
1

Leveraging Neural Graph Compilers in Machine
Learning Research for Edge-Cloud Systems
Alireza Furutanpey∗, Carmen Walser, Philipp Raith, Pantelis A. Frangoudis, Schahram Dustdar

Abstract—This work presents a comprehensive evaluation of
neural network graph compilers across heterogeneous hardware
platforms, addressing the critical gap between theoretical op-
timization techniques and practical deployment scenarios. We
demonstrate how vendor-specific optimizations can invalidate rel-
ative performance comparisons between architectural archetypes,
with performance advantages sometimes completely reversing
after compilation. Our systematic analysis reveals that graph
compilers exhibit performance patterns highly dependent on both
neural architecture and batch sizes. Through fine-grained block-
level experimentation, we establish that vendor-specific compilers
can leverage repeated patterns in simple architectures, yielding
disproportionate throughput gains as model depth increases. We
introduce novel metrics to quantify a compiler’s ability to miti-
gate performance friction as batch size increases. Our methodol-
ogy bridges the gap between academic research and practical
deployment by incorporating compiler effects throughout the
research process, providing actionable insights for practitioners
navigating complex optimization landscapes across heterogeneous
hardware environments.

Index Terms—Deep Learning, Neural Networks, Compilers,
Graph Optimization, Benchmarking

I. INTRODUCTION

THE pervasiveness of neural networks (NNs) in modern
computing systems has generated significant demand for

methods to improve the efficiency of available hardware. As
computational complexity increases and deployment scenar-
ios diversify, optimizing neural network execution becomes
indispensable for practical applications across various compu-
tational platforms. Among the most promising optimization
approaches are graph compilers, which optimize the com-
putational graphs of neural networks to enhance scheduling,
improve data flow, and exploit dedicated hardware modules.
Graph compilers can enhance throughput by orders of magni-
tude with no loss in accuracy. While these compilers can be
used independently, they may also be combined with model
compression or acceleration methods, such as quantization,
that trade off efficiency for accuracy. The potential perfor-
mance improvements are substantial. Yet, fully leveraging
graph compilers presents distinct challenges. Graph compilers
and other vendor-specific optimizations can completely alter
the relative performance across competing architectures. Fig-
ure 1 not only precisely exemplifies this behavior, but also
demonstrates that the exact inverse holds for a different device-
compiler pair. The models are comparably large, and the batch
size is 8. Section V will detail experiment configurations.

All authors are with the Distributed Systems Group, TU Wien, Austria.
*Corresponding author: a.furutanpey@dsg.tuwien.ac.at

Uncompiled TensorRT0

50

100

Th
ro

ug
hp

ut
 (i

m
g/

s) NVIDIA Orin Nano
EfficientNet-B4
Swin-Tiny

Uncompiled OpenVINO

Intel Xeon

Fig. 1: On the Orin, the convolutional-based EfficientNet has
higher throughput than the transformer-based Swin. Applying
TensorRT significantly improves throughput for both models.
However, the EfficientNet is now slower than the Swin. On the
Xeon with OpenVINO, we observe the exact inverse behavior.

Arguably, the increasing complexity of optimizing neural
networks creates a disconnect between academic research and
real-world applicability, despite directly addressing practical
problems. When designing novel machine learning algorithms
for Edge(-Cloud) Systems [1], it is crucial to understand how
graph compilers can invalidate relative performance differ-
ences between architectural archetypes. A common problem
when extending research work into real-world systems is
determining whether reported performance improvements, re-
garding resource usage or throughput, from the latest advance-
ments will generalize to the target hardware. This problem
stems not from a lack of rigor by researchers but from the
inherent heterogeneity of the AI accelerator landscape [2].
This insight was a key motivation in our previous works
[3]–[5], where we deliberately opted for simplified encoder
architectures with widely supported operations to ensure that
reported results would generalize across vendors. While these
and similar research contributions are valuable, their practical
application requires further consideration, often creating a
needlessly high barrier for practitioners by having to navigate
complex optimization landscapes. To narrow the gap between
research contributions and their applications in real systems,
we introduce an automated tool that integrates with existing
profilers commonly used in edge or cloud frameworks (e.g.,
for model selection [6]). The tool streamlines graph com-
piler benchmarking over heterogeneous compute infrastruc-
ture to facilitate iterative empirical analysis. We propose a
methodological approach to utilize such tools for designing,
implementing, and deploying experiments in research for Edge
or Edge-Cloud systems that rely on neural components. We
perform a comprehensive empirical analysis across varying
architectural families on a heterogeneous physical testbed,
demonstrating how vendors prioritize optimizing different
layer compositions using both vendor-agnostic (e.g., Apache

ar
X

iv
:2

50
4.

20
19

8v
1

 [
cs

.D
C

]
 2

8
A

pr
 2

02
5

2

TVM) and vendor-specific graph compilers (e.g., TensorRT,
OpenVINO). In summary, this work’s main contributions are:

• Evaluating graph compilers across heterogeneous hard-
ware platforms, demonstrating the advantages of vendor-
specific optimizations.

• Analyzing batch parallelization efficiency across architec-
tures and compilers, revealing optimization opportunities
in resource-constrained environments.

• Demonstrating through block-level experimentation that
vendor-specific compilers leverage repeated patterns in
simpler compositions for disproportionate throughput
gains with increased depth.

We are aware that no shortage of work examining the NN
graph compiler landscape exists (Sections II and III). However,
to the best of our knowledge, this work is the first to discuss
their methodological application (Section IV), providing a
foundation for informed decision-making based on a com-
prehensive evaluation (Section V) that includes performance
metrics, such as batch scaling efficiency, to uncover non-
obvious differences between graph compilers.

II. RELATED WORK

Shuvo et al. [7] provide an excellent review on techniques
for utilizing AI accelerators, but it is focused on lower-level
tricks for a particular class of hardware. Zhou & Yang bench-
mark TensorRT [8], but only on convolutional architectures. Li
et al. [9] provide a broad overview of existing compilers, but
only include rudimentary evaluation on behavior in practice.
Like our work, Xing et al. examine graph compilers on
different hardware (CPUs, GPUs) [10], but the evaluation only
considers individual operations and convolutional-based archi-
tectures, without addressing important factors, such as batch
size, depth, width, etc. Conversely, this work evaluates graph
compilers on various networks from varying architectural
families and leverages the broad results to draw generalizable
insights. The work by Jajal et al. [11] shares similarities in
examining computational graph optimization of varying archi-
tectural styles and vendors, but the focus is on interoperability,
and specifically the issues that may be encountered when
converting models to ONNX. The work in [12] also examines
computational graph optimization, but more generally focuses
on uncovering bugs in the development cycle of systems that
train and deploy deep neural networks. The work in [13] shares
similarity in advocating for a design strategy that is mindful
of the underlying hardware acceleration. Still, it is an entirely
qualitative assessment without any empirical analysis. Lastly,
Zhang et al. [14], [15] introduce libraries for benchmarking
and provide comprehensive results, but include only mobile
platforms and do not examine graph compilers.

III. BACKGROUND

Graph compilers analyze and optimize computational
graphs representing neural networks as nodes (operations)
and edges (data dependencies). They provide abstraction to
lower-level implementation details by converting models from
high-level frameworks (PyTorch, TensorFlow) into hardware-
agnostic intermediate representations. Moreover, they may ap-
ply transformations that improve execution speed and memory

efficiency across AI accelerators, and hardware-specific code
generation for low-level kernels tailored to target architectures
(e.g., CUDA for NVIDIA GPUs, OpenCL for FPGAs).

A. High-level Network Architecture Organization
Figure 2 illustrates how most modern architectures organize

layers. Each layer applies a linear transform, normalization,

Network
Stage Stage Stage

Layer Layer Layer
Block

Stage

Transform Normalization Nonlinearity
Layer

Fig. 2: Network Architecture Layer Organization

and introduces non-linearity with an activation function. Lay-
ers are grouped into blocks, which may be more complex, as
shown here, such as the ResNet bottleneck [16] that uses two
1× 1 convolutional layers to reduce the number of channels,
before increasing them again. A stage consists of a sequence of
repeated blocks. Finally, an architecture consists of at least one
stage, and each stage may have a variable number of blocks.
The difference between models of different sizes from the
same architecture is typically their width and block ratios. For
example, the block ratio in Swin-Tiny is 2:2:6:2 and in Swin-
Base 2:2:18:2 [17]. Graph Compilers can improve throughput
by exploiting the repeated patterns present in such organiza-
tions and by providing specialized hardware modules for par-
ticular compositions (e.g., Conv-BatchNorm-ReLU). The
following briefly summarizes software and hardware optimiza-
tions that compilers commonly use.

B. Software-Level Optimizations
1) Operator Fusion: Operator fusion combines multiple

operations, such as convolution and activation, into a single
computational kernel. Without operator fusion, each operation
would write intermediate results to memory and then read
them back for the next operation. By fusing operations, the
compiler generates a single kernel that executes all the fused
operations sequentially within the same execution context.
This eliminates redundant memory accesses and reduces the
overhead of launching multiple kernels.

2) Constant Folding: Constant folding identifies subgraphs
where all inputs are constants and precomputes them at com-
pile time. This reduces runtime computation by eliminating
the need to compute results that do not depend on dynamic
inputs repeatedly.

3) Layout Transformation: Different hardware architectures
have specific data layout preferences for optimal performance.
For example, NVIDIA GPUs with Tensor Cores prefer the
BHWC (batch size, height, width, channels) format over
BCHW (batch size, channels, height, width). Layout trans-
formations reorganize tensor data into these preferred formats
during compilation. These transformations ensure that memory
accesses are coalesced and aligned with hardware require-
ments, improving throughput.

3

C. Hardware and Kernel-Level Optimizations

1) Kernel Fusion: Kernel fusion is similar to operator
fusion, but at the kernel level. Similarly to operator fusion,
kernel fusion combines multiple operations into one kernel
execution to reduce kernel launch overheads. However, kernel
fusion operates at a lower level and can merge operations with
finer granularity.

2) Memory Latency Hiding: Memory latency hiding over-
laps computation with data transfers using asynchronous exe-
cution techniques. Specifically, by overlapping data movement
(e.g., between global memory and shared memory) with com-
putation, the memory access latencies appear instantaneous,
i.e., “hidden.” Similarly to dynamic batching, it involves a
static code analysis and code generation for execution paths.
The execution paths facilitate asynchronous memory transfers
and efficient scheduling of threads, such that some threads
perform computations while others wait for data transfers to
complete. For example, in matrix multiplication on GPUs,
while one block of threads computes partial results using data
already loaded into shared memory, another block loads the
next set of data from global memory asynchronously.

3) Sparse Computation: Sparse computation exploits spar-
sity in weights or activations. It leverages tensor sparsity
patterns (e.g., weights with many zero values) to skip un-
necessary calculations and reduce storage requirements and
memory use. In particular, specialized sparse matrix formats
like Compressed Sparse Row or Block Sparse Row store only
non-zero elements efficiently. Hardware accelerators often
include optimized sparse matrix multiplication routines that
exploit these formats. For example, consider a sparse neural
network where 70% of weights are zero due to unstructured
pruning. Instead of performing dense matrix multiplication on
all elements, sparse matrix multiplication algorithms process
only non-zero elements stored in CSR format. Then, multi-
plying an input vector with a sparse weight matrix skips zero-
weighted connections, reducing computation time and memory
bandwidth usage.

IV. GRAPH COMPILER-GUIDED SOLUTION APPROACH

We implement NGraphBench, a library that permits quick,
automated, empirical evaluation of graph compilers in a het-
erogeneous cluster. However, the focus of the work is not the
implementation details of the library, and we only mention
high-level details for evaluation transparency in Section V.
Instead, the focus is on effectively utilizing empirical com-
piler benchmark results to iteratively conceive and refine ML
methods, with a clear application focus on edge-cloud systems.

A. NGraphBench Library

NGraphBench exposes a uniform interface for accessing and
integrating graph compiler APIs. Users can provide their mod-
els in ONNX or native PyTorch and configure experiments,
such as compiler-device pairs, compiler flags, repetitions, and
model initialization parameters. Figure 3 illustrates the high-
level application flow. The client will deploy the benchmarking
application to the requested devices in the cluster. Crucially,
the compilation is done locally on the target devices, i.e., we

NGraphBench Runtime

Model
Registry

Runtime
Image Registry

1. Download
Runtime Image

3. Compile
Model 4. Benchmark

2. Download
 Model

Results

Device nNGraphBench Runtime

Device 1NGraphBench Runtime

Config

Device Cluster

NGraphBench
Client

Fig. 3: NGraphBench high-level flow. The client coordinates
the experiments for participating clients in a cluster. Each
device may evaluate multiple compilers.

are not using hardware simulators, which are likely to result
in worse optimizations. Each device may benchmark multiple
compilers, and will persist results in predefined checkpoints
periodically (e.g., to resume on a crash). After benchmarking,
the devices will report the results to the client. Once all
devices have reported their results, the client will tear down
the benchmarking environments and terminate the application.

B. Pragmatic Research Design for Practical Systems

The disconnect between academic research and practical
deployment is particularly problematic when optimizing neural
networks for heterogeneous hardware. While novel architec-
tures may excel in controlled benchmarks, their performance
can vary dramatically when deployed with different graph
compilers across diverse hardware. We propose a methodolog-
ical framework that incorporates compiler effects throughout
the research process, as illustrated in Figure 4. This frame-

Design

Architectural
Components

Development

Component
Composition

Layer Types

NGraphBench

Block Depths &
Widths

Deployment

Model
Selection

Network Architecture

Latency Throughput

GPU UsageMemory
Usage

Configurations

Devices

Iterate

Fig. 4: Iterative refinement guided by empirical analysis

work divides the research process into three phases, each
integrating compiler optimization considerations:

1) Design Phase: The design phase prioritizes architec-
tural choices with widespread hardware and compiler sup-
port. Using our work in [4] as a case study, we selected
variational compression methods for orbital edge computing
applications where processing must occur within finite time
windows. Rather than optimizing for theoretical metrics like
the number of Multiply-And-Accumulate (MAC) operations or

4

parameter counts, we introduced the Transfer Cost Reduction
per Second (TCR/s) metric to balance compression efficiency
against computational throughput. This approach enabled the
evaluation of different architectural paradigms (convolutional
vs. transformer-based) against practical deployment metrics.

2) Development Phase: During development, researchers
must examine how block compositions affect model per-
formance and compiler-optimized throughput. Our analysis
revealed that increasing model depth often yields dispro-
portionate throughput gains when target hardware incorpo-
rates vendor-specific compiler support. Similarly, compiler
optimizations can effectively mitigate width adjustments that
should reduce throughput. Researchers can identify viable
block compositions and configurations that maximize per-
formance within deployment constraints through systematic
evaluation with graph compilers.

3) Deployment Phase: The final phase involves compre-
hensive testing on target hardware with appropriate compiler
optimizations. In our case study, without graph compiler
optimization, increased model width significantly deteriorated
batch parallelization efficiency, contradicting development-
phase expectations. This resulted in selecting marginally
smaller models for constrained devices despite 30% worse
compression performance. The cause was what we refer to
as the batch-width scaling friction. By slightly increasing
the convolutional channels (i.e., the width), the TCR/s has
significantly dropped due to reduced processing throughput.
Such counterintuitive outcomes highlight the critical impor-
tance of evaluating compiler-hardware interactions throughout
the research process. In short, our methodology aims to bridge
the gap between academic innovation and practical deploy-
ment by integrating graph compiler considerations into each
research phase. While this approach requires additional empir-
ical testing, it ensures that reported performance improvements
generalize across deployment scenarios, ultimately producing
more valuable contributions for practitioners working with
heterogeneous hardware environments.

V. EVALUATION

The evaluation is motivated by the three phases of our
compiler-guided framework from Section IV-B. We examine:
(1) differential compiler support across architectural styles to
inform design decisions in Figure 5; (2) depth scaling and
batch-width friction mitigation effects to guide component
composition in Section V-C, Section V-E; and (3) analyze
graph compiler effects on resource usage to reason about
unexpected throughput gains or losses, such as from adverse
effects by concurrent tasks in Section V-F.

A. Methodology & Experiment Design

We include TensorRT and OpenVINO to represent vendor-
specific compilers and Apache TVM to represent vendor-
agnostic compilers with hardware-level optimizations. The
ONNX and TorchScript runtimes represent a software-level
optimization approach. The evaluation exclusively focuses
on applying graph compilers without fundamentally altering
prediction behavior, i.e., it does not consider quantization

and other model compression methods. For experiments with
a relative measure that relies on a baseline (e.g., speedup
factors, BSR), we use the PyTorch dynamic computational
graph and refer to it as the identity. We repeat each experiment
100 times and report the average with standard deviations.
Compilation is performed on the native hardware without
hardware simulators. The experiments are performed end-to-
end by deploying them on a physical testbed cluster using
the NGraphBench library (Section IV). The following details
the testbed and configurations to facilitate reproducibility. We
emphasize that in this work, the NGraphCompiler library is
exclusively for convenience and is not required to reproduce
our results.

1) Testbed: We implement a physical testbed with relevant
specifications summarized in Table I. For clarity, we will refer

TABLE I: Testbed Device Specifications

Device CPU GPU
Server 1 8x Ryzen 5700G @ 3.80 Ghz (x86) RTX 4070
Server 2 8x Xeon Skylake @ 3.0 Ghz (x86) N/A
Orin Nano 6x Cortex-A78 @ 2.0 Ghz (ARM) Amp. 512 CC 16 TC

to Server 1 and Server 2 as “GPU” and “Xeon” respectively,
i.e., the chip we compile for and run the neural network
on. The Orin Nano uses Jetpack 6.2, which is based
on Ubuntu 22.04. Hence, the other devices use Ubuntu
22.04 LTS with Linux kernel version 5.15. We prioritize
consistency over using the latest versions. Table II reports the
oldest versions installed on the devices.

TABLE II: Library Versions

Library Version
ONNXRuntime 1.19.2
TensorRT 10.4.0
ApacheTVM 0.18.dev0
OpenVINO 2024.3.0

Library Version
PyTorch 2.4.1
CUDA 12.5
cuDNN 9.3.0
timm 1.0.15

2) Compiler Configurations: Except for Apache TVM, we
use intuitive default configurations for graph compilers (e.g.,
optimize for throughput instead of latency in OpenVINO when
the evaluation criterion is throughput). To remain vendor-
agnostic, TVM takes a fundamentally different approach to
optimization than vendor-specific compilers. TVM can fuse
arbitrary patterns and support new operations, if it can find
them [18]. Vendor-specific frameworks compile fast, but are
limited to pre-defined fusion patterns or operations. TVM’s
tuning involves running many candidate kernels on the hard-
ware or a simulator to measure performance, yielding highly
optimized code, potentially matching or exceeding vendor
libraries. The caveat is that TVM traverses an exponentially
scaling search space, such that finding an optimal compu-
tational graph for a single experiment may take weeks or
months. Therefore, we cap the number of trials at 1500 with
early stopping after 150 using the xgb tuner, as we empirically
determined on a subset of models that increasing the number
of trials beyond 1500 yields diminishing results. Moreover,
we only apply TVM to the off-the-shelf models on the native
hardware and omit it from the block-level evaluation due to
time constraints. Table III shows the compile times for the
largest models. Notice that even after limiting the number

5

TABLE III: Contrasting Compile Times in Seconds
Model Batch Size Intel Xeon GeForce RTX

OpenVINO TVM TensorRT TVM
ResNet-101 1 2.249 18,022.663 11.863 57,307.949

32 4.080 28,327.363 16.089 58,466.694
1 3.109 36,241.423 53.332 69,364.992EfficientNet-B5 32 5.646 49,765.446 68.360 61,700.123
1 4.830 36,431.073 10.004 16,533.937ConvNeXt-Base 32 6.763 68,943.533 19.394 18,404.425
1 4.764 11,464.397 6.320 5230.073DeiT-Base 32 6.264 36,199.033 13.827 6157.337
1 9.338 88,095.557 17.545 27,378.831Swin-Base 32 12.628 13,4262.784 29.204 14,287.950

of trials, the compilation time may take more than 19 hours.
Lastly, notice that the compilation time increases with batch
size only for Apache TVM. Unlike OpenVINO and TensorRT,
the TVM search heuristic relies on real measurements for each
candidate graph, where the runtime scales with the batch size.

3) Network Architecture & Layer Composition: We per-
form experiments on off-the-shelf architectures and more fine-
grained blocks. Evaluating widespread models yields general
insights, such as whether vendors favor a particular architec-
tural style. Table IV summarizes the architecture specifica-

TABLE IV: Network Architecture Specifications

Architecture Style Parameters MACs
ResNet-18 Convolutional 11,689,512 1,814,083,944
ResNet-50 Convolutional 25,557,032 4,089,238,376
ResNet-101 Convolutional 44,549,160 7,801,511,784
EfficientNet-B3 Convolutional 12,233,232 962,729,320
EfficientNet-B4 Convolutional 19,341,616 1,503,740,472
EfficientNet-B5 Convolutional 30,389,784 2,356,534,504
DeiT-Small Transformer 22,059,496 79,557,352
DeiT-Medium Transformer 38,849,512 115,513,320
DeiT-Base Transformer 86,585,320 201,581,032
Swin-Tiny Transformer 28,328,674 52,152,040
Swin-Small Transformer 49,737,298 66,312,424
Swin-Base Transformer 71,125,762 94,739,176
ConvNeXt-Tiny Hybrid 28,589,128 322,371,592
ConvNeXt-Small Hybrid 50,223,688 411,391,240
ConvNeXt-Base Hybrid 88,591,464 646,530,408

tions. We use the timm [19] library that ensures consistent
implementations to access off-the-shelf architectures, so exact
parameter and MAC counts may differ slightly from those
reported in original publications. We consider five architectural
families and three consecutively increasing model sizes per
family. We include two convolutional-based (ResNets [16],
EfficientNets [20]) and two transformer-based (Swins [17],
DeiTs [21]). Additionally, we include ConvNeXts [22] as a hy-
brid approach that is a convolutional-based model but includes
design principles from transformers. Table V summarizes

TABLE V: Per-Block Specifications

Convolutional Multi-Head Attention
Channels Params Per Block Embedding Dimensions Params Per Block

64 37,056 128 66,048
96 83,232 256 263,168

128 147,840 384 591,360
256 590,592 512 1,050,624

the per-block specifications. Blocks allow us a more targeted
evaluation of depth (i.e., investigate optimization as we stack
repeated blocks) and width, and reduce noise from certain

implementation quirks or other factors that affect compiler
efficacy. The multi-head attention (MHA) block uses ReLU
nonlinearity. We use channels in convolutional blocks and
embedding dimensions for MHA blocks to parameterize block
widths when investigating batch-width friction. We found that
varying kernel and input sizes similarly affect batch-width
friction as increasing the channels. To simplify, we only report
results with the kernel size fixed at 3 × 3 and input size
3×244×244. In MHA block experiments, we fix the sequence
length to ten for the input tensor and consider the embedding
dimensions to parameterize the block width.

4) Measuring Batch Parallelization: We can measure the
Relative Throughput Rate (RTR) as

RTRc(b) =
Tc(b)

Tc(1)

where Tc(b) is the throughput in samples per second for
batch size b when compiler c is used. The RTR quantifies the
unnormalized parallelization rate. When scaling is perfect, the
throughput linearly scales as a function of the batch size. Note
that once RTR drops below 1, the batching reduces absolute
throughput. Moreover, perfect scaling does not happen in
practice for larger batch sizes, so we will visualize the decay in
batch scaling efficiency with the Absolute Scaling Efficiency
(ASE) measure:

ASEc(b) =
Tc(b)

b · Tc(1)
.

The ASE normalizes the RTR, so any reduction from a
perfect parallelization rate directly indicates reduced scaling
efficiency. For example, when batch parallelization is perfect,
the ASE stays consistently 100%, irrespective of the batch
size. Conversely, decreasing ASE implies diminishing returns
from increasing the batch size. As discussed in Section IV-B,
it is interesting to see whether compilers can mitigate the
decay, i.e., maintain scaling efficiency at higher batch sizes.
We measure this with the Batch Scaling Resilience (BSR) as
follows:

BSRc(b) =
ASEc(b)

ASEidentity(b)
.

The BSR is a relative measure that can quantify, without
eyeballing, the improvement in mitigating friction compared
to a baseline compiler. Compilers with BSR values > 1 con-
sistently across varying configurations demonstrate that they
can improve the batch scaling efficiency for target hardware.
Additionally, measuring BSR as we increase the batch size
for different width configurations can determine whether a
compiler can alleviate the scaling friction.

B. Differential Compiler Support Across Architectural Styles

Figure 5 compares the absolute throughput of the vendor-
specific compilers with the dynamic uncompiled graphs. Each
row corresponds to a model size, and each column to an
architectural family (e.g., smallest for ResNets is ResNet-
18). The y-axis scaling is non-uniform to highlight the strong
relationship between compiler efficacy and architectural style.
Notice that even if the absolute throughput across model sizes

6

2500

5000
Th

r.
(S

m
al

le
st

) ResNets

TensorRT
identity

EfficientNets DeiTs Swins ConvNeXts

1000

2000

Th
r.

(M
ed

iu
m

)

1 2 4 8 16
Batch Size

500
1000

Th
r.

(L
ar

ge
st

)

1 2 4 8 16
Batch Size

1 2 4 8 16
Batch Size

1 2 4 8 16
Batch Size

1 2 4 8 16
Batch Size

(a) Device = GPU

200

400

Th
r.

(S
m

al
le

st
) ResNets

TensorRT
identity

EfficientNets DeiTs Swins ConvNeXts

100

200

Th
r.

(M
ed

iu
m

)

1 2 4 8 16
Batch Size

50

100

Th
r.

(L
ar

ge
st

)

1 2 4 8 16
Batch Size

1 2 4 8 16
Batch Size

1 2 4 8 16
Batch Size

1 2 4 8 16
Batch Size

(b) Device = Orin

100
200
300

Th
r.

(S
m

al
le

st
) ResNets

OpenVINO
identity

EfficientNets DeiTs Swins ConvNeXts

50

100

Th
r.

(M
ed

iu
m

)

1 2 4 8 16
Batch Size

25
50
75

Th
r.

(L
ar

ge
st

)

1 2 4 8 16
Batch Size

1 2 4 8 16
Batch Size

1 2 4 8 16
Batch Size

1 2 4 8 16
Batch Size

(c) Device = Xeon

Fig. 5: Contrasting the absolute throughput of a vendor-
specific compiler with the baseline uncompiled graph. Com-
piling results in significant throughput gains, except when
resources are scarce, the performance saturates.

is offset, the throughput scaling as we increase the batch
size is strikingly similar within a family. The caveat is that
the varying device capacities obfuscate the results, making it
challenging to assess compilation efficacy. Hence, we report
relative values for the remainder of the evaluation but summa-
rize partially aggregated measurements using absolute values
in Table VI. Figure 6 plots the throughput multiplier for the
five architectural families on different devices-compiler pairs.

The results reveal strikingly distinct performance patterns
across batch sizes and neural network architectures, demon-
strating performance patterns highly dependent on batch size
and neural architecture. Interestingly, despite being advertised
as a “convolutional architecture”, ConvNeXt behaves similarly
to transformers in performance across all compilers. At small
batches (≤2), compilers provide 2-6× speed-ups by eliminat-

TABLE VI: Aggregated Results by Architectural Family
Batch Size(2-4) Batch Size(8-16)Family Compiler Throughput [t/s] ↑ CPU [%] ↓ Throughput [t/s] ↑ CPU [%] ↓

Identity (Orin) 104.69 ± 0.57 11.13 ± 0.78 149.63 ± 0.66 5.52 ± 2.00
Identity (GPU) 1047.32 ± 14.09 6.24 ± 0.09 2442.30 ± 43.44 6.22 ± 0.10
Identity (CPU) 68.08 ± 1.75 99.83 ± 0.94 75.12 ± 2.78 95.41 ± 2.60
TensorRT (Orin) 179.01 ± 6.98 3.45 ± 1.14 247.99 ± 1.28 1.58 ± 0.77
TensorRT (GPU) 1740.11 ± 14.18 6.26 ± 0.14 2673.77 ± 19.56 6.24 ± 0.03
OpenVINO (CPU) 136.94 ± 5.80 97.98 ± 0.84 163.90 ± 6.21 96.99 ± 1.40
TVM (GPU) 1678.78 ± 29.22 6.32 ± 0.17 1823.83 ± 374.62 6.26 ± 0.05

ResNets

TVM (CPU) 46.55 ± 0.69 49.99 ± 0.72 60.27 ± 0.99 49.88 ± 0.83
Identity (Orin) 50.33 ± 0.25 14.29 ± 0.83 64.47 ± 0.17 6.27 ± 3.75
Identity (GPU) 294.85 ± 4.57 6.25 ± 0.10 1029.42 ± 4.12 6.24 ± 0.08
Identity (CPU) 30.80 ± 0.92 99.05 ± 1.26 47.34 ± 0.96 97.43 ± 2.90
TensorRT (Orin) 93.74 ± 0.48 5.31 ± 0.83 113.39 ± 0.36 2.03 ± 0.90
TensorRT (GPU) 1114.56 ± 8.67 6.23 ± 0.14 1578.73 ± 5.53 6.24 ± 0.17
OpenVINO (CPU) 96.04 ± 2.35 98.28 ± 0.83 120.00 ± 3.28 97.36 ± 1.32
TVM (GPU) 1088.48 ± 32.06 6.21 ± 0.12 1261.05 ± 236.20 6.26 ± 0.11

EfficientNets

TVM (CPU) 17.69 ± 0.42 49.96 ± 0.80 20.66 ± 0.22 49.94 ± 0.82
Identity (Orin) 36.45 ± 0.26 6.14 ± 1.39 41.50 ± 0.16 1.89 ± 1.96
Identity (GPU) 674.76 ± 5.76 6.26 ± 0.14 1015.49 ± 3.17 6.25 ± 0.13
Identity (CPU) 37.08 ± 1.18 99.59 ± 1.58 50.81 ± 1.55 99.11 ± 1.33
TensorRT (Orin) 95.67 ± 1.06 1.40 ± 0.84 116.26 ± 0.70 0.60 ± 0.78
TensorRT (GPU) 1164.57 ± 9.87 6.28 ± 0.15 1531.85 ± 6.62 6.25 ± 0.11
OpenVINO (CPU) 50.29 ± 1.52 99.01 ± 1.07 61.01 ± 2.27 97.26 ± 2.43
TVM (GPU) 71.43 ± 4.02 6.25 ± 0.07 87.22 ± 5.54 6.25 ± 0.09

DeiTs

TVM (CPU) 7.00 ± 0.06 49.92 ± 0.89 8.56 ± 0.07 49.93 ± 0.85
Identity (Orin) 22.28 ± 0.12 7.20 ± 2.80 25.66 ± 0.05 3.08 ± 4.38
Identity (GPU) 304.23 ± 2.38 6.25 ± 0.08 591.81 ± 1.24 6.25 ± 0.09
Identity (CPU) 21.37 ± 0.56 96.62 ± 2.52 23.81 ± 0.52 95.29 ± 2.75
TensorRT (Orin) 68.00 ± 0.55 1.25 ± 0.74 81.62 ± 0.84 0.56 ± 0.88
TensorRT (GPU) 918.61 ± 7.71 6.22 ± 0.23 1062.34 ± 3.32 6.25 ± 0.14
OpenVINO (CPU) 36.75 ± 0.81 99.26 ± 0.98 42.79 ± 1.19 98.01 ± 1.90
TVM (GPU) 149.52 ± 15.19 6.25 ± 0.09 80.34 ± 3.27 6.27 ± 0.17

Swins

TVM (CPU) 8.01 ± 0.17 49.94 ± 0.81 9.67 ± 0.08 49.90 ± 0.85
Identity (Orin) 29.72 ± 0.19 6.51 ± 1.92 34.34 ± 0.08 2.32 ± 2.98
Identity (GPU) 563.15 ± 5.28 6.24 ± 0.17 862.64 ± 3.24 6.24 ± 0.10
Identity (CPU) 31.86 ± 1.99 98.31 ± 3.28 45.00 ± 1.33 99.37 ± 1.81
TensorRT (Orin) 76.98 ± 0.57 2.21 ± 0.97 89.80 ± 0.43 0.74 ± 0.82
TensorRT (GPU) 972.13 ± 6.93 6.25 ± 0.04 1166.44 ± 3.43 6.26 ± 0.12
OpenVINO (CPU) 38.91 ± 0.91 99.43 ± 0.94 45.50 ± 1.29 97.13 ± 1.91
TVM (GPU) 266.40 ± 24.91 6.26 ± 0.10 143.74 ± 17.35 6.25 ± 0.08

ConvNeXts

TVM (CPU) 10.67 ± 0.21 49.95 ± 0.80 13.50 ± 0.12 49.91 ± 0.87

ing Python dispatch overhead and enabling operation fusion.
These advantages diminish as batch size increases, with only
vendor-specific solutions (TensorRT for GPU, OpenVINO for
CPU) maintaining consistent performance advantages at batch
size 16. Architecture significantly influences compiler efficacy:
traditional convolutional networks benefit substantially from
all compilers at small batches, while transformer-based models
show minimal improvement with TVM, moderate gains with
ONNX, and substantial acceleration only with vendor-specific
tools. While TVM demonstrates substantial performance gains
for convolutional architectures, the performance completely
tanks for transformer architectures, particularly for ConvNeXt.
TVM struggling with ConvNeXt’s hybrid design elements is
intuitive given its search-based [18] optimization methodology.
Conversely, Vendor-specific compilers maintain their advan-
tage through extensive manual optimization targeted specifi-
cally at popular cutting-edge architectures. Since the dynamic
computational graph is executed sequentially in the Python
runtime on the Xeon CPU, we also include TorchScript as an
additional baseline. TorchScript can exploit the multiple cores
on the CPU with intra-op parallelism. However, compared to
OpenVINO, which achieves significant speed-ups (up to 5-6
times more throughput), TorchScript only marginally improves
throughput across all configurations.

The results show strikingly distinct performance patterns
across compilers, hardware platforms, and neural architec-
tures. Convolutional-based networks benefit from all compil-
ers, while transformer-based models see limited gains from
vendor-agnostic solutions. Vendor-specific compilers main-
tain advantages through targeted optimization for popular
architectures, while automated tuning approaches struggle
with hybrid designs.

7

0
2
4
6

Th
r.

In
cr

ea
se

 Fa
ct

or ResNet-18 ResNet-50 ResNet-101

0
2
4
6

Th
r.

In
cr

ea
se

 Fa
ct

or EfficientNet-B3 EfficientNet-B4 EfficientNet-B5

0
2
4
6

Th
r.

In
cr

ea
se

 Fa
ct

or DeiT-Small DeiT-Base DeiT-Medium

0
2
4
6

Th
r.

In
cr

ea
se

 Fa
ct

or Swin-Tiny Swin-Small Swin-Base

1 2 4 8 16
Batch Size

0
2
4
6

Th
r.

In
cr

ea
se

 Fa
ct

or ConvNeXt-Tiny

1 2 4 8 16
Batch Size

ConvNeXt-Small

1 2 4 8 16
Batch Size

ConvNeXt-Base

ONNX (GPU) TensorRT (GPU) TensorRT (Orin) TVM (GPU) TVM (Xeon) OpenVINO (Xeon) TorchScript (Xeon)

Fig. 6: Contrasting multiplicative throughput gain relative to
the baseline. Conv-based architectures see broader support,
whereas for transformer-based architectures, it strongly varies.

C. Exploiting Repeated Patterns from Depth Scaling

Figure 7 plots the throughput multiplier for the convo-
lutional and MHA blocks separately. Note that the Y-axis
scaling is non-uniform to accentuate the relationship between
compiler-device pairs at a set batch size. Unsurprisingly,
we observe comparable behavior of convolutional blocks and
MHA blocks as with convolutional-based and transformer-
based architectures. However, the depth noticeably impacts
the throughput relationship between the compilers. This trend
remains even when performance starts to saturate due to
high computational load from large batch sizes and block
widths. For example, for the MHA block at batch size 8
with embed dimension 128, using the TensorRT compiler
on the GPU, the throughput is roughly twice that of the
baseline dynamic computational graph on a single block,
but jumps to eightfold when stacking six repeating blocks.
Table VII and Table VIII quantify how varying compilers can
leverage the repeating patterns. We compute the slope with
the least-squares fit to measure how much speed-up changes
as we increase the depth. A positive slope implies that each
additional layer makes the compiler’s advantage even larger.
In contrast, a negative slope means that extra blocks diminish
initial gains. The retention is simply the ratio between the
speed-up factor with the deepest stack and the speed-up factor
with a single block. A value close to 1 implies that a compiler
is agnostic towards the depth parameter, i.e., it cannot leverage
the repeated block patterns. Values above 1 imply that the
compiler can leverage repeated blocks. For convolutional

1 2 4 6
Depth

0

1

2

Th
r.

In
cr

ea
se

 Fa
ct

or Channels = 64

1 2 4 6
Depth

0

5

10

Th
r.

In
cr

ea
se

 Fa
ct

or Embed Dim = 128

1 2 4 6
Depth

Channels = 96

1 2 4 6
Depth

Channels = 128

1 2 4 6
Depth

Channels = 256

1 2 4 6
Depth

Embed Dim = 256

1 2 4 6
Depth

Embed Dim = 512

1 2 4 6
Depth

Embed Dim = 768

ONNX (GPU) ONNX (Xeon) OpenVINO (Xeon) TorchScript (Xeon) TensorRT (GPU) TensorRT (Orin)

(a) Batch Size = 2

1 2 4 6
Depth

0

2

Th
r.

In
cr

ea
se

 Fa
ct

or Channels = 64

1 2 4 6
Depth

0

5

10

Th
r.

In
cr

ea
se

 Fa
ct

or Embed Dim = 128

1 2 4 6
Depth

Channels = 96

1 2 4 6
Depth

Channels = 128

1 2 4 6
Depth

Channels = 256

1 2 4 6
Depth

Embed Dim = 256

1 2 4 6
Depth

Embed Dim = 512

1 2 4 6
Depth

Embed Dim = 768

(b) Batch Size = 8

1 2 4 6
Depth

0

2

Th
r.

In
cr

ea
se

 Fa
ct

or Channels = 64

1 2 4 6
Depth

0

5

Th
r.

In
cr

ea
se

 Fa
ct

or Embed Dim = 128

1 2 4 6
Depth

Channels = 96

1 2 4 6
Depth

Channels = 128

1 2 4 6
Depth

Channels = 256

1 2 4 6
Depth

Embed Dim = 256

1 2 4 6
Depth

Embed Dim = 512

1 2 4 6
Depth

Embed Dim = 768

(c) Batch Size = 16

Fig. 7: Contrasting how stacking homogeneous blocks im-
proves throughput over the uncompiled graph. The relative
relationship between depth and the factor remains consistent.

blocks, the speed-ups of the vendor-specific compilers with
hardware optimization are amplified by increasing the depth.
The convolutional blocks are a repeated sequence of the simple
Conv →BatchNorm →ReLU pattern. The simple design aids
the hardware-based compilers. The vendor-specific compilers
can leverage the repeating patterns and tile and fuse them
into smaller or larger kernels. For example, this can occur
by collapsing all 3N pointwise ops into one fused pass,
or merging multiple 2D convolutions into one multi-stage
convolution that reuses intermediate results. As we increase
the depth, the amortized overhead per block of kernel launch,
memory barriers, and descriptor setup decreases. Conversely,
the software-based optimization of ONNX shows weaker

8

TABLE VII: Depth Scaling of Convolutional Blocks

Device Compiler Width Batch Size 8 Batch Size 16
Slope Retention Slope Retention

GPU TensorRT 64 0.08924 3.821 0.1032 1.187
GPU TensorRT 96 0.1024 0.2116 0.1038 0.6593
GPU ONNX 64 0.06953 1.153 0.09141 0.426
GPU ONNX 96 0.07876 1.304 0.08367 0.7538
Orin TensorRT 64 0.1695 0.7846 0.1349 0.7759
Orin TensorRT 96 0.1285 1.126 0.212 6.553
Xeon ONNX 64 0.04862 1.009 0.0006561 0.9756
Xeon ONNX 96 0.0453 1.025 0.02658 0.9954
Xeon OpenVINO 64 0.4417 0.3379 0.4775 0.7428
Xeon OpenVINO 96 0.3553 0.8669 0.3378 0.4106

improvements. The retention values of MHA blocks are, on

TABLE VIII: Depth Scaling of MHA Blocks

Device Compiler Width Batch Size 8 Batch Size 16
Slope Retention Slope Retention

GPU TensorRT 128 0.8207 1.404 1.028 0.556
GPU TensorRT 256 0.6369 0.6935 0.8831 1.471
GPU ONNX 128 0.3594 2.187 0.3106 0.83
GPU ONNX 256 0.3406 1.724 0.2929 0.9108
Orin TensorRT 128 0.05291 1.178 0.173 0.9055
Orin TensorRT 256 0.08368 0.95 0.1488 1.629
Xeon ONNX 128 0.04244 1.105 -0.01775 1.018
Xeon ONNX 256 0.01867 1.031 0.0215 0.9735
Xeon OpenVINO 128 0.1113 1.115 0.1355 0.9635
Xeon OpenVINO 256 0.1589 1.577 0.1015 1.029

average, less than for convolutional blocks, i.e., the compilers
cannot leverage the repeated patterns as effectively. The depen-
dency graph of the Linear(QKV) →Reshape →MatMul
→Softmax →MatMul →Add →LayerNorm →ReLU is sig-
nificantly more complex, such that we may get good one-block
kernels, but stacking them does not result in intra-block fusion.

The results reveal that the increased efficiency of using
repeated patterns of simple layers may outweigh the benefits
of more sophisticated but complex layer types in resource-
constrained environments.

D. Batch Parallelization Scaling Efficiency

From both Figure 6 and Figure 7, it is apparent that
increasing the batch size significantly influences the through-
put rate, and different compilers exhibit varying behavior.
Figure 8 illustrates explicitly how increasing the batch size
decreases the scaling efficiency despite increasing the raw
throughput. Apache TVM shows considerable but inconsistent
scaling efficiency for convolutional-based architectures on the
GPU. This is expected due to TVM’s search-heuristic-based
optimization, i.e., we must start a new search for each batch
size. Conversely, the scaling efficiency decay of TensorRT is
more predictable, as it is consistent with negligible variance.
To account for varying compute capacities, and to provide

information on relative improvement over the dynamic com-
putational graph baseline, Figure 9 plots the batch scaling
resilience (Section V-A4). Note that a BSR below 1 implies
steeper efficiency losses relative to the baseline. We argue
that a BSR below 1.0 indicates that there are potentially
further opportunities for optimization that the compiler has
missed. The intuition is that if the compiler has found a
global maximum, the drop in scaling efficiency should be at

0

1

AS
E

ResNet-18 ResNet-50 ResNet-101

0

1

AS
E

EfficientNet-B3 EfficientNet-B4 EfficientNet-B5

0

1

AS
E

DeiT-Small DeiT-Base DeiT-Medium

0

1

AS
E

Swin-Tiny Swin-Small Swin-Base

2 4 8 16 32
Batch Size

0

1

AS
E

ConvNeXt-Tiny

2 4 8 16 32
Batch Size

ConvNeXt-Small

2 4 8 16 32
Batch Size

ConvNeXt-Base

TensorRT (GPU) TensorRT (Orin) TVM (GPU) TVM (Xeon) OpenVINO (Xeon)

Fig. 8: Contrasting ASE (higher is better) of architectural
styles. As performance saturates at higher batch sizes, the
throughput gain advantage from parallelization diminishes.

0
1
2

BS
R

ResNet-18 ResNet-50 ResNet-101

0
1
2

BS
R

EfficientNet-B3 EfficientNet-B4 EfficientNet-B5

0
1
2

BS
R

DeiT-Small DeiT-Base DeiT-Medium

0
1
2

BS
R

Swin-Tiny Swin-Small Swin-Base

2 4 8 16
Batch Size

0
1
2

BS
R

ConvNeXt-Tiny

2 4 8 16
Batch Size

ConvNeXt-Small

2 4 8 16
Batch Size

ConvNeXt-Base

TensorRT (GPU) TensorRT (Orin) TVM (GPU) TVM (Xeon) OpenVINO (Xeon)

Fig. 9: Contrasting BSR (higher is better) of architectural
styles. TensorRT has BSR ≈ 1 across most architectures,
which implies consistent throughput gains over the baseline.

worst consistent between the unoptimized dynamic and the
optimized compiled computational graph. In particular, the
erratic results of TVM demonstrate that specific optimizations
exist that the corresponding vendor does not adequately con-
sider, but they are challenging to find. For example, applying
TVM to the mid-sized DeiT TVM shows significantly higher
resilience than OpenVINO on the Xeon CPU. Conversely,
the resource-constrained Orin shows a BSR of roughly 1.0
across all transformer-based architectures and sizes while

9

showing substantial throughput gains for the same architecture.
However, especially for smaller architectures, the BSR of
TensorRT on the powerful GPU is consistently below 1.0.

The Batch Scaling Resilience (BSR) metric uncovers
compiler-specific optimization patterns, demonstrating that
TensorRT achieves consistent scaling profiles (BSR ≈ 1) for
most architectures while TVM shows erratic but occasionally
superior resilience for specific model-hardware combinations.
The results show that compilers can more easily optimize
for resource efficiency when resources are scarce. When
resources are abundant, BSR values below 1.0 suggest that
further optimizations are possible.

E. Batch-Width Scaling Friction Mitigation

We investigate whether compilers can improve with block-
level experiment for the same reasons as Section V-C. The

1 2 4 8 16 32
Batch Size

25
6

19
2

12
8

96
64

48
32

Ch
an

ne
ls

100.0 56.8 29.2 14.7 7.3

100.0 62.9 32.7 15.1 7.5

100.0 50.6 25.6 10.4 5.3 2.7

100.0 49.4 25.4 9.6 4.9 2.5

100.0 50.9 25.9 10.1 5.9 2.6

100.0 51.0 25.7 9.6 6.6 2.6

100.0 54.2 27.3 11.6 7.0 2.7

TensorRT (GPU)

1 2 4 8 16 32
Batch Size

100.0 50.9

100.0 46.5 23.6

100.0 49.5 23.7 12.4

100.0 54.6 26.0 12.6 6.5

100.0 58.5 31.4 14.1 5.7 3.8

100.0 57.0 30.8 13.6 7.0 2.6

100.0 66.2 39.2 17.1 9.0 4.3

TensorRT (Orin)

1 2 4 8 16 32
Batch Size

100.049.1 23.1 12.5 6.4

100.045.2 23.0 11.5 6.2

100.046.8 24.9 13.0 6.0 3.3

100.046.5 22.6 11.6 5.9 2.7

100.045.9 20.9 11.3 5.8 2.9

100.048.4 20.2 11.2 5.5 2.9

100.051.4 23.3 8.9 5.3 2.9

OpenVINO (Xeon)

0

20

40

60

80

100
AS

E
(%

)

(a) Convolutional Blocks (Depth=6)

1 2 4 8 16 32
Batch Size

76
8

51
2

38
4

25
6

12
8

Em
be

d
Di

m
en

sio
ns

100.0 87.8 78.6 72.9 47.9 36.4

100.0 80.8 63.4 56.5 45.1 28.4

100.0 80.8 68.8 57.9 50.3 35.5

100.0 80.1 73.3 62.6 60.2 40.6

100.0 78.2 72.1 69.8 64.4 53.6

TensorRT (GPU)

1 2 4 8 16 32
Batch Size

100.0 100.0 100.0 100.0 72.2 53.8

100.0 100.0 97.4 62.4 61.9 45.7

100.0 87.4 87.8 60.7 44.1 37.6

100.0 93.3 100.0 89.3 64.4 50.4

100.0 80.6 52.6 54.1 39.0 36.8

TensorRT (Orin)

1 2 4 8 16 32
Batch Size

100.059.9 47.4 29.8 16.5 8.4

100.062.4 47.2 33.7 19.3 10.0

100.059.3 53.8 36.4 22.2 11.7

100.060.6 53.8 42.3 27.7 16.6

100.060.6 52.0 38.0 34.9 24.2

OpenVINO (Xeon)

0

20

40

60

80

100

AS
E

(%
)

(b) MHA Blocks (Depth=6)

Fig. 10: Heatmaps plotting the effect of width on ASE. The
scaling efficiency decreases faster for wider networks, but the
rate varies.

batch-width friction is directly apparent from Figure 10. As
we increase the width for a block, the efficiency scaling drops
considerably faster from one batch size to the next larger
batch size. However, to account for hardware differences and
to compare with the baseline dynamic computational graph
Figure 11c plots the BSR for three depth configurations.
Increasing the depth tends to moderately improve BSR for
TensoRT, arguably for the same reasons as outlined in Sec-
tion V-C. TorchScript slightly mitigates the scaling friction for
some configurations through intra-ops parallelization, which is
expected. A BSR value higher than one implies that scaling
efficiency decreases more gracefully relative to the uncompiled
dynamic graph. This is best seen with OpenVINO. For the con-
volutional blocks, it can considerably mitigate the efficiency
decrease by exploiting the multiple cores.

0
1
2

BS
R

Channels = 32 Channels = 64 Channels = 128 Channels = 192 Channels = 256

2 4 8 16
Batch Size

0
1
2

BS
R

Embed Dim = 128

2 4 8 16
Batch Size

Embed Dim = 256

2 4 8 16
Batch Size

Embed Dim = 384

2 4 8 16
Batch Size

Embed Dim = 512

2 4 8 16
Batch Size

Embed Dim = 768

TensorRT (GPU) TensorRT (Orin) OpenVINO (Xeon) TorchScript (Xeon)

(a) Depth = 1

0
1
2

BS
R

Channels = 32 Channels = 64 Channels = 128 Channels = 192 Channels = 256

2 4 8 16
Batch Size

0
1
2

BS
R

Embed Dim = 128

2 4 8 16
Batch Size

Embed Dim = 256

2 4 8 16
Batch Size

Embed Dim = 384

2 4 8 16
Batch Size

Embed Dim = 512

2 4 8 16
Batch Size

Embed Dim = 768

(b) Depth = 3

0
1
2

BS
R

Channels = 32 Channels = 64 Channels = 128 Channels = 192 Channels = 256

2 4 8 16
Batch Size

0
1
2

BS
R

Embed Dim = 128

2 4 8 16
Batch Size

Embed Dim = 256

2 4 8 16
Batch Size

Embed Dim = 384

2 4 8 16
Batch Size

Embed Dim = 512

2 4 8 16
Batch Size

Embed Dim = 768

(c) Depth = 6

Fig. 11: Contrasting BSR between convolutional and MHA
blocks. Successful optimization on the CPU shows improved
parallelization rates even at higher batch sizes.

Compiler efficacy is significant for batch-width scaling fric-
tion, and the BSR metric accentuates whether compilers can
maintain scaling efficiency as width increases. In particular,
OpenVINO demonstrates superior mitigation for convolu-
tional blocks through multi-core utilization.

F. Resource Usage Reduction

From Table VI it is apparent that when compilers suc-
cessfully optimize the graph to have considerable throughput
gains, the CPU usage increases on the Xeon where there
is no dedicated GPU. On the GPU server and the Jetson
board, TensorRT can decrease the CPU usage - marginally
on the powerful server and significantly on the constrained
Jetson board. TensorRT on GPU leverages static-graph capture
and aggressive kernel scheduling to slash CPU-side launch
overhead, which on the constrained Jetson Orin’s SoC shows
up as CPU-usage drops. On a higher-end GPU Server, these
savings are negligible. Figure 12 directly compares the CPU
usage of TensorRT on the compiled network and the baseline
on all architectural families on the Orin device. Notice that for
the transformer-based architectures, particularly for the Swin
family, there is up to 80% reduction in CPU usage. This is
valuable in constrained environments that perform auxiliary
tasks on the CPU. For example, in [4], interference from pre-
and post-processing on the CPU was negligible on smaller
models but adversely affected the throughput of larger models.

10

1 2 4 8 16
Batch Size

0

5

10

15

CP
U

Us
ag

e
(%

)
ResNets

Identity
TensorRT

1 2 4 8 16
Batch Size

EfficientNets

1 2 4 8 16
Batch Size

DeiTs

1 2 4 8 16
Batch Size

Swins

1 2 4 8 16
Batch Size

ConvNeXts

0
25
50
75
100

Re
du

ct
io

n
(%

)

Fig. 12: The left Y-axis (solid line) shows the absolute CPU
usage. The left Y-axis (dashed line) shows the relative CPU
reduction. When the batch size increases, throughput perfor-
mance saturates on the GPU, such that the CPU usage reduces.

Applying compilers on devices with a dedicated accelerator
can significantly reduce CPU utilization (up to 80%) through
static-graph capture and kernel scheduling optimizations.
This reduction is particularly valuable in edge computing
scenarios where horizontal scaling is limited and CPUs may
handle concurrent auxiliary tasks. These findings indicate
compiler selection should consider both throughput and re-
source utilization metrics when deploying neural networks in
resource-constrained edge-cloud systems.

VI. CONCLUSION

The work introduced a framework for incorporating com-
piler effects throughout the research process for Edge-Cloud
systems relying on NNs. Empirical analysis demonstrated
that optimizations can completely invalidate performance
expectations by systematically analyzing compiler behavior
across heterogeneous platforms. The introduced Batch Scal-
ing Resilience metric quantifies a compiler’s ability to mit-
igate performance friction as batch size increases. Block-
level experimentation confirmed that simple compositions with
widely supported operations provide significant advantages in
resource-constrained environments, as compilers effectively
leverage repeated patterns for disproportionate throughput
gains.

ACKNOWLEDGMENT

We thank Alexander Knoll for providing us with the hard-
ware infrastructure.

REFERENCES

[1] S. Deng, H. Zhao, W. Fang, J. Yin, S. Dustdar, and A. Y. Zomaya,
“Edge intelligence: The confluence of edge computing and artificial
intelligence,” IEEE Internet of Things Journal, vol. 7, no. 8, pp. 7457–
7469, 2020.

[2] A. Reuther, P. Michaleas, M. Jones, V. Gadepally, S. Samsi, and
J. Kepner, “Ai and ml accelerator survey and trends,” in 2022 IEEE
High Performance Extreme Computing Conference (HPEC), pp. 1–10,
IEEE, 2022.

[3] A. Furutanpey, P. Raith, and S. Dustdar, “Frankensplit: Efficient neural
feature compression with shallow variational bottleneck injection for
mobile edge computing,” IEEE Transactions on Mobile Computing,
vol. 23, no. 12, pp. 10770–10786, 2024.

[4] A. Furutanpey, Q. Zhang, P. Raith, T. Pfandzelter, S. Wang, and
S. Dustdar, “Fool: Addressing the downlink bottleneck in satellite
computing with neural feature compression,” IEEE Transactions on
Mobile Computing, pp. 1–18, 2025.

[5] A. Furutanpey, P. A. Frangoudis, P. Szabo, and S. Dustdar, “Adversarial
robustness of bottleneck injected deep neural networks for task-oriented
communication,” in Proc. IEEE International Conference on Machine
Learning for Communication and Networking (ICMLCN), 2025.

[6] D. Crankshaw, G.-E. Sela, X. Mo, C. Zumar, I. Stoica, J. Gonzalez,
and A. Tumanov, “Inferline: latency-aware provisioning and scaling
for prediction serving pipelines,” in Proceedings of the 11th ACM
Symposium on Cloud Computing, SoCC ’20, (New York, NY, USA),
p. 477–491, Association for Computing Machinery, 2020.

[7] M. M. H. Shuvo, S. K. Islam, J. Cheng, and B. I. Morshed, “Efficient
acceleration of deep learning inference on resource-constrained edge
devices: A review,” Proceedings of the IEEE, vol. 111, no. 1, pp. 42–
91, 2023.

[8] Y. Zhou and K. Yang, “Exploring tensorrt to improve real-time in-
ference for deep learning,” in 2022 IEEE 24th Int Conf on High
Performance Computing & Communications; 8th Int Conf on Data
Science & Systems; 20th Int Conf on Smart City; 8th Int Conf on
Dependability in Sensor, Cloud & Big Data Systems & Application
(HPCC/DSS/SmartCity/DependSys), pp. 2011–2018, IEEE, 2022.

[9] M. Li, Y. Liu, X. Liu, Q. Sun, X. You, H. Yang, Z. Luan, L. Gan,
G. Yang, and D. Qian, “The deep learning compiler: A comprehensive
survey,” IEEE Transactions on Parallel and Distributed Systems, vol. 32,
no. 3, pp. 708–727, 2021.

[10] Y. Xing, J. Weng, Y. Wang, L. Sui, Y. Shan, and Y. Wang, “An in-
depth comparison of compilers for deep neural networks on hardware,”
in 2019 IEEE International Conference on Embedded Software and
Systems (ICESS), pp. 1–8, 2019.

[11] P. Jajal, W. Jiang, A. Tewari, E. Kocinare, J. Woo, A. Sarraf, Y.-H.
Lu, G. K. Thiruvathukal, and J. C. Davis, “Interoperability in deep
learning: A user survey and failure analysis of onnx model converters,”
in Proceedings of the 33rd ACM SIGSOFT International Symposium on
Software Testing and Analysis, ISSTA 2024, (New York, NY, USA),
p. 1466–1478, Association for Computing Machinery, 2024.

[12] X. Zhang, W. Jiang, C. Shen, Q. Li, Q. Wang, C. Lin, and X. Guan,
“Deep learning library testing: Definition, methods and challenges,”
ACM Comput. Surv., vol. 57, Mar. 2025.

[13] H. Zhang, M. Xing, Y. Wu, and C. Zhao, “Compiler technologies in deep
learning co-design: A survey,” Intelligent Computing, vol. 2, p. 0040,
2023.

[14] Q. Zhang, X. Li, X. Che, X. Ma, A. Zhou, M. Xu, S. Wang, Y. Ma,
and X. Liu, “A comprehensive benchmark of deep learning libraries
on mobile devices,” in Proceedings of the ACM Web Conference 2022,
WWW ’22, (New York, NY, USA), p. 3298–3307, Association for
Computing Machinery, 2022.

[15] Q. Zhang, X. Che, Y. Chen, X. Ma, M. Xu, S. Dustdar, X. Liu,
and S. Wang, “A comprehensive deep learning library benchmark and
optimal library selection,” IEEE Transactions on Mobile Computing,
vol. 23, no. 5, pp. 5069–5082, 2024.

[16] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proceedings of the IEEE conference on computer vision
and pattern recognition, pp. 770–778, 2016.

[17] Z. Liu, Y. Lin, Y. Cao, H. Hu, Y. Wei, Z. Zhang, S. Lin, and
B. Guo, “Swin transformer: Hierarchical vision transformer using shifted
windows,” in Proceedings of the IEEE/CVF international conference on
computer vision, pp. 10012–10022, 2021.

[18] T. Chen, T. Moreau, Z. Jiang, L. Zheng, E. Yan, M. Cowan, H. Shen,
L. Wang, Y. Hu, L. Ceze, C. Guestrin, and A. Krishnamurthy, “Tvm:
an automated end-to-end optimizing compiler for deep learning,” in
Proceedings of the 13th USENIX Conference on Operating Systems
Design and Implementation, OSDI’18, (USA), p. 579–594, USENIX
Association, 2018.

[19] R. Wightman, “Pytorch image models.” https://github.com/rwightman/
pytorch-image-models, 2019.

[20] M. Tan and Q. Le, “Efficientnet: Rethinking model scaling for con-
volutional neural networks,” in International conference on machine
learning, pp. 6105–6114, PMLR, 2019.

[21] H. Touvron, M. Cord, M. Douze, F. Massa, A. Sablayrolles, and
H. Jegou, “Training data-efficient image transformers & distillation
through attention,” in Proceedings of the 38th International Conference
on Machine Learning (M. Meila and T. Zhang, eds.), vol. 139 of
Proceedings of Machine Learning Research, pp. 10347–10357, PMLR,
18–24 Jul 2021.

[22] Z. Liu, H. Mao, C.-Y. Wu, C. Feichtenhofer, T. Darrell, and S. Xie, “A
convnet for the 2020s,” in Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), pp. 11976–11986,
June 2022.

https://github.com/rwightman/pytorch-image-models
https://github.com/rwightman/pytorch-image-models

	Introduction
	Related Work
	Background
	High-level Network Architecture Organization
	Software-Level Optimizations
	Operator Fusion
	Constant Folding
	Layout Transformation

	Hardware and Kernel-Level Optimizations
	Kernel Fusion
	Memory Latency Hiding
	Sparse Computation

	Graph Compiler-guided Solution Approach
	NGraphBench Library
	Pragmatic Research Design for Practical Systems
	Design Phase
	Development Phase
	Deployment Phase

	Evaluation
	Methodology & Experiment Design
	Testbed
	Compiler Configurations
	Network Architecture & Layer Composition
	Measuring Batch Parallelization

	Differential Compiler Support Across Architectural Styles
	Exploiting Repeated Patterns from Depth Scaling
	Batch Parallelization Scaling Efficiency
	Batch-Width Scaling Friction Mitigation
	Resource Usage Reduction

	Conclusion
	References

