
Towards Multi-dimensional Elasticity for
Pervasive Stream Processing Services

Boris Sedlak∗, Andrea Morichetta∗, Philipp Raith∗, Vı́ctor Casamayor Pujol†, and Schahram Dustdar∗†
∗Distributed Systems Group, Vienna University of Technology (TU Wien), Vienna 1040, Austria.

Email: {b.sedlak, a.morichetta, p.raith, dustdar}@dsg.tuwien.ac.at
†Engineering Department, Universitat Pompeu Fabra (UPF), Barcelona 08018, Spain.

Abstract—This paper proposes a hierarchical solution to scale
streaming services across quality and resource dimensions. Mod-
ern scenarios, like smart cities, heavily rely on the continuous
processing of IoT data to provide real-time services and meet
application targets (Service Level Objectives – SLOs). While the
tendency is to process data at nearby Edge devices, this creates
a bottleneck because resources can only be provisioned up to a
limited capacity. To improve elasticity in Edge environments, we
propose to scale services in multiple dimensions – either resources
or, alternatively, the service quality. We rely on a two-layer
architecture where (1) local, service-specific agents ensure SLO
fulfillment through multi-dimensional elasticity strategies; if no
more resources can be allocated, (2) a higher-level agent optimizes
global SLO fulfillment by swapping resources. The experimental
results show promising outcomes, outperforming regular vertical
autoscalers, when operating under tight resource constraints.

Index Terms—Elasticity, Edge Intelligence, Reinforcement
Learning, Service Level Objectives, Stream Processing

I. INTRODUCTION

IoT adoption has grown significantly in areas where it pro-
vides clear value to human society, such as home automation,
smart health, and smart city infrastructure [1] – these use
cases are characterized by incessant amounts of streamed data.
Smart city scenarios, for example, can involve collecting and
analyzing video and images, sound, movement, and tempera-
tures through stream processing services. On top of this, these
services must operate within runtime requirements, e.g., latency
or quality, which are called Service Level Objectives (SLOs).
Latest advances in Edge computing help ensure SLOs because
they extend the IoT domain with powerful, decentralized com-
puting infrastructure [2] to process IoT data with low latency.
Each service in a larger smart city application has specific SLOs
to fulfill, which help maintain the overall equilibrium. This
work focuses on a scenario where an Edge node provisions the
execution of multiple services. We envision a smart city use
case where connected devices, such as a video camera and a
vehicle, each provide data to a dedicated service for workload
execution at the Edge, as illustrated in Figure 1.

Transitioning from the Cloud to decentralized Edge com-
puting platforms can improve real-time processing and privacy
preservation; however, there is one thing that Edge computing
cannot (yet) provide to the same extent: resources. Ensuring
SLOs in the Cloud has a long history, where the success-
ful recipe [3] is to allocate additional resources in case the
performance is mitigated. Edge devices can also be equipped
with powerful hardware – thus often called Edge servers – but

Quality

Edge Resources

Processing Service

stream
data

Latency
Energy

Service Level Objectives

Latency

IoT Sensing

provide
metrics

Scale
Resources

Scale
Quality

Fig. 1: Processing IoT data at resource-constrained devices; if
SLOs are violated, scale either resources or service quality

their ability to scale according to changing demands inevitably
hits a resource limit. To circumvent this, it is possible to
compose Edge and Cloud computing layers – called the Com-
puting Continuum (CC) [4] – which can provide collaboration
between devices, e.g., offloading load within the CC. This
work, however, excludes offloading and focuses on methods
for guaranteeing SLO fulfillment at a single Edge device.

Ensuring SLOs at the Edge requires alternative elasticity
strategies – apart from provisioning additional resources. To
provide more flexibility, the solution can be to scale services
within three dimensions [5]: quality, cost, and resources. In this
sense, multi-dimensional scaling strategies [6], [7] can dynam-
ically decide how to optimize the application. For example, in
case there are unclaimed resources, provide them to a service,
or otherwise, scale down the quality; this is shown in Figure 1.
Contrarily, existing autoscalers, even if dynamic, solely scale
resources. This can combine vertical and horizontal scaling into
a hybrid approach, as done by Lombardi et al. [8], or adjusting
SLOs based on environmental changes, e.g., when additional
clients join, as done by Horovitz et al. [9]. Lightweight scaling
solutions for serverless functions, as done by Zhao et al. [10],
also help to ensure SLOs for stream processing. Although
these solutions do target resource-restricted devices, they do not
harness the potential of other elasticity dimensions in scenarios
where no more unoccupied resources can be provisioned.

To fill this gap, this work proposes a novel Edge-based
autoscaler that elastically scales stream processing services in
two dimensions: resources and quality. Our architecture consists
of two layers of scaling agents: in the first layer, each service
is extended with a Deep Reinforcement Learning (DRL) agent,
which optimizes local SLO fulfillment by scaling resources or
quality. These service-specific agents act greedily, which means
that they can claim resources that other services might need.

ar
X

iv
:2

50
3.

04
19

3v
1

 [
cs

.P
F]

 6
 M

ar
 2

02
5

Hence, if the processing resources are exhausted, a higher-layer
agent tries to improve global SLO fulfillment by reallocating
resources. Our evaluation underlines how this approach can
improve SLO fulfillment under tight resource constraints, which
motivates integrating it into existing CC platforms [11].

II. METHODOLOGY

In this section, we first describe the processing environment
in which the scaling agents are embedded. Then, we present
the design of the agents, focusing on how they interact with the
environment for sensing, model training, and decision-making.

A. Processing Environment

Together, the data provider, processing service, and data con-
sumer (cfr. Fig. 1) form a generalizable end-to-end streaming
pipeline in which data streams from IoT devices are processed
on nearby Edge devices and relayed to end users.

Service definition We define a service as s = ⟨f, C,M,Q⟩,
which describes the processing function (f), the service con-
figuration (C), and metrics (M) generated during execution.
The quality of a processing service, such as video resolution,
is adjusted through the service configuration. Q contains a list
of SLOs that should be fulfilled during runtime, where a single
SLO q ∈ Q is defined by q = ⟨v, rel, t, w⟩. This implies that
a variable (v) should either be higher or lower (rel) than a
threshold (t). For example, a video processing service could
aim for a satisfactory frame rate through q = ⟨fps, >, 25, 1.0⟩,
or save energy by limiting its allocated CPU cores through
q = ⟨cores, <, 5, 0.5⟩ These SLOs are ranked according to a
weight (w), which will be used by the scaling agents to rank
its objectives. Given a metric m ∈ M that reflects variable v,
the SLO fulfillment (ϕ) is calculated as in Eq. (1).

ϕ(q,m) =

{
m
t , if rel =′>′

1− m
t , if rel =′<′ (1)

Metrics on a scale m ∈ [0,∞), such as fps, thus produce values
that start from 0.0 (= 0% fulfillment) and can exceed 1.0. Values
for cores, however, fall into m ∈ [1, cphy] with t = cphy . Thus,
allocating fewer cores provides higher SLO fulfillment.

Granular SLO fulfillment Most established Cloud plat-
forms [3] employ binary logic to determine SLO fulfillment.
In contrast, Eq. 1 provides a fuzzy ratio quantifying the extent
of the SLO fulfillment. We favor this approach as it enables a
more fine-granular elasticity control for autoscalers.

Service execution The service execution on an Edge device
is wrapped in a Docker container. Thus, container resources can
be vertically scaled by adjusting the number of allocated CPU
cores. Notice, how Edge devices are constrained in numerous
other ways (e.g., network or GPU), which can be scaled in
future work. In the context of this paper, we define a device
d = ⟨cphy⟩ through its number of physical CPU cores.

B. Design of Scaling Agents

Within this processing environment, we develop a two-
layer scaling solution based on a hierarchical setting of agents
that ensures processing SLOs on Edge devices through multi-
dimensional elasticity; Fig. 2 provides a high-level overview:

Processing Service

Observe
Metrics

RL Algorithm

Linear Gaussian BN

Training Env

Deep Q Network

Train
LGBN

Provide
DQN

Global Service Optimizer
Estimate Swapping

action

action

Collect States &
Orchestrate Resource Swap

1. Continuous Service Observation 2. Model Training3. Multi. Scaling

state

4. Global Optimization

Fig. 2: High-level view of the three-step methodology; con-
tinuously observing service executions, training an inference
model, and using it for multi-dimensional scaling

(1) Processing services are monitored to collect their states and
respective SLO fulfillment; (2) each service is then extended
with a Local Scaling Agent (LSA), which learns a scaling
policy that optimizes SLO fulfillment; (3) if SLOs are violated,
the LSA infers in which dimension to scale its service. When
all resources are allocated, (4) resources can only be scaled
through a mediator – called Global Service Optimizer (GSO) –
which optimizes global SLO fulfillment by swapping resources.
In the following, these steps are further elaborated:

1) Continuous Service Observation: During runtime, every
service periodically logs a snapshot of its state to a local
buffer, which will later be collected by the LSA. Recall, that
a service’s state includes its configuration, metrics, and SLOs.
Depending on the use case, streaming services, e.g., video or
audio processing, might log their state after processing one
batch or frame. This creates a history of how a processing
system was configured at a specific time, and to what degree (ϕ)
its SLOs were fulfilled. Since processing services and scaling
agents (i.e., LSAs and GSO) are executed on the same physical
devices, the metrics can be accessed by all of them.

2) Model Training: The LSA has one central objective:
fulfill the SLOs (Q) of its assigned service. To find an optimal
scaling policy for this multi-objective problem, the LSA is
trained through Deep Reinforcement Learning (DRL), where
it is rewarded for actions that lead to satisfying service states.
The sweet spot is to fulfill SLOs with ϕopt = 1.0, i.e., without
overprovisioning resources or sacrificing too much quality.
Hence, the agent aims to minimize the difference (∆) between
ϕ and ϕopt, which is expressed by Eq. 2, where w is used to
scale the reward of each SLO.

∆←
∑
q∈Q

|ϕopt − ϕ(q,m)| × wq (2)

Training Environment Model-free RL algorithms often re-
quire tens of thousands of iterations to converge to a satisfying
result – this is not compatible with our processing environment
because the effects of scaling actions, including rewards, are
only reflected with a delay – prolonging each training cycle
considerably. To address this, we simulate state transitions

and respective rewards through a virtual training environment1.
To create this environment, the LSAs use historical service
metrics (M), however, cutting out periods of two seconds2

after an action took place. The remaining metrics are used
to train a Linear Gaussian Bayesian Network (LGBN) that
expresses the relations between system variables. For a video
processing task, the LGBN can express how processing fps
depends on video resolution (pixel) and provisioned cores.
Given these continuous variable relations, we can estimate the
state transitions and rewards for hypothetical actions.

Training Actions The LSAs use this training environment
to learn a scaling policy through a Deep Q Network (DQN),
where the agent can take 5 different actions: (1) do nothing
if its current state is satisfactory, (2|3) increase or decrease
pixel by ±δpixel, or (4|5) adjust cores by ±δcores. The LSA
should maintain these values in the range pixel ∈ [pmin, pmax]
and cores ∈ [1, cfree], where cfree is the number of unclaimed
cores, with cfree ≤ cphy . Notice, that δpixel and δcores are both
constant factors, which we plan to substitute with continuous
actions in future work. The LSA uses these actions to interact
with the training environment; as DRL converges, the DQN
estimates the SLO improvement given an action and state.

Model Retraining The LGBN is very dependent on the
collected metrics, which is problematic because (1) no metrics
are available at service start, and (2) historical metrics become
outdated due to variable drifts. Hence, LGBN and DQN must
be retrained periodically, which is done in the background with
restricted resources. This retraining frequency can either be
decreased gradually or coupled to SLO fulfillment.

3) Multi-dimensional Scaling: During runtime, the LSA
uses its latest DQN to infer how to scale its attached service.
Given the current service state, the DQN produces one of the
five trained actions, which means that the LSA now interacts
with the physical processing environment by either: scaling the
service quality as part of the service configuration or scaling
the resources by adjusting the container limitations.

4) Global Optimization: To improve the SLO fulfillment
– and minimize ∆ – the LSAs act greedy when they scale
resources, which can be unfair to the other tenants on the Edge
device. However, even if all resources have been allocated, it is
possible to improve global (i.e., device-wide) SLO fulfillment.
For instance, swapping a core from a service a to a service
b that operates under tight SLO boundaries may improve the
global SLO fulfillment because a’s gain is higher than b’s loss.
Finding such operations is the responsibility of the GSO.

To decide whether it would be beneficial to swap a core
between services, the GSO uses the available LGBNs. Given
the states of both services (a, b), the GSO can again estimate
what the expected state transition and consecutive reward would
be when either swapping a core from a→ b, or b→ a. If the
GSO estimates that one of these options improves global SLO
fulfillment, it updates the container limits accordingly.

1As described by OpenAI’s Gymnasium environments
2We observed that roughly after this time scaling actions are reflected

TABLE I: Constrained variables for the CV service

Var. Description Rel. Weight Impact

pixel video streaming resolution > t 0.8 pixel → fps
cores container usable CPU cores < 10 0.4 cores → fps
fps processing throughput > t 1.2 –

III. EXPERIMENTAL EVALUATION

To evaluate the presented scaling solution, we create an
instance of the processing environment and develop a physical
prototype of our scaling agents that we apply during two
experimental scenarios. Namely, we evaluated: (1) How the
LSA performs under tight resource constraints compared to
established autoscalers, and (2) how the GSO can optimize the
global SLO fulfillment after all resources were allocated.

A. Experimental Setup

To create a realistic stream processing scenario, we use
OpenCV to continuously transform a video stream. The imple-
mentation of the processing service and the evaluation scenarios
are publicly available on GitHub3. In the repository, you also
find the description of how the Computer Vision (CV) service
is containerized and how it is scaled during deployment.

Table I shows three types of SLOs (Q) for the CV service: to
guarantee the quality of experience, the LSA should ensure high
video resolution (pixel) and streaming framerate (fps). To save
energy, the LSA also minimizes the number of allocated cores;
however, this SLO can be traded off in favor of performance
– hence it has a lower weight (w). Notice, how fps also has a
higher weight than pixel4. For each SLO q ∈ Q, the thresholds
(t) are specified in the following scenario.

B. Service Scaling under Resource Constraints

This scenario starts with an inactive LSA that does not yet
possess any models (i.e., LGBN or DQN). The LSA awaits
30s of CV processing and then starts the first of five phases,
in which: (1) the thresholds for fps and pixel are adjusted as
shown in Tab. II; to restrict resources, we also adjust cphy .
The LSA then (2) trains the LGBN and DQN from all existing
metrics and (3) operates 50s in the environment by autoscaling
the CV service. This concludes the first phase; the next 4 phases
are conducted the same way. To increase the stability of our
results we repeat this entire scenario 5 times. We compare the
LSA’s effective SLO fulfillment with a baseline, similar to the
Kubernetes VPA: initially, the VPA assigns pixel = t, which
means it cannot sacrifice service quality. During runtime, the
baseline VPA scales resources according to ϕ(fps), i.e., scaling
cores+ 1 if ϕ(fps) < 1.0 of cores− 1 if ϕ(fps) > 1.0

As depicted in Fig. 3, the LSA initially performed slightly
under the baseline, when its DQN was not yet accurate in the
first two phases. In the subsequent rounds, however, the LSA
outperformed the baseline VPA because it was able to trade off
parts of the pixel SLO to fulfill the higher-weighted fps SLO.
Notice, how the y-axis shows the cumulative SLO fulfillment
(ϕΣ) with a maximum of ϕΣ ≤

∑
q∈Q w; hence ≤ 2.4

3github.com/borissedlak/multiScaler
4During evaluation, these weights showed to reflect the intended tradeoff

https://gymnasium.farama.org/introduction/create_custom_env/
https://github.com/borissedlak/multiScaler

TABLE II: SLOs as variable constraints for the CV service

Var. Phase 1 Phase 2 Phase 3 Phase 4 Phase 5

pixel > 800 > 1000 > 1700 > 1900 > 1800
fps > 33 > 33 > 35 > 35 > 34

max core 9 7 8 2 3

Fig. 3: SLO Fulfillment during runtime; every 10 iterations the
SLO thresholds and available resources are changed

Due to page limitations, we cannot provide detailed results
on the training overhead, still, we would like to comment
that we limited the training to one core. Within these limited
resources, LGBN training took roughly 1s, and roughly 10s
for the DQN. Suppose we train the models less frequently than
every 50s the overhead should not impact performance.

Implication: With sufficient training, the LSA can be ap-
plied in resource restricted scenarios to choose between
multi-dimensional elasticity strategies; this showed to im-
prove SLO fulfillment further than a regular VPA

C. Global Optimization after Resource Exhaustion

The following scenario evaluates if the GSO can optimize
global SLO fulfillment (= ϕΣ,Alice + ϕΣ,Bob) when no free
resources can be allocated: We start two instances of CV –
called Alice and Bob – which are supervised by two LSAs.
Both LSA should ensure an SLO for pixel > 1300; additionally,
we put a tight SLOs for Alice with fps > 30, whereas Bob only
requires fps > 10. As soon as all resources are exhausted, the
GSO takes action. Notice, how ∆ = (

∑
q∈Q w)− ϕΣ.

As depicted in Fig 4, the GSO decides in iterations i = 2
and i = 3 to swap a core from Bob → Alice, which improves
ϕΣ,Bob, while showing no notable impact on ϕΣ,Alice. Thus,
increasing global SLO fulfillment. However, at i = 5, the same
operation did not provide the expected result because it would
harm Alice and not provide much benefit for Bob. This blunder,
however, is resolved shortly after, when at i = 7 the GSO
decided to swap back a core from Alice → Bob.

Implication: In situations where no unclaimed resources are
available, the GSO can improve the global SLO fulfillment
by shifting resources between greedily acting autoscalers

Fig. 4: SLO fulfillment of two services operating with resource
contention; the GSO swaps resources to globally improve SLOs

IV. CONCLUSION

In this paper, we presented a multi-dimensional scaling
solution that ensures processing SLOs on Edge devices. To
improve SLO fulfillment in resource-constrained devices, we
built a two-layer architecture with local, service-specific agents
that scale either quality or resources; if all resources are
allocated, a global mediator swaps resources between services
to further improve SLO fulfillment. The innovation of our solu-
tion relies on the injection of domain-specific knowledge, i.e.,
the relation between system variables through an LGBN, and
scaling processing services in multiple elasticity dimensions
depending on the context. For future work, we have a clear
research agenda for which we plan to improve the following
aspects: (1) eliminate the DQN to operate directly on the LGBN
to infer scaling actions, (2) produce continuous scaling actions
for fine-grained control, (3) extend the architecture with more
edge devices to support offloading, and (4) use scenarios with
different, heterogeneous stream processing services.

ACKNOWLEDGEMENT

Funded by the European Union (TEADAL, 101070186).

REFERENCES

[1] M. Chui, M. Collins, and M. Patel, “The internet of things: Catching up
to an accelerating opportunity,” 2021.

[2] A. Morichetta, N. Spring, P. Raith, and S. Dustdar, “Intent-based man-
agement for the distributed computing continuum,” in IEEE SOSE, 2023.

[3] S. Verma and A. Bala, “Auto-scaling techniques for IoT-based cloud
applications: a review,” Cluster Computing, vol. 24, no. 3, Sep. 2021.

[4] S. Dustdar, V. C. Pujol, and P. K. Donta, “On Distributed Computing
Continuum Systems,” IEEE TKDE, Apr. 2023.

[5] S. Dustdar, Y. Guo, B. Satzger, and H.-L. Truong, “Principles of Elastic
Processes,” Internet Computing, IEEE, vol. 15, pp. 66–71, Nov. 2011.

[6] B. Sedlak, V. Casamayor Pujol, P. K. Donta, and S. Dustdar, “Controlling
Data Gravity and Data Friction: From Metrics to Multidimensional
Elasticity Strategies,” in 2023 IEEE Services, Jul. 2023.

[7] S. Laso, I. Murturi, P. Frangoudis, J. L. Herrera, J. M. Murillo, and
S. Dustdar, “A Multidimensional Elasticity Framework for Adaptive Data
Analytics Management in the Computing Continuum,” Jan. 2025.

[8] F. Lombardi, L. Aniello, S. Bonomi, and L. Querzoni, “Elastic Symbiotic
Scaling of Operators and Resources in Stream Processing Systems,” 2018.

[9] S. Horovitz and Y. Arian, “Efficient Cloud Auto-Scaling with SLA
Objective Using Q-Learning,” in 2018 FiCloud, Aug. 2018.

[10] Y. Zhao and A. Uta, “Tiny Autoscalers for Tiny Workloads: Dynamic
CPU Allocation for Serverless Functions.” IEEE Comp. Society, 2022.

[11] S. Nastic, P. Raith, A. Furutanpey, T. Pusztai, and S. Dustdar, “A
serverless computing fabric for edge and cloud,” in IEEE CogMI, 2022.

	Introduction
	Methodology
	Processing Environment
	Design of Scaling Agents
	Continuous Service Observation
	Model Training
	Multi-dimensional Scaling
	Global Optimization

	Experimental Evaluation
	Experimental Setup
	Service Scaling under Resource Constraints
	Global Optimization after Resource Exhaustion

	Conclusion
	References

