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Abstract—Quantum processing units (QPUs) are currently
exclusively available from cloud vendors. However, with recent
advancements, hosting QPUs will soon be possible everywhere.
Existing work has yet to draw from research in edge com-
puting to explore systems exploiting mobile QPUs, or how
hybrid applications can benefit from distributed heterogeneous
resources. Hence, this work presents an architecture for Quantum
Computing in the edge-cloud continuum. We discuss the necessity,
challenges, and solution approaches for extending existing work
on classical edge computing to integrate QPUs. We describe
how warm-starting allows defining workflows that exploit the
hierarchical resources spread across the continuum. Then, we
introduce a distributed inference engine with hybrid classical-
quantum neural networks (QNNs) to aid system designers in
accommodating applications with complex requirements that
incur the highest degree of heterogeneity. We propose solutions
focusing on classical layer partitioning and quantum circuit
cutting to demonstrate the potential of utilizing classical and
quantum computation across the continuum. To evaluate the
importance and feasibility of our vision, we provide a proof
of concept that exemplifies how extending a classical partition
method to integrate quantum circuits can improve the solution
quality. Specifically, we implement a split neural network with
optional hybrid QNN predictors. Our results show that extending
classical methods with QNNs is viable and promising for future
work.

Index Terms—Quantum Computing, Edge Computing, Com-
pute Continuum, Split Computing, Circuit Cutting, Task Parti-
tioning, DNN Partitioning, Classical-Quantum Hybrid Machine
Learning, Quantum Neural Networks, Warm-Starting

I. INTRODUCTION

Noisy intermediate-scale quantum (NISQ) computers are

error-prone, contain only a limited number of qubits, and

impose restrictions on the depth of successfully executable

circuits [31]. Yet, algorithms tailored towards NISQ devices

started to demonstrate the viability of quantum computers

in various fields, ranging from molecule simulation [27]

to machine learning [11] and optimization problems [14].

Evidently, to advance research and development into prac-

tical applications of quantum algorithms, increasing the ac-

cessibility of quantum computers by introducing adequate

abstractions is effective. Nevertheless, providing researchers

and practitioners access to QPUs is challenging. Owing to

the limited availability, complexity, and cost of Quantum

Processing Units (QPUs), quantum computation for the masses

may currently only be viable through cloud services that can
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hide the low-level machinery behind a convenient interface.

However, while cloud providers can decrease the complexity

and cost, we cannot exclusively rely on the efforts of hardware

manufacturers to increase the accessibility of resources by

simplifying the production and installation of QPUs. Instead,

it is essential to draw from our experiences in classical

computing on the ramifications of predominantly relying on

centralized cloud platforms. Besides the privacy-related risks

of entrusting third-party providers with sensitive data, the

cloud computing paradigm bears numerous downsides, such

as vendor lock-in and data centers posing a single point of

failure vulnerable to outages. Additionally, a narrow cloud-

centric view is inefficient since it leaves valuable resources

close to the client (e.g., Edge, Fog) idle by indiscriminately

offloading tasks to a remote server.

The edge-cloud continuum addresses the limitations of
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cloud computing by aggregating resources in a hierarchical

distributed network ranging from constrained edge devices

to cloud data centers. Unfortunately, after decades of relying

on centralized architectures, the transition is slow, with semi-

or fully decentralized platforms still needing to emerge [45].

Therefore, to avoid repeating the mistakes of classical com-

puting, it is crucial to aid researchers in implementing quan-

tum applications on distributed platforms before centralized

approaches solidify.
Notably, deploying edge applications on mobile quantum

devices is on the horizon with the recent advancements of

diamond-based QPUs [25] that allow quantum computation at

room temperature [37]. Hence, it is sensible to assume that

quantum computers may soon become widely available for

individuals and organizations. Analogous to how mobile Arti-

ficial Intelligence (AI) accelerators gave rise to performance-

critical intelligent applications at the edge relying on Computer

Vision (CV) or Natural Language Processing (NLP), the

emergence of mobile QPUs will pave the way for a new

class of intelligent applications that, for example, benefit from

efficiently solving complex optimization tasks. Still, even with

centralized approaches, the complexity of developing hybrid

applications significantly obstructs advancements in quantum

research. Practitioners must consider classical and hybrid com-

ponents, choose the appropriate hardware, and manually man-

age the orchestration. To this end, this work aims to encourage

TABLE I
SUMMARY OF THE STATUS QUO AND OUR VISION

Category Current Situation Vision

Accessibility Purely Centralized Optionally (de)centralized

Complexity
Self selection of (quantum)
components, multiple vendors

Heterogenous componens,
but Homogenous interface

Applications
Restricted to cloud, high
network latency

Distributed computation
with devices co-operation

Service Guarantees
Requires end-to-end measure
of manually stitched apps

SLOs for single hybrid app,
automates resource allocation

Workflow
Must integrate classical
and quantum providers

Composable workflow of
hybrid components

Resource Locality Remote, Cloud only Edge-Cloud Continuum

quantum computation research at the edge. We describe key

challenges and possible solution approaches for distributed

hybrid classical-quantum architectures. Specifically, the focus

is on the potential of drawing from an edge-cloud continuum

and to explain the intricate interplay of numerous classical

and quantum components systems must stitch together into one

cohesive unit. Ultimately, our vision is for a distributed hybrid

platform that can automate the process of orchestrating hybrid

applications to emerge. Then, as conceptualized by Figure 1

and summarized by Table I, practitioners can dedicate their

time solely to implementing the core logic of their applications

and algorithms.
To concretize and increase the intuition of the abstract

concepts of our work, we use a running example of im-

plementing a distributed hybrid platform for Mobile Aug-

mented Reality (MAR). Our choice is sensible, considering

how conceiving methods to accommodate the demanding and

complex requirements of MAR applications with edge com-

puting generalize well to arbitrary applications and is an active

area of research [61]. Moreover, a platform hosting MAR

applications must reliably serve numerous intelligent tasks that

can benefit from QPUs. For example, a navigation system for

cyclists to safely navigate urban areas by preventing them from

crashing into approaching vehicles requires object detection

and tracking models from a distributed camera network [54].
We summarize our contributions as

• Highlighting the opportunities of incorporating QPUs into

the edge-cloud continuum and how the distinct properties

of QPUs introduce novel challenges.

• Introducing the architecture for a distributed hybrid plat-

form with a variable composition of heterogeneous quan-

tum and classical nodes.

• Demonstrating the feasibility of extending partitioning

methods for classical Deep Neural Networks (DNN) with

quantum embeddings by implementing, evaluating, and

open-sourcing a proof of concept (PoC) of a splittable

hybrid classical-quantum neural network1.

Section II establishes the preliminary background and re-

lated work. Section III argues how future work on Quantum

Edge Computing (QEC) can benefit from existing work on

Classical Edge Computing (CEC) by drawing parallels to AI

accelerators and their role in Edge Intelligence. The rest of this

work is structured to progressively introduce the components

of our envisioned platform from a top-down perspective.

Section IV presents the core high-level serverless abstraction

model for client programmers. Section V extends the model

to provide first-class support for warm starting. Section VI

focuses on lower-level system challenges for a distributed

hybrid inference engine. Section VII describes and evaluates

our PoC for a hybrid classical-quantum D(Q)NN for split

inference. Section VIII concludes our work.

II. BACKGROUND & RELATED WORK

Cloud-centric platforms have paved the way to make cost-

efficient and large-scale applications accessible to the public.

However, the emerging edge-cloud continuum accentuates the

drawbacks of centralized architectures. Promising application

paradigms, such as Edge Intelligence [17], heavily rely on the

edge-cloud continuum and require autonomous management

over the large and heterogeneous system. We argue that quan-

tum computers can improve the quality of existing applications

and pave the way for novel ones. The success of these

applications is tied to available platforms that need to sup-

port developers in designing, writing, testing, deploying, and

managing them. This section introduces concepts fundamental

to our architectural vision and summarizes related work.

A. Orchestration
The services of centralized platforms that provide access

to quantum computers can be combined with classical appli-

cations (i.e., Amazon offers event-based processing for their

1https://github.com/rezafuru/QuantenSplit
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quantum service). Hence, practitioners and researchers must

build hybrid applications by combining separate quantum and

classical components. Worse, they are burdened with selecting

different QPU technologies, devices, and compilers [23], [52].

1) Orchestration of Quantum Applications: Although quan-

tum applications consist of classical and quantum components,

they follow the same framework as classical computing in

dividing orchestration into two distinct procedures [66]. First,

workflow technologies manage control flows. Second, pro-

visioning technologies handle the deployment of application

components. Hence, we can reduce infrastructure complexity

by extending existing systems to support quantum applica-

tions. Wild et al. present Tosca4Q, which extends Tosca

to support workloads relying on quantum computers [69].

Weder et al. introduce Quantum Application Archives (QAAs),

allowing orchestration methods to treat quantum applications

as self-containing entities [66]. Later, Leymann et al. propose

extending QAAs through a marketplace, with an architecture

for a collaborative software platform to consider the develop-

ment process [32].

2) Quantum Platforms: Several cloud offerings provide

access to quantum computing as a service. However, it is still

challenging to integrate managed quantum services cohesively

into classical applications.

Garcia-Alonso et al. [23] present their proof-of-concept

implementation of a Quantum API Gateway recommending a

quantum computer target to run a given quantum application

for Amazon Braket. Additionally, Beisel et al. [6] propose

Quokka, a microservice-based framework to model and deploy

quantum workflows. The authors propose a set of microser-

vices that model the typical quantum workflow based on

Variational Quantum Algorithms (VQAs) [12]. This workflow

comprises circuit generation, execution, error mitigation, ob-

jective evaluation, and parameter optimization. The approach

fully decouples each part of pre-processing, executing, and

post-processing, allowing a flexible workflow definition. Fur-

ther, Salm et al. [56] present a concept that automatically

handles the analysis of quantum algorithms and the selection

of quantum computers. Grossi et al. [28] build a prototypical

platform inspired by Serverless Computing through which

quantum developers can deploy their applications. They em-

ploy a scheduler that focuses on queue management and result

retrieval. Leymann et al. [32] propose an architecture for a

collaborative software platform for quantum applications that

encompasses the development process and deployment aspect

through a marketplace for quantum applications.

The systems so far have shown how platforms can enhance

collaboration, improve the development of applications, and

simplify deployment aspects (e.g., dynamically selecting a

quantum computer). However, they only considered cloud

systems and focused on software development. We see that

complementary to our work as advances in these fields can

enrich development aspects of our envisioned hybrid applica-

tion platform. For example, an adoption of Tosca4Q [69] to

model serverless applications [70] can make our envisioned

serverless-based platform more accessible. Still, it requires a

platform to manage hybrid applications across the edge-cloud

continuum to make quantum applications accessible.

B. Serverless Edge Computing

A key problem of edge-cloud applications, such as edge

intelligence, is the autonomous orchestration of edge-cloud

applications [17]. Manual management is infeasible in these

large-scale and geo-distributed infrastructures, so a platform

that can autonomously manage application deployments is

required.

Serverless Edge Computing is the natural extension of

Serverless Computing that abstracts the underlying infras-

tructure and transparently deploys applications packaged as

functions across the system [3], [45]. We argue autonomous

management and simplified application development and de-

ployment can be enablers of the emerging quantum computing

paradigm. Nguyen et al. [47] present a holistic serverless

platform that supports classic, quantum, and hybrid applica-

tions. Conversely, we envision a platform that spans the edge-

cloud continuum and manages application deployments across

heterogeneous infrastructures. The increased complexity stems

from the composed applications and the sophisticated and fine-

grained monitoring, as Section IV will discuss.

C. Task Partitioning

Task partitioning in classical edge computing and quantum

computing are distinct research areas that address orthogonal

problems. Nevertheless, they share a common idea in dividing

a task into subtasks executable by distributed compute nodes.

Although we can draw from existing quantum computing

partitioning methods to aid schedulers in their placement

strategies, we must consider the unique properties of QPUs

before we can generalize them to classical methods.

Partitioning in classical edge computing concerns distribut-

ing load for resource efficiency [34]. In quantum comput-

ing, splitting tasks between classical and quantum nodes is

necessary for near-term applications to cope with the lim-

itations of NISQ devices [31], and most common hybrid

classical-quantum splitting patterns assign fixed roles to com-

ponents [67]. Additionally, patterns for quantum computation

are typically conceived to execute a particular class of al-

gorithms and do not consider applications where a quantum

algorithm is just one of several subtasks.

In contrast, as the limitations of quantum computation will

gradually diminish, a platform should be able to accommodate

new emerging patterns. For example, IBM’s 433-qubit QPU

announced in 2022 will soon be superseded by an 1’121-

qubit system [18]. Further, for near- and long-term QPUs,

the platform should dynamically adjust the workload between

quantum and classical nodes according to target Service Level

Objectives (SLOs), internal (e.g., load), and external condi-

tions (e.g., bandwidth).

1) Variational Quantum Algorithms: Variational Quantum
Algorithm (VQA) is a generic framework for optimizing the

parameters of a quantum circuit on a classical computer [12].
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Depending on the target task, we can derive more spe-

cific algorithms, such as Variational Quantum Eigensolver
for approximating the lowest eigenvalue of a matrix [62]

or Quantum Approximate Optimization Algorithms (QAOAs)
to approximate the solution of a combinatorial optimization

problem [59]. Another notable instance of VQAs is Quantum
Neural Networks (QNNs) which aim to improve the repre-

sentation of classical neural networks with embeddings in

the Hilbert space. Note, in literature, the distinction between

VQAs, Quantum Machine Learning (QML), and QNNs is

blurry; thus, for clarity, we refer to QNNs as models that are

built and trained for typical ML tasks (e.g., Feature Extraction,

Regression, or Classification).

2) Warm-Starting: The term warm-starting is ambiguous

due to its widespread usage in classical and quantum com-

puting. For example, it may refer to techniques that reduce

resource usage in machine learning and optimization [2]. Con-

trastingly, in classical serverless computing, warm-starting typ-

ically relates to methods for preparing execution environments,

such as reusing running containers [38]. This work considers

warm-starting a general strategy for partially computing or

preparing a quantum algorithm’s output on auxiliary devices.

Notably, warm-starting methods are not limited to classical-

to-quantum and may be quantum-to-quantum or quantum-to-

classical.

Hybrid classical-quantum systems can benefit from various

warm-starting methods that utilize previously obtained solu-

tions, approximations, or trained models [64]. For example,

following the assumption that optimal variational parameters

for similar problem instances solved with VQAs are in prox-

imity, parameters can be transferred between instances as

an initial point to warm-start from and improve upon [22].

Moreover, approximations that are cheaply generated by effi-

cient classical algorithms can be utilized to initialize quantum

circuits with a quantum state biased towards potential solutions

rather than starting from a neutral initial state [19]. On the

other hand, QNNs can benefit from pre-trained models through

transfer learning, i.e., adapting a classical or hybrid model

trained for a general task and training it further to tackle

a similar or more precise subtask [39]. Evidently, as these

warm-starting methods comprise a source algorithm from

which information is drawn and a target algorithm that is

enhanced with it, warm-starts may indicate potential ways of

distributing both classical and quantum computational efforts

in the continuum.

3) Depth and Widthwise D(Q)NN Partitioning: Depthwise

refers to splitting a large DNN between vertical layers, i.e., it

results in sequentially dependent partitions and does not in-

crease parallelization. In classical computing, depthwise parti-

tioning methods commonly aim to facilitate resource efficiency

by allowing multiple devices to process a request across the

continuum [20]. In quantum computing, depthwise partitioning

may refer to stacking QNN circuits to mitigate cascading gate

errors and accumulating noise during training [9].

Conversely, widthwise partitioning facilitates parallelization

by horizontally splitting a layer or circuit. Quantum circuit cut-

ting concerns addresses some limitations of NISQ devices by

partitioning larger circuits into several smaller subcircuits [4].

Classical widthwise DNN partitioning is less common since

AI accelerators parallelize the execution of layers. Still, in

highly constrained environments without access to server-

grade hardware, methods such as parallelizing filter compu-

tation of convolutional layers across devices are sensible [71].

We identify classical depthwise and quantum widthwise

partitioning as viable methods for an essential component of

our envisioned platform and will detail them in Section VI.

III. QUANTUM COMPUTING AND EDGE INTELLIGENCE

We argue that research on Quantum Edge Computing (QEC)

should directly extend Classical Edge Computing (CEC) rather

than foster isolated communities. In particular, we find that

future work on QEC can learn valuable lessons from existing

work on Edge Intelligence (EI). Intelligent tasks commonly

refer to solving problems that a program with classical control

structures cannot compute tractably or with sufficient pre-

cision. EI leverages advancements in specialized hardware

for constrained devices (e.g., AI accelerators) to push the

computation of such tasks with modern AI methods (e.g.,

DNNs). Similarly, QEC can leverage the advancements in

(mobile) QPUs to compute numerous tasks tractably (e.g.,

optimization problems) and with higher precision.

To identify where we can utilize prior experiences, this

section draws parallels between the rise of energy-efficient AI

accelerators and the challenges of integrating QPUs. Note that,

despite the existence of a broader definition for “AI”, literature

in edge computing typically uses AI as synonymous with

classical Machine and Deep Learning. To avoid ambiguity, we

will adhere to the same convention. Moreover, for brevity, we

refer to AI accelerators covering a broad class of chips suitable

for mobile devices that can efficiently execute vendor-specific

compiled computational graphs of DNNs as Tensor Processing

Units (TPUs) [33].

A. Parallels between Mobile QPUs and TPUs

QPUs can efficiently solve some problems intractable for

classical computers (e.g., integer factorization and discrete

logarithms [60]). Notably, QPUs can utilize entanglement and

superposition, two properties unique to quantum computing.

Conversely, although adding a TPU is formally incomparable

to the speed-ups and precision QPUs can provide, in practice,

TPUs provide substantial speed-ups for complex tasks DNNs

excel at.

For brevity, we will refer to DNNs specifically designed for

resource-constrained devices (e.g., IoT devices) or DNNs com-

pressed with quantization, pruning, or knowledge distillation

methods [16], [26] as “lightweight”. Analogously, we refer to

circuits designed to run on more constrained QPUs than the

state-of-the-art as “shallow” or “narrow”. The reference point

is relative and aligns with the assumption that integrated chips

in resource-constrained devices have lower capacity chips than

contemporary server-grade hardware. Similarly to how TPUs

are accelerators for lightweight DNNs [13] to solve CV and
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NLP problems, mobile QPUs (MQPUs) will allow constrained

devices running shallow quantum circuits to solve optimization

problems.
Conclusively, viewing QPUs as an accelerator for an orthog-

onal set of intelligent tasks, i.e., tasks impractical for classical

handcrafted programs, is reasonable. Nevertheless, QPUs and

TPUs can complement each other for non-orthogonal tasks in

the near term. For example, the primary motivation of QNNs

interestingly differs from the typical advantages of quantum

computation. Since the training and inference of DNNs are

highly parallelizable, modern classical hardware already effi-

ciently accommodates them. Instead, QNNs can exploit prop-

erties of the Hilbert Space to find better representations [1].

Moreover, it has been shown that utilizing entanglement in

training data can reduce the limits on learnability imposed

by the (classical) no-free-lunch theorem [58]. Nevertheless,

especially for high-dimensional data (e.g., images), it is chal-

lenging to build and train QNNs since methods must map the

high-dimensional representation to a low number of qubits.

Therefore, currently, hybrid classical-quantum QNNs show

more promising results. Unlike pure QNNs, hybrid QNNs

consist of parameterized classical and quantum components,

and apply classical layers before encoding the features to a

quantum state and passing them to a circuit [36], [39].

B. Quantum for and on the Edge
In their seminal work, Deng et al. [17] proposed distinguish-

ing Edge Intelligence between AI for Edge and AI on Edge.

Analogous to their work, we suggest that future research in

QEC should be categorized in Quantum on and for Edge.
1) Quantum on Edge (QoE): addresses the challenges of

building systems for distributed applications that rely on

QPUs. Research in this category can focus on integrating ex-

isting quantum systems into the continuum, such that classical

resources can aid in reducing wait times and load on QPUs.

Alternatively, the focus may be on generalizable approaches

for extending existing classical systems to increase the solution

quality with QPUs. Section V and Section VI introduce

ideational methods for both subcategories.
2) Quantum for Edge (QfE): focuses on solving opti-

mization problems in edge computing. Unlike QoE, it is

not complementarity to the classical AI counterpart since

quantum algorithms have been shown to outperform classi-

cal optimization methods for certain problem instances [43].

Nevertheless, it is useful to be aware of the state-of-the-art

classical methods for two reasons. First, classical methods can

serve as benchmarks that mark thresholds quantum algorithms

must cross, i.e., measuring the performance gap relative to

the classical state-of-the-art provides a realistic outlook on

how close quantum methods are to become viable in practice.

Second, classical methods could be useful for warm-starting

quantum optimization algorithms.

IV. AN ARCHITECTURE FOR A DISTRIBUTED HYBRID

COMPUTE PLATFORM

This section introduces the envisioned architecture illus-

trated in Figure 2. We first provide a high-level model of an

edge-cloud continuum and relate it to our running example

of a MAR platform that aims to implement our architecture.

Then, we describe the individual components and how clients

interact with them so that the remaining sections can reference

the architecture. We do not claim that the components we
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Fig. 2. Our envisioned Architecture

introduce are sufficient for a hybrid platform. Rather, we

believe it forms a foundation for future work as a starting point

for a new research direction to advance quantum computing.

A. Resource and Scenario Formulation

Our conceptual MAR platform distinguishes between sys-

tem designers, client programmers, and clients. The system
designers seek methods to build a platform that allows client

programmers to deploy applications or experiments. Client
programmers write and deploy MAR applications and have

varying requirements. Clients are devices that access applica-

tions by issuing requests. Our objective is an architecture that

maximizes the rate of advancements in quantum applications

and algorithms by unconditionally minimizing the complexity

for client programmers at the expense of system designers and

platform providers.
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1) Service Level Objectives and Agreements: With SLOs,

clients can specify quantifiable metrics according to their

application’s requirements that a platform should uphold.

Typically, providers bundle SLOs together as Service Level

Agreements (SLAs). Nevertheless, this work does not require

a distinction between SLOs and SLAs since the latter is simply

a constructible contract of the former. Guaranteeing SLOs

is difficult even in purely classical serverless (edge-)cloud

systems [44], [53], [57]. The following proposes solutions for

conceptualizing an architectural platform vision with the addi-

tional consideration of integrating QPUs. Section III stressed

the importance of extending existing methods to accommodate

QPUs instead of conceiving novel methods unaware of recent

advancements in CEC. Therefore, we draw from ongoing

research in classical computing from a systems perspective,

intending to extend existing state-of-the-art classical methods

instead of competing with them. For the remainder of this

work, we refer to a component or service as SLO-aware if it

has access to the SLO registry and implements a corresponding

decision mechanism.

2) Resource Assumptions on the Edge-Cloud Continuum:
Resources are spread across three domains: edge, fog, and

cloud. There is no universally agreed-upon definition for

the edge and fog domain. Hence, we remain as general as

possible without compromising the practicability of our archi-

tecture. Defining the fog domain as clustered computational

nodes significantly nearer to client devices than the closest

cloud data center is sufficient for our purposes. The edge

domain comprises the clients and nearby SLO-aware load

balancers [8]. Table II summarizes each domain’s properties

and the available resources to which our MAR platform has

access. In particular, for QPUs, we refer to the properties

of current or expected near-term devices. While once QPUs

become mature enough, they may be as accessible as classical

hardware, system designers will need to address the near-

term limitations of QPUs. We distinguish between mobile- and

TABLE II
SUMMARY OF RESOURCES ACROSS DOMAINS

Domain Dominating Cost Type Grade Capacity Notable Limitation

Edge
Energy - Client
may not warm start

CPU Mobile Low Heterogeneity
TPU Mobile Very Low Lightweight DNNs

Fog
Load - Requests may
have to be routed to
the cloud.

QPU Mobile Low Circuit Width/Depth
CPU Server High Outages
GPU Server High Outages

Cloud
Communication -
Remote data centers
incur high latency

QPU Server Medium Availability
CPU Server Unlimited Interference
GPU Server Unlimited Interference

server-grade hardware. The former represents a constrained

but more widespread alternative to the latter. Capacity refers

to the size of a model and how many instances we can spawn

on demand. Unlimited means we can host as many instances

of the largest off-the-shelf models as necessary. High implies

some trade-off between the size and the number of instances of

a model where it is possible to exhaust the available capacity

when the number of concurrent client requests exceeds a cer-

tain threshold. Medium and Low suggest additional limitations

to the hardware, e.g., how the circuit depth and the number

of qubits on NISQ devices limit the size of a QNN. In our

running example, the platform providers aim to place QPUs

near several major cities. Therefore, they purchased numerous

mobile-grade QPUs (e.g., the announced diamond-based QPUs

of Quantum Brilliance [37] or SaxonQ [25]) that they expect

to have sufficient capacity for most models. Since they cannot

feasibly host server-grade QPUs (e.g., IBM’s planned 1’121-

qubit system [18]) in every supported location, the requests

that require larger circuits are either forwarded to a remote

cloud data center or processed with partitioning methods we

will elaborate on in Section VI. Lastly, we label the capacity

of edge TPUs as “very low“ since they can typically only

host one lightweight DNN in memory. Contrastingly, in the

fog and cloud domain, we can host multiple instances of the

same DNN on virtualized GPUs. A notable limitation for

a resource may not be exclusive to a single domain but is

a concern system designers should be particularly conscious

about in that domain. Heterogeneity refers to the numerous

chip architectures with varying constraints. Lightweight DNNs

and Circuit Width/Depth refers to the limitation of TPUs and

MQPUs to execute larger models. Interference refers to the

performance degradation from serving virtualized resources to

multiple clients [46].

B. Architecture Planes and Components

The architecture differentiates between four planes accord-

ing to their function and intended interaction with other com-

ponents, clients, or client programmers. Each plane exposes

private or public APIs. Private APIs are only accessible by

internal components, whereas public APIs are accessible by

external entities, i.e., clients and client programmers.

1) Execution Plane: Application instances run on the exe-
cution plane. It consists of Public APIs, Hardware Hosts, and

Worker Clusters. The public APIs allow clients to interact with

the application via access points.

The hardware hosts are subdivided according to the sup-

ported application types, i.e., into classical and quantum nodes.

The quantum hosts are further subdivided according to their

grade, i.e., QPUs are server-grade and MQPUs mobile-grade.

The classical hosts additionally subdivide to consider AI

workload. Each node is registered by the device registry that

associates data describing their capacity (e.g., memory size,

VRAM, qubits) and stores it into the metadata storage. The

metadata storage is a highly-available key-value storage (e.g.,

ETCD used in Kubernetes) accessible by other components.

Especially for the continuum, where nodes can arbitrarily join

and leave the system, the metadata must be highly available

and not remain stale to measure the system’s overall capacity

accurately.

The Worker Clusters consists of at least one hardware

host and represents the application environments that may

rely on one or multiple hardware nodes. Since quantum

and classical environments are separate, it is necessary to

distinguish between classical and quantum worker clusters.

Naturally, quantum applications will require classical workers

for auxiliary tasks (e.g., pre-processing, measurement). Once
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a worker completes a task, a classical worker is responsible

for forwarding the result. The result is forwarded to another

worker cluster for distributed applications that partition the

task on multiple devices. The result is forwarded to the

client for monolithic applications or the last partition of a

distributed application. Instrumentation tools send telemetry

data to the monitoring system by accessing private APIs of

the Provenance Plane.

2) Provenance Plane: The Provenance Plane encapsulates

a highly available distributed Provenance database through

which real-time monitoring data is stored and shared. It

consists of a Quantum Provenance and a Classical Provenance
system, offering private APIs to access and store telemetry

data. It is crucial to conceive methods that consider the

intrinsic properties of QPUs, to create reliable and predictable

systems for quantum workloads. Notably, error rates vary

depending on a QPU’s current state, i.e., exclusively collecting

classically relevant data (e.g., load) for quantum and hybrid ap-

plications is insufficient for SLOs with solution quality targets.

Classical monitoring for a platform deploys instrumentation

tools (Execution Plane) alongside the application to collect

telemetry data on workload trends and resource usage of func-

tion instances (e.g., load, CPUs, GPUs, I/O). Orthogonally, a

quantum provenance system gathers information on the state

of QPUs to analyze errors, such as properties of Quantum

Circuits, QPUs, Compilation, and Execution, as proposed by

Weder et al. [65]. A platform can utilize provenance data

for error mitigation and to aid schedulers with upholding

SLOs by assessing the currently expected solution quality.

Platforms that support hybrid applications should integrate

quantum provenance with classical instrumentation to form

one cohesive monitoring system for simplified access to vari-

ous heterogeneous devices.

The objective of a monitoring system is to collect the

minimal data necessary for informing schedulers to uphold

SLOs. Conceiving hybrid systems is non-trivial, as finding a

balance is already challenging for classical edge-cloud and

hybrid systems monitoring [24], [53]. A system that trivializes

monitoring by aggressively collecting data may ease the task

of a scheduler but can cause resource congestion across the

edge-cloud continuum [24]. Conversely, collecting insufficient

telemetry data will significantly reduce the system’s scalability

as it cannot appropriately route requests or scale resources up

and down. We argue that a granularity mechanism capable of

adjusting the frequency of quantum and classical monitoring

data according to the current workload’s characteristics is one

of the principal challenges that future work must address

before a hybrid platform can emerge. Nevertheless, monitoring

itself is simply a precondition. The following describes how

our architecture supports resource efficiency and elasticity

based on available monitoring data.

3) Elasticity Plane: The Elasticity plane is the central

organ of the system that decides how to allocate resources

and route requests according to client SLOs, metadata, and

monitoring data. The Control clusters are subdivided between

Quantum and Classical Control Clusters. The former man-

ages quantum application instances (e.g., scale-out quantum

coordinators), while the latter manages classical application

instances (e.g., horizontal scaling of applications). Each con-

trol cluster manages a set of worker clusters (see Execution

Plane) that are dynamically scaled up or down according to

the application instances the cluster can control. Monitoring

Agents are responsible for the worker clusters and relay data to

the control cluster’s monitoring broker. A Monitoring Broker
disseminates the data across the components. A Classical
Autoscaler and Classical Scheduler maintain a local and global

view of the control cluster’s state. Classical autoscaler and

schedulers exist in Quantum Control Clusters, since Quantum

Coordinator Applications (See Control Plane) are classic.

The Quantum Coordinator Manager supervises the Classical

Autoscaler and Scheduler to scale and place the Quantum

Coordinator Application (see Control Plane) instances.

The Local View contains fine-grained information about the

Worker Clusters (e.g., CPU usage per second). In contrast, the

Global View contains coarse-grained information (e.g., average

CPU usage over an hour) about neighboring control clusters.

The coarse-grained data consists of fine-grained local data

collected by a Global View Aggregator that periodically pub-

lishes a summary, i.e., the global view consists of exchanged

summaries of local views.

The control cluster’s messaging topology and broker par-

tially address the granularity control of monitoring data and

permit an elastic control mechanism that can scale the entire

system by adequately allocating its limited resources. The

implementation of the autoscaler and scheduler is interchange-

able, and system designers may experiment with various

methods. The Quantum Cluster Autoscaler is inspired by the

work of Tamiru et al. and Gandhi et al. and is an SLO-aware

cluster autoscaler capable of adding and removing Quantum

Hosts from worker clusters to process the incoming workload.

Classical Routing is inspired by the work by Raith et al.

[53] and consists of a Load Balancer and a Load Balancer
(LB) Watcher. The Load Balancer is a high-throughput and

low-overhead component that re-directs incoming requests

to application instances or other clusters (e.g., because no

application instance is running). The Load Balancer Watcher

is SLO-aware and periodically refreshes the load balancer’s

state to update the decision mechanism.

The Quantum Routing component differentiates itself from

Classical Routing, as it considers additional challenges to

improve the resource efficiency of quantum hosts. Quantum
Computing Selection is particularly valuable for the edge-

cloud continuum as it introduces further heterogeneity. The

selection method is another freely interchangeable component.

For example, system designers may opt to use the method

proposed by Quetschlich et al. [52] and replace it once

they find a more suitable alternative. Multi-programming in

quantum computing has a comparable role to virtualization in

classical computing, i.e., it allows sharing of the resources of

quantum computers among multiple circuits [15]. However,

unlike in classical computing, where we can readily select

existing mature virtualization methods, multi-programming
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is more involved and should be considered together during

encoding [48] and influences quantum computer selection.

4) Control Plane: The Control plane exposes an API to

client programmers to deploy and manage their applications.

The public API should allow client programmers to define

hybrid applications as workflows without separately deploy-

ing classical and quantum parts. The platform analyzes the

workflow during the registry and partitions it into classical and

quantum applications. The Application Registry encapsulates

several registries responsible for storing application services,

SLO targets, and parameterized models. The Model Registry
is similar to a model zoo (e.g., torch image models [68]).

However, here the models may either be classical neural

networks or quantum circuits. In addition, profilers associate

static metadata to each model (e.g., number of parameters,

circuit depth, layer types). Profiler metadata supplements the

schedulers and autoscalers with valuable information to predict

resource usage more accurately (e.g., a Swin-Tiny will incur

higher usage than a Swin-Base [35]). Our architecture sup-

ports warm-starting as a first-class citizen, which Section V

will elaborate on. Service Discovery enables Quantum and

Classical Routing to locate running application instances.

Classical Applications consist of the application code and

a runtime that executes the code upon creating an application

instance. The architecture does not require any assumptions

about the runtime, i.e., the runtime can range from containers

to WebAssembly modules. Application may optionally provi-

sion arbitrary Application Databases (e.g., relational, object-

based).

The Quantum Application is more complex as it requires

the interplay between quantum and classical resources. The

Quantum Coordinator contains the Quantum Application, im-

plemented by the client programmers. The Quantum Applica-

tion is written in a particular programming language and an

SDK for quantum computing. The Quantum Coordinator coor-

dinates the execution of a quantum application (i.e., quantum

circuit). Quantum Applications requires routing capabilities to

connect the classical part of the quantum application, that pre-

and post-processes input and output, with the quantum part, the

QPU that executes the quantum circuit. Moreover, Quantum

Coordinator requires Quantum Routing capabilities to select a

suitable Quantum Host or to perform Multi-Programming to

increase QPU utilization efficiency.

V. WARM-STARTING AT THE EDGE

Warm-starting aligns with the objectives of a distributed

hybrid platform, i.e., it facilitates drawing from resources

across the continuum. Ideally, applications can pre-process

input before passing it to a remote server. Warm-starting meth-

ods in the context of quantum computing are categorizable into

Classical-To-Quantum (C2Q), Quantum-To-Quantum (Q2Q),

or Quantum-To-Classical (Q2C) [64]. Each category has an in-

put and an output format. For example, C2Q expects classical

input, and the output format should suit a quantum algorithm.

Nevertheless, we argue that system designers must subdi-

vide the categories further to include neural input and output

formats, such as Neural-To-Quantum (N2Q) or Classic-To-

Neural (C2N), for two reasons. First, neural methods rely on

AI accelerators that may not be present or have alleviated

energy consumption, i.e., it is indispensable for a scheduler to

know hardware properties to hit SLO targets. Second, although

the output of a classical DNN is classical, the network weights

may be tuned to extracted features tailored for a particular

class of algorithms.

A. Current and Future Role of Warm-Starting

Currently, a common motivation for warm-starting is to

reduce the dependency on QPU time due to cost and limited

availability [64]. However, we stress that the importance

of warm starting lies in improving the solution quality by

combining classical and quantum algorithms. Moreover, once

QPUs mature to a point where we can entirely forgo classical

computation, the research focus can shift to Q2Q warm-

starting, where smaller client devices can partially onload

quantum algorithms for resource efficiency. For example,

warm-starting can be a means to embed performance guaran-

tees of classical algorithms into quantum algorithms and can

reduce the amount of training data required for (Q)ML.

A downside of warm-starting is that it increases the applica-

tions’ complexity as it introduces more parts that must be man-

aged, i.e., it is crucial to introduce a convenient interface that

supports warm-starting as a first-class citizen further to shift

complexity from client programmers to platform providers.

Notably, warm-starting is chainable. Hence, we can naturally

integrate warm-starting methods in the edge-cloud continuum

if a platform exposes an interface that resembles the hierar-

chical properties regarding device capacities in the network.

The following describes the requirements and proposed

solution approaches for a hierarchical warm-starting program-

ming model. Hierarchical refers to how the warm-starting

methods are composable in a pipeline that resembles their

resource usage requirements. The proposed interface does not

rely on any assumption regarding the availability and limita-

tions of QPUs, i.e., it treats each method in the pipeline as ex-

changeable building blocks. The current progress of available

QPUs is considered by informing client programmers about

the feasibility of their planned warm-starting pipeline. For

example, the platform could disable support for Q2Q warm-

starting at the network’s edge until MQPUs find widespread

adoption in end devices, such as smartphones.

B. Hierarchical Warm-Starting

In our running example, the MAR platform aims to improve

resource efficiency with hierarchical warm-starting. The load

heavily fluctuates for city-scale applications according to date

and time. By chaining warm-starting hierarchically, idle com-

putational resources of edge and fog nodes can be utilized,

e.g., to reduce offloading to the cloud.

Warm-starting is a broad term encompassing numerous

classes of methods [64]. The challenge is to conceive an

interface flexible enough to remain convenient without expos-

ing low-level details, such as manually selecting devices and
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fallback mechanisms, to the clients. An interface would be

maximally flexible if it forces client programmers to define

every single step of the execution, where to deploy which

part at which node, and to manually configure the quantum

executions (e.g., device, compiler) for every method in the

pipeline. An interface that does not restrict the configura-

tion space is especially undesirable when considering the

heterogeneity of the continuum. Specifically, it would not be

sufficient to provide a single configuration for a method, and

there is no guarantee for the availability of a particular device

configuration at the edge or fog. Conversely, constraining

client programmers exclusively to a list of pre-implemented

solutions is counterproductive as it hinders innovation, i.e.,

they should at least be able to (optionally) provide their warm-

starting method.

To summarize, the responsibility of a platform is to build

the infrastructure and provide adequate abstractions to access

the resources. A dedicated interface for warm-starting should

allow clients to define composable workflows to process a

warm-starting pipeline, i.e., client programmers can register

pre-processing steps for warm-starts through the control plane

from our architecture in Figure 2 that may run on CPUs, TPUs,

or QPUs deployed at the client device or fog nodes.

Consider Figure 3 for the following example. Three clients

execute the same application using the public API of the

control plane. The client programmers defined a warm-starting

pipeline for their applications. Hence, the pipeline and its

methods are placed in the warm-starting registry, and the

system decides where to position the models in the continuum

based on the profiler metadata. However, the clients request

varying target qualities; hence, the platform applies different

intensities of warm-starting before sending the task to a

quantum cloud vendor. Intensity refers to the expected solution

quality of a quantum algorithm with an input processed by a

warm-starting method. In Figure 3, client C1 cannot achieve
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Fig. 3. High-level Sequence of Hierarchical Warm-Starting

any pre-processing at the edge due to energy constraints

(indicated by an empty battery symbol) and therefore forwards

the input in its original classical representation. Since C1

registered at least one pre-processing step at the fog, the load

balancer routes the request to a fog node, applying the step

that maps to a C2Q warm-start. Conversely, if C1 had the

resources to pre-process its input for a target neural network,

the fog node would have taken over processing its output

further to warm-start the quantum task, resulting in a chain of

C2N and N2Q warm-start. Client C2 can perform resource-

conscious pre-processing for a C2N warm-start. Still, since

it does not achieve the required target quality, the request is

routed to a fog node with available QPUs to apply further

pre-processing for an N2Q warm-start. Client C3’s request is

directly routed to the cloud by the load balancer, since C3 had

enough onboard resources for pre-processing the task to the

target quality without relying on fog nodes.

VI. A DISTRIBUTED INFERENCE ENGINE FOR HYBRID

CLASSICAL-QUANTUM NEURAL NETWORKS

While the last two sections introduced high-level concepts

of the architecture, this section focuses on lower-level system

designs for platform designers and how client programmers

may implement a distributed hybrid application. We extend

our running example and discuss how the MAR platform may

support an inference engine with hybrid classical-quantum

neural networks. An inference engine refers to the inner

system of an interface that client programmers can utilize for

intelligent tasks, i.e., tasks that rely on neural networks.

(D)QNNs are uniquely qualified as a representative ap-

plication beyond DNN inference to cover how a distributed

platform can adapt as the limitations of QPUs are gradually

lifted for three reasons. First, a hybrid QNN is composable

of parameterized classical and quantum nodes. Contrastingly,

other VQAs typically operate non-parameterized classical

components exclusively for pre-/post-processing and to opti-

mize the parameters. For a hybrid QNN, there are additional

components with no statically predefined role assignments,

i.e., we can represent how systems adapt as they progressively

replace classical with quantum nodes proportional to availabil-

ity and advancements in QPUs. Second, we can split a neural

network horizontally by layer or cut individual layers vertically

and view each partition as an isolated computational graph.

Then, a simple inference request (e.g., image classification)

can emulate the behavior of a complex task with numerous

classical and quantum subtasks that a system must coordinate

to compute a single solution. Third, DNN partitioning and

collaborative inference are well-established research areas in

CEC that consider the heterogeneity of classical hardware

and the resource asymmetry between edge, fog, and cloud

nodes [41]. Hence, we can directly extend existing work

to determine whether QPUs may improve the quality of

classical methods and are not restricted to orthogonal problems

infeasible for classical computers.

A. System Challenges

We consider the domain properties summarized in Table II

to describe the challenges system designers may face when

implementing our architecture.
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Unlike regular business logic, intelligent tasks (e.g., image

classification, object detection) rely on specialized hardware,

i.e., regardless of whether we include QPUs, the platform

must treat inference requests as a workload with distinct

characteristics.

1) Volatility: The scheduler must dynamically adapt to two

sources of volatility. First, outages in the fog domain are

frequent. Moreover, unlike in the cloud, classical fog resources

cannot seamlessly scale horizontally, i.e., requests may have

to be routed to the cloud. Second, fog and cloud QPUs may

be scarce, and depending on their current state, they may not

hit the target solution quality SLO.

2) Device Heterogeneity: While the challenges of hetero-

geneity of classical components are only tangentially related to

the integration of QPUs, minimal consideration regarding the

numerous accelerators is necessary. Compilers map classical

DNN to computational graphs, and vendors have varying

support for operations limiting the available layer types and

activation functions [33].

3) Task Chaining and Bandwidth Consumption: To fully

draw from the resources on the continuum, we require methods

that onload some computation on client-side accelerators.

However, mobile devices can typically only host a single net-

work in memory, and swapping out DNN weights from storage

incurs significant overhead. Hence, latency-sensitive applica-

tions sending subsequent inference requests for different tasks

must offload, leaving valuable resources idle. Additionally,

when numerous clients compete for limited bandwidth by

streaming high-dimensional image data, the limited bandwidth

will inevitably lead to erratic response delays.

4) Optional Quantum Embeddings: Although the avail-

ability of QPUs is steadily increasing, clients cannot expect

the same graceful scaling of classical resources in the cloud

currently, i.e., depending on the load, it may not be possible to

hit latency SLOs with quantum layers. Therefore, the inference

engine should be flexible enough to skip computing quantum

embeddings for near- and intermediate-term devices.

5) Utilizing Mobile Quantum Devices: Diamond quantum

accelerators are expected to be mature enough soon for

commercial use [25], [37]. However, regardless of how MQ-

PUs improve, analogous to classical hardware, we assume

that server-grade hardware will consistently outperform their

mobile counterparts. The challenge is to conceive methods

that can leverage the advantages of MQPUs, ideally without

sacrificing solution quality.

B. Solution Approach

The simple solution for accommodating multiple tasks and

configurable solution qualities considers a separate DNN for

each variation. This is difficult to maintain and inflexible, forc-

ing client programmers to implement and re-deploy entire ar-

chitectures for each task. Worse, it does not address challenge

3), i.e., applications relying on multiple tasks cannot draw

from client resources without a significant latency penalty.

Instead, we describe how partitioning methods lead to com-

posable architectures that naturally define small deployable

applications.

1) Classical Split Computing: Depthwise split computing

addresses challenges 2)-4) and groups layers into partitions.

Each partition is a feature extractor, and sequentially applying

them is a particular form of hierarchical warm-starting we

introduced in Section V. Platforms can include pre-trained

DNNs in the warm-starting registry of the Control Plane

from. Additionally, client programmers may register modules

according to their requirements. For example, edge devices can

optionally perform preliminary feature compression, and fog

nodes can apply a small- or medium-sized feature extractor

according to solution quality and latency targets.

To address challenge 2), we require an encoder suitable

for constrained end devices (e.g., Smartphones) composed of

operations widely supported by the various vendors of AI ac-

celerators. To address challenge 3), the encoder should perform

initial feature extraction and find a minimal representation for

a sufficient statistic on several downstream tasks to reduce

bandwidth consumption. Then, the server can select an inter-

changeable DNN for additional feature extraction according

to the configured latency and accuracy SLO. Lastly, a QNN

layer should embed the features to potentially improve the

representation before passing it to the classifier. However, to

address challenge 4), i.e., to cope with the limited availability

of QPUs, the QNN should be optional.

2) Quantum Circuit Cutting: Quantum circuit cutting ad-

dresses challenge 5). The idea is to cut large circuits that

require many qubits widthwise into smaller subcircuits requir-

ing fewer qubits [4] by strategically cutting circuit wires [10],

[49] and gates [4], [42]. Figure 4 illustrates an example in

which one wire and two gates are cut. Wire cutting separates

circuit wires through multiple measurements with different

observables Oi and subsequent initializations of the qubit

to state |ψi〉, while gate cutting substitutes two-qubit gates

with varying combinations of single-qubit gates. The stacked

subcircuits in Figure 4 indicate the generation of multiple

variations for each subcircuit.

The widthwise partitioning enables each subcircuit instance

to be executed individually on smaller quantum devices, which

may be more readily available. Following the execution of

these subcircuits, a classical post-processing procedure is

applied to recombine the results obtained from the individual

subcircuits, ultimately reconstructing the output of the original

circuit as a linear combination of the subcircuit results.

This approach facilitates the distribution of quantum cir-

cuit computations across multiple QPUs without necessitating

quantum communication. As a result, quantum circuit cutting

offers the opportunity to harness the power of several smaller

MQPUs at the edge, enabling the computation of larger

quantum circuits. Moreover, it promotes the more flexible

placement of quantum circuits across resources of the compute

continuum. Additionally, once MQPUs are wildly available,

we can leverage them to parallelize the execution of subcir-

cuits. This parallelization can alleviate the overhead associated

with each cut, significantly improving computational efficiency
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and scalability.

Gate Cut

Wire Cut

Fig. 4. Circuit Cutting Basics

3) Inference Flow: To provide intuition on how our pro-

posed approaches can serve client requests with varying re-

quirements, consider the flow of inference requests in Figure 5.

For simplicity, we restrict the example to image classification.

However, the image classification tasks may be different. For

example, one client classifies artwork in a museum to retrieve a

description using a virtual tour guide. Simultaneously, another

client is interested in retrieving descriptions of the local

fauna. Clients with AI accelerators apply neural compression

methods for preliminary feature extraction. Solid black lines

represent the flow of a request within a domain. The dashed red

lines represent inter-domain data transfers. The dashed gray

lines represent the telemetry and provenance data collected

adjacent to inference requests by a runtime spanning all

domains. The runtime is detailed by the Elasticity Plane of

our architecture in Figure 2 and collects telemetry data to

periodically update the SLO-aware load balancer to perform

informed decisions based on the state of each participating

node and client configurations. Dashed black lines represent

an alternative path, i.e., one request flows only to one of the

choices.

An edge load balancer routes the request to the load balancer

of a fog cluster. Depending on load and client requirements,

the request is routed to a Fog GPU node or the cloud.

After feature extraction, a load balancer decides whether

the classical embedding should be passed to a QNN before

classification. The QNN may be executed on a Quantum Fog

Node or sent to a remote cloud provider (e.g., due to privacy or

availability). However, based on our assumption, the MQPUs

are more constrained than the server-grade QPUs from cloud

providers. Hence, circuit cutting methods can aid MQPUs in

achieving a target solution quality. A request ends after the

classification label is sent as a response to the client.

Section VII will detail the DNN architecture and demon-

strate the viability of our proposed approach. Addressing

challenges 1), 5), and introducing runtime components (e.g.,

SLO-aware schedulers, deployment mechanisms) are other

promising research directions but out of scope for this work.

Still, the following describes how a platform may realistically

prepare and deploy the neural network components.
4) Application Preparation and Deployment: The individ-

ual operations of a DNN form a computational graph. More-

over, partitioning methods naturally demarcate a monolithic
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Fig. 5. Inference Engine Request Flow

DNN into connectable vertices. The vertices represent coarse-

grained classical layers or QNN circuits, and one or multiple

consecutive vertices form one depthwise partitioned deploy-
ment unit (e.g., a container). Alternatively, we can further par-

tition a vertice to create one widthwise partitioned deployment
unit (e.g., with circuit cutting). Notably, depthwise methods

define isolated compute nodes, which we can transparently

combine with widthwise methods, i.e., from an outside view,

an adequate abstraction can present a cut circuit as a single

coarse-grained layer.

The client programmers may provide hints to the platform

via annotations, but the application should be deployable as

a single (monolithic) workflow. It is the responsibility of the

Control Plane of our architecture to create the deployment
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units before spawning Quantum and Classical Application

instances. From the point of view of the client programmers,

they have deployed a single application. However, the runtime

system should be aware that the application is split into

multiple parts. Figure 6 illustrates an example with a com-

putational graph of coarse-grained layers. A coarse-grained
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Fig. 6. Coarse Grained Deployment Units

layer consists (recursively) of finer-grained layers. The nodes

are enumerated to indicate the processing sequence, and a

subindex indicates a branching path. A node with the same

index and subindex implies the same partition deployed on

different nodes. Partitions 1-2 are grouped depthwise and

will be deployed as one unit on edge devices. Partition 3.2

is deployed on cloud and fog nodes, while Partition 3.1 is

a different model deployed exclusively on cloud nodes. For

example, Partitions 3.1 and 3.2 could be Feature Extractor L

and M from Figure 5. An SLO-aware load balancer routes the

output of Partition 2 to a variation of Partition 3. Lastly, the

output of Partition 3 is passed on to one of the instances of

Partition 4. Partition 4 is deployed on fog and cloud nodes.

However, it is a QNN circuit that a server-grade cloud QPU

can execute but must be partitioned widthwise (i.e., cut into

subcircuits as described in Section VI-B) for the mobile-grade

MQPUs at the fog nodes.

VII. SPLIT INFERENCE WITH CLASSICAL-QUANTUM

HYBRID PREDICTORS

Arguably, demonstrating that we can extend classical DNN

partitioning methods to classical-quantum DQNN is a neces-

sary precondition for a distributed hybrid inference engine.

Hence, to show the viability of our visions, this section

addresses challenges 2)-4) from Section VI (and partially 1)

with a partitionable neural network architecture where the

runtime of the Elasticity Plane can freely decide using a hybrid

or a classical predictor.

To encourage follow-up work, we open-source a repository

that provides a convenient framework to add configurable

experiments with new circuit or model implementations.

A. Problem Formulation

As advocated for in Section III, we extend a method orig-

inally conceived for CEC to QEC instead of disregarding ex-

isting work. Specifically, we introduce QuantenSplit, a simple

modification of the split inference method FrankenSplit [21]

with depthwise DNN partitioning, to support quantum embed-

dings with QNNs for image classification.

We choose FrankenSplit since it is not limited to a single

head-tail pair, so client devices do not have to swap out

head weights whenever two subsequent requests require a

different head network. Moreover, FrankenSplit focuses the

local resources on bandwidth reduction with a variational

feature compression model, i.e., an extension to support QNNs

addresses challenges 3) and 4) from Section VI-A. The method

draws from the Information Bottleneck (IB) [63] principle

to achieve considerably higher compression rates than hand-

crafted codecs without sacrificing predictive strengths.

We omit the formal, conceptual details and instead refer

to the original work [21]. Here, it is sufficient to consider

FrankenSplit as a framework to train a variational autoencoder

that is particularly selective about the signals it discards

during compression. Notably, attaching different (split) neural

networks for multiple downstream tasks to the autoencoder

is possible. In other words, it permits a platform to deploy

a universal encoder to all participant clients agnostic towards

their particular inference requests.

To determine whether FrankenSplit is generalizable to

hybrid classical-quantum QNN predictors, we answer the

following question: Do the highly compressed features of
the classical universal encoder generalize to downstream
tasks with QNNs? The purpose of this is threefold. First, it

should demonstrate the potential of directly extending existing

classical methods with QPUs. Second, it aims to show the

usefulness of our envisioned architecture from Section IV.

Third, it assesses the viability of our distributed inference

engine discussed in Section VI.

B. Methodology

To answer the above question, we must show that we can

attach hybrid and classical predictors to a single autoencoder-

backbone pair. We consider four datasets resulting in eight

predictors, i.e., for each dataset, we attach one hybrid and one

classical classification model to the base network.

1) Compression and Feature Extraction: Figure 7 illus-

trates the architecture of the modular neural network. The

backbone is a pre-trained split classical neural network that

further extracts features. It is possible to attach several back-

bones of varying sizes (or architectures) such that the network
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is deployable, as depicted in Figure 5. Nevertheless, we only

require attaching multiple (hybrid) classification models to a

single pre-trained backbone for our purposes. The encoder

only relies on widely-supported operations to deal with device

heterogeneity in the edge domain. The number in the bracket

denotes the stage depth. The decoder blocks smooths out

the quantized features and transforms features to suit the

backbone. The split Swin-Tiny backbone is described in [35],

except the first two stages are discarded. The difference from

the original work is that we attach hybrid classification models

in addition to the classical ones.

2) Classification Models: A classical classifier is a simple

two-layer Multi-Layer Perceptron (MLP). Figure 8 illustrates

the Ansatz of the QNN with four qubits and layers. A Hybrid
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Fig. 8. Hybrid QNN with Four Qubits and Layers

QNN model takes as input the n-dimensional real-valued

feature vector Z
n and classically projects it to a vector with

dimensions equal to the number of qubits. Then, it passes the

features as input to the Ansatz. Regardless of circuit depth,

it first applies a Hadamard H Gate and a parameterized Z-

rotation RZ to embed features in the quantum node. Next,

it applies a repeating sequence of trainable variational layers.

A layer consists of pairwise (shifted) C-NOT gates followed

by alternating parameterized Y - or Z-rotations, i.e., a layer

with Y -rotation is followed by a layer with Z-rotations. The

number of layers is a hyperparameter given by the depth of the

circuit. Lastly, it passes the measurements to a fully connected

layer to output the class scores. The skip connection is inspired

by classical Residual Neural Networks [29]. Adding the skip

connection is configurable as a hyperparameter.

C. Training and Implementation

We first separately train the autoencoder on the 1.28 Ima-

geNet [55] training samples according to the baseline objective

function of FrankenSplit. Then, we freeze the parameters and

train each attached classification model sequentially using the

cross entropy loss function. We use Adam optimization [30]

for the autoencoder and all classification models. Applying

widthwise partitioning methods, such as circuit cutting, is

out of the scope of this work. A detailed description of the

training parameters can be seen in the configuration files of

the accompanying repository.

We did not perform exhaustive hyperparamter tuning or

experiments regarding optimizers. We implement our models

using PyTorch [51] and CompressAI [5]. The backbones and

pre-trained weights are from PyTorch Image Models [68]. For

numerical simulations of the quantum circuits, we use Penny-

Lane [7]. To ensure reproducibility, we extend torchdistill [40].

D. Evaluation

Our experiments are conducted on small-scale simulations

with considerably fewer classes than the original work. There-

fore, to draw meaningful insights from our results, the dimen-

sions of the classical models are set equal to the number of

qubits of their hybrid counterparts., i.e., the MLP first projects

the high-dimensional backbone features to a low-dimensional

classical embedding. For example, in an experiment with

four qubits, we compare a hybrid predictor with a classical

baseline predictor where the first layer of the MLP projects

the backbone features to a four-dimensional representation.

To emulate the scenario of Section VI with clients re-

TABLE III
TRAINING AND TEST SUBSETS OF ILSVRC

Task Classes Training Samples Test Samples

Nutriment 10 13’000 500
Felidae 13 16’900 650

Buildings 14 18’200 700
Vessels 23 29’900 1150

questing inference from diverse environments, we create four

thematically unrelated datasets from the 1000 labels from the

ILSVRC classification task. Table III summarizes each dataset

representing a different location requiring separate predictors.

The accompanying repository contains a script and instructions

to recreate the datasets.

We run experiments with 4, 6, 8, and 10 qubits with a

classical predictor as the baseline. The depth of the circuit

is fixed at 8. We performed additional experiments with

varying depth sizes and found that increasing the depth yields

diminishing accuracy improvement. Table IV summarizes our

results. The Plots in Figure 9 and Figure 10 show how a hybrid
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TABLE IV
TOP-1 (ERR)OR OF (C)LASSIC, (H)YBRID, HYBRID WITH (RES)IDUALS

Qubits Top-1 Err. C. (%) Top-1 Err. H. (%) Top-1 Err. H. Res. (%)

Nutriment

4 13.00 37.13 12.11
6 11.73 25.20 10.40
8 11.30 16.90 10.07

10 10.69 14.80 9.58

Felidae

4 19.82 31.57 19.05
6 17.60 29.07 16.77
8 16.77 18.77 15.85

10 16.56 18.31 15.31

Buildings

4 9.29 31.57 8.57
6 7.26 14.86 6.86
8 6.14 10.57 5.71

10 5.74 9.00 5.27

Vessels

4 32.43 62.00 30.69
6 27.82 48.52 26.00
8 25.48 31.56 24.96

10 24.26 25.87 23.91

model without and with the skip connection compares to their

classical counterpart for each dataset. Relative to the classical

Fig. 9. Hybrid QNN without Skip Connection

baselines, Hybrid QNNs without skip connections gradually

approach comparable, albeit still worse, Top-1 error as we

increase the number of qubits. For 4 and 6 qubits, the Top-1

error is roughly 20-30% worse while the difference narrows

to 2-5%. Interestingly, Hybrid QNNs with skip connections

consistently outperform the classical baselines across all num-

bers of qubits. Although the motivation of skip connections in

classical residual networks is to mitigate accuracy saturation

for very deep neural networks, they essentially learn a residual

function. Considering the autoencoder-backbone pair already

heavily processes the input data, we hypothesized that a

QNN could find more suitable representations for the classical

features for some instances. In contrast, a QNN could decrease

the performance for samples already sufficiently processed

for classification. The QNN narrowing the performance gap

with increasing qubits is consistent with our assumptions. The

model without a skip connection cannot find a representation

as good as the initial input for a low number of qubits.

Conversely, the QNN with a skip connection can learn the

residual function and sees a performance gain for the samples,

where a quantum embedding is useful.

Fig. 10. Hybrid QNN with Skip Connection

A skip connection was the first intuitive attempt to provide

empirical evidence, and the initial results seem promising.

Nevertheless, we remind the reader that QuantenSplit only

serves as a PoC to determine whether our vision is viable.

The evaluation strategy is not extensive enough, and thus, our

results should not be considered conclusive. Moreover, even

with the skip connection, the hybrid model only marginally

outperforms the classical model across all tasks simulations

with a noise free device. We did not experiment with op-

timization algorithms more appropriate for QNNs. Further,

the backbone is classical, i.e., the extracted features may be

biased favorably towards classical predictors. Future work

can significantly improve our results by experimenting with

more sophisticated approaches for mapping low-dimensional

qubits to a high-dimensional feature space [50]. Additionally,

once training large QNN extractors is feasible, it would be

interesting to determine whether we can train the classical

compression model to find suitable representations for QNN

embeddings.

VIII. CONCLUSION

This work presented our vision of integrating quantum

computing into the edge-cloud continuum. We summarized

existing literature in quantum and classical computing relevant

to our work and subsequently described the importance of ex-

tending existing classical systems for the edge. Then, we intro-

duced an architecture for a hybrid classical-quantum platform

and identified the critical challenges of integrating QPUs. We

focused on facilitating research efforts in quantum applications

with warm-starting and AI inference for distributed intelligent

tasks. Lastly, we extended a classical split inference method to

support Hybrid QNNs. Our results provide empirical evidence

for the viability of our vision and suggest that our ideas are

interesting research directives.
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[69] Karoline Wild, Uwe Breitenbücher, Lukas Harzenetter, Frank Leymann,
Daniel Vietz, and Michael Zimmermann. Tosca4qc: two modeling styles
for tosca to automate the deployment and orchestration of quantum
applications. In 2020 IEEE 24th International Enterprise Distributed
Object Computing Conference (EDOC), pages 125–134. IEEE, 2020.

[70] Michael Wurster, Uwe Breitenbücher, Kálmán Képes, Frank Leymann,
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