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Abstract—The Internet of Things (IoT) is a fundamental
element of the computing continuum, characterized by data
streams that exhibit predictable patterns primarily driven by
sensor configurations and deployment strategies. On the other
hand, Apache Kafka, renowned for its high-throughput and fault-
tolerant data streaming capabilities, is well-suited for managing
IoT data streams. However, static Kafka configurations often
result in inefficiencies such as suboptimal batching, increased
consumer lag, and underutilization of system resources. To
address these challenges, we propose a dynamic reconfiguration
approach that leverages short-term historical data to forecast
message rates and adjust Kafka parameters in real time using a
lightweight Long Short-Term Memory (LSTM) model. This adap-
tive approach optimizes the configuration of Kafka producers and
consumers for IoT environments, achieving a prediction accuracy
of 91.42% with minimal computational overhead. Experimental
evaluations demonstrate substantial improvements in consumer
lag reduction, throughput stability, and CPU utilization across
heterogeneous IoT workloads, with the system requiring only
brief observation periods to effectively tune performance.

Index Terms—Publish/subscribe systems; Kafka adaptive tun-
ing; IoT; Data Streams; and quality of service

I. INTRODUCTION

INTERNET of Things (IoT), as a foundational layer of the
computing continuum [1], plays a crucial role in bridging

the physical and digital worlds by enabling real-time data
collection through sensors, supporting limited local processing
and interaction at the edge, and facilitating integration with
higher layers for large-scale computation and analysis [2]. IoT
data streams are typically more structured and predictable due
to fixed sensor configurations set during hardware program-
ming. This inherent predictability is particularly advantageous
for stream processing frameworks such as Kafka1, which rely
on stable data flows to ensure efficient buffering, throughput
optimization, and scalable performance. For instance, temper-
ature sensors might generate a data point every ten minutes,
while PM2.5 sensors may report once per hour. The data volume
depends on factors such as sensor type and deployment scale.
Geographical characteristics also influence data flow—larger
regions typically require more sensors, while smaller areas
may need fewer. Moreover, failure or addition of a single

1https://kafka.apache.org/

Fig. 1: General structure of the proposed Lightweight LSTM-
based Adaptive Kafka tuning for IoT sensor data streams.

sensor results in only a minor variation in overall message
rate, making short-term monitoring effective for accurately
predicting long-term message flows [3].

IoT data transmission to Kafka typically follows two paths.
For sensors with network capabilities, data can be sent directly
to the MQTT broker using the MQTT protocol2, and subse-
quently transferred to Kafka using the Kafka Connect MQTT
Source connector. On the other hand, when sensors lack built-
in communication capabilities, nearby edge devices collect and
forward their messages. These devices aggregate data from
multiple sensors and create producer instances to efficiently
forward the aggregated data to Kafka brokers. Despite the
predictable nature of IoT data streams, Kafka’s default settings
are often suboptimal for IoT workloads, which are charac-
terized by periodic traffic patterns and heterogeneous sensor
distributions. Static configurations can result in inefficient
batching, increased consumer lag, and suboptimal utilization
of system resources [4], [5].

To address these challenges, we propose a lightweight Long
Short-Term Memory (LSTM)-based approach that dynami-
cally tunes Kafka configuration based on predicted data rate
trends. We consider a scenario involving multiple environmen-
tal sensors (as shown in Fig. 1), each capturing a different set
of variables and sending data to producers, typically deployed
on edge devices, at varying times. The overall sending rate of
the producer depends on the number of sensors aggregated by

2https://mqtt.org/
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the edge device. As mentioned before, the failure or addition
of a single sensor only results in a small incremental change
in the total message flow. Therefore, short-term monitoring
can accurately predict the message rate and volume over an
extended period. These characteristics allow the edge device
to estimate the optimal sending rate for each Kafka producer
and the receiving rate for the consumer. Once the predicted
message rate is received, the system adjusts the relevant
parameters for the Kafka producer and consumer accordingly.
For the message rate prediction, we use the LSTM model
due to its ability to effectively capture sequential patterns
and temporal dependencies. To assess the performance of our
proposed adaptive configuration mechanism, we conducted an
experiment comparing the system’s behavior using default and
dynamically adjusted Kafka parameters. Real-time monitoring
and measurement of key performance metrics were performed
using Prometheus and Grafana. Our adaptive configuration
enables Kafka-based pipelines to better adapt to workload
variations, resulting in reduced consumer latency, improved
throughput, and near-optimal CPU utilization.

II. RELATED WORKS

Research on distributed messaging systems area has con-
centrated on two main aspects: managing resources through
prediction techniques and improving configuration settings.

To manage system resources efficiently, dynamic auto-
scaling of Docker containers in response to fluctuating work-
loads during runtime can be implemented with a machine
learning (ML) approach, using LSTM models [6]. Moreover,
predictKube [7], a predictive autoscaling mechanism, identifies
seasonality patterns and unexpected events after an initial
monitoring period, enabling more accurate scaling decisions
for varying workloads.

An alternative approach is to focus on a particular re-
source management aspect, such as the challenge of optimiz-
ing consumer-partition relationships in Kafka clusters. That
can be formulated as a variable-sized bin packing problem;
subsequently introducing the R-score metric to account for
rebalancing costs during queue migrations demonstrates how
specialized metrics can improve system performance beyond
general resource management [8]. Moreover, taking resource
optimization into cloud-native environments, Joyce et al. [9]
proposed an innovative autoscaling policy for Kafka-centric
microservices in event-driven architectures. Their approach
leverages Kubernetes infrastructure and Reinforcement Learn-
ing to dynamically adjust scaling based on message processing
rates rather than conventional resource metrics like CPU
and memory, representing a significant shift toward workload
optimization.

In addition, building effective real-time machine learning
pipelines requires well-designed system architectures with in-
tegrated data producer layers, messaging and ingestion layers,
and multiple downstream consumers for feature extraction,
model training, and prediction [10]. Within this framework,
reinforcement learning-based methods for scheduling and re-
source management are becoming increasingly common in

real-time pipelines, enabling systems to adapt dynamically to
changing conditions [11]. To improve configuration settings,
two critical parameters, namely, the number of partitions and
brokers in Apache Kafka, can be optimized based on the
specific characteristics and constraints of the target appli-
cations [12]. Moreover, a queuing-based packet flow model
can predict key performance metrics in Kafka cloud deploy-
ments [13]. This model incorporates multiple configuration
parameters such as the number of brokers, topic partitions, and
message batch size, allowing users to assess various impacts
on system performance.

In this paper [14], rather than relying on empirical methods
to determine optimal parameter settings for Kafka deploy-
ments, a comprehensive evaluation of various Kafka configu-
rations and performance metrics is presented. This evaluation
helps users avoid bottlenecks, fully utilize Kafka’s capabilities,
and implement efficient stream processing based on best
practices.

Taking configuration optimization to the next level, Bao et
al. [15] proposed fully automatic configuration tuning methods
specifically designed for Distributed Message Systems. Their
AutoConfig framework introduces a robust comparison-based
model and weighted Latin hypercube sampling for efficiently
exploring the vast parameter space to discover optimal config-
urations for Kafka data streams.

In this context, the study in [16] performed a survey
of reactive and proactive auto-scaling strategies for cloud-
based IoT applications, outlining their respective strengths
and limitations. The study also identifies key performance
metrics critical for building effective and autonomous scaling
frameworks in IoT-enabled cloud environments. To enhance
the scalability of IoT message brokers, the study in [17]
explored the use of Apache Kafka and clustered MQTT-
based brokers. The study in [18] uses Kafka middleware for
fast processing, multi-partition distribution, and high through-
put to enable asynchronous communication between services,
implementing a high-concurrency, low-latency IoT message
subscription system using the Netty framework and a custom
communication protocol.

Building upon these works, our approach focuses on a
lightweight LSTM-based method tailored to IoT workloads
characterized by predictable data patterns. In contrast to pre-
vious research, our method leverages the deterministic nature
of IoT data streams, where sensors transmit at fixed intervals
with consistent message sizes, to enable rapid parameter tuning
based on short observation windows.

III. EXPERIMENTS AND RESULTS

A. Experiments environment

The Kafka structure consists of two main components: Pro-
ducers and Consumers, as illustrated in Fig. 1. Each of these
components is associated with a set of parameters, which are
detailed in Table I. In our experiment, first, we deployed the
Kafka broker on a cloud-based standard.xlarge virtual
instance equipped with 6 vCPUs, 15.6 GB RAM, and 80 GB
storage, running Ubuntu 24.04.2 LTS. The Kafka cluster
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(version 3.5.0) utilized ZooKeeper for metadata management,
and the Java runtime environment was OpenJDK 17.0.8. Next,
we executed the Kafka producer and consumer locally on a
MacBook Pro (2023) with Apple M2 Pro processor, 16 GB of
memory, and macOS Sonoma 14.5 as the operating system.

B. Experiments

Basically, there are two kinds of producers for sensor data:
one is through the MQTT Broker Connect, and the other is
through edge devices (e.g., Raspberry Pi or personal com-
puters) that directly create Kafka producers. Both approaches
allow for tuning batch.size and linger.ms to optimize
Kafka performance. Since it is rare for a single sensor to
send data directly to the cloud with independent network
communication, in our experiment, we chose the edge device
as the producer to aggregate sensor data before sending it to
the cloud, that is, assuming that the data of each sensor is
first sent to the edge device via Bluetooth or other low-power
communication protocols. As our experiment does not focus
on the communication between sensors and edge devices, each
sensor type is simulated by a separate process that sends
randomly generated measurements to the corresponding edge
node process. In our experiment, we simulate seven air quality-
related sensor types generating values for variables CO, PM2.5,
PM10, NO2, O3, SO2, and TVOC.

Each sensor transmits messages at one of three prede-
fined rates: fast (100 messages/second), medium (50 mes-
sages/second), and slow (10 messages/second). The number
of sensors at each second is simulated to be different, so
the number of sensor data received by the edge node per
second is different. Every 10 minutes, the rate rotates in a fixed
pattern: fast → medium → slow → fast. This dynamic traffic
pattern switching simulates the periodic changes in traffic in
real IoT scenarios, such as shift changes in industrial scenarios
or day/night mode switching in smart homes.

These seven sensor processes, with each process repre-
senting one type of variable such as Temp, RH, and PM2.5
(i.e., one process for TVOC, and one process for SO2). Then,
these processes use socket communication to send the sensor
values to seven producer processes. Fig. 2 shows the adaptive
parameter adjustment process of the producer process after
receiving the message from the sensor process.

As shown in the Fig. 2, in the first minute, all producers
and consumers use the default configuration when collecting
message size and count statistics. The message rates from
the first minute are input into the ML model to predict the
message rate of the upcoming time window. For the message
size prediction, we choose the LSTM because it can effectively
capture sequential patterns and temporal dependencies.

We use a lightweight architecture consisting of two LSTM
layers (64 and 32 units, respectively), followed by a dropout
layer (rate 0.2) and a dense output layer. For each 10-minute
evaluation window, the sensor message statistics for the first
minute are aggregated and used to predict the total number
and size of messages for the remaining 9 minutes. The
prediction has an average accuracy of 91.42% for message

Fig. 2: Adaptive Kafka producer and consumer configuration
process using LSTM-based sensor rate prediction.

count estimates. The inference time for each prediction round
is less than 0.3 seconds on a standard MacBook Pro. Based on
the predicted message rate, the producer dynamically adjusts
its parameters to optimize throughput and latency; and the
consumer adjusts its parameters to keep consistent with the
message volume and size.

In the second 10-minute evaluation window, when the mes-
sage rate is doubled or halved (users can adjust based on their
own experiment design) compared to the previous window,
the system resets the parameters to the default configuration,
collects new message rate data over the next one-minute
interval, and uses these data to predict the future message rate
and adjust the producer and consumer parameters accordingly.
This feedback loop ensures responsiveness to traffic anomalies
and dynamic workload changes. Table I presents both the
default parameter configurations and the customized settings
we applied for the Producer and Consumer components.

In our experiment, we use the fast rate (100 mes-
sages/s) as a baseline, while allowing users to define
their own baselines according to their individual needs.
For lower message rates such as medium and slow (pre-
dicted rates by LSTM), parameters related to through-
put (including batch.size, fetch.min.bytes, and
max.poll.records) are scaled in direct proportion to
the message rate. In contrast, latency-related parameters (in-
cluding linger.ms, auto.commit.interval.ms, and
fetch.max.wait.ms) are scaled inversely. The parameter
fetch.max.bytes remains unchanged across all rates, as
even under the fast rate condition, the accumulated mes-
sage volume remains well below the 5MB default threshold.
The producer and consumer parameters for LSTM-predicted
message rates are scaled proportionally or inversely based
on the fast rate baseline, serving as a reference point for
multiplicative adjustment.

Our configurations allow scaling the producing and con-
suming of the sensor data. This scaling approach ensures that
Kafka parameters are systematically adjusted based on the
predicted message rate, creating an efficient and proportional
resource allocation strategy. The initial values set for the fastest
message rate can be further configured based on multiple test
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TABLE I: The configuration parameters for Kafka components along with their descriptions.

Component Parameter Default Fast (100 msg/s) Description

Producer

batch.size (bytes) 16384 16384 Controls the maximum size of a batch to be sent in a single
request, affecting throughput and latency tradeoff.

linger.ms 0 5 Determines how long the producer waits to accumulate mes-
sages before sending, impacting batching efficiency.

Consumer

auto.commit.interval.ms 5000 3000 Controls how frequently the consumer commits offsets, bal-
ancing processing guarantees and overhead.

max.poll.records 500 500 Limits the maximum number of records returned in a single
poll, affecting memory usage and processing time.

fetch.min.bytes 1 10000 Sets the minimum amount of data the server should return
for a fetch request, optimizing network usage.

fetch.max.bytes 5242880 5242880 Limits the maximum amount of data the server will return
for a fetch request, preventing memory overflow.

fetch.max.wait.ms 500 200 Maximum time the server will block before answering the
fetch request if insufficient data is available.

results. In real-world deployments, once the configuration for
the baseline message rate is established, each parameter can
be proportionally scaled up or down based on the ratio.

In our study, we established the following two experimental
scenarios for comparison: (1) Default Configuration: Where
we utilize Kafka’s default producer and consumer settings
without any optimization; (2) Adaptive Configuration: Where
we apply our proposed approach using LSTM-based predic-
tion for dynamic parameter adjustment. The entire 60-minute
(6 rate changes × 10 minutes) sessions for both experi-
mental scenarios were monitored using Prometheus(v2.45.0)3

and Grafana(v10.1.0)4. Whereas, we collected three perfor-
mance metrics including consumer lag, throughput (incoming
bytes/outgoing bytes), and CPU utilization at 15-second inter-
vals.

IV. RESULTS AND ANALYSIS

To validate the effectiveness of our IoT sensor data rate
prediction and parameter adaptation strategy, we conduct a
comparative analysis of system performance before and after
configuration using the following metrics:

1) Kafka Consumer Lag: As shown in Fig. 3, we com-
pare consumer lag before and after implementing adaptive
configuration. In our experiment, data from seven different
types of sensors (CO, PM2.5, PM10, NO2, O3, SO2, and TVOC)
were sent to seven corresponding Kafka partitions (p0 − p6)
and processed by seven dedicated consumers. Each producer
and consumer had its parameters configured according to the
predicted message rate from the LSTM model. In the figure,
each colored line in the graph represents the consumer lag for
a specific partition over time.

Before applying adaptive configuration (Fig. 3a), consumer
lag across all partitions continuously accumulated from the
beginning (0 min) to 20 minutes. For partitions 0, 1, and
6, which began at fast speed (100 messages/s or 10000
bytes/s), p1 and p6 maintained consistently high lag values
until 40 minutes, and the maximum lag reached more than

3https://prometheus.io/
4https://grafana.com/

300 messages. This high lag would cause significant data
processing delays, potential memory pressure due to buffered
messages, and could lead to system instability if sustained for
long periods. Other partitions (p0, p2, p4, and p5) eventually
reduced to zero but experienced significant initial delays.
After implementing the adaptive strategy (Fig.3b), parameters
were dynamically adjusted based on the predicted message
rates. This adjustment ensured that consumer configurations
remained aligned with real-time message processing demands.
As a result, the maximum consumer lag was significantly
reduced to 140 messages, representing a 53% reduction. In
addition, Fig. 3b shows regular fluctuations corresponding to
the 10-minute sensor rate changes, demonstrating the system’s
responsiveness to workload variations. All partition lags are
maintained between 20 and 120 messages. This balanced
distribution helps prevent any single partition from becoming
a bottleneck in the system, and results in reducing delays to
consume messages.

2) Throughput: As shown in Fig. 4, we computed the
throughput ratio by dividing outgoing.byte.rate by
incoming.byte.rate. Throughput means how efficiently
messages received by the Kafka broker (incoming bytes) are
processed and forwarded to consumers (outgoing bytes).

Before applying the adaptive configuration (red line), the
system maintained a throughput ratio of around 90% during
the first 40 minutes. However, at the beginning, the throughput
briefly dropped below 10%, and around the 20-minute, it
fell below 80%. Between 40 and 60 minutes, the system
experienced frequent and significant throughput fluctuations,
with values dropping as low as 20 to 40%. During this period,
throughput stabilized somewhat between 60% and 80%. These
throughput levels indicate that the system was processing less
than 80% of the incoming data stream in real-time, which
could lead to potential bottlenecks. After implementing adap-
tive configuration (green line), the system achieved a higher
and more stable throughput ratio that consistently approached
or exceeded 95% throughout the entire 60-minute test period.
This improvement maximizes bandwidth utilization even under
changing workload conditions.
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(b) Consumer lag after adaptive configuration.

Fig. 3: Consumer lag before and after adaptive configuration.
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Fig. 4: Throughput ratio before and after configuration.

3) CPU Utilization: Fig. 5 depicts CPU utilization, dis-
played as a value from 0 to 1, and explains how many
CPU resources Kafka processes are consuming. The y-axis
labeled ”CPU Core Usage” ranges from 0 to 0.175 (0%
to 17.5%), indicating that during testing, Kafka processes
used a maximum of approximately 17.5% of a single core’s
processing capacity.

Before adaptive configuration (red line), CPU utilization
exhibited considerable volatility and inefficiency. At the be-
ginning, CPU usage spiked to 17.5%, likely due to the initial
influx of messages. Next, CPU usage remained relatively high
(between 7.5-8.5%) until the 20 minutes. Then, the CPU
utilization significantly dropped under 2% after the 40-minute.
These fluctuations indicate poor resource management, with
the system either over-utilizing CPU resources during periods
of high lag accumulation or under-utilizing the resources
during periods of lower activity. After implementing adaptive
configuration (green line), the CPU utilization maintained a
much more consistent pattern throughout for the entire 60-
minute test period, generally remaining between 4-6%. This
indicates that the adaptive configuration effectively distributed
the processing load more balanced over time.

In conclusion, our strategy captures the traffic characteristics
of sensors and employs an LSTM-based predictor to forecast
the message rate and size for the upcoming time window.
This prediction drives dynamic tuning of both producer and
consumer parameters. Compared to static settings, our adaptive
approach reduces consumer lag, stabilizes system throughput,
and optimizes resource usage. The results demonstrate the
practical feasibility and robustness of the proposed auto-tuning
strategy in handling heterogeneous IoT streaming workloads.

V. DISCUSSION AND FUTURE WORKS

Despite some promising results, our approach has several
limitations that warrant consideration and several challenges
remain open for future research in this area:

1) Simulated Environment: Our experiments relied on sim-
ulated sensor processes rather than actual IoT devices com-
municating over real wireless protocols. In real-world de-
ployments different wireless communications such LoRaWAN
would introduce additional features such as connection la-
tency, packet loss, and signal interference. These would likely
cause fluctuations in the per-second message rates, potentially
reducing the prediction accuracy of our LSTM model and
complicating parameter optimization.

The real IoT systems, in addition to environmental noise,
often experience short-lived but intense traffic bursts, where
the message rate can temporarily spike from tens to thousands
of messages per second due to peak times, sensor anomalies,
or collective behavioral shifts. During regular times, the traffic
rate usually returns to normal levels. These transient but
extreme fluctuations show challenges for adaptive streaming
systems that must respond quickly without overreacting to
temporary anomalies.

In our future work, we aim to evaluate our approach under
such short-lived burst scenarios by simulating unpredictable
traffic surges and comparing system responsiveness, lag, and
throughput stability. Testing with such load patterns will give
a clearer picture of how well the system can handle real-world
traffic and help improve our prediction and tuning methods.
Moreover, we plan to test with physical sensor deployments
over standard IoT protocols to develop more robust prediction
models that account for both network variability and traffic
volatility.

2) Simplified Topology: Our implementation uses a one-
to-one mapping between sensor type, producer, partition, and
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Fig. 5: CPU usage before and after adaptive configuration.
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consumer. This simplified architecture may not reflect more
complex real-world scenarios where multiple sensors feed
into shared topics or where dynamic scaling of consumer
groups is required. Particularly for applications with widely
disparate message volumes (like financial transactions or e-
commerce data), the ability to dynamically add or remove
consumers may be limited by architectural constraints, re-
ducing the flexibility of our approach. In the future, we will
extend our approach to handle many-to-many topologies with
shared topics and dynamic consumer scaling, investigating
load-balancing strategies for heterogeneous message volumes
across multiple applications.

3) Parameter Baseline Subjectivity: The initial configura-
tion for maximum message rates (fast category) was deter-
mined somewhat subjectively rather than through exhaustive
testing. The effectiveness of our scaling approach depends
heavily on these baseline values being optimal, however we
cannot guarantee they represent the true optimal configuration
without more comprehensive performance testing across varied
hardware environments. In our future work, we will create
an automated process to discover optimal baseline parameters
for the maximum message rate category would eliminate the
subjectivity in our current approach. This could involve an
initial calibration phase using techniques like Bayesian opti-
mization to find optimal parameter combinations. In addition,
we plan to conduct a systematic parameter sensitivity analysis
to quantify how variations in individual Kafka configuration
parameters affect system performance metrics. For example,
we should identify which parameters are critical and must
be fine-tuned and understand the most effective parameter
combinations across different load scenarios. This analysis can
help assessing the robustness of our scaling strategy and guide
the refinement of parameter adaptation functions based on the
relative impact of each parameter under different workload
conditions. Moreover, sensitivity analysis would also allow us
to determine whether extensive initial calibration is truly nec-
essary, or if a lightweight, approximate baseline configuration
is sufficient to achieve effective system performance.

VI. CONCLUSIONS

This paper presents a dynamic method for optimizing re-
source utilization in Apache Kafka, developed in the context
of IoT data streams, which often exhibit predictable patterns
driven by sensor configurations and deployment strategies. The
proposed approach enables real-time adjustment of Kafka’s
producer and consumer configurations based on message rate
predictions generated by a lightweight LSTM model. This
adaptive tuning mitigates the inefficiencies inherent in static
Kafka configurations, such as suboptimal batching, increased
consumer lag, and resource under-utilization. The experimen-
tal results validate the effectiveness of our proposed approach,
showing reductions in consumer lag, stabilized throughput,
and improved CPU utilization across heterogeneous IoT work-
loads. Notably, the adaptive configuration achieved a 53%
reduction in lag, maintained throughput consistently above

95%, and reached a prediction accuracy of 91.42% with
minimal computational overhead.
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