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Abstract—The increasing complexity of IoT applications and
the continuous growth in data generated by connected devices
have led to significant challenges in managing resources and
meeting performance requirements in computing continuum
architectures. Traditional cloud solutions struggle to handle the
dynamic nature of these environments, where both infrastructure
demands and data analytics requirements can fluctuate rapidly.
As a result, there is a need for more adaptable and intelligent
resource management solutions that can respond to these changes
in real-time. This paper introduces a framework based on multi-
dimensional elasticity, which enables the adaptive management
of both infrastructure resources and data analytics requirements.
The framework leverages an orchestrator capable of dynamically
adjusting architecture resources such as CPU, memory, or band-
width and modulating data analytics requirements, including cov-
erage, sample, and freshness. The framework has been evaluated,
demonstrating the impact of varying data analytics requirements
on system performance and the orchestrator’s effectiveness in
maintaining a balanced and optimized system, ensuring efficient
operation across edge and head nodes.

Index Terms—Data Analytics, Multidimensional, Elasticity,
Management, Cloud continuum

I. INTRODUCTION

The exponential growth of data, driven by the widespread
adoption of IoT devices, has transformed sectors such as
healthcare, industry, and smart cities [1], [2]. This data ex-
plosion requires advanced data analytics for these sectors to
generate actionable insight from vast, complex datasets. How-
ever, cloud infrastructures are increasingly struggling to meet
the stringent quality, responsiveness, and real-time processing
requirements of these applications. The complexity of inter-
connecting large numbers of devices, combined with the need
to meet data analytics requirements and decision-making, has
highlighted the limitations of traditional cloud solutions [3]. In
response to these challenges, the Computing Continuum (CC)
has emerged as a solution integrating cloud, edge, and IoT
environments, enabling more efficient resource distribution
and real-time processing closer to the data source [4], [5].

Nevertheless, the management of data analytics require-
ments within an application can evolve over time, which
can lead to sub-optimal performance, and it is crucial to
dynamically adapt resources in response to changing demand.
Incorporating elasticity thus becomes essential [6]. Elastic-
ity [7] can be defined along three fundamental dimensions:
quality, resources, and costs. In previous work [8], we explored

quality-related elasticity for data analytics, but this approach
is limited. In complex applications, elasticity must go beyond
quality to encompass all dimensions. This can provide a
more complete view of the system and enable more effective
management, ensuring optimal performance in a CC context.

This work presents a multi-dimensional elasticity manage-
ment approach designed to adaptively handle both infras-
tructure and data analytics requirements. Unlike traditional
resource-level elasticity models, multi-dimensional elasticity
further incorporates data analytics-related requirements; cov-
erage, sample, and freshness. By accounting for both resource
management and analytics needs, this approach provides a
richer adaptation space that can effectively respond to varying
data demands. When infrastructure resources can no longer
scale, the system can adapt analytics requirements to maintain
acceptable performance. This flexibility ensures that, even with
limited resources, analytical tasks can be executed without
compromising the operability of the infrastructure. In this
direction, we make the following contributions:
• A framework (§ III) for multi-dimensional elasticity man-

agement in the CC, tailored to data analytics applications.
It encompasses the three key data analytic requirements
(§ III-A): coverage, sample, and freshness, alongside tra-
ditional elasticity dimensions [9], ensuring a balanced and
adaptive approach to data analytics management.

• A Reinforcement Learning (RL) component for managing
resource elasticity in CC environments (§ III-D3). This RL-
based predictor is integrated into an orchestrator (§ III-D)
which enables dynamic and autonomous resource adaptation
to meet analytics requirements while balancing cost and
other resource constraints.

• An experimental evaluation (§ IV) of the impact of data
analytics requirements and their adaptations on compute
resource consumption, as well as of the decision-making
performance of our RL-based orchestrator in terms of
meeting analytics quality, resource consumption, and infras-
tructure cost objectives.

II. RELATED WORK

Management and orchestration in the CC has received
significant attention. In [10], a comprehensive survey of or-
chestration strategies is presented, highlighting the various
challenges and solutions for managing distributed computing
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resources. This study delves into the state-of-the-art orchestra-
tion frameworks and their use in hybrid cloud environments.

The integration of AI with orchestration strategies is dis-
cussed in [11]. It emphasizes how AI techniques, especially
machine learning, can optimize resource allocation, workload
balancing, and dynamic adaptation in cloud continuum en-
vironments. Technology-oriented orchestration solutions are
examined in [12], where the authors discuss how modern
technologies, such as those related with containerization, are
employed to manage resources in edge-cloud infrastructures.
This study highlights the practical deployment issues and
potential technological advances required to support scalable
orchestration. Although these surveys provide a rich under-
standing of orchestration frameworks, they often lack practical
proposals to deal with the particularities of data analytics.
On the simulation side, [13] focuses on simulation-based
approaches for managing scenarios in the cloud continuum
but lacks practical results for real-time resource management.
Lastly, in [14], the authors present insights into managing
cloud-to-edge infrastructures but emphasize the need for a
more holistic approach to address the complexity of modern
IoT and cloud environments.

In conclusion, while many studies offer valuable insights
into orchestration and resource management in cloud contin-
uum environments, there is a clear gap in the practical proposal
or implementation of multi-dimensional elasticity for real-time
analytics, which this work aims to address.

III. ADAPTIVE ELASTICITY FOR DATA ANALYTICS IN THE
CC

Elasticity within the CC architecture is fundamental to
enabling dynamic adaptation of both infrastructure resources
and data analytics requirements. This elasticity spans multiple
dimensions that impact both the operational efficiency and
the performance of analytics applications. In this context,
we propose a comprehensive framework for managing multi-
dimensional elasticity in data analytics for the CC. These
dimensions, illustrated in Fig.1a, reflect the different factors
that influence the adaptability of both computing resources
and the data analytics themselves.

At the operational level, elasticity focuses on the efficient
use of resources like CPU, memory, and energy, ensuring
that these computing resources can be dynamically adjusted
to changing workloads. This level also involves managing the
cost associated with using infrastructure resources, particularly
in environments where resource consumption is billed based
on usage. At the application level, elasticity manages the
specific requirements of data analytics, such as the quality
of results, the frequency at which data is processed, and
the timeliness of the analytics outcomes. These dimensions
require careful balancing by the orchestrator to ensure that
the infrastructure can meet performance expectations without
exceeding resource or cost limitations. Furthermore, these
dimensions are interrelated, since changes in one can affect
others. E.g., increasing the sample size to improve the quality

of analytics, leads to higher resource consumption, impacting
the CPU, and bandwidth, and potentially increasing costs.

To achieve this, we propose an RL-based predictor com-
ponent integrated within the orchestrator. This RL-based pre-
dictor enables dynamic and autonomous resource allocation,
ensuring that the system can meet the specific data analytics
requirements (e.g., freshness, coverage, sample size, response
time) while considering cost and resource constraints. How-
ever, if the architecture cannot provide the necessary resources,
the orchestrator can also modify the initial data analytics
requirements within predefined boundaries.

A. Data Analytic Requirements

Data analytics requirements define the key parameters for
executing analytics tasks and are dynamically managed by the
orchestrator as part of the elasticity framework. These require-
ments are defined within certain limits and can be encoded as
Service Level Objectives (SLOs), allowing the orchestrator to
modify them as necessary to optimize the balance between
system performance and resource availability. The core data
analytics requirements managed by the orchestrator include:
• Freshness: Indicates the frequency at which the analytics are

to be executed. Depending on the purpose of the analytics,
it may be necessary to execute them more or less frequently
within a given period.

• Coverage: Indicates the available locations from which
analytical data is desired. It can be specified using identifiers
provided by the orchestrator, which are associated with
different locations in the infrastructure.

• Sample: This requirement indicates the percentage of rep-
resentative samples desired from the specified locations.
Within each location, various devices are generating the
required information. Depending on the analytics’ objective,
a complete representative sample or only a portion can be
chosen using this parameter.

• Response Time: Sets the response time desired for deliver-
ing the requested analytics.

• Cost: Represents the desired budget available to pay for the
execution of the analytics.
Finally, Figure 1b shows the graphical impact of the cov-

erage, freshness, and sample requirements. Expanding the
coverage area increases the number of nodes involved in the
analysis while increasing freshness requires more frequent
updates and data processing. Similarly, a larger sample size
means more data needs to be processed and transferred.

B. Architecture Dimensions

Dimensions are grouped into three categories based on
the different entities in the architecture: computing nodes,
networks, and data. Each category encapsulates critical dimen-
sions that the orchestrator considers when adapting the system
to meet analytics requirements and maintain performance.
• Computing node: Represents the hardware responsible for

executing data analytics within the infrastructure. Key met-
rics monitored include CPU usage, which tracks processing
capacity, available RAM (MEM), geographical location,



Fig. 1. Multidimensional Elasticity Management in CC

which identifies where the node is situated, energy con-
sumption, referring to the power usage, and computing cost,
indicating the expense associated with utilizing the node’s
computational resources.

• Network: The network entity encompasses various aspects
related to data transfer and communication between com-
puting nodes. Key metrics include bandwidth, which refers
to the available capacity for data transfer, transfer cost,
which is the expense associated with moving data across
the network, and latency, which measures the time taken to
transfer data between nodes.

• Data: The data entity focuses on the properties of the
data being processed within the infrastructure. Key metrics
include volume, which denotes the total amount of data,
providing insight into the scale of data processed for re-
source optimization. Refresh rate refers to the frequency
at which data is updated from its source, indicating how
often new data is available. Processing time measures the
duration between the start of data analytics and the retrieval
of results. Lastly, storage cost reflects the expense associated
with storing data in the infrastructure.

C. Relationships Between Data Analytics Requirements and
Architecture Dimensions

Understanding the relationships and impacts that data an-
alytics requirements have on various dimensions of the in-
frastructure is critical to managing the performance, resource
allocation, and overall efficiency of the CC architecture.
Direct relationships refer to explicit connections between spe-
cific data analytics requirements and architecture dimensions.
These relationships show how a change in one element directly
influences the behaviour or performance of another.
• Coverage and Location: Coverage determines the geograph-

ical locations from which data analytics are conducted,
creating a direct link with the Location of computing nodes.
A broader coverage area requires more geographically dis-
persed computing nodes to collect and process data from a
larger set of locations.

• Sample and Volume: The Sample size refers to the percent-
age of data or devices used for data analytics. A larger

sample size results in more end devices or data points
contributing to the analysis, which in turn increases the total
volume of data to be processed and stored.

• Freshness and Refresh rate: Freshness measures how up-to-
date the data is, and it is directly tied to the refresh rate of
data updates. A higher refresh rate ensures more frequent
updates, thereby maintaining the real-time relevance and
freshness of the data being analyzed.

Indirect relationships are more complex and less apparent
connections between data analytics requirements and infras-
tructure dimensions, but they can significantly impact system
performance. This work focuses specifically on the impact of
coverage, sample, and freshness for CPU. Larger coverage and
sample size entail processing data from more computing nodes
and data sources, thus increasing CPU usage. Lastly, higher
freshness involves more frequent data updates to process,
which places a greater load on CPU resources. These indirect
effects on CPU usage are critical in shaping overall system
performance, as highlighted in Section IV.

D. Orchestrator
The orchestrator is a pivotal component in the CC architec-

ture, responsible for jointly managing the elastic requirements
of data analytics and adapting the infrastructure to the evolving
needs of both the infrastructure and the analytics. In our
framework, the core decision-making logic of the orchestrator
is implemented by an RL-based agent that carries out run-time
adaptations at the resource and analytics levels. This two-level
dynamic adaptation ensures a balance between performance,
cost, and resource availability. The orchestrator consists of
three main modules that work in tandem, as illustrated in
Fig. 2, which are detailed below:

1) Architecture Monitor: This module is responsible for
continuously tracking the resource dimensions of the archi-
tecture. It gathers metrics related to available resources such
as CPU usage, memory, network bandwidth, or energy con-
sumption. Additionally, it monitors costs and other critical data
points, such as response time and service-level performance,
ensuring that the orchestrator has a real-time snapshot of the
system’s operational status.



2) Analytics Monitor: The Analytics Monitor oversees the
status of the data analytics running on the system. This module
collects and stores consumers’ requirements, such as data
freshness, coverage, and sample size. These requirements are
then compared with the real-time status of the system, as
reported by the Architecture Monitor, to identify potential
mismatches or inefficiencies.

3) RL-based Predictor: By interacting with the environ-
ment (CC and the deployed analytics application), this module
learns how to take appropriate adaptation actions at runtime.
The space of available actions is defined along the three
elasticity dimensions, with the goal of meeting quality, cost,
and resource-related requirements expressed as SLOs. In the
absence of a precise model of the environment and of the
way adaptation decisions affect SLO fulfillment, we apply a
Q-Learning (QL) framework on which we elaborate below, to
learn the optimal adaptation policy.

a) System model: We design a QL agent that obtains
system-wide state information from the Architecture Monitor
(CPU utilization, capacity) and the Analytics monitor (analyt-
ics application configuration) and applies specific actions at
discrete time steps. Each action brings the system to a new
state and comes with a reward that the agent receives. The
agent aims to derive a value function Q : S ×A → R, which
represents the expected cumulative discounted future reward
if the agent selects action a ∈ A at state s ∈ S and continues
by following the optimal policy.

b) State (S) and action (A) spaces: A state encodes
the following information: (i) node CPU utilization, (ii) the
amount of resources allocated at compute nodes, and (iii) the
analytics configuration in terms of freshness (data collection
frequency) and sample size (percentage of data sources acti-
vated). At each state, the agent picks an action that encodes
(i) the analytics application configuration and (ii) the resource
configuration, i.e. the amount of compute capacity allocated
to nodes. Note that these actions capture the quality (data
freshness, sample size), resource (CPU utilization, allocated
capacity), and cost (allocated capacity) elasticity dimensions.

We make a number of simplifications. First, compute
nodes and the respective analytics application instances are
considered identical, i.e., the same amount of resources is
allocated, the same processing capabilities are assumed, and
the analytics configuration is the same. In consequence, node
CPU utilization state is considered binary: if there is at least
one compute node that is overloaded, the system as a whole
is considered over-utilized.

Second, we discretize the state and action spaces. There is
a fixed number of possible resource allocations, and scaling
in/out is implemented by selecting the number of application
instances to launch on a node out of a fixed (small) set of
values; this would translate to spinning up a new container
to add data processing capacity. The same applies to ana-
lytics application configurations. frequency and sample size
are restricted to a small number of levels. For example, in
our evaluation, each of the available resource and analytics
configuration actions can take one of four values. Combined

with the two potential CPU utilization states, this leads to a
space of 2× 4× 4× 4 states.

Finally, in this instantiation of the QL agent, we do not
consider analytics coverage. Assuming identical nodes and
application instances, the state and action spaces can be
extended to account for this case, e.g. by adding a state
component encoding the number of locations/nodes active and
an action to drop (add) a random compute node to reduce
overall CPU utilization (increase coverage).

c) Reward structure: We assume SLOs are in place to
encode infrastructure and application requirements. In par-
ticular, let SLOCPU , SLOc, SLOf , and SLOs denote the
required maximum CPU utilization (percentage), maximum
cost in terms of the number of instances deployed, minimum
data freshness (frequency) and minimum sample size (per-
centage). If any such SLO is met, this contributes a fixed
amount (respectively, rCPU , rc, rf , and rs) to the collected
reward. Otherwise, this fixed amount is subtracted. This design
provides flexibility to prioritize different operator preferences
by tuning these amounts. For example, in our evaluation, we
set rf = 10 and rCPU = rc = rs = 1 to drive our QL agent
towards actions that favor SLOf fulfillment, potentially at the
expense of other SLO violations.

Fig. 2. Orchestrator with RL-Based Elasticity Management in the CC.

IV. EVALUATION

A. Methodology

In this section, we evaluate our elasticity framework fol-
lowing a twofold strategy. First, via testbed experiments, we
demonstrate the impact of data analytics requirements and
their adaptations on resource (CPU) usage. To do so, we
apply our system to a realistic use case from the Smart Cities



domain. Second, via simulation, we showcase the effectiveness
of our QL agent to learn the appropriate adaptation policies
and flexibly support different operator and customer priorities
in terms of SLO fulfillment.

B. Case study and experimental setup

We present a case study involving a smart city deployment,
where the city aims to improve urban planning and public
safety through advanced data analytics. The system monitors
human movement in different areas of the city to generate
heatmaps that help identify patterns, risks, and opportunities
for optimizing city services. The city has implemented a
distributed infrastructure with nodes equipped to process and
store data analytics. The orchestrator coordinates the execution
of data analytics, ensuring that the specified data analytics
requirements are met. The infrastructure is hierarchical, with
a central head node aggregating data from edge nodes located
across different parts of the city. These edge nodes collect in-
formation from local sensors monitoring a person’s movement.

We evaluate the impact of data analytics requirements (i.e.,
coverage, sample, and freshness) on CPU usage across the
infrastructure. The infrastructure consists of one headnode
and three edge nodes (edgenode1, edgenode2, edgenode3),
simulating a system that generates heatmaps of the city’s
different areas using the One simulator to generate the person
movement dataset [15]. Edge nodes generate heatmaps of their
respective areas, which are then aggregated by the head node
to produce a unified heatmap.

C. Impact of data analytics requirements

In Fig. 3a, we observe that as coverage increases, more
edge nodes are progressively engaged, leading to a staggered
rise in CPU usage. Initially, only one edgenode is active,
but as more geographic areas are covered, additional nodes
become involved, creating a stepwise pattern in CPU utiliza-
tion. Simultaneously, the headnode’s CPU usage also rises
as it processes the increasing amount of data from multiple
edge nodes. In Fig. 3b, as the sample increases, CPU usage
gradually rises across all edge nodes. Similarly, the headnode
shows a CPU increase as it processes the increasing volume
of data. This behavior reflects how larger samples translate to
the collection of more data for analytics, resulting in higher
processing demands for both the edge nodes and the headnode,
which aggregates all the incoming data. In Fig. 3c, as freshness
increases, there is a higher demand for frequent data updates.
The edge nodes show a relatively constant CPU usage but
with an increased periodicity of spikes as freshness increases.
This indicates that the system is processing updates more
frequently. However, the headnode exhibits a more gradual
increase in CPU usage, reflecting the higher frequency of
data processing as it aggregates information from the three
edge nodes at an increased rate. In summary, the assess-
ment highlights the significant impact of these data analytics
requirements on the entire CC infrastructure. These results
underscore the importance of multi-dimensional elasticity and

the ability of the orchestrator to dynamically adjust these ana-
lytics requirements in the face of resource scaling limitations,
ensuring a flexible and balanced response to fluctuations in
workloads and resource availability.

D. Impact of adaptation actions

We then present an experiment that demonstrates the sys-
tem’s behavior at the resource level when adaptation decisions
are made. The orchestrator monitors CPU utilization across
all infrastructure and adjusts the data analytics requirements
dynamically to prevent overloading any of the nodes. In the
example of Fig. 4, it can be observed how the CPU shows
an increase, prompting the orchestrator to pick an action
that adjusts the sample size to reduce the load. The system
then moves to a state where high usage persists. The next
orchestrator action is to modify freshness, decreasing the
update frequency, thus transitioning to a state with low CPU
usage and maintaining system balance.

E. RL-based predictor performance

We finally demonstrate the decision-making performance
of our QL-based predictor. We simulate an environment with
four nodes and configure them so that they have the same
average data processing capacity and the same average number
of data sources (e.g., IoT devices) attached to them. At each
time step, the QL agent picks one of the admissible system
configurations, each prescribing a combination of freshness
(update frequency), sample size, and node capacity (and thus
deployment cost). There are four distinct possible values for
each of these parameters, leading to a space of 64 actions,
while there are 128 states. The CPU utilization SLO is set to
SLOCPU ≤ 80%, while analytics quality SLOs are set such
that SLOf is at least half of the maximum possible data col-
lection frequency, and SLOsample ≥ 50% of the data sources.
The cost-related SLOc is defined relative to the maximum
allowed per-node capacity; the more the capacity, the more the
cost. To elaborate, there are four scaling levels with increasing
infrastructure cost, and node resources should not be scaled
to more than SLOc, otherwise this SLO is violated. If under
a given configuration the data intensity (volume of data to
process per second) is higher than SLOCPU of the node’s
nominal data processing capacity, then with high probability
the node transitions to an overloaded state. We run five sets of
experiments, each with a different reward configuration and
thus performance priority, and measure the SLO fulfillment
ratio after the QL algorithm has converged. As Table I shows,
when the relative importance of a specific SLO is high (e.g.,
when freshness matters more, the rf reward component is 10×
higher than the other components), the QL-based predictor
fulfills this SLO close to 100% of the time, while other SLOs
may suffer. Putting equal importance to all SLOs, on the other
hand, achieves a good trade-off (last row of Table I).

V. CONCLUSION

Elasticity within the CC is critical in enabling infrastruc-
ture and application requirements to adapt seamlessly and



Fig. 3. Impact of data analytics requirements on CPU usage.

Fig. 4. Orchestrator adapting data analytics requirements to manage CPU
usage.

TABLE I
SLO FULFILLMENT RATIOS FOR DIFFERENT REWARD CONFIGURATIONS.

Priority Reward structure SLO fulfillment ratio
(rCPU : rf : rs : rc) CPU load Freshness Sample Cost

CPU load 10:1:1:1 0.996 0.920 0.795 0.797
Freshness 1:10:1:1 0.894 0.992 0.804 0.809
Sample 1:1:10:1 0.873 0.913 0.984 0.781
Cost 1:1:1:10 0.875 0.908 0.783 0.984
Balanced 1:1:1:1 0.974 0.979 0.953 0.952

responsively to changing conditions. Therefore, this paper
presented a novel framework for managing elasticity in the CC,
focusing on the dynamic needs of data analytics. Integrating
RL concepts showed promising results in terms of jointly
and flexibly adapting infrastructure resources and analytics
configurations. This opens up interesting directions for future
work, particularly towards devising more sophisticated RL
strategies and further operationalizing our framework.
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