm, which pushes centralized

resources from the cloud to the edge of the network [7].

By pushing resources closer to the users, we can mitigate

the issue of the increasing bandwidth needs and can pro-

cess information and requests immediately. Unfortunately,

unleashing the promised potential of Edge Computing is

hard and stems from several factors: heterogeneous compute

units, offering different capabilities, network distance playing

a crucial role to guarantee the stringent latency requirements,

yet unknown infrastructure governance, legal policies, context-

awareness etc. [8]. To overcome the burden of managing edge

infrastructures, accessible platforms are necessary to let people

make full use of Edge Intelligence, and therefore allow us

to enter the new stage in the cyber-human lifecycle [6], [9].

Transparent deployment guarantees access to AI for businesses

without dedicated resources for developing custom solutions

and creates an opportunity to generate a wealth of diverse and

novel AI applications.

Therefore, the goal of this paper is to envision an end to

end platform that pushes the democratization of AI further,

by giving non-experts the opportunity to build EI applications.

We discuss in detail a motivating use case, centered around

a business that produces food and is located in Smart City,

Health, and Agriculture as well as Food Computing. The use

case showcases elastic properties, data sharing across domain

boundaries and helps us outline requirements for an EIaaS

platform. Besides showing requirements, it also depicts the

possibilities for businesses to leverage AI in a meaningful

way to improve quality for themselves but also customers.

We identify four main tasks encountered when deploying AI

models and highlight for each of them problems that arise in

EI and need to be tackled. Based on the previous investigation

of use cases, application requirements and tasks, we outline the

general architecture and user interaction possibilities. The pro-

posed platform builds on the industry-proven MLOps concept

[10], [11], and extends it to enable the lifecycle management of
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EI applications. Additionally, we discuss possible implemen-

tations of this platform and identify important requirements

that the underlying orchestration services must fulfill.

The rest of the paper is structured as follows: in Section II

we introduce the necessary background and relevant concepts,

accompanied with related work. Section III is dedicated to

portraying our use case study by highlighting applications,

needed data sources, domains and, elasticity requirements.

Upon analysis of possible applications, we describe in Section

IV the four main tasks in AI and draw attention to problems

that we will inevitably encounter in the future. Based on

this, we can envision a plausible platform and afterwards give

details to important technical problems encountered in Edge

Intelligence in Section V. We outline limitations and future

work in Section VI and conclude the work in Section VII.

II. BACKGROUND & RELATED WORK

A. Edge Intelligence

Edge Intelligence uses data produced at the edge of the

network by applying AI applications on it. Edge Computing

infrastructures help us solve various issues that arise (i.e.,

privacy concerns) in EI by pushing resources to the edge of

the network. Zhou et al. [5] state in their survey that the term

EI is not yet fully defined, but one common usage is to refer

to the execution of AI models at the edge.

Though, they define it as the efficient use of data in an

edge-cloud cooperative manner, where inference and training

can happen across all devices. We also believe in that vision

and showcase in our use case that data from different domains

can be used to create new and intelligent applications. Zhou

et al. [5] also introduce a six-level rating that specifies where

applications are executed. We briefly highlight the main dif-

ferences, and advise to read a detailed explanation in [5]:

• Cloud Intelligence: Training and inference on the cloud

• Level 1 Cloud-edge co-inference:

Training: Cloud - Inference: Edge-Cloud

• Level 2 In-edge co-inference:

Training: Cloud - Inference: Edge

• Level 3 On-device inference:

Training: Cloud - Inference: Device (no offloading)

• Level 4 Cloud-edge co-training:

Training: Edge-Cloud - Inference: Edge-Cloud

• Level 5 All in-edge:

Training: Edge Inference: Edge

• Level 6 All on-device (no offloading):

Training: Device - Inference: Device

Because EC contains resource-constrained devices, some tasks

must be offloaded to other nodes. Other surveys have com-

prehensively shown open issues we encounter in EI [4],

[12]. Similar studies have been published that investigated

the complete food supply chain. Pang et al. [13] showcase

how IoT can influence food supply chains. They focus on

conducting surveys on the importance of IoT applications

with experts (i.e., shelf life prediction) and describe in detail

the technical realization of those sensor networks, including

sensor data fusion. In [14], the authors present a serverless

platform for Edge Intelligence applications. Their focus lies

in discussing the technical details but also introduce the

problem that arises from context-aware systems. The work is

complementary to ours, as they propose a programming model

and low level details about the execution platform. Zhang

et al. [15] present an open framework that focuses on the

technical implementation of EI applications at the edge. An

important issue is the large size of AI models and the resulting

mismatch with resource-constrained devices. They propose a

systematic description of EI algorithms, a RESTful API to

expose EI applications and outline usage with four use cases.

We look at Edge Intelligence from a higher level, by describing

a plausible business, how it can benefit from EI and that not

only the computing infrastructure is heterogeneous. Further,

our platform focuses on the democratization of AI, that will

push development and use to a broader public. The work of

Rausch et al. [6] resemble our approach but differs in the

approach, in that ours is based on business case study which

highlights the importance of all these different applications to

a singe stakeholder.

III. MOTIVATING USE CASE

Fig. 1. Crossing domain boundaries

Our motivating use case presents possible EI applications

that can be developed and deployed with our proposed end to

end platform. The use cases are settled in the context of Smart

Cities [16], Smart Agriculture [17], Smart Retail [18], Smart

Health [19] and Food Computing [20], depicted in Figure 1.

We aim to showcase the potential of EI to help a business

that produces vegetables. Each application is briefly described

by focusing on necessary data, the possible EI levels, which

domains are involved and which elasticity requirements are

important. Table I summarizes our findings.

Consider an international company, set up over different

countries, that (1) operates a commercially agricultural busi-

ness and (2) sells the produces in stores. Whereas products

can originate from the local area or foreign countries and

the business is in direct contact with the farmers. The main

revenue stems from selling food to individuals in shops with

accompanying restaurants, making the business’ goal to adapt

their offering to the cities. We briefly highlight the business’

lifecycle, and afterwards showcase useful applications that can

be deployed on an EIaaS platform. We consider a simplified

process that is split into two parts: farm and shop. Farmers

want to efficiently plant seeds, take care of plants and yield

high quality crops. The shop gets them delivered, places them

253

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on November 25,2021 at 12:48:01 UTC from IEEE Xplore.  Restrictions apply. 



in-store where customers buy them, either the raw produce

or as dish served in the in-store located restaurant. Based on

analysis of sales, business and farmers can adopt their strate-

gies with help of a Recommender System. Figure 2 shows

each step and indicates the feedback loop. After outlining the

business’ internal process, we describe for each step plausible

applications that could help reduce cost and improve quality.

Fig. 2. Steps in plant farming chain

A. Farm

1) Plant: First, farmers can use AI to map the soil to assess

chemical characteristics. Aitkenhead et al. [21] trained a neural

network that can predict soil characteristics to estimate fertil-

ity. Their approach appears optimal for cheap and rapid field

assessment using colour values from digital photographs [21].

A crowdsourced labelling process can prove to be efficient and

therefore inference and training at the edge are recommended.

Further, elasticity requirements will target almost exclusively

the reduction of cost, as analysis does not have real time

requirements and only serves as a cheap assessment without

focusing on high accuracy.
2) Care: During the growing phase of plants, farmers can

take advantage of automatic discrimination between crop and

weed based on images [22], [23], plan irrigation with short-

term weather forecast [3] and perform vision-based disease

detection [24], [25]. Crop and weed prediction has to perform

in real-time to allow tractor mounted spraying equipment

efficiently target weed patches between crop rows. Both,

crop/weed discrimination and plant disease detection, can

profit from localized fine-tuning due to the large amount of

different species [26]. Climate and soil are vastly different

across the globe directly affecting watering cycles and fertil-

ization, making fine tuning at the edge a viable solution to

guarantee high accuracy results [3].
3) Harvest: Multiple vision-based systems can be deployed

to infer fruit size and quantity and help farmers during harvest

to predict the quality [27], [28]. Yield prediction of winter

wheat has proven to be sensitive towards location and input’s

time window [29]. Han et al. [29] propose a model that pre-

dicts yield of winter wheat in china. Their model uses remote

sensing (i.e., vegetation index), climate (i.e., temperature),

soil (i.e., soil properties) as well as historic yield data and

crop maps. Results show that the local environment is highly

relevant for the model and bigger surroundings lead to worse

accuracy. Halstead et al. [28] have stated that their system

is trained with near-maturity peppers and fails to accurately

predict ripeness of juvenile fruits. Their two-stage approach of

first detecting the fruits and afterwards estimating the ripeness,

shows that the second stage may have to be fine tuned at the

edge, to guarantee high accuracy by using multiple models.

B. City

1) Transportation: After the harvest, produces must be

safely transported to the shops and therefore can benefit from

crowdsourced road condition assessment, smartphones mea-

sure the movement via accelerometer and gyroscope [30], [31].

Not only does it lead to increased traffic safety, it also avoids

any unnecessary spoilage caused by continuous vibrations

and high force shocks [13]. In road sensing the quality is

important, as trips can be planned ahead and therefore do not

require low latency. We think that a localized fine tuning can

yield higher accuracy due to differences of common vehicle

characterizations (i.e., suspensions) that may lead to different

accelerometer and gyroscope readings on the same road.

Further, AR-based helper systems, that receive results from

nearby traffic cameras, can display nearby traffic participants

in real time [32]. The results contain bounding boxes of

inferred objects in the camera’s view. Locality-awareness is of

utmost importance to guarantee relevant results and ultra low

latency, required to continuously provide the AR system with

data. Consider that throughout the city cameras are deployed

and all of them are running object detection models that emit

bounding boxes representing participants. Drivers want and

need only those that are in near proximity, the system has

to automatically adept the transferred data based on the users

location. While accurate inference is important, performance

must also be considered to make the application usable.

Training can be done in the cloud using large datasets, but

inference must happen at the edge due to latency requirements.

2) In-Store: Upon delivery, produces are put into shelves

or prepared as meals. Customers should be engaged and

incentivized to buy products during their stay in the local

shop. Due to the emergence of Virtual and Augmented Reality

[32], we assume customers are wearing smart glasses to get

additional information while strolling through to store.

Smart glasses record the user’s view with up to 30 frames

per second, which act as input for an inference pipeline.

This pipeline identifies objects, selects products and classifies

them [33]. Based on the resulting class of food, additional

information of the user’s interest is shown. Information may

include:: detailed nutritional information, possible recipes,

ecological impact (i.e., consider the transport of food from

foreign countries), etc. The application is context-aware and

can use personal data to provide relevant information. Multiple

works have shown promising results in recognizing food

and dishes [34], [35], [36], [37]. Xu et al. [33] have added

geo-location information to the model, to better differentiate

between dishes that look the same and stem from different

cuisines. This approach seems plausible in the context of EI,

where a general food recognition model can be trained in the
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cloud and fine tuned accordingly in different restaurants and/or

markets. Further, processing the captured video feed of smart

wearables must adhere to stringent latency requirements and

may even be subject to local policies protecting people’s iden-

tities (i.e., GDPR). Processing can be done either on-device

(i.e., smartphone) or nearby edge devices and sophisticated

anonymization software can act as pre-processing to obey

laws [38]. Based on personal preferences, applications may

recommend food during the customer’s visit [39], [40]. Smart

health wearables may provide applications with contextual

data to react accurately to different situations. These appli-

cations process highly sensitive data (i.e., allergens, dietary,

vital data) and therefore training on-device is required. This

restriction can build the important trust between user and

application [41].

3) Sale: After users make their choice, smart checkouts

using deep learning based recognition software can help shops

ease the workload on workers, but need to be accurate and

fast at the same time [42]. Which makes us believe that a

cloud-based training and edge inference are suitable. Context-

aware recommender systems can learn user preferences based

on previous purchases [43]. Privacy is important for this

application type, and therefore we recommend that confidential

tasks are done on-device.

4) Feedback: The last use case revolves around the idea of

creating a Recommender System that can help the business

and farmers to effectively recommend the next crop. We

imagine that this system can build on nearly all previously

mentioned data sources. For example, historical sale reports

can highlight seasonal patterns, the local fields can be analysed

for soil mapping purposes as well as weather data influences

feasible crops. Analysis of personal data (i.e., dietary choices,

allergens, preferences, etc.) can foster the system with useful

information regarding the overall consumption behaviour of

cities, or even districts. Besides data about the citizens of

Smart Cities, environmental data of the surroundings can

further influence recommendations. In areas with high pol-

lution, trees can help mitigate the issue and produce fresh

oxygen. To the best of our knowledge, no work has been

done in this direction that combines Smart City and Smart

Agriculture to create a feedback loop between the production

and consumption of vegetables.

We observe that the applications differ widely in terms of

input data, elastic requirements and EI levels. Data from the

domains of Smart City, Agriculture and Health, as well as

Food computing were used. We process various types of data:

climate, soil, high dimensional (i.e., images), plant, health

and personal data. While some models may be trained in the

cloud and are deployed at the edge for inference, others have

to be aware of contextual information and therefore are fine

tuned at the edge. Privacy-related concerns make on-device

inference and training necessary, as well as the reduction of

performance and the conquering of large amounts of data.

Elasticity requirements differ in terms of quality, performance,

privacy, and should balance cost. Further, we identify issues

that relate to the tasks we discuss in the next section: (1)

addressability, (2) sources, (3) security, (4) coordination, (5)

performance and (6) context.

IV. TASKS

In the following, we categorize operational tasks that our

framework will focus on. Our opinionated view on application

requirements allows us to define general as well as highly

contextual goals.
We consider the four main tasks that appear in Edge

Intelligence: sensing, preprocessing, training and inference.

This classification is based on recent research that identified

different layers and tasks [15], [6]. We highlight for each task

different aspects and key requirements encountered in our use

case study.

A. Sensing
Our use cases show that physical sensors can be deployed

anywhere and measure different types of data. Table II shows

few of them that can be used to achieve the presented

applications. For each sensor we also describe the collected

data types and which domain they belong to. Additionally,

other studies have investigated the heterogeneity in sensors and

emitted data [45], [46], [47], [48], clearly showing the need

for a unified interface. The heterogeneity stems from different

types of velocity, volume and ownership, as depicted in Table

II. Therefore, we think a layer of abstraction is necessary to

make this data accessible. The layer should provide ways of

selecting, merging and aggregating data from different sources

while being context-aware.
Next, we highlight requirements that stem from our moti-

vating use case.
1) Addressability: The use cases made it clear that efficient

querying for sensor data is necessary and needs to handle

context. Nearby traffic participant detection is practically

unusable without the knowledge of the users whereabouts.

Users must be able to either send information to the system

that it only sends relevant resources, or must employ a fine-

grained topic subscription to enable these use cases. While in

this application users can specify exactly which sensors are

needed (i.e., using geospatial queries to select all cameras in

100m radius), others require the system to understand much

more semantically queries. Consider personal food recommen-

dations that requires highly contextual data to train an accurate

model. How should developers approach this daunting task of

selecting all sources, containing smartphone sensors, personal

health records, etc.? Therefore, being able to easily address,

select, merge and process data from sensors is a very important

task. Establishing trust to users (i.e., guaranteeing on-device

processing) can be a key enabler for creating a homogeneous

platform, providing access to sensors from external providers.

For example, imagine we want to create a model that relates

temperature and crop growth rate in the area surrounding Vi-

enna. The system must combine temperature sensors with crop

sensors in vicinity. A system that fails to identify relationships

between sensors will yield useless models. Therefore, sensors

need to be tagged with context such that we can query and

group them.
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TABLE I
POSSIBLE APPLICATIONS IN THE SUPPLY CHAIN

Step Application Data EI Level Domains Elasticity

Plant the seed Soil Mapping [44]
Topographic
Climatic
Vegetative indices

Level 4 Smart Agriculture Quality, Context

Care
Crop/Weed discrimination [22], [23]
Irrigation Scheduling [3]
Disease Detection [24]

Weather
RGB, Spectral images

Level 1 & 5
Climate
Smart Agriculture

Cost, Quality,
Privacy

Harvest
Fruit Size Estimation [27],
Fruit Quantity Estimation [28] ,
Yield Prediction [29]

RGB(-d) images
Remote Sensing
Climate, Soil
Yield, Crop map

Level 4
Smart Agriculture,
Climate,
Food Computing

Quality
Performance

Transportation
Traffic participant detection [6]
Road condition assessment [30], [31]

Images, Orientation
Angular Velocity

Level 3 & 4 Smart Traffic Safety

In-Store
Food Classification [33]
Food Recommendation [1], [40]
Face anonymization [38]

Images, Health
Personal preferences

Level 3 & 4
Food computing,
Smart Health

Privacy, Quality,
Context, Performance

Sale
Intelligent checkout [42]
Personalized recommender [43]

Images, Location
Temporal, Consumer Behavior

Level 2 & 6 Smart Retail
Privacy, Context
Performance

Feedback Produce Recommendation
Sales, Social context
Location

Level 4 Smart Business
Privacy, Quality
Context

2) Sources: Different types of sources have been proposed

that can act as sensors. They are not restricted to be of

physical nature (i.e., temperature sensor), but can also be

virtual or logical [49]. All three groups are used throughout

our use cases. Table II displays sensors that were used in the

presented applications. Virtual sensors are characterized by

gaining information from software. A smart traffic light, using

cameras, can emit bounding boxes for detected objects. Other

applications can use these bounding boxes, i.e., to display them

in a AR headset [32]. Another plausible and important virtual

sensor is anomaly detection. Anomaly detection can be used in

wireless sensor networks, where we want to be notified in case

of sensor failure [50]. Logical ones combine different sensors

to emit aggregated data. A personalized recommender may

make use of the user’s location (measured by GPS sensor) and

takes previous shopping behavior into consideration. There-

fore, the platform must support not only physical sensors but

has to be flexible in regards to the definition of what constitutes

a source. Additionally, we roughly estimate the velocity and

volume for each sensor and the ownership. It is important to

highlight that sensors are not only heterogeneous in terms of

data type and other factors increase the complexity of data

fusion.

B. Preprocessing

After defining the sources, AI applications typically perform

some preprocessing on data and build the first step accom-

plished on the computing infrastructure. Either for training

purposes (i.e., creating batches), inference (i.e., image scal-

ing) or for exploratory analysis (i.e., aggregation). Gravina

et al. [51] argue that a seperated preprocessing can benefit

application development because developers can focus on the

functionality while skipping carefully selecting and filtering

data from the sensor. Edge Computing provides the capability

of preprocessing large amounts of data emitted by sensors in

a timely and efficient manner (i.e., by placing applications

near the origin). Through the ability of placing applications

at the edge, platform providers can guarantee data security

and privacy preservation by leveraging light-weight methods

to protect data, identity and location [52]. By combining

local processing of sensitive data and pseudo-anonymization,

platforms are able obey to local laws and make guarantees

about safety for users. This requirement differs across appli-

cation types, but the presented applications that process highly

sensitive and personal data. In the following we briefly discuss

these security concerns.

1) Security: Our use case study showcased multiple ap-

plications that may act on private data (i.e., personalized

food recommendation). Especially Smart Health applications

fundamentally require personal data and therefore need to

protect the user’s privacy. It is important to act only after users

give consent and are informed of the data being processed

[53], [41]. For example, our proposed food recommendation

application, that processes data about the user’s surroundings,

activity, dietary preferences, allergens, body weight, etc., will

probably not be adopted by users if they do not trust the

platform. A survey in the field of Smart Health, conducted

by Li et al. [54], has shown that: users adopt healthcare

wearable through a subjective risk-benefit assessment, whereas

the perceived privacy risk is a combination of different factors

(i.e., legislative protection), and the benefit is subject to per-

ceived informativeness and functional congruence. Therefore,

the platform and applications have to be designed with privacy

related issues in mind to be accepted and adopted by the

general public.
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TABLE II
POSSIBLE SENSORS AND CHARACTERISTICS

Sensor Data Velocity Ownership Volume

Smart Agriculture Crop Location Tags the location of crops Slow Private Low
Temperature Temperature of location Normal Public Low
Humidity Humidity of location Normal Public Low
Camera Identified objects on-premise Ultra fast Private Low
Spectral Camera Fruit ripeness detection Fast Private Normal
Camera Raw video feed Ultra fast Private Very High

Smart Health & Smartphone User location Fast Private Low
Food Computing Smart glasses User’s Field of View Ultra fast Private Very High

User Dietary Slow Private Low
User Allergens Slow Private Low
User Age Slow Private Low
User Residence Slow Private Low
BAN Activity Recognition Fast Private Low

Smart City Camera Traffic Participants Ultra fast Semi-Public Low
Camera Raw video feed Ultra fast Semi-Public Very High
Temperature Outdoor temperature of area Slow Public Low
Barometer Air pressure Slow Public Low

C. Training

Training at the edge has several advantages: enabling to

learn on raw sensor data (i.e., no aggregation necessary due to

possible on-device training), reduction of bandwidth pressure,

and privacy preservation. But training is an expensive com-

putational task and can require large amounts of computing

resources. While embedded devices, equipped with hardware

accelerators, are commercially available (i.e., Nvidia Jetson

devices [55]), it remains a challenging task to fully utilize all

devices. Difficulties stem from the storage and computational

demanding neural networks which pose a problem with regards

to resource-constrained devices. Further, privacy preservation

is important for some use cases and training must happen

locally. Federated Learning tackles these issues and represents

a distributed and privacy-preserving model training approach

that can even be applied on resource-constrained devices

(i.e., smartphones) [56]. Other works [4], [12] have already

highlighted several issues concerning Federated Learning (i.e.,

worker selection) and due to our focus on investigating

context-awareness, we disregard these issues for a moment

and focus on the coordination obstacles that are specific to

enable localized fine-tuned models.

1) Coordination: Our use case has shown the potential of

training multiple models based on the context of deployment.

For example, personalized food recommendation depends

heavily on the user and also has high security requirements

to protect the privacy. Food classification has also shown

potential to benefit from context-aware fine tuning due to

visual similarity of dishes [33]. Further, coordination can also

include the task of monitoring AI model performances and in

case of a decline new training rounds have to initiated. Model

degradation can happen due to new data which may require

re-training to perform better [57]. Therefore, the platform has

to intelligently coordinate training not only based on context

and possibly training of multiple models but also has to

monitor the performance. Fine-tuning may not only improve

accuracy for specific tasks, but also training with unlabeled

data can increase robustness of the model and reduces the

surface of attack vectors [58]. Due to the abundance of

available information, unlabeled data can be easily retrieved

and strengthens the models.

D. Inference

While training AI models requires sophisticated strategies

to enable training on resource-constrained devices and worker

selection. We argue that this task is not subject to stringent

latency requirements that we encounter in inference applica-

tions. Our use case has shown applications that require ultra

low latency and performance is of utmost importance. Besides

performance, context-awareness can also introduce new issues.

Consider our fine tuned models that are trained with a specific

context in mind. This raises the problem of choosing the

right model depending on the users’ context. Both issues are

addressed in the following and conclude the section.

1) Performance: Due to the high heterogeneity in terms

of performance, Edge Computing infrastructures require in-

telligent scheduling mechanisms to reason about placements.

Though, performance differences are not the only issue and

performance degradation caused by multi-tenancy is a serious

issue that needs focus when developing a EIaaS platform.

In general, multi-tenancy issues can rise issues in two ways:

(1) access to exclusive resources, and (2) performance inter-

ference. We identify that some resources may be exclusive

to one application, but in other cases multi-tenancy situa-

tions may occur by placing multiple applications on one

node. Multi-tenancy can already lead in cloud settings to

performance issues [59], and we encounter the same problem

on resource-constrained devices. The platform requires an

intelligent scheduler that is aware of those issues and prevents

them from happening. A problem that we also face when con-

sidering performance and resource-constrained devices is the

mismatch between large AI models and resource-constrained
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Fig. 3. End-to-End platform

devices [15]. Techniques are offered to mitigate these issues

(i.e., model splitting with computational offloading) but it

remains open who will be responsible for this to decide. In

certain circumstances, some edge devices will be capable to

run the full model, avoiding issues that come with offloading.

Therefore, the platform (or user) have to decide which method

is most suitable.

2) Context: As already hinted in our use case study, fine-

tuning models for specific contexts is favorable in contrast to

having only a single all-knowing model. This stems from the

facts that models may not generalize well and training with

unrelated data may lead to a decline in performance, and also

use cases require multiple models due to intrinsic properties

of the targeted problem (i.e., similarity in dish pictures).

Additionally, personalized models also have to be maintained

and associated with their corresponding user. Therefore, users

need to be able to specify their current context, such that the

platform can choose the right model.

V. PLATFORM

We now present our envisioned EIaaS platform that ad-

dresses the previously described challenges. It is opinionated

towards Edge Intelligence applications and focuses on pro-

viding an accessible interface, to push the democratization of

AI further. While the proposal is based on the assumption of

a working Edge Computing infrastructure, we acknowledge

that many problems are yet unsolved and, therefore, showcase

ideas from which general purpose Edge Computing infras-

tructures can benefit. First, we depict the platform’s architec-

ture and on which deployment methods we would build on.

Secondly, we present our vision of the platform’s interface,

how users interact with it, and can influence the application’s

behavior. Afterwards, we go deeper into technical details and

define a plausible scheduler, based on a greedy multi-criteria

decision algorithm, enforcing user-defined requirements.

A. Architecture

Operationalizing AI applications is an emerging topic and

focuses on automating the lifecycle of AI models. Companies,

Fig. 4. Training pipeline

like Google [11] and Amazon [10], [60], have released plat-

forms that offer end-to-end development and lifecycle man-

agement for AI. Besides commercial offerings, these systems

have also been investigated in open source and academic com-

munities [61], [62], [63], [14]. The general approach, MLOps,

is based on the DevOps paradigm [64] that automates the

lifecycle of application development (i.e., packaging, testing,

deploying, versioning, etc.). In the same manner, AI applica-

tions are managed using pipelines, which model the lifecycle

of AI models as a directed acyclic graph. In addition to the

discussed tasks in AI (i.e., training), continuous monitoring is

important to identify concept drifts, which negatively impact

a model’s accuracy [65]. MLOps platforms thrive to automate

the whole AI lifecycle and are therefore suitable to build the

base of our platform. Pipelines can be declared using either

configuration files [61] or in a UI [11]. The important thing

is, that the underlying platform receives a description of the

pipeline and can compile this into actual service calls. This

gives us the flexibility to take user defined requirements into

account.

B. Platform workflow

By assuming the underlying platform is similar to systems

such as Google’s VertexAI [11], KubeFlow [66] or ModelOps

[61], we describe now how user interact with the platform.

Specifically, our focus lies in democratizing AI and giving

users the ability to add requirements, as well as context.

Figure 3 depicts a high level interaction possibility. By lever-

aging AutoML techniques, user can define the underlying

problem through selecting different sources that build the

input and output space of the problem. AutoML techniques

help democratize the usage and have gained notable traction

over the years [6], [67]. While we think that AutoML can

be beneficial, users should also be able to define pipelines

manually. This description gets translated into a pipeline, to

which users can add elastic requirements. Afterwards, the

pipeline is transferred to the manager identity, who takes care

of the continuous execution. Pipeline steps are translated into

service calls, which are available for each task. Users can add

258

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on November 25,2021 at 12:48:01 UTC from IEEE Xplore.  Restrictions apply. 



to each step in the pipeline individual elastic requirements

that influence the applications behavior. The requirements add

context to the operations and allows the system to reason

about when it comes to operational strategies (i.e., placement

strategy). Figures 4 & 5 showcase the definition of two

pipelines. Figure 4 shows a training pipeline for a short-

term weather forecast model [3]. In the first step, users have

to define the data sources, which in this case are physical

sensors that combine location and weather data. The associated

requirement Per Region indicates the platform to group the

sensor data and create multiple models. Afterwards, we pre

process the data and can then train on it. The model is either

deployed automatically and/or stored for future applications.

In our case, we specify the training to reach an accuracy

of 80% and want the platform to perform this training in a

cost-efficient manner. These elastic requirements are directly

related, as federated learning utilizes a worker concept to

train data which consequentially has a big impact on the

resulting cost. Executing this task will depend on many factors

that all affect the cost and effectiveness. For example, the

resulting accuracy will depend on the number of training

rounds, which determine the cost for the training. The manager

has to be aware of this relationship and must balance the

execution between these two goals. Figure 5 shows a dedicated

pipeline for inference consisting of different models that fulfill

a certain task. We depict the use case of recommending

users food they see while wearing Smart Glasses. Recent

work in optimizing these kind of pipelines [68] and the re-

usability of models, makes us believe that the separation is

beneficial for all involved parties. Elastic requirements aid the

deployment of offloading applications by stating which step

has to be executed on-device. Efficient offloading is necessary

to make model splitting techniques feasible. This knowledge

can further be used of the underlying services to possibly

place interdependent functions in near proximity, to avoid

network latencies. Requirements include the processing of

sensitive data on-device and imposes a hard constraint towards

the round trip time (RTT). The RTT is picked according to

the assumption of sending 30 pictures per second to create

a smooth UX. Crankshaw et al. [68] present their system

that takes tight tail latency constraints into account while

considering different hardware accelerators, but are situated

in cloud computing.

C. Technical details

After presenting our vision to develop EI applications, we

now turn over to describing possible implementation strategies.

We consider the necessary technologies to be different from

the sensing task in contrast to the others. Therefore, the

platform uses a message-oriented publish/subscribe layer to

send sensor data to processing applications. Subscribers can

receive messages via topics from various nodes by specifying

certain identifiers. Further, dynamic message brokers have

been proposed that can scale in a location-aware way, such

that messages get routed over a nearby message broker to

reduce latency [69]. Complementary to Rausch et al. [14], we

Fig. 5. Inference pipeline

envision the remaining services to be based on Serverless Edge

Computing, whereas each step in the pipeline is implemented

as a function [70]. Therefore, containers include a single

stateless application that exposes a single function over the

network (usually HTTP). Kubernetes [71], the underlying

container orchestration service of Kubeflow, utilizes a greedy

multi-criteria decision algorithm to decide which node is the

most suitable one for a given function. Currently, the input

of this algorithm consists of a given function and a node,

which (1) filters infeasible nodes (i.e., node does not have

required accelerator) and (2) calculates a score based on

an extensible list of scoring functions. This approach has

been proven to work well on different infrastructures and

AI applications [72]. The scoring approach offers a highly

flexible way of influencing scheduling decisions and can be

arbitrary complex. A limitation of the current Kubernetes

ecosystem is, that we cannot easily bundle multiple function

container that act equally but have small differences. Users

should be able to upload multiple implementations of one

function that are equal in functionality. Further, users can

add information to each function implementations, such that

the service can reason about them and intelligently select the

optimal one. Consider our federated learning requirements, in

which the user expresses cost-efficiency. While neural network

applications greatly benefit from using GPUs, the operation

may cost more than using the CPU. Therefore, in some

cases the scheduler may prefer the CPU computing platform.

Through the combination of an intelligent manager, and the

underlying scoring functions, we can create a system that

can handle EI applications. For example, locality-awareness

is of utmost importance. Consider a platform that manages

multiple smart city deployments. Increased usage in one city

does not affect the deployed applications in another and scaling

must be able to identify this aspect and make the scheduling

process aware of this. This problem can be solved by the

following steps: (1) develop a scaler that can differentiate

between the two cities, i.e., identify the need for more function

instances in one city. (2) integrate an intermediary component

to which scaler and scheduler can talk. The scaler would

need to put additional information concerning the location
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into this component. (3) scoring functions need to retrieve

any additional info, and therefore can be location-aware. To

the best of our knowledge, Kubernetes currently scales and

schedules independently and scheduling decisions are unaware

of scaling reasons. If there is in fact a way to pass messages

between these two components, our approach would still be

plausible by removing the external component. The important

take-away is that the scoring approach is highly extensible to

vastly different circumstances that we encounter in EI. Adding

to the problem of location-awareness, load balancers have to

be distributed and scaled with location in mind. Considering

that ultra low latency requirements can only be satisfied in

case the route to the cloud can be skipped.

VI. LIMITATIONS & FUTURE WORK

A. Theoretical approach

An important limitation of our work is the theoretical

approach. While we base our user case, the requirements,

and the platform on extensive literature research, we have to

mention that this work does not guarantee that the system has

to work as we described. Though, with the current advances

in all discussed topics and the existing research we base our

system on, we are confident that such systems will exist at

some point. The concept of context-aware systems exist for

decades [73], and with the current development of Smart-*
concepts, Edge Computing and Edge Intelligence, these ideas

may become soon reality.

B. Centralized vs. Decentralized

Already briefly discussed in Section V-C, service compo-

nents may need to be decentralized. We consider the load

balancer to be the first component that has to be decentralized,

otherwise we can not fulfill ultra low latency requirements. It

is unclear if other components have to be decentralized too,

i.e., scheduler and scaler. Rausch et al. [14] have investigated

the throughput of the Kubernetes scheduler and concluded that

a monolithic approach is not feasible. While they do advocate

the use of disaggregated schedulers, a decentralized one can

also aid scalability considering geo-distributed deployments.

Caveats of decentralization are not only related to the manage-

ment overhead that comes with such systems, but also security

issues arise. Blockchain technologies can help mitigate these

[74].

C. Governance

Currently it is not clear who will own Edge Computing

infrastructures and how access will be managed [6]. This

issue is especially concerning for the sensing task. Ques-

tions about data ownership will have to be answered and if

publish/subscribe system are enough in the face of multiple

parties involved (i.e., government, businesses). Therefore, our

platform is based on the Sensing as a Service [75], [76]

concept and leaves the technical implementation open for now,

while allowing us to formulate requirements.

VII. CONCLUSION

Holistic Edge Intelligence as a Service platforms are yet

subject for exploration and research. Currently, we are facing

the emergence of new paradigms that range from infrastructure

(Edge Computing), application development (MLOps), to ap-

plications (Edge Intelligence). The paradigms move resources

and applications towards the edge of the network and solve

problems related to the increasing amount of data produced,

development of ultra low latency applications, privacy con-

cerns, and democratization. Edge Computing can be seen as a

geo-distributed cluster with high heterogeneity, devices range

from Raspberry Pi to fully-fledged cloud servers. MLOps

promises to open up the space of developing robust AI ap-

plications to the broader public by declaring pipelines and use

of AutoML techniques. Edge Intelligence is currently being

investigated and its limits are not yet clear. Our work presents

a cross-domain reaching use case study that defines in great

detail different applications settled in vastly different domains.

We combine Smart City, Health, Agriculture, and Food Com-

puting to showcase possible intersecting use cases that make

use of heterogeneous sensors. Different elastic requirements

are outlined that have to be defined for each application and

additionally identify their EI level. After explaining the key

characteristic for each device, we describe the four main tasks

encountered in Edge Intelligence and identify challenges that

have to be tackled to make full use of its potential. Our

proposed platform builds on state-of-the-art MLOps systems

and tackles each identified requirement. We highlight the

platform workflow with two different applications and show

that due to the nature of AI pipelines our system can reach

a broad audience and therefore push the democratization

of AI forward. Elastic requirements are first-class citizens

and can augment the reasoning allowed by functions, that

represent our unit of deployment. Further, a possible technical

implementation is outlined and has been proven by others to

show the possible potential of an online MCDM scheduler.

We are aware that our work is theoretical and work has to

be done to realize this proposal. Especially considering that

issues often arise during actual development. Though, due to

our close connection with proven techniques, we are confident

that EIaaS platforms can be built on our proposed concept.
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