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ABSTRACT
We advocate a novel concept of dependable intelligent edge systems
(DIES) i.e., the edge systems ensuring a high degree of dependability
(e.g., security, safety, and robustness) and autonomy because of their
applications in critical domains. Building DIES entail a paradigm
shift in architectures for acquiring, storing, and processing poten-
tially large amounts of complex data: data management is placed
at the edge between the data sources and local processing entities,
with loose coupling to storage and processing services located in
the cloud. As such, the literal definition of edge and intelligence is
adopted, i.e., the ability to acquire and apply knowledge and skills
is shifted towards the edge of the network, outside the cloud infras-
tructure. This paradigm shift offers flexibility, auto configuration,
and auto diagnosis, but also introduces novel challenges.

CCS CONCEPTS
• Computing methodologies → Distributed computing
methodologies; • Computer systems organization → Dis-
tributed architectures; Embedded and cyber-physical sys-
tems; • Software and its engineering → Software system
structures.
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1 INTRODUCTION
According to Big Data Value Association (BDVA) SRIA [2], IoT
technology enables the connection of any type of smart devices or
objects, and will have profound impact on a variety of sectors in the
future. However, the exponential growth of connected devices and
mobile computing, the potentially large amounts and complexity of
data produced in these systems, as well as the booming trend of Edge
and Fog computing, are massive forces that push toward the need
to coordinate execution and data exchange among “computational
abstract nodes”. Such nodes are hosted on a spectrum that surely
includes virtual machines in the Clouds, but also physical machines
(up to tiny devices like sensors) on the Edge of the network.

Gartner has put Edge computing as one of the top Technology
Trends for 2018, characterising Edge computing as the key solution
to facilitate data processing at or near the source of data generation:
“Currently, around 10% of enterprise-generated data is created and
processed outside a traditional centralised data center or Cloud. By
2022, Gartner predicts this figure will reach 50%” [6].

Edge computing serves as the decentralised extension of the
campus, cellular and data centre networks, and is rapidly becoming
not only integration, but a potential alternative that complements
the Cloud. As the volume and speed of data increases, so too does
the inefficiency of streaming all this information to a Cloud or data
centre for processing. At the same time, operations on the Cloud
raise privacy and security concerns, due to the difficulty of creating
local boundaries to information flow [13]. In this situation, there
are benefits to decentralising computing, to placing it closer to
the point where data is generated—in other words, to pursuing
Edge computing. Therefore, since the Cloud layer is no longer suf-
ficient to guarantee the efficiency, flexibility, privacy, and security,
required by such dynamic networks, new models, software archi-
tectures and approaches are needed, operating on Fog/Edge layers
to enable key services at a distributed level, primarily related to Big
Data management, and the corresponding AI-related technology
application.

Historically, network architectures and computing models have
swung between the use of shared and central resources and exclu-
sive and local computing power [8]. As of today, available mas-
sive distributed deployments of intelligent devices are confronted
with the cloud computing model emphasising centralised shared
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resources. For computational-intensive long-latency tasks, cloud
computing will continue to be used. Yet local processing is becom-
ing increasingly relevant, in particular for managing large amounts
of data with higher complexity generated throughout large-scale
distributed applications. Hence, a new edge-cloud computing model
is currently evolving, which requires the most effective balance
between cloud and edge processing.

This position paper is organized as follows: Section 2 presents
challenges related to developing DIES, Section 3 presents our over-
all concept of developing DIES based on aggregate computing [3],
whereas Section 4 presents key insights on developing DIES.

2 CHALLENGES FOR DEVELOPING DIES
Developing dependable intelligent edge systems (DIES) requires a
paradigm shift in acquiring, storing, and processing large amount
of the data with the following key characteristics:

• Data management is placed at the edge between the data
sources and local processing entities, with loose coupling to
storage and processing services located in the cloud.

• Autonomic and self-adaptation techniques are used to contin-
uously re-balance and redistribute data and its management
processes, as needed to address variability in computational
resources and environmental contingencies.

• Critical applications with high degree of dependability shall
be supported.

DIES allow bringing data (pre-)processing and decision-making
close to the data sources, enabling fast and efficient processing
and communication with a reduced exposure surface of the data.
Edge services become then capable of substituting the cloud power,
making cloud processing unnecessary for a growing variety of
tasks. With this paradigm shift, we gain flexibility, auto configu-
ration, auto diagnosis, but new challenges emerge. Some of these
challenges are described below:

• Increased Complexity: The complexity, pervasivity, and num-
ber of devices of such new systems will be so high that human
designers will only be able to master it with the support of
intelligent infrastructures.

• High Dependability Requirements: Innovative approaches will
be required to ensure that the systems will behave as re-
quired, both at functional and non-functional (e.g. respon-
siveness, reliability, security). We need to develop theories,
design tools, and runtime support that go beyond predictabil-
ity by design and enable the construction of reliable systems
involving unreliable parts [7].

• Need of Novel Models: Also, a significant challenge is in defin-
ing and developing new programming and execution models,
together with a model-based engineering approach across
the lifetime of system, to handle the diversity and complex-
ity of data, deal with the variety of stakeholder concerns
and ensure the trustworthiness of DIES through continuous
self-adaptation [10].

Tackling these challenges is crucial to design and program
DIES and support the perpetual adaptation and evolution process
throughout their lifetime, from inception to operation and evolu-
tion [11]. It will be also important to ultimately demonstrate their

economic benefits of increased integration/system-wide control as
a means of unlocking investment [2].

3 NOVEL APPROACH TO DEVELOP DIES
We envision a novel programming and execution model for DIES
that allows edge devices to gain complete autonomy. It leverages
on concepts derived from aggregate computing [3].

3.1 Aggregate Computing
Aggregate computing focuses on programming a large, possibly
multi-layered network of devices as a single aggregate machine,
where a dynamic neighbouring relation represents (physical or
logical) proximity. This machine can then be programmed through
an API enacting a proper layer of abstraction on top of low-level
hardware capabilities.

Conceptually, this approach is hence similar to that of big data
engines like Apache Spark[12], which brings the “stream” abstrac-
tion to an adaptively load-balanced cluster computing deployment.
What is different here is that we face a broader scope than mere
access to aggregated data. We rely on the notion of “computational
field” (or simply field): a global, distributed map from devices to data
values, evolving over time as a result of local aggregation/diffusion
processes. In particular, computing with fields means computing
such global structures in a fully distributed way. This view holds
at any level of abstraction, from low-level mechanisms up to com-
plex applications, which ultimately work by getting input fields
from sensors and processing them to produce output fields to ac-
tuators, hence describing a continuous computational process in-
volving sensors and actuators. Transition from simple to complex
services is done thanks to functional composition, which allows
one to declaratively express whole computations—as with Spark.
For these reasons, it is particularly well suited for modern DIES
that demonstrate an increasing level of data processing capacity
and complexity, and require high flexibility and scalability.

Field computations are modelled by the field calculus [1], a mini-
mal core language that captures the essence of aggregate program-
ming and serves as blueprint for implementations and starting point
for verification of behavioural properties. The field calculus seman-
tics prescribes that a given program P is executed by each device of
the network, periodically and asynchronously according to a cyclic
schedule of rounds whereby each device, when activated: (i) per-
ceives contextual information through sensors; (ii) retrieves local
information stored in the previous round, and collects messages re-
ceived from neighbours while sleeping; (iii) evaluates the program
P by manipulating the data values retrieved from neighbours, con-
text or local memory; (iv) stores local data, broadcasts messages to
neighbours, and produces output values (possibly fed to actuators);
and (v) sleeps until it is awakened at the next activation.

A field calculus program describes a global behaviour emerging
from nodes locally interacting with one another, hence the network
of devices can be naturally abstracted as a single aggregate machine,
in which both the topology of nodes and the sensor readings evolve
over time. The data abstraction manipulated by such “aggregate
computing machine” is a whole distributed space-time field, asso-
ciating individual computation events (space-time points stating
where and when a device is activated) to the data produced there.
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3.2 Novel DIES Programming and Execution
Model

Aggregate computing and field calculus define the prominent
general-purpose framework to build distributed systems that pro-
duce high volumes of complex data with an intrinsic level of support
for scalability, robustness, and adaptability [4]. They have been used
to develop algorithms with guarantees for basic resilience prop-
erties, including: distance estimation, selective broadcasts, data
collection and summarization, partitioning [5, 9]. This is achieved
by the declarative, functional character of field calculus: small build-
ing blocks can be proved resilient, and functional composition of
resilient blocks can be proved in turn to retain resiliency.

However, the field calculus execution and programming models
only provide a basic platform to address the distinguishable needs
of DIES. Realising the full potential of DIES needs first-class sup-
port for spacial and temporal aspects, in particular abstractions
for specifying spatial and temporal guarantees, and binding and
optimising the usage of resources, in particular those that produce,
process, and consume data. Additionally, current language tech-
nologies supporting field computations as prototypical Domain
Specific Languages (DSLs), like Protelis (an external Java DSL) and
ScaFi (an internal Scala DSL), are only based on Java 7+ JVM, which
is not suitable for safety-critical systems in the industrial sectors.

Hence, current approaches to provide higher-level abstractions
for mathematically grounded, safety-critical edge computing sys-
tems fail in providing general solutions to the problem of guaran-
teeing real-time constraints.

Our approach draws inspiration from the work in field calculus,
and devise a new programming and execution model for edge com-
putations that retains its basic properties of mathematical tractabil-
ity and functional composition to enable complexity scaling:

• from the modelling side, this will be achieved by devising a
calculus of field computations with the power of controlling
and optimising the details of when and how computation
rounds of devices and message exchange occur, as a means
to better balance the usage of computational resources and
to more strictly control real-time aspects of computation;

• from the programming development side, we aim at porting
the benefits of using the paradigm of aggregate programming
to real-time platforms, namely embedded RTOSs (i.e. ERIKA
Enterprise) and general-purpose OSs (i.e. Linux), through a
C/C++-based implementation as shown in conceptual tech-
nology stack in Figure 1;

• from the algorithmic side, we aim to provide libraries to
enable supporting autonomy, safety, security, and other de-
pendability properties.

4 PERSPECTIVES ON DIES ARCHITECTURE
DIES aims at supporting software development and execution by
fully exploiting the power of edge computing, thereby aiming to im-
prove flexibility, scalability, real time response, security and safety.
This is achieved by applying the notion of aggregate processes. The
approach is underpinned by formal semantics and supported by
technologies (libraries and platforms) and a sound methodology
for data-oriented service specification, targeting multiple domains.

Figure 1: Proposed Technology Stack for Developing DIES

The approach has the potential to be integrated with existing archi-
tectures.

4.1 From the Cloud to the Edge
We aim to evolve the fragmentation of development methodologies
and tools in the present cloud computing paradigms, towards an
edge paradigm. Currently, software program methodologies are
typically based on a traditional client-server architecture, with so-
lutions ranging from pure HTML, browser-side interfaces to heavy,
thick or native client applications accessing data and processing ser-
vices from a centralised back-end. That model faces many potential
inefficiencies when dealing with “purely distributed” application
scenarios. In the client-server model, one or more clients are con-
nected to a server listening on a pool or set of sockets. This model
mainly scales vertically and usually has a central data store (LAN
model). A distributed model of N-clients or peers connected to a
mesh of M servers scales horizontally and uses a data store (or
stores) that also shares and distributes processing. Such model is
built to tolerate failure and demand spikes, enabling the network
users, developers, application managers, and the infrastructure own-
ers to add more nodes (often linearly) and relocate infrastructure
at will—the model of the Cloud. The power of this more distributed
model goes beyond purely scaling up to include scaling down. How-
ever, workloads in the “purely distributed” scenarios are difficult to
predict, but strongly influence the performance, the availability, and
the business value of any application. Furthermore, edge technolo-
gies bring a new ecosystem to the industry. This new architecture
for collecting data with distributed connected things and elaborat-
ing them locally enables a new wave of software applications.
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4.2 The need for quality-driven architectures
The need for new architectures and platforms including tools and
methodologies for collecting, storing, managing and analysing all
this data is increasingly important. In the Cloud space a plethora of
commercial platforms have been recently developed to pursue this
opportunity. Public cloud providers (AWS, Azure, Google Cloud and
IBM) have recognised the opportunity and developed IoT platforms
on top of their infrastructure. Nevertheless, traditional Cloud-based
IoT systems are challenged by large scale, heterogeneity, potentially
high latency, unpredictable response time from Cloud server to end-
points, privacy issues when sensitive customer data are stored in
the Cloud, and difficulties in scaling to ever increasing number of
sensors and actuators. The proposed new architecture plays a sig-
nificant role in this scenario enabling latency sensitive computing
performed in proximity to the sensors, resulting in more efficient
network bandwidth and more functional and efficient IoT solutions.
It also offers greater business agility through deeper and faster
insights, increased security and lower operating expenses.

5 CONCLUSION
We envisage a new architecture based on aggregate computing
which implements the novel concept of dependable intelligent
edge systems (DIES), for exploitation in big data management in
edge/cloud platforms. However, the development of distributed
computing applications for this context can be very challenging
for the software programmer and architect. Traditional or ongoing
approaches aim to improve distributed processing by offloading
parts to centralised, Cloud-based server, but do not provide the
expected performance gains due to the intense communication
required and lack of localised computing power sharing. Our ar-
chitecture will provide models and libraries to natively support
programming on distributed, dynamically changing devices and ac-
celerate software integration, validation and deployment. This new
architecture will achieve dynamicity and flexibility of distributed
applications, supporting the programmers to manage the related
increasing complexity.
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