
DISSERTATION

Vector Space-driven Service Discovery

ausgeführt zum Zwecke der Erlangung des akademischen Grades eines
Doktors der technischen Wissenschaften

unter der Leitung von

Univ.-Prof. Dr. Schahram Dustdar
Institut für Informationssysteme
Abteilung für verteilte Systeme
Technische Universität Wien

eingereicht an der

Technischen Universität Wien
Fakultät für Informatik

von

Dipl. Ing. Mag. rer. soc. oec. Christian Platzer

christian@infosys.tuwien.ac.at

Matrikelnummer: 9825498
Vogelsanggasse 18/10

A-1050 Wien, Österreich

Wien, Jänner 2008

Kurzfassung

Das zugrundeliegende Themengebiet dieser Dissertation umfasst einen großen Teil des
Web service Paradigmas und dessen Anwendung in heutigen verteilten Systemen. Das
Hauptaugenmerk liegt dabei auf dem speziellen Bereich der Suche und Auffindung solcher
Dienste. Die damit verbundenen Probleme sind vielfältiger Natur. Zum einen gibt es bis
dato noch keine gängige Methode oder einen universellen Ansatz zur Auffindung bereits
bestehender Dienste, zum anderen steht ein Großteil der Entwickler vor dem Problem nicht
zu wissen, an welcher Stelle sie neu verfasste Dienste publizieren sollen. Da es sich bei der
Web service-technologie bei weitem nicht um eine neue Facette des Internets bzw. der
auf Diensten basierten Infrastruktur handelt, wurden schon etliche Versuche unternom-
men, diese Diskrepanzen auf einen Nenner zu vereinheitlichen und somit eine Plattform
zu schaffen, die sowohl für Entwickler, als auch für die eigentlichen Konsumenten dieser
Dienste eine gemeinsame Anlaufstelle bietet. Viele dieser Versuche sind gescheitert, manche
zur Gänze, weil es sich um nicht ausgereifte Konzepte handelte, manche nur teilweise, weil
trotz eines durchdachten Konzeptes und einer entsprechenden Architektur die Akzeptanz
in der Dienst-orientierten Gemeinde fehlte.

Im Rahmen dieser Dissertation wurden diese Probleme analysiert und ein Konzept ent-
wickelt, das für alle Bereiche der oben erwähnten Gruppe eine Lösung bietet. Des weiteren
wird VUSE vorgestellt, ein an der technischen Universität entworfener und implementier-
ter Prototyp, der zur Umsetzung dieser Konzepte und schließlich auch der Auswertung der
produzierten Ergebnisse dienen soll. VUSE stellt im Kern eine Suchmaschine dar, die sich
des Vektorraum-Prinzips zur Ähnlichkeitsbestimmung mittels Winkeldistanz bedient, um
performant Ergebnisse auf Suchanfragen zu produzieren und dabei trotzdem die Fähigkeit
behält, auf mehrere physisch getrennte Bereiche aufgeteilt zu werden.

Im abschließenden Teil dieser Arbeit wird zudem eine Evaluierung der vorliegenden
Forschungsergebnisse, sowie ein Ausblick auf weiterführende und themenverwandte For-
schungsgebiete gegeben.

Abstract

The main topic of this thesis includes a large section of the Web service paradigm and
its application in todays distributed systems. The main focus lies on the very specific issues
of searching and discovering those services. The arising problems are of various nature. On
the one hand, there is no universal approach or established method for discovering existing
services to date. On the other hand, software developers are confronted with the problem
where to publish services they implemented. Due to the fact that Web service technologies
are not a new facet of the Internet or the service-oriented infrastructure respectively, many
approaches to find a common ground for those issues have already been proposed. They all
aim to create a common platform, where both, developers and service consumer can find
a common contact point. Many of those approaches failed simply because their concepts
where not mature enough, but others failed, because even though the concept was sound
and feasible, they lack the acceptance in the service-oriented community.

In the course of this thesis, these problems were analyzed to produce a concept that
provides a solution for the problems mentioned above. Furthermore, VUSE is presented,
a prototype developed and implemented at the Vienna University of Technology, which
is designed to realize these concepts and finally, to evaluate the produced results. The
principal conclusion of VUSE can be seen as a search engine which is based on the vector-
space model to rate similarities with angle distances and create high-performance results
for search queries while still maintaining the ability to be separated into several physical
locations.

In the final chapters, an evaluation of the research results is given, together with an
outlook on related research fields and ongoing work.

Acknowledgements

For the excellent supervision of this thesis and the mentoring during the different phases
of work, my personal thanks apply to Schahram Dustdar. The liberty to choose a research
field and direction without restrictions and still receive valuable input is nothing that can
automatically be taken for granted. Therefore, it is valued all the more. It was a pleasure
to have an advisor who understands the restrictions a family can have on the manageable
workload.

Sincere thanks to my family. Without your help, this would not have been possible.

Christian Platzer
Vienna, Austria, January 28, 2008

For Lisi and my family

Contents

1 Preface 1

1.1 Contribution . 1

1.2 Overview . 2

1.2.1 WSDL . 3

1.2.2 SOAP . 8

1.3 Motivation and Problem Definition . 9

1.3.1 The SOA triangle . 9

1.3.2 UDDI . 11

1.3.3 Publishing . 11

1.3.4 Searching and querying . 12

1.3.5 Binding . 12

1.3.6 Correctness . 13

1.3.7 QoS and metadata . 14

1.4 Discovery . 15

1.4.1 Restrospective . 15

1.4.2 Enabling discovery . 16

1.4.3 Searching in service registries . 17

1.4.4 Querying repositories . 18

1.4.5 Domain-specific knowledge in service descriptions 18

1.4.6 Quality-of-service properties . 19

1.5 Requirements . 19

1.5.1 Leveraging search and discovery . 19

1.5.2 Enhancing index quality . 20

1.5.3 Generating metadata . 20

1.6 Structure of the Thesis . 21

i

ii Contents

2 A Vector Space based Search Engine for Web Services 23

2.1 Introduction . 23

2.2 Premises . 24

2.2.1 WSDL example . 25

2.2.2 Web service Discovery . 26

2.3 Data accumulation . 27

2.4 Search engine . 28

2.4.1 Architecture . 29

2.5 The vector space concept . 30

2.5.1 The Term Space . 30

2.5.2 Weighting . 31

2.5.2.1 Term frequency and inverse document frequency: 32

2.5.2.2 tf x idf normalization: . 34

2.5.3 Rating Algorithms . 34

2.6 Implementation . 35

2.6.1 Set-up . 35

2.6.2 Frontend . 37

2.6.2.1 UDDI downloads . 38

2.6.2.2 Keyword extraction . 38

2.6.2.3 Query Processor . 39

2.6.2.4 Joiner . 39

2.6.3 Back-end . 40

2.6.3.1 Table generation . 40

2.6.3.2 Query processing . 41

2.6.4 Implementation experience . 43

3 Bootstrapping and Exploiting Web Service Metadata 45

3.1 Metadata in Web services . 45

3.2 QoS . 46

3.2.1 Monitoring Approaches . 46

3.2.1.1 Provider-side instrumentation 46

3.2.1.2 SOAP Intermediaries . 47

3.2.1.3 Probing . 48

3.2.1.4 Sniffing . 49

Contents iii

3.2.2 QoS Model . 49

3.2.2.1 Performance . 50

3.2.2.2 Dependability . 52

3.2.3 Bootstrapping, Evaluating and Monitoring QoS 53

3.2.4 Architectural Approach . 55

3.2.5 Evaluating QoS Attributes using AOP 57

3.2.5.1 TCP Reassembly and Evaluation Algorithm 58

3.2.5.2 Implementation Details 60

3.2.6 Integration . 60

3.3 Location Data . 61

3.3.1 Concept . 61

3.3.2 Exploitation . 63

3.4 Semi automatic domain classification . 65

3.4.1 Domain Tree . 65

3.4.2 Recommendation System . 66

3.4.3 Vector generation . 67

3.4.4 Remarks . 69

4 Result Classification using Statistical Cluster Analysis 71

4.1 Prerequisites . 72

4.1.1 Requirements . 72

4.1.2 General Indexing . 72

4.1.2.1 Syntactic Indices . 73

4.1.2.2 Rich Indices . 73

4.2 Basic Concepts of Statistical Clustering . 74

4.2.1 Proximity measure . 74

4.2.1.1 City-Block distance . 75

4.2.1.2 Euclidean distance . 75

4.2.1.3 Multidimensional Angle 76

4.2.2 Cluster algorithm . 77

4.2.3 Results . 79

4.3 Implementation . 80

4.3.1 Plug-in location . 81

4.3.2 Process flow . 81

iv Contents

5 Evaluation 85

5.1 Web implementation . 85

5.1.1 Prototype execution . 86

5.1.2 Performance . 90

5.2 QoS prototype . 94

6 Related Work 99

6.1 Vector Space basics . 99

6.1.1 General . 99

6.1.2 Principle . 100

6.1.3 Raw term frequency: . 101

6.1.4 Weighting and rating schemes . 102

6.1.5 Linguistic methods . 103

6.1.6 Vector space assembly and synchronization 103

6.2 Measuring service metadata . 104

6.3 Search and Clustering . 105

7 Conclusion and Future Work 107

7.1 Conceptual implications . 107

7.1.1 Clustering and search performance 107

7.1.2 Search engine adoptions . 108

7.1.3 Semantic indexes . 108

7.2 Outlook . 109

Bibliography 111

A Code listings 119

A.1 UDDI cross-reference downloads . 119

A.2 V-USE table generation . 122

A.3 V-USE query execution . 124

B Screenshots 127

B.1 Amazon Cluster - Initial Vector . 127

B.2 Amazon Cluster - Matrix reduction . 127

B.3 Amazon Cluster - Cluster elements . 132

B.4 Amazon Cluster - Cluster coefficients . 132

B.5 Search result example . 133

List of Figures

1.1 Basic SOA Model – Theory vs. Practice 10

2.1 Amazon Schema Snippet . 26

2.2 Basic architecture . 29

2.3 Application Overview . 36

2.4 Query Results - Screenshot . 37

3.1 Provider side instrumentation . 47

3.2 Intermediary . 48

3.3 Probing . 48

3.4 Sniffing . 49

3.5 Service Invocation Time Frames . 51

3.6 System Architecture . 53

3.7 Architectural Approach . 55

3.8 Aspect for Service Invocations (simplified) 58

3.9 TCP Handshake Traffic . 59

3.10 Location lookup of soap.amazon.com . 62

3.11 Google Maps location view . 63

3.12 Domain Tree example . 66

3.13 Recommendation example . 67

4.1 Dendrogram visualization . 80

4.2 System Architecture with cluster plugin . 82

5.1 Cluster similarity diagram . 89

5.2 Dendrogram for ”Amazon.wsdl” . 90

5.3 Performance gain with split repositories 93

v

vi List of Figures

5.4 Response times . 95

5.5 Network Latencies . 96

5.6 Execution times . 96

5.7 GoogleSearch Response Times . 98

6.1 Three dimensional vector space . 101

B.1 Query vector for Matrix creation . 127

B.2 Matrix reduction steps . 131

B.3 Matrix element listing . 132

B.4 Matrix reduction coefficients . 132

B.5 Search result example . 133

List of Tables

2.1 Interface elements . 40

2.2 iteration steps . 42

4.1 Matrix reduction example . 79

5.1 Document names . 91

5.2 Performance comparison . 91

5.3 Test-run comparison . 97

5.4 Google Evaluation Results . 98

vii

viii List of Tables

Chapter 1

Preface

Humor can be dissected as a frog can, but the thing dies in the process and the
innards are discouraging to any but the pure scientific mind.

E. B. White (1899 - 1985)

1.1 Contribution

Some parts of the work that form the major contribution of this thesis are published in form
of articles, conference proceedings or book chapters. Here, the major components and their
relations to the publications are introduced. Especially in conference proceedings, the lim-
ited space often requires an author to shorten the presented work to an acceptable amount.
Fortunately, this limitation only partially applies to this thesis. Therefore, the introduced
concepts are explained in greater detail and with more focus on the implementation and
evaluation than in the underlying publications.

The first and most important manuscript was published as an IEEE conference proceed-
ing for the third European conference on Web services (ECOWS) [49]. This publication
introduces the vector space search engine which will be presented in Chapter 2 of this thesis.
In addition to the paper, this thesis will present a detailed discussion of the implementation
procedure as well as an evaluation of performance related aspects.

The second official publication appeared as a book chapter in Securing Web Services:
Practical Usage of Standards and Specifications published by Idea [50]. The chapter com-
prises an overview on Quality of Service parameters for Web services and how to use them
for service discovery and monitoring. These concepts were extended and are included in
Chapter 3 of this thesis.

1

2 1.2 Overview

The statistical approach for service classification, as it is presented in Chapter 4 was sub-
mitted for publication to the ACM Transactions on the Web (TWEB) Journal in August
2007. With the completion date of this thesis however, no decision about the acceptance
of the manuscript was available.

Other publications [1,29], were not used directly within this thesis but deal with related
problems and issues. They are cited accordingly.

1.2 Overview

As a general introduction to the topic of this thesis and to give the reader an idea of the
involved technologies, this section deals with some of the basic principles of Web services
(WS) and the service-oriented architecture as a whole.

Web services in general are basically not a new technology. They essentially grew with
the evolution of the World Wide Web and are still strongly related to it in certain respects.
The first Web services in a more narrow sense were introduced by the Microsoft Cooperation
in July, 2000. Yet, the technology originated from the efforts of many companies that tried
to achieve more or less the same goal. Although the philosophy never changed, the evolution
of Web services and the involved methods resulted in more sophisticated and convenient
technologies. Per definition of the World Wide Web consortium (W3C), Web services are
”software systems designed to support interoperable machine to machine interaction over
a network” [8]. This definition is still valid, because it captures two of the most essential
properties quite well:

• Web services were designed to be interoperable. This ability is not limited to the mere
possibility to connect physically distributed computer systems but also encompasses
a certain degree of platform independence. To be more specific, the target was to
ensure that Web services can be used, no matter what the utilized programming
language is.

• Secondly, the technology was designed to ease the communication between machines
rather than interfacing with humans. Nevertheless, the currently established stan-
dards aim to provide a human-readable form for both, description of the services and
the exchanged messages themselves.

To fulfill all these requirements, the eXtensible Markup Language (XML) was chosen
as the enabling technology for Web services. The basic idea behind the XML was to keep
various data structures human readable but still provide the flexibility to describe com-
plicated relationships. This flexibility is the main reason why XML became so successful.
Listing 1.1 shows a simple example for an XML-based data structure to categorize books.

The result is a markup language that allows to create a bookstore index. The index
comprises book titles, authors and even an abstract for the different chapters. To be precise,

Chapter 1: Preface 3

¨ ¥
<?xml version=” 1 .0 ”?>
<book t i t l e=” Secur ing Web S e r v i c e s : P r a c t i c a l Usage o f Standards

and S p e c i f i c a t i o n s ”
authors=” Platzer , Rosenberg , Dustdar”>

<chapter t i t l e=”Enhancing Web Se rv i c e Discovery and Monitoring
with Qual i ty o f S e rv i c e In format ion ”>

<s e c t i o n t i t l e=”QoS Model”>
This i s a d e s c r i p t i o n o f the Ws−QoS Model .

</ s e c t i o n>
<s e c t i o n t i t l e=”Conclus ion ”>

The conc lu s i on f o r t h i s chapter goes here .
</ s e c t i o n>
. . . .

</ chapter>
. . .

</book>
§ ¦

Listing 1.1: XML example

XML is not a language in itself but a general-purpose specification to create custom markup
languages. This is the point where the XML technology finally intersects with the Web
service world. There are two major components for every Web service as they are used
today. A description of the service itself and the actual messages. Both are expressed
through XML and briefly discussed in the later sections. The elements discussed in this
short overview are far from being complete. XML itself consists of a variety of standards
and methods for advanced usage. These standards are not mentioned here because of their
limited use for this thesis. Should one or more be of particular interest for any of the
subtopics, they will be discussed and referenced as detailed as necessary.

1.2.1 WSDL

This section concerns the description of Web services and how it evolved.

The first Web services were nothing more than program functions called over a network.
This method is called Remote Procedure Call (RPC) and is still used as one possible style
to invoke Web services as they exist today. Such an RPC can be done by creating an XML
message where the name of the function to invoke, along with the necessary parameters
are sent to the receiver. Listing 1.2 shows such a simple RPC message.

Even with this very simple example, one of the requirements to Web services becomes
clear. The example service is obviously designed to book a ticket for a train to a given
destination. The second parameter though could be anything from the number of tickets

4 1.2 Overview

¨ ¥
<?xml version=” 1 .0 ”?>
<methodCall>

<methodName>bookTrainTicket</methodName>
<params>

<param>
<value>Vienna</ value>

</param>
<param>

<value>< i n t>1</ i n t></ value>
</param>

</params>
</methodCall>

§ ¦
Listing 1.2: RPC example

to purchase to the class that should be booked. Furthermore, the user must first know the
name of the method that should actually be invoked. To provide the essential information
in a convenient and structured way, the Web service Description Language (WSDL) was
introduced by Microsoft in September, 2000 [12].

The language is powerful and designed to provide the required capabilities to describe
Web Services that are more complicated than simple RPC calls. Listing 1.3 shows a
complete WSDL file as it could exist to describe the above example. The most important
features and elements are included. The design of this description language is a key element
to the work following in this thesis. Therefore, the major elements and conventions are
briefly discussed.

Types
The first element begins in line 3 where the types element occurs. Just like ordinary type
definitions in any program language, they define the structure of the transmitted data. The
basic data types in Web services are quite restricted and cover the most important ones
like strings, integers and boolean [12]. The possibility to express data types however, is not
limited to these types at all. By using custom data types, almost every data type can be
expressed, even whole objects. In the WSDL listing, the custom type TicketOrderRequest
is created as a complex type with two subtypes. This must be done, because the operation
to order a ticket takes more than a simple element and, therefore, requires a complex
element to be created. In this case the parameters for the operation are a string labeled
destination and an integer labeled class. The labels are created by humans, in most
cases, even when they are generated from existing source code. Therefore, they most
certainly hold some valuable (quasi-)semantic information about the service. In this case
they obviously describe the name of the destination and the desired class to travel.

Messages
To assign the previously defined types to an operation, the message element is used. It
basically defines which types are contained in either input or output of a single opera-

Chapter 1: Preface 5

¨ ¥
1 <?xml version=” 1 .0 ”?>
2 <d e f i n i t i o n s name=”TicketOrder ”>
3 <types>
4 <element name=”TicketOrderRequest ”>
5 <complexType>
6 <element name=” de s t i n a t i on ” type=” s t r i n g ”/>
7 <element name=” c l a s s ” type=” i n t e g e r ”/>
8 </complexType>
9 </ element>

10 </ types>
11 <message name=”OrderTicketInput ”>
12 <part name=”body” element=”TicketOrderRequest ”/>
13 </message>
14 <message name=”OrderTicketOutput”>
15 <part name=” suc c e s s ” type = ”boolean ”/>
16 </message>
17 <portType name=”TicketOrderPortType”>
18 <opera t i on name=”bookTrainTicket ”>
19 <input message=”OrderTicketInput ”/>
20 <output message=”OrderTicketOutput”/>
21 </ opera t i on>
22 </portType>
23 <binding name=”orderTicketSoap ” type=”TicketOrderPortType”>
24 <binding s t y l e=” rpc ” t ranspo r t=”http ”/>
25 <opera t i on name=”bookTrainTicket ”>
26 <opera t i on soapAction=””/>
27 <input><body use=”encoded”/></ input>
28 <output><body use=”encoded”/></output>
29 </ opera t i on>
30 </ binding>
31 <s e r v i c e name=” Tra inTicke tSe rv i c e ”>
32 <port name=”TicketOrder ” binding=” orderTicketSoap ”>
33 <address l o c a t i o n=” ht tp : // example . com/ t i c k e t ”/>
34 </ port>
35 </ s e r v i c e>
36 </ d e f i n i t i o n s>

§ ¦
Listing 1.3: WSDL snippet

6 1.2 Overview

tion. The messages can include both, simple and complex type definitions. The message
element does not define for which purpose the types are used though. Therefore, a mes-
sage could be used as input and output of an operation at the same time. In line 11 the
first message is named OrderTicketInput and uses the previously defined complex type
TicketOrderRequest to define the input message of the operation.

Port types
Port types define one or more operations. The example port type in line 17, for instance,
defines an operation called bookTrainTicket where the previously defined messages are
used as input and output parameters. Again, the name of the operation usually reflects
its functionality if not intended otherwise. When using the Apache Axis framework [5] for
example, the operation names are mapped to the names of the exposed methods whenever
the WSDL file is generated. As a result, the names in the description file are bound to
hold a certain amount of meaning, which is exploited by the methods used in this thesis.

Bindings
The previous elements would theoretically suffice to describe a service based on the remote
procedure call structure. For today’s Web services though, WSDL offers two additional
description elements. The first is the binding element. Its function is to define which
transport and encoding style is used to transmit a message from sender to the destination.
Theoretically, a multitude of transport methods are possible, reaching from http to email
via the smtp protocol. In practical usage though, http and soap are the most established
methods. Apart from the transport protocol, the binding also defines the style of the
message, being either RPC as in line 24 of the example, or document/literal style. The
difference between them is mainly of conceptual nature. RPC style sees Web services as the
original remote procedure call, while document/literal just concentrates on the message.
Currently, programmers are encouraged to use the doc/lit style because of its better ability
to adept to a changing program interfaces.

Services
The last important element of Web service descriptions is the service specification it-
self. It essentially assigns port and binding to a specific service and gives the exact
address location of the service. Line 31 of the example shows that the service is bound to
http://example.com/ticket. Although it is possible to define more than one
textttservice within a single WSDL file, it is uncommon to do so. Multiple service tags
could be used to define multiple endpoints for a single service or to classify functionality
according to the their URL targets. In practise, however, WSDL files are usually used
to process code stubs for the service or dynamically at runtime. In both cases, multiple
service tags can only be handled by considering them as individual elements. Therefore,
the same result can be achieved by defining separate WSDL files.

This completes the short introduction of Web service description files and the most
important elements. Some additional notes worth mentioning concern semantic descrip-
tions in WSDL files. The observant reader may have already guessed that the introduced
elements are still insufficient to describe what a Web service is exactly capable of. In the

Chapter 1: Preface 7

end, how can a consumer of the example Web service be sure that the operation called
bookTrainTicket really books a train ticket? The answer is simple: The consumer can’t.
And that is the reason why semantic Web services [9, 39] are still a heavily investigated
research field. The idea is to add a resource description for each element with a semantic
meaning. How to do this, is already defined in the resource description framework or RDF,
for short [63]. By adding RDF descriptions to an existing WSDL file, it is possible to define
what the operation exactly does. Such a description can be created by using SAWSDL
(Semantically Annotated WSDL), for example. Some major drawbacks of semantic de-
scriptions, however, keep them from being used by today’s programmers. Some of the
reasons are:

• RDF descriptions are always bound to an ontology [64]. This ontology provides a
set of hierarchical notions of a specific topic and their relations to each other. The
vast amount of possible items forces researches to create a separate ontology for each
domain. Therefore, when dealing with a semantic description of any kind, the corre-
sponding ontology must be available. Furthermore, this description certainly reflects
the ontology programmer’s understanding of a certain topic. If another programmer
decides to assign a slightly different meaning to a certain notion, it most often results
in different ontologies for the same topic.

• Secondly, the developer creating a Web service not only has to deal with the technical
implementation of the service but is also required to assign the right semantic meaning
with the right syntax. If the coders decide to omit those descriptions because they
are busy with debugging issues or adding new features, the whole concept is bound
to fail.

• Another problem concerns the level of detail, a domain-specific ontology can reach. In
the previous example, it would be possible to mark the bookTrainTicket operation
with its corresponding RDF markup. The ontology could possibly be created by
an initiative of the traveling-sector. But what if the same operation that takes a
string and an integer as input is designed to encrypt the given string with a random
encryption algorithm? In this case it is quite impossible to define the exact meaning
of the operation by using RDF tags. It would either be impossible because of a
limited depth of the ontology or simply result in a description so complicated that it
resembles the original source code and would therefore be too hard to read or process
automatically. Instead, publishing the original source code would be easier.

Because of this and various other reasons, semantic descriptions are not widely used today.
They are more seen as a tool to support semantic-based research dedicated to this partic-
ular topic. Nevertheless, the possibility to describe functional semantics of Web services is
considered an important issue and, therefore, treated in this thesis as well.

With service descriptions being completed, the last element of the Web service com-
munication stack, the message itself, can finally be discussed.

8 1.2 Overview

1.2.2 SOAP

Stemming from XML-RPC as well, SOAP was originally introduced as the Simple Object
Access Protocol [24]. The acronym though, is no longer in use since SOAP reached version
1.2 and became a name on its own. This technology is the final link between Web service
provider and consumer because it specifies how the messages for Web service requests
and responses must look like. To stay true to the original example, listing 1.4 shows the
necessary XML code to order a first class ticket to Vienna.

¨ ¥
1 POST / t i c k e t HTTP/1 .1
2 Host : example . com
3 Content−Type: app l i c a t i o n / soap+xml ; cha r s e t=utf−8
4
5 <?xml version=” 1 .0 ”?>
6 <soap:Envelope
7 xmlns:soap=” ht tp : //www.w3 . org /2001/12/ soap−enve lope ”
8 soap : encod ingSty l e=” ht tp : //www.w3 . org /2001/12/ soap−encoding ”>
9 <soap:Body xmlns : t=” ht tp : //www. example . org / s tock ”>

10 <t :bookTra inTicket>
11 <t : d e s t i n a t i o n>Vienna</ m:de s t ina t i on>
12 < t : c l a s s>1</ m:c l a s s>
13 </ t :bookTra inTicket>
14 </ soap:Body>
15 </ soap:Envelope>

§ ¦
Listing 1.4: SOAP request

In contrast to the previous examples, the presented listing is complete and functional
with all namespaces and the required HTML header. Beginning with Line 1, the first three
lines shows the header elements where the receiving host is defined. This information is
derived from the WSDL’s <service> tag. It basically says that the following message is
posted via the HTTP protocol just like any ordinary Web page. The receiver’s Web server
then decides how to further handle the received XML request. In most cases, the Web server
will extract the contained XML message and deliver it to a deployed Web service engine
like Apache Axis. The actual content starts with the <?xml> tag as usual, followed by the
aforementioned namespace declaration in line 6. Namespaces are necessary to precisely
define the meaning of an XML tag. Here two namespaces are defined, namely soap for
the SOAP protocol itself, and t for the names used in the WSDL file. In all subsequent
lines, the XML tags are marked with their corresponding namespace to guarantee an exact
assignment of the tags. The <destination> tag for instance, is labeled as an element of
the WSDL file but it could have a different meaning in the soap protocol.
The elements belonging to the t-namespace are finally responsible for the actual request.
They define the operation (bookTrainTicket) to call as well as the necessary parameters

Chapter 1: Preface 9

to do that. If the request was sent successfully, the receiver sends back an answer in the
same style. A possible answer for this request is depicted in Listing 1.5.

¨ ¥
1 HTTP/1 .1 200 OK
2 Content−Type: app l i c a t i o n / soap+xml ; cha r s e t=utf−8
3
4 <?xml version=” 1 .0 ”?>
5 <soap:Envelope
6 xmlns:soap=” ht tp : //www.w3 . org /2001/12/ soap−enve lope ”
7 soap : encod ingSty l e=” ht tp : //www.w3 . org /2001/12/ soap−encoding ”>
8 <soap:Body xmlns:m=” ht tp : // example . com/ t i c k e t ”>
9 <m:bookTrainTicket>

10 <m:success>t rue</ m:success>
11 </m:bookTrainTicket>
12 </ soap:Body>
13 </ soap:Envelope>

§ ¦
Listing 1.5: SOAP response

Just like the request, the response starts with an HTTP header before the actual content
starts. According to the definition of the WSDL file, the bookTrainTicket operation
returns a boolean value named success and this is exactly what is done in line 10. Here,
a drawback of the Web service technology becomes obvious. The whole response serves
the reason to transmit a single boolean value that can be expressed in one bit only. By
using HTTP, XML and SOAP for transport and protocol, the actual message contains 459
bytes, which is 3672 times the needed size. This example is, of course, an exaggeration
because Web services do not transfer information bit by bit. In some cases though, the
used protocols cause an immense traffic overhead to achieve the desired flexibility and ease
of use.

1.3 Motivation and Problem Definition

The overview in the previous section describes the most important functional elements of
Web services and their implications of both, caller and provider. To properly describe the
problem this thesis tackles, a third non-functional party has to be introduced first. The
service registry.

1.3.1 The SOA triangle

During the last few years, Service-oriented Computing (SOC) [46] has become an at-
tracting research area. Not only because of the implied capabilities but also due to some

10 1.3 Motivation and Problem Definition

major problems arising with the inital thought to create a loosely coupled infrastructure
by using the Web service technology as an enabler. Service-oriented Architecture (SOA)
was meant to be a means to provide an architectural model for developing service-oriented
applications. In the last few years, Web services evolved from the RPC-centric model to
the previously mentioned messaging-based communication model.

The basic SOA model as it was initially created considers three main elements as shown
in Figure 1.1(a). The service provider implements a given service like shown in Section
1.2. Furthermore, it publishes the service description in a service registry. The service
consumer searches the registry to find a certain service. If found, it retrieves the location
of the service and binds to the service endpoint, where the consumer can finally invoke the
operations of the service.

(a) SOA Theory (b) SOA Practice

Figure 1.1: Basic SOA Model – Theory vs. Practice

By implementing the SOA triangle, one could gain flexible solutions with respect to
manageability and adaptivity of software systems. In practice, however, software systems
hardly ever implement the publish-find-bind-execute cycle as proposed by the SOA triangle.
Figure 1.1(b) depicts the current model as it is used in most of today’s SOA applications.
The current model solely consists of service provider and service requestor and, therefore,
comprises just the necessary elements to keep the functional level intact. This implies
that the service requestor has to know the exact endpoint address of a service and has to
generate a proxy to invoke the service without knowing the location of a possibly changing
WSDL description. All this is done in a static way which does not conform to the basic
principles of service-orientation. Building systems in such a way does not result in easily
adaptable architectures and loosely-coupled systems. On the contrary, service providers
and service requestors are tightly coupled and unable to automatically react to changes.
Modifying the service endpoint address for instance, results in an unrecoverable application
error. And this is a disaster from a software engineers perspective. All these arguments
strongly suggest to use the initially forseen publish-find-bind-execute cycle instead of the
static methods described above. In reality, however, it is not popular at all. There are
multiple reasons for this fact but almost every single one emerges from the same problem:
UDDI.

Chapter 1: Preface 11

1.3.2 UDDI

The Universal Description, Discovery and Integration specification or UDDI for short [44]
which is currently available in Version 3.0, closes the SOA triangle and fulfills the function
of the Web service registry. The UDDI architecture is objectively seen sound and meets
all necessary requirements to function as a service registry. In reality however, the concept
comprises some shortcomings that negatively influences the usability of the existing UDDI
implementation.

1.3.3 Publishing

The first problem concerns the publishing of Web services. UDDI operates on a data model
that supports various capabilities. Since it aims to provide a registry for businesses and
corporations in the first place, some elements of the model are specifically tailored to this
purpose. The top level element, for instance, contains information about the organization
that published the service and is called the businessEntity. This information is supposed
to be viewed by humans to ease the process of finding a specific company. Furthermore,
UDDI provides the possibility to publish a description of a service’s business function which
is called the businessService in the data model. It is hierarchically ordered below the busi-
nessEntity because a company can provide various services at the same time. A specific
service is finally described by bindingTemplates where the technical details are defined, in-
cluding a reference to the service’s interface or API. Additionally, UDDI includes a feature
to create user-defined taxonomies by using tmodel entries. They are then referenced in the
binding template and can be seen as the technical fingerprint of a service.
With all the requirements represented by this architecture, it becomes clear that the prob-
lem for publishing Web services in UDDI registries lies mainly in the convenience and
simplicity to do so. How this influences real-world registries is shown in 1.3.6 An exist-
ing WSDL file cannot just be uploaded to an UDDI directory. Instead, the publisher is
required to create a business entity along with the business service for the functionality
of the service. Furthermore, the publisher is required to know how and where to enter
this information. This required high level of familiarity with the UDDI structure, as well
as the discipline needed, produces those unwanted side-effects that lead to the real-world
statistics presented in 1.3.6.

• Programmers and software engineers with limited knowledge of Web service technolo-
gies are forced to learn at least some parts of the UDDI data model to successfully
publish their service descriptions. If they decide the effort not worth the gain, they
will simply refrain from publishing their services and send their service description
to the designated consumer personally. This results exactly in the unwanted cycle
shown in Figure 1.1(b).

• Once a potential Web service provider gets familiar with UDDI, the relative openness
of the architecture raises some additional problems. Since WSDL descriptions cannot

12 1.3 Motivation and Problem Definition

be published as a whole, tmodel entries are used to provide the necessary information.
Unfortunately, the service description in a tmodel key does not necessarily contain
the corresponding WSDL file for a service. It could also be a link to a word document
or PDF file that describes the service. This fact renders the automatic processing
and data extraction from UDDI registries quite complicated.

• Another side-effect is that some programmers will use a trial-and error method to
register their services although they don’t know exactly how do it. For public reg-
istries, they constitute the largest source of disturbance for the registry’s content.
These ”dabblers” are also responsible for some of the problems mentioned below.

1.3.4 Searching and querying

The quite complicated registry structure also poses an obstacle when potential service
consumers want to search for a specific service. Depending on where the provider has
entered the essential information, the queries can only be submitted on a specific level,
e.g., businessEntities. Whether the desired service is found depends if the information was
entered at the same data structure by the provider. As an example, a company could
choose to define a businessEntity with Weather Today as a caption because they provide
some services like temperature and rain forecasts. At the same time there could exist
another company that chooses Meteorology today because they also provide services for
earthquake warnings along with the weather forecast. Searching the business entity for
weather service would only reveal the first service while searching at a deeper level would
probably also discover the latter.
From the technological point of view, the search and query capabilities are mostly imple-
mented by simple queries, where full text searches are issued upon the local databases.
Those queries are quite limited in their capabilities. An additional disadvantage of the
UDDI structure is, that WSDL files cannot be queried for their content because they are
not available for the registry itself. This means that a query for a specific port type of a
service, for instance, is impossible a priori.

1.3.5 Binding

A subject already touched in Section 1.3.3 concerns the binding to services published in
UDDI-like registries. With the current setup, a consumer is bound to locate the WSDL
file for a service directly at the provider by using the link stored in the corresponding
tmodel entry. This method requires the provider to constantly make the service description
available without restrictions. On the other hand, it forces the consumer to keep track of
the bound services or otherwise loose the endpoint description of the target. If the service
provider decides to move the service endpoint or the service as a whole, it is impossible for
the consumer to find the new location without querying the registry and hoping to find
the right entry again.

Chapter 1: Preface 13

1.3.6 Correctness

Another problem that needs to be solved concerns the correctness of the uploaded services.
Public UDDI registries as they existed from Microsoft [43] or IBM [27] suffered from an
immense inundation of malfunctioning services. During the first phase of this thesis which
was conducted in Oct. 2005, the public UDDI registries from Microsoft and IBM com-
prised about 10000 entries. By using a self-written tool to download links contained in
the tmodel section of the UDDI entries, 20% or 2000 entries came along with a valid URL
to the supposed description file. From these 2000 links, around 50% or 1000 files where
actually reachable and valid and, therefore, downloaded to a local repository. The down-
loaded entries reached from PDF files to HTML documents that were uploaded as general
information about the service but not as a functional description. Out of the remaining
1000 files, only 500 were actually WSDL files which amounts to only 5% of the overall
amount of entries in the UDDI directory. The other files where either chunks of existing
WSDL files or contained malformed XML content. But it does not stop here. Those 500
files were not always descriptions of functional services. As a matter of fact, the public
registries from Microsoft and IBM attracted a large number of unexperienced programmers
who published their newly written Web services. Why this poses an enormous problem
shall be depicted by the following enumeration of steps that are usually necessary to write
a Web service:

1. A Web service capable IDE needs to be installed at a development machine (like,
Eclipse, BEA Weblogic, Visual Studio etc..)

2. The code for the Web services has to be written and an entry point defined.

3. The WSDL file has to be generated by defining which methods shall be exposed. In
some cases, the WSDL file is generated each time, the corresponding link is retrieved.
In other cases, the WSDL file was created before, and a static version is available
that has to be updated, each time a change is made.

These steps are straight forward but the third step could easily result in an unusable WSDL
file if the IDE is bound to the localhost network adapter. As a result, the generated end-
point for the service description looks like http://localhost:8080/MyWebService. The
problematic thing with this endpoint is that the development machine will never produce
an error, because if it tries to bind to the service, it will always find the service. For real
users, this is, of course, unusable. They have no means to identify the real location of the
published service. In the files extracted from the UDDI registry, about 30% of the URLs
pointed to localhost.

Apart from localhost entries, there are various other possibilities, mostly an effect of
an improper firewall or network setup. When the Web service engine for instance is not
running on the same port as the Web server, it must be ensured that the affected port is
forwarded to the right IP address. Another reason of unreachable Web services is of course

14 1.3 Motivation and Problem Definition

a simple downtime of the service. Not all implementations are deployed on professional
server environments and are, therefore, terminated when the hosting computer is shut
down.

1.3.7 QoS and metadata

The last issue that is important in this iteration concerns metadata.
Metadata is a collective term which entitles information about a Web service that does not
directly influence its functionality. Some examples for service metadata are

• Performance: How fast can a service respond to a request? What is the service
uptime? These categories are entitles as Quality of Service or short QoS.

• Domain specific knowledge: Which domain does the service belong to (e.g., financial,
automotive, education, research etc...)

• Location knowledge: Where is the service hosted?

• Technology information: What technology is/was used to implement and deploy the
service?

Currently, WS-mex (WS-MetadataExchange) [28] is the only way to attach metadata
to a Web service. Some similar approaches propose to attach some information directly
to the WSDL file. To do so, they have to extend the existing WSDL specification with
some markup to hold the desired information about a service or at least part of it. Such
a method, however, bears some disadvantages which are further discussed in Chapter 6
along with other related work.
Another issue besides attaching known metadata is how to retrieve it in the first place.
For something like service cost it is clear that the service provider needs to define a value.
For performance or location information, however, the values are better defined by an in-
dependent party to ensure the correctness of the given values an not least the possibility
to compare services to each other. This evaluation should, therefore, be performed by the
service registry but no standardized way to do so is currently established.

When facing such an enormous amount of unsolved problems it is intelligible why the
two largest providers of a public UDDI registry, namely Microsoft and IBM, chose to shut
down their sites. In a general FAQ, Microsoft defines the reason for stopping their service1.

Q: Why are IBM, Microsoft and SAP discontinuing the operation of the UDDI
Business Registry?

1Source: http://uddi.microsoft.com/about/FAQshutdown.htm, Date: 05.08.2007

Chapter 1: Preface 15

A: The UDDI Business Registry (UBR) was part of the UDDI Project an-
nounced in September 2000. The project goals were to define a set of specifi-
cations to enable description, discovery and integration and to prove interop-
erability through a shared implementation of those specifications and provide
feedback to refine the specifications through operational experience. The spec-
ifications were contributed to the OASIS international standards consortium in
2002. In May of 2003 and February 2005, respectively, the UDDI version 2 and
UDDI Version 3 specifications were approved as OASIS standards. The pri-
mary goal of the UBR was to prove the interoperability and robustness of the
UDDI specifications through a public implementation. This goal was met and
far exceeded. The UBR ran for 5 years, demonstrating live, industrial strength
UDDI implementations managing over 50,000 replicated entries. The practical
demonstration provided by the UBR helped in the ratification of UDDI speci-
fications as OASIS standards and several software vendors now include UDDI
support as a key feature in their software products. UDDI registries are being
broadly deployed to solve application and service integration challenges.

The basic statement that all goals were achieved and UDDI is primarily seen as a technol-
ogy for operating in corporate environments can be reckoned as a hint to the shortcomings
of the technology when it comes to apply it to the public domain.
Even within businesses, some of the disadvantages cannot be negated and, therefore, de-
mand a solution. The next section discusses how the presented fundamental terms are
related to the general notion of service discovery and how they fit into the larger picture.

1.4 Discovery

The term discovery, as far as Web services are concerned, refers to the process of finding
those services that match certain computational needs and quality requirements of service
users or their software agents. More technically speaking, WS-discovery mechanisms take a
specification of certain criteria characterizing a service and try to locate machine-readable
descriptions of Web services that meet the search criteria. The services found may have
been previously unknown to the requester.

1.4.1 Restrospective

Since Web services were introduced in the new millennium, service oriented architectures
had to deal with the discovery problem and it still persists. As already mentioned in the
previous sections, the possibilities to describe Web services properly were limited initially.
These early services were typically used to achieve a platform independent communication
between remote peers, nothing more. This requirement was met with the introduced
XML-structured messaging protocol. For the act of discovering those services, however,

16 1.4 Discovery

the actually used protocol made no difference. Services’ description files were propagated
mostly by artificial means, by sending the file per e-mail, for instance. In some cases, the
developer of the Web service also worked on the client-side implementation. For those
cases, discovery was not an issue. The required knowledge was directly available.

A proper service description mechanism was only introduced when application devel-
opers realized that Web service technology had to be leveraged to a level that obviated the
need of service consumer and provider to interact closely with each other prior to using a
service. With the definition of WSDL, it was finally possible to describe the interface of a
Web service in a standardized manner. The general discovery problem, however, still per-
sisted because no means existed to publish a service description in a widely known index,
once the implementation on the provider side was completed. This is where UDDI was
introduced. Apart from defining the data models and registry structure presented previ-
ously, UDDI was also designed to offer simple search capabilities to help service consumers
find Web services. Thus UDDI actually contributed to solve the discovery issue.

As a WSDL description of a Web service interface just lists the operations the service
may perform and the messages it accepts and produces, the discovery mechanism of UDDI
was constrained to match functionality only. If several candidate services could be found,
the service consumer was unable to distinguish between them. Therefore, people felt the
need to be able to express semantic properties or quality aspects of requested services as
well. But search mechanisms taking into account semantics and quality-of-service proper-
ties require richer knowledge about a registered Web service than WSDL can capture.

To complement the expressiveness of WSDL and to facilitate service discovery, DAML-
S, an ontology language for Web services, was proposed to associate computer-readable
semantic information with service descriptions. Semantic service descriptions are seen as
a potential enabler to enhance automated service discovery and matchmaking in various
service oriented architectures. For the reasons stated earlier, however, services widely used
in practice lack semantic information.

The service discovery process encompasses several steps or layers, by definition. Each
step involves specific problems that have to be solved independently. The following list
discusses these steps in ascending order, beginning with the most generic one.

1.4.2 Enabling discovery

At a first glance, the act of discovering a service description matching a set of terms
characterizing a service, resembles a search processes for Web pages. Well-known search
engines like Google or Live utilize a crawling mechanism to retrieve hyperlinks to Web
documents and create an index that can be searched effectively as users enter search terms.
A crawler just analyzes a given Web page for hyperlinks and grinds through the tree
structure generated by such hyperlinks to find other Web documents. For Web services, or
more precisely Web service descriptions, the case is similar except for one major difference:

Chapter 1: Preface 17

WSDL files do not contain links to other services. Approaches to write crawlers that search
Web pages for possibly published service descriptions will produce very poor results, in
general. UDDI registries are just designed to eliminate the need for crawlers or alike.
Especially after the two largest UDDI registries from IBM and Microsoft were shut down,
the vision of public services suffered immensely. Suddenly the starting point to find a
public Web service was lost, leaving the possibility to query common Web search engines
for Web services as the only alternative. There are, of course, some other registries but
they usually do not implement the UDDI specification, which suggests that UDDI may not
be an optimal solution for public service registries.

In a corporate environment, however, the initial discovery step is not a real issue. Web
service descriptions can easily be published on an internal Web page or in a UDDI registry
and are, therefore, easily accessible from within the institution.

1.4.3 Searching in service registries

Assuming that a comprehensive collection of service descriptions has already be established,
the question is how to retrieve the closest match to a user query in an efficient manner.

Today, searching is usually performed by humans and not by software automatically.
The challenge is how to create an index of services such that the addition and retrieval of
service descriptions can be achieved accurately and fast. Common information retrieval
methods are often used for this purpose, ranging from the vector space model for indexing
and searching large repositories to graph theoretical approaches for fast processing of a
rich data collection.

More or less every registry-based solution encompasses such a facility. Especially UDDI
registries often come with the mentioned rudimentary interface to query the database
for contained services. Unfortunately, the general structure of UDDI with its tmodel
component-layout, which serves as a container to store detailed service information, com-
plicates data retrieval. Furthermore, most UDDI entries do not maintain a complete ser-
vice description but include links to such descriptions kept elsewhere. As a result, UDDI
queries are usually processed on the business data related to a service and not the service
description itself. This fact alone limits the usability of UDDI as a discovery mechanisms
enormously or more precisely: it leaves most of the index quality in the hand of the users.

This area on the other hand is heavily investigated throughout the research commu-
nity and several approaches have been presented that aim at improving search capabilities
on service collections. Those approaches are mostly designed to handle natural language
queries like ”USA weather service” and are supposed to provide a user interface for var-
ious registry implementations. This particular field is one of the the main targets of the
concepts presented in this thesis.

18 1.4 Discovery

1.4.4 Querying repositories

A more detailed form of search in service descriptions is entitled querying. Unlike direct
search, in which a user simply provides a set of search terms, queries are formal expressions
using some sort of query language. In the case of relational databases, the Structured Query
Language (SQL) is typically used as a syntax. Through a query expression it is possible
to search for a specific service signature in a set of descriptions [1, 29]. Assume, for exam-
ple, that a user wants to find a weather service and can provide three bits of information:
country, zip code, and the desired scale for presenting the temperature. Assume further
that the user wants to express certain quality requirements. Then, a query expression in a
language alike SQL might read as follows:

SELECT description FROM services s WHERE
s.input.COMPOSEDOF(country AND zip code AND useCelsiusScale)

AND s.response time < 200ms AND s.downtime < 1%
.

This example also reveals a weakness of service descriptions as their signatures are
usually not specified using exact type information such as city or country but rather ba-
sic types like string, integer etc. are used. Hence, it seems more appropriate to search
for signatures in terms of basic data types only. But this would likely result in mis-
matches. Re-considering the query above, a corresponding signature using the basic types
[string,integer,boolean] can easily be met by other services. There is no way to distinguish
positive matches from unwanted ones without additional information or a richer index.
These problems are addressed by introducing semantics and domain knowledge. For the
values of response time and downtime on the other hand, an approach to measure service
performance is needed.

1.4.5 Domain-specific knowledge in service descriptions

Another requirement that has to be met by more powerful discovery mechanisms is domain-
specific knowledge about a service. To take on the sample above, a discovery mechanism
which is able to match the terms city, zip code and temperature with the semantic cat-
egories location and weather would select just the intersection of services dealing with
location and temperature. Although domain information is semantic information in cer-
tain respects, it does not mean that the information has to be provided upon service
registration. A grouping can, for instance, be achieved by using statistical cluster analysis
and discover strongly related service descriptions.

On the other hand, domain-knowledge can also be gained by letting the service provider
add this information. In practice, however, it proved to be problematic to let users define

Chapter 1: Preface 19

semantic information for a service. Once, this is due to the fact that a certain amount of
domain knowledge is needed by the programmer of the Web service but mostly because
the categorization assigned by indexers cannot be validated and could, therefore, be incor-
rect. This field, just like the following, is still heavily investigated, e.g., under the heading
”faceted search”. It addresses a broad spectrum of issues but also bears a high potential
for innovation.

1.4.6 Quality-of-service properties

The consideration of quality-of-service (QoS) properties in discovery attempts requires the
definition of scales of measurements and metrics to qualify the properties per domain. The
scales can be of different kinds including nominal, ordinal, interval or ratio. They are used
to assign appropriate QoS property values to a service. Here, a service provider has the
choice to associate precise values or just value ranges with service property descriptions.
The metrics are needed to rank services that match the functional and semantic require-
ment of a search according to their degree of fulfillment of required QoS properties.

1.5 Requirements

Each of the presented layers of the discovery problem comes with its own set of challenges.
This section briefly introduces the three major elements of this thesis and how they con-
tribute to solve these issues. A separate chapter is dedicated to each topic that was treated
in detail. To round up the thesis and to provide the means to properly verify the proposed
methods, an implementation is provided, that servers as both, a proof of concept as well
as a framework to make sure the theoretical designs are feasible and realizable.

1.5.1 Leveraging search and discovery

The first and most important part of the contribution is to come up with an adequate
method to index and search service repositories. The desired outcome is a search engine
where natural language queries can be processed without any expertise knowledge from the
user side. This method must meet several requirements, some of them being performance,
scalability and distribution capabilities. These requirements are partially responsible for
the failure of the original SOA triangle and must therefore be met to provide a better way
for service discovery than it is embodied by UDDI-like registry setups.
Furthermore, the search and indexing concept is a crucial foundation for subsequent tasks
and, therefore, have to provide a certain level of openness. A search engine that can be
credited with the expected level of contribution must at least provide the following features:

20 1.5 Requirements

• It must provide the necessary performance to search thousands of services in adequate
time.

• It must be able to process natural language queries like ”united states weather ser-
vice”.

• The index must be built by using WSDL descriptions only. Any additional infor-
mation entered by the user must not be obligatory. Should such information be
provided, nevertheless, it must be used to enhance the precision rating accordingly.

• The concept must be scalable to offer the chance to react to growing repository sizes.
Even if this is not a crucial issue at the moment because publicly available services
are limited, any concept not coping with growth issues is bound to fail sooner or
later.

• A means to create a federation of distributed instances of such an engine must be
available. Otherwise no possibility to link public or private registries and, therefore,
access larger amounts of data would exist.

Including all these requirements in a single concept is a challenging task. Out of the already
existing methods to actually implement such a search engine, the vector space method
proved to be promising and was chosen as the enabling technology. For the requirements
that cannot be met by this technology, a solution will be provided in the following chapter,
tailoring the vector space method to the particular demands of Web service search engines.

1.5.2 Enhancing index quality

Secondly, this thesis will cope with the problem of missing connections between Web ser-
vices. After conducting a search, the results are rated according to the relevance to the
query. How and if the results are interconnected is a requirement beyond the searching
functionality. Part of the contribution lies in a statistical approach that aims to discover
relationships between indexed services based on the domain they belong to. To do so, a
modified cluster analysis algorithm is applied that is able to operate on the vector space
data structure. Again, the approach will be designed to fulfill the requirement to operate
with the provided knowledge of the WSDL description only.

1.5.3 Generating metadata

The third part contributing to the issues implied by today’s service oriented architectures
is the possibility to extract metadata information from service descriptions. The main con-
tribution here is the possibility to do so without directly accessing the machine which hosts
the questionable Web service. Three main categories of metadata should be generated.

Chapter 1: Preface 21

1. Quality of Service attributes. A very challenging part of this thesis but also
rewarding in terms of contribution to this scientific field is the generation of QoS
values for an existing service. Many approaches, mainly from the area of Web service
testing and performance evaluation deal with this issue on a server side approach.
This way it is possible to define accurate values especially for performance-related
categories like response time, uptime or throughput. This work, however, focuses
on a purely client-side approach because for registry-like infrastructures, access to
the implementation or the Web service engine is always restricted or denied entirely.
Furthermore, this approach features a more realistic view to performance-related
aspects of a service since the measures are taken by the consumer and not by the
provider.

2. Domain specific knowledge. Another distinguishable category of metadata is
domain information. The target here is to give information about the domain a
given service covers with its functionality. Doing so without requiring a user to
give the information on registration time is difficult. An assortment of fuzzy but
automatic methods operating on the vector space models should provide a solution
to this requirement.

3. Location data. The third treated category of metadata is information about the
location of the server that hosts the concerned service. For this purpose, the service
endpoint is exploited where the corresponding IP address can give hints on the re-
gional settings of the Web service provider. This information can be used to group
regional elements based on their location information.

With this section completing the introductory part of this thesis, the following chapters
will explain in detail, how all these requirements are met and how the introduced concepts
are finally implemented in the research prototype. To round up the contribution and of
course to provide the means to properly verify the proposed methods, an implementation
is provided, that servers as both, a proof of concept as well as a framework to make sure
the theoretical designs are feasible and realizable.

1.6 Structure of the Thesis

The remainder of this thesis is organized as follows: Chapter 2 presents the core element of
the vector space model. The first sections deal with the general concepts of search engines
based on this technology. Some adoptions to allow an application of this method to data
structures emerging from WSDL descriptions, are necessary. In the further course of the
chapter, the approach is extended to work with distributed repositories along with the
necessary mathematical background for this purpose.
Chapter 3 discusses the possibilities to extract metadata from unknown Web services based
on their service descriptions only.

22 1.6 Structure of the Thesis

Chapter 4 introduces a modified cluster algorithm to produce the desired clusters for both,
a better index quality to enhance query processing and the possibility to categorize Web
services based on their respective domain.
Chapter 5 mainly discusses the introduced prototype implementation and how the theo-
retical approaches were actually put to action.
Chapter 6 positions this work among related approaches and deals with some of the nec-
essary premises to understand how the introduced concepts are connected to already es-
tablished methods for scientifically related areas.
In the final chapter, a conclusion for this thesis is presented along with an outlook on
future research topics.

Chapter 2

A Vector Space based Search
Engine for Web Services

Critics search for ages for the wrong word,
which, to give them credit, they eventually find.

Peter Ustinov

2.1 Introduction

The basic idea behind the vector space approach is a combination of common information
retrieval methods and existing standards for the description of Web services. As already
mentioned in the previous chapter, WSDL and UDDI [15] are today’s standards to describe
a SOAP-based Web service well enough to place a remote procedure call and, therefore,
invoke the service. Unfortunately, the knowledge how to call a method is not sufficient in
many cases. The major drawback when describing Web services on a semantic level is that
with increasing possibilities to describe a method, the complexity of the used ontology or
description language rises equally.

Instead of introducing a new language or ontology to describe general Web services,
a closer look at the existing information and how to use it as thoroughly as possible is
provided here. This chapter will deal with real world examples without simplifications. A
Web service description in general, contains a certain amount of information, entered by
the programmer. This information is some form of natural language in most cases because
it comprises non-functional elements of the description or at least those a programmer is
free to choose. The method names are a very good example. Most software engineers

23

24 2.2 Premises

tend to name their functions or methods according to their functionality like “+getMaxi-
mumInteger()” or “searchByString()”. Experienced coders will also stick to some form of
naming convention when they entitle their methods, like upper-lower case partitioning for
Java or dashes for .NET. Furthermore, most descriptions contain some sort of comments
intended for human readers. The vision is, to create a search engine, where all this infor-
mation is gathered and used to find the best matching method for a specific request. As
already mentioned, a search mechanism common in modern information retrieval systems:
The Vector Space Model (VSM) [69] is utilized for this purpose. This approach is mainly
used for search engines, based on natural language. Many search engines on the Web utilize
this method to search their repositories of Web pages.

The underlying concept is quite simple. A document is split up into keywords. Each
of these keywords constitutes a dimension in an n-dimensional vector space. Therefore,
a document can be seen as a vector within this “term space”. The position of this vec-
tor to other vectors within the same vector space describes their similarity to each other.
The mathematical method to evaluate how similar two documents are to each other and
respectively match a given query, varies. A popular method is to calculate a cosine value
for them and express the result as a percentage rating. This method produces very good
results for natural language but it is not limited to this field alone.
Virtually any document collection can be mapped to a vector space to create an efficient
search mechanism. The mapping includes syntactical indices as well as a semantic repre-
sentation of the underlying structure. These are the driving arguments why the concept
was chosen as the enabling technology for this thesis.

2.2 Premises

This research is driven by the same idea that drives the whole Semantic Web services com-
munity [9]: How is it possible to describe the functionality of a program or a service on
the Web? This is not an official definition of the term “Semantic Web Service” of course,
but it gives quite a good idea about the problem, today’s researchers are confronted with.
The ongoing research, especially in the area of Web services, tries to find solutions for the
semantic description of services over the Internet [39].
In this particular case however, the target is to develop a method to retrieve description
files by just entering a search query. A programmer, for example, who wants to integrate
the Google search engine in her own Web site should be able to enter a query like ”Google
search service” and get the corresponding WSDL file for the Web service. This involves a
certain amount of natural language processing.

Increasingly, research currently describes the functionality of WS by artificial means
[14]. Although such an approach may look very promising, some additional problems arise
with the introduction of an ad-on to an existing standard:

Chapter 2: A Vector Space based Search Engine for Web Services 25

• It is possible to create an ontology for Web services and use it to describe the func-
tionality of the service itself. But what about the already established Web services?
There will be no way to assess the functionality of existing services, if the descrip-
tion does not meet the requirements, defined by the ontology. Instead, these service
descriptions would have to be reworked or at least a gateway solution had to be intro-
duced before they comply with this new standard. This fact rules out the possibility
to make changes to description files once they are received by the search engine.

• The second, and even more important issue concerns the ontology’s potential. An
ontology, which is able to describe functionality in every detail will raise in its com-
plexity to a point where it is no longer distinguishable from a programming language.

• Another well known problem when dealing with ontologies is authenticity. There is no
guarantee for a semantic description to actually represent the underlying functionality
of a service and not something else. Critics argue that semantic annotations will be
used to influence search engines such that they produce higher ratings in cases where
it is not even a rudimentary match.

Given the problems stated above and the requirements already given in Chapter 1, an
investigation of the possibilities to enrich Web service descriptions with information about
what the services do is necessary. In this first part, the goal is to use the available infor-
mation without adding new restrictions or requirements. Before discussing the approach
in detail, a closer look on the information that is already provided in today’s repositories
is necessary.

2.2.1 WSDL example

Whenever a Web service is published, the WSDL file will be created to provide all the
needed (syntactical) information for other programmers to invoke the service. Even when
the description is automatically generated by a development tool, it still holds some valu-
able information about the data types and their labels, assigned by the programmer. Fur-
thermore, the messages are indicators for the functionality of the underlying methods. A
good example is the schema file for the Amazon Web service1, which is listed in Figure 2.1.

Even without any knowledge about the Web service itself, the names of the elements
put across quite a good idea of the underlying function’s purpose.
But valuable information is not comprised in the actual tags alone. There are often com-
ments with a human readable description about the elements or the whole service. In
the above example such a description was added to explain how a certain complex type
works and what the parameters mean. The challenge is to exploit all this information at
a maximum level.

1Source: http://soap.amazon.com/schemas2/AmazonWebServices.wsdl, Date: 22.09.2005

26 2.2 Premises

Figure 2.1: Amazon Schema Snippet

2.2.2 Web service Discovery

UDDI registries were already partially discussed in Section 1.3.2 where it was stated that
they are designed as the central point to register Web services and to make them publicly
available.
The list of flaws that limit the usability of UDDI registries can even be extended. From
the search engine’s point of view, the following problems are added to the list:

• Current registries do not contain a proper functionality for limiting the lifetime of a
once registered service. Because of that, entries are often out of date and, therefore,
obsolete.

• Everyone can publish WSDL descriptions to a public UDDI registry. As a result, a
good deal of the registered services are entered for testing purposes only. This issue is

Chapter 2: A Vector Space based Search Engine for Web Services 27

strongly related to the one presented in 1.3.3. When looking at the Microsoft public
registry for example, there was a multitude of entries where the port address is entered
with a localhost endpoint like http://localhost/MyWebservice/. Entries like this
are useless, of course, but it is obvious why things like this happen. Unexperienced
programmes let their development tool create the WSDL description and do not care
if the generated code is correct.

• The third issue not discussed before concerns openness. Some of the UDDI registries
available in the past, required some type of subscription, before they accept any
files to be published to their database. The IBM UDDI Business registry [27] is a
very good example for this. This restriction has the very positive effect that most
of the published descriptions are meant serious. Availability, on the other hand is
still a problem, because the fact that one has to register or pay before publishing a
Web service does not mean it is automatically accessible all the time. In corporate
environments however, it can be assumed that most entries are correct or updated
with correct values because it negatively influences the productivity if services are
non-responsive or malfunctioning.

To summarize, there are two possibilities. Either a Web service registry is made pub-
licly available and contains a good deal of obsolete entries, or it requires registration but
only keeps a limited number of available service descriptions.

2.3 Data accumulation

Before discussing the technical details of this approach, a proper repository is necessary to
give an appropriate idea of what real word Web services offer in their descriptions.
Retrieving enough WSDL files from the Internet to form a satisfying repository is still a
particulary hard task. An investigation upon the possibilities to obtain a set of description
files showed three possibilities. The main prerequisite was to only use “common” means of
accumulation and not some research prototype or a single source like woogle [16] to keep
the concept as generic as possible.

• File Sharing: File sharing platforms like Emule or Kazaa are capable of handling all
types of files, including WSDL files. Unfortunately, the amount of shared descriptions
is limited. It was possible to retrieve 62 valid WSDL files this way. This method is
of course not intentionally used by users of Web services. It can be assumed that
their appearance is merely a coincidence because the files happen to be located in a
shared folder.

• Web Crawler: Although Web crawlers look very promising at first, it quickly be-
comes obvious that this method is a very poor way to obtain a repository of decent

28 2.4 Search engine

size. This is because Web crawlers need a link that is directed to a WSDL file to
successfully retrieve the data. In most cases the file itself is included in an API or
some sort of package which makes it impossible to retrieve by a crawler. Even for
those services that offer the possibility to retrieve a generated version of the descrip-
tion online, there has to be a link somewhere in order to get discovered by a Web
crawler. Over 2 Gigabyte of Web traffic was produced by a wget-based crawler that
processed various domains, before a single WSDL file could be retrieved.

• tModel cross references: The third method produced good results compared to
the first two. By iterating through a UDDI registry, it is possible to retrieve links to
service endpoints and description files. Basically the links from UDDI registries are
extracted and afterwards downloaded to a local repository if possible. See Section
2.6 for a detailed description of the extraction process.

• Direct Web Service Interface The fourth method is increasingly accepted among
today’s registries. By providing a SOAP interface to query the underlying database,
those implementations of Web service registries offer a trivial but convenient way to
retrieve the desired data. An example is represented by the XMethods 2 registry. A
small drawback of such a method is that the XML service descriptions must either
be serialized to fit a single string type which, in turn, often results in wrong character
encodings, or they require the implementation of an additional WS-standard like WS-
attachment. The reason why character encodings might get mixed up is based on the
fact that the encoding of the whole XML file depends on the SOAP implementation
of the engine. Hence, it is possible that the XML envelope is encoded with the latin-
1 character set, while the transferred string itself complies to UTF-16 and contains
Chinese characters which cannot be properly transferred by the XML envelope.
Therefore, the best method when relying to a Web service interface is to transfer just
URLs of the original service descriptions like it is done at Xmethods.

To be accurate, a fifth method to gather Web service description files is provided by the
possibility to upload data directly to the server where the search engine is running. This
method, which is also implemented in the research prototype, is about the same as a UDDI
registry and poses a trivial solution, so it was not mentioned in the listing above.

2.4 Search engine

The key element is not the data itself, but rather it is the engine that extracts interesting
data and executes queries upon it. The requirements for such an engine are very high.
The final product must possess both, good performance and a good precision/recall rating.
Designing this engine was the main challenge and required some research in the field of in-
formation retrieval and natural language processing. It is useful to take a look at available

2http://www.xmethods.net/

Chapter 2: A Vector Space based Search Engine for Web Services 29

search engines to get an idea how a possible solution looks like.

As an outcome of this research, an efficient search engine for Web services will be cre-
ated. This engine has to be capable of handling existing WSDL files and convert UDDI
entries to the local structure at the same time. Furthermore, it must be possible to set up
multiple engines at different locations and join them to one repository.

In terms of coverage, this part deals with the first two parts of the contribution men-
tioned in Section 1.5. An algorithm which allows to join detached document repositories
to a single one and execute queries upon the resulting vector space will be introduced.
Furthermore, the first element of the proof-of-concept prototype implementation will be
presented.

2.4.1 Architecture

The basic use of the Vector Space Model presented in the following sections does not differ
from applications for natural language.

Service descriptions will be parsed for relevant data like type definitions, elements, and
service names. The extracted keywords are then used to create a vector space where every
document represents a vector within it. See Figure 2.2 for a visualization of the concept.
It shows how a service description is routed through the engine and how a response to user
queries is created.

UDDI

entry

WSDL File

repository

Parsing and

data extraction

tmodel

textual description

endpoints...

type

message

service

...

VSM

vector generation

Local Vector

repository

1

1

1
0

d1
d2

d3

a
d

b

User

Queries

1

3

54

5

2

2

3

1

4

4

5

User

upload

Original Web

reference

Figure 2.2: Basic architecture

This architecture allows the creation of a localized search engine. To take the concept
one step further, it is made possible to allow distributed search engines to interact with
each other and process queries as if they operate on one single document repository. To to

30 2.5 The vector space concept

this with a vector space model, the existing approaches had to be extended, while a new
algorithm for the processing phase had to be introduced.

2.5 The vector space concept

The Vector Space Model (VSM), as proposed by Salton [54] was basically designed for
various applications where a fast search method is needed. This section tackles some
important elements of the concept but a thorough explanation of the topic is given in
Section 6.1.

2.5.1 The Term Space

The core of a vector space engine is the term space itself. The idea behind it is to create a
vector space where each dimension i is represented by a term ti [65]. This space can grow
in dimension every time a new keyword is added. Shrinking it is only possible by deleting
keywords from the vector space and, therefore, reducing the dimensional size.
In a vector-based retrieval model, each document is represented by a vector d = (d1, d2, ..., dn)
where each component di is a real number indicating the degree of importance of term ti
in describing document d [65]. The importance can be expressed in several ways. For
ordinary documents it will most probably be the number of occurrences of a term in one
document. How this weighting is done, has a major impact on the overall performance and
behavior of the system. The easiest method is a boolean weight [61]:

di = 1 ∀ ti ∈ C with C being the Term Collection

which means, if term i of the collection C occurs in the document, its corresponding
value in the vector is 1 and 0 otherwise.
Binary values are the simplest form of a document representation based on vectors. They
form a trivial n-dimensional vector space with two values for each characteristic. This fact
alone limits the field of application enormously, because most data is not processable in
binary form. However, if it is possible to represent the underlying data structure with
binary weights, it positively effects retrieval speed and should therefore be used.

Once all documents (e.g. WSDL files) are represented within the common term space
and in the desired from and weight, the relevance between them can be rated according
to various rating procedures. But before document rating and term weighting can be dis-
cussed, an evaluation of the presented model in respect to its distribution capabilities is
necessary.

Chapter 2: A Vector Space based Search Engine for Web Services 31

The approach discussed in the previous section and more thoroughly in Section 6 is
based on the assumption that the term space is available at a centralized point. When
it becomes necessary to create a distributed form of this model, certain additional points
have to be considered, some of them complicating the concept.
In the presented binary form, distribution is not a big issue. Keeping vectors valid on differ-
ent spots can simply be achieved by transporting relevant vectors with their corresponding
keywords. At the destination space, the vector is then treated as a new document, like in
the following example. We assume that there are two different term spaces C1 and C2:

C1=

Dimension / Document d1 d2 d3

google 1 1 0
search 1 0 1
service 0 0 1

C2=

Dimension / Document d1 d2 d4

google 1 1 1
search 1 0 1
result 0 0 1

When it is necessary to evaluate how relevant document d3 from C1 is in C2, the simplest
method is to transfer the whole vector with all keywords and treat it like a new document
in C2. As a result, C2 is expanded by one dimension resulting in the following term space:

C2=

Dimension /Document d1 d2 d3 d4

google 1 1 0 1
search 1 0 1 1
result 0 0 0 1
service 0 0 1 0

This operation can be done in one access to the remote vector space without any drawbacks
because of the boolean nature of the terms. Therefore, binary weighting and vector creation
is fit for a distributed environment and thus capable of handling multiple service registries.

2.5.2 Weighting

Binary weighting like presented in the in the previous section will not be sufficient for
a sophisticated search engine, especially when the goal is to create a powerful index for
WSDL files. It completely ignores important information like term frequency or document
length. For this reason, term weights are assigned to the vector elements. A common
method to assign term weights is to store the inverse document frequency of a document
as the vector element [54]. To do so, the values expressing a single dimension are extended
to real numbers.

32 2.5 The vector space concept

2.5.2.1 Term frequency and inverse document frequency:

The inverse document frequency (idf) of a term is a function of the frequency f of the
term in the collection and the number N of documents in the collection [25]. Its purpose
is to weight terms highly if they are frequent in relevant documents, but infrequent in
a collection as a whole. This way, more important terms will produce a higher rating,
because they occur in few documents. According to Salton [54], the inverse document
frequency is calculated as:

idfk = ld(
N

nk

+ 1).

Therefore the term weight tf x idf for any position in the matrix is calculated as:

wik = tf ik ∗ ld(
N

nk

+ 1).

with
tk = term k in Document di

tfik = frequency of term tk in document di

idfk = inverse document frequency of term tk in collection C
N = total number of documents in the collection C
nk = the number of documents in C that contain tk

When it comes to using this weighting scheme for distributed registry joins, the solution
is not a trivial one any more. Because the vector components are now dependent on each
other, the method used to add new documents and store the vector values must be taken
into account.
In common information retrieval systems, term weights are updated once a new document
is added to a repository. This change is performed for every vector in the whole term
space. After the update, the values for each vector reflect the overall number of documents
and the particular weights for each term. This way, inserting new vectors becomes more
expensive but the positive effect on queries, which are assumed to build the majority of
accesses, is predominating. Unfortunately, this is only possible in a centralized model,
because the values for N and nk are not known for the whole collection. When two
separated vector spaces must be combined, this knowledge is not available a priori. Thus,
sending an already weighted document vector to another term space is not possible for a
successful comparison in separated vector spaces. Instead, all necessary data has to be
stored individually, to enable weighting at runtime. This, of course, means an additional
overhead for query processing. Adding new documents on the other hand, is extremely
fast with that approach. The following steps have to be carried out, when a new document
is added to the repository:

• The raw term frequencies are calculated for the document. For general data appli-
cations, this value must reflect the importance of the current characteristic without

Chapter 2: A Vector Space based Search Engine for Web Services 33

any weighting schemes applied. If one or more terms are not present in the term
space, the space is expanded by adding a new entry to the list of known terms.

• The raw term frequencies are stored for each term that occurs in the new document
as part of a vector.

• The values for N and nk are updated for the collection.

The data structure to store the term frequency will be a hash table or indexed list in most
cases. Every keyword represents an entry in this hash table, thus forming a matrix. The
following example shows how a document or query from one collection is used to create a
relevance rating at another collection. We start with the collection C1, indexed with the
raw term frequencies:

C1=

nk1 Dimension d1 d2 d3

2 google 5 3 0
2 service 4 0 8
1 search 0 0 9

,N1 = 3

C2=

nk2 Dimension d1 d2 d3

2 google 8 0 2
3 result 3 2 6
2 search 2 0 1

,N2 = 3

Now, document d3 of C1 shall be rated at Collection C2.
For this purpose, document d3 is merged with C2 to a temporary term space with
N = N1 + N2 = 6. For all terms occurring in d3 the temporary term count is calcu-
lated as

nk = nk1 + nk2 ⇒ nservice = 2 and nsearch = 3.

These values reflect the influence of the local term space on the remote term space as far
as term frequencies are concerned. To leverage this procedure to the general case of a
distributed environment with m diverse term spaces, the values for N and nk of a single
document vector, located at any term collection Cj are:

N =
m∑

i=1

Ni

and

nk =
m∑

i=1

nki
{k|tk 6= 0}.

34 2.5 The vector space concept

Should any document be present in more than one collection, a slightly reduced term weight
would be the result. This behavior might not be wanted under certain circumstances,
although it is formally correct. Such a problem can easily be solved by introducing hash
values for the content of each documents acting as the primary identifier on each instance
of the vector space.
The presented distribution scheme does not apply to the comments of service descriptions
only. It is used for every weighted keyword.

2.5.2.2 tf x idf normalization:

Moreover, the bare tf x idf value is not enough, because it rates longer documents higher
than shorter ones [72]. Out of this reason, term weights are usually normalized to an
interval between 0 and 1, so the total number of occurrences within one document does
not matter anymore. The following formula is used to normalize the weight of term k in
document i [54]:

wik =
tfik ∗ ld(N

nk
)√∑t

k=1(tfik)2[ld(N
nk

)]2

Distribution capabilities are the same as mentioned in 2.5.2.1. There are no additional
values required to normalize the weights according to this formula.

2.5.3 Rating Algorithms

This section discusses the most important rating algorithm and its distribution capabilities
for common vector space models. Once the term weights for a document or a query are
properly assigned, the similarity to other documents within the same term space can be
rated and compiled to a final ranking of the most relevant results. One method is quasi-
state of the art for data repositories based on natural language [69] [16].

The cosine value is the most commonly used rating algorithm. It takes two vectors
of the term space and generates the cosine value for the angle between them [72]. In a
n-dimensional space, the cosine value between two vectors p and q is calculated as

cos(p, q) =
p · q
‖p‖‖q‖ ,

whereas p · q entitles the dot product and is calculated by multiplying term weights of the
query- and document vector together [65]. Therefore, the cosine value can also be written
as

cos(p, q) =

∑n
i=1 piqi√∑n

i=1 p2
i

∑n
i=1 q2

i .

If the values for p and q are already normalized to the Euclidean norm, the cosine value can
also be written as

∑n
i=1 piqi. The idea behind this approach is that two documents with a

Chapter 2: A Vector Space based Search Engine for Web Services 35

small angle between their vector representations are related to each other. Documents with
no terms in common will have a cosine of 0 while identical documents will produce a cosine
of 1. This is where the whole concept is becoming a little fuzzy. The assumption that
semantics are primarily expressed by term frequencies is not equally valid for every field,
especially within natural language processing. Therefore, the results of rating functions
can produce outputs of varying quality. Because of the few words, method names consist
of, and, therefore, the small dimensionality of the resulting vector, good results for those
components of a service description can still be expected.

One aspect of the chosen method is its linearity. As a result, the form of distribution,
presented in 2.5.2 is also applicable. The ad-hoc generation of term weights in addition with
the transported values for term- and document counts are sufficient to create a coherent
term space where the resulting relevance rating is valid, even when term spaces are split
and distributed like in this case.

2.6 Implementation

To demonstrate the reliability of the concept and to show how an application for the
presented architecture may look like, a prototype search engine was implemented. The
application was designed with a Web frontend and made publicly available to offer the
possibility to try some of its functions and evaluate the produced results. The Web appli-
cation can be accessed via the VitaLab implementation3.

2.6.1 Set-up

To follow the initial idea of a service-oriented approach, the application consists of several
parts which are connected via Web services. The implementation of the Web frontend was
done with Visual Studio 8.0.50727 using the .NET Framework Version 2.0.50727 SP1 and
later expanded to SP2. This IDE is a good tool to create a fast Web-based implementation
without worrying about circumferential problems like deployment or compatibility. Mem-
ory requirements and Processor speed are negligible for the client as long as it is capable
of handling Internet sites. The frontend was deployed on a Server Blade with 4 logical
CPU’s (Dual Xeon), 2 GB of main memory and Windows IIS under Windows Server 2003
to deliver ASP.NET Web pages.
The second part of the application was written in JAVA 1.5 and deployed on a Apache
Tomcat 5.0 environment with Apache Axis 1.4 as the Web service container. This part
contains the search engine itself including distribution capabilities and persistent Mem-
ory option. This core component is designed to be deployed on any machine capable of
running JAVA and Tomcat to ensure platform independence. The exposed services can

3http://copenhagen.vitalab.tuwien.ac.at/VSMWeb/Main.aspx

36 2.6 Implementation

Figure 2.3: Application Overview

furthermore be used to supply other applications with search and index capabilities. The
WSDL-related data extraction and processing is done by the front-end part.
Connected to the back-end is a MYSQL 5 Database which is responsible for persisting
the vector space information. The search engine can be called with two options. Either
volatile, which means that the data is stored in hash tables and, therefore, lost upon server
termination or restart, or in persistent mode, where the vectors are mapped to a database.
The persistent version is of lower performance than the volatile but it is basically easier
to handle. From an algorithmic view, the two versions are equal and follow the same
structure.

The application layout is depicted in Figure 2.3 where the interaction between the com-
ponent is shown. Web service traffic occurs between the Web front-end and the application
server where the engine is hosted. The database for the persistent version is connected
through a much faster TCP interface facilitated by the JDBC database driver.

Chapter 2: A Vector Space based Search Engine for Web Services 37

2.6.2 Frontend

The frontend and its user interface is deliberately kept simple. It supports file uploads,
local queries including partial searches, statistic analysis of the local repository and remote
query processing.
To join the local repository with a remote repository, the endpoint of the remote Web ser-
vice can simply be added by typing it in the designated field and pressing ”Add”. Because
the sample application will most probably be the only one running at the time, it is pos-
sible to test it with its own endpoint at http://{domainname}/VSMWeb/VSMJoiner.asmx.
In this case, the search result will of course display the same file twice, since it is processed
locally and remotely. The screen shot in Figure 2.4 shows how the result for the joined
repository looks like.

Figure 2.4: Query Results - Screenshot

The original repository contains about 250 WSDL files from the UDDI extraction pro-
cess along with the files retrieved by other registries like XMethods. This amount varies
according to the amount of discovered descriptions during a retrieval phase. Furthermore,

38 2.6 Implementation

the prototype is open for file uploads to test the application with user-defined WSDL files.

2.6.2.1 UDDI downloads

Strictly spoken, the UDDI extraction mechanism is part of the front-end and, therefore,
implemented as part of the Web page. Access to it is restricted, since it is not part of
the functionality needed by the consumers. As already mentioned earlier, the Microsoft
UDDI SDK Version 2.0 Beta was used for interaction with UDDI V2.0 conform services
to communicate with public UDDI registries. The extraction took place in the following
sequence.

• A public UDDI registry is entered and the application extracts an alphabetical list
of available TModels.

• For every entry in the retrieved list, the TModelInfo has to be retrieved, consisting
of a representation of every entry, including the TModelKey.

• Finally, every TModelKey has to be retrieved in a single request, and for each Key, the
DocumentURL is stored in a list. As already touched in Section 1.3.1, the result was
quite poor. The query that was conducted at the Microsoft Public UDDI registry [43]
in March 2005 resulted in 6438 parsable URLs.

• In the final step, 30 threads were generated to retrieve the WSDL descriptions con-
tained in the URL and add them to the local repository.

A complete listing of the involved code can be found in Appendix A.1. The first interesting
result showed when the URLs from the initial query were iterated. Out of 6711 possible
entries, 1272 were actually downloadable files from their original site, which means that
19% of the entries are actually functional. A far lower ratio was expected because the
registry is public and free to use for everyone.
546 of the downloaded files were valid XML files and parsed by the keyword extractor, which
means that 9% of the original entries are actually WSDL descriptions. The other files were
either pdf descriptions or plain HTML files. These percentages kept quite constant for
every registry that was parsed. For security reasons, no frontend for the UDDI extractor
was implemented. It would be possible to misuse the provided extraction procedures to
initiate a denial of service attack for public UDDI registries.

2.6.2.2 Keyword extraction

The first key functionality of the front-end is the keyword extractor. A service description,
no matter if it is a WSDL file, or data from a UDDI registry, consists of two different types
of data, as far as the Vector Space Model is concerned. First, there are user annotations
written in plain text. This information is voluntarily and not every developer will enter

Chapter 2: A Vector Space based Search Engine for Web Services 39

comments as descriptions. If comments were entered, the extracted data is treated as
natural language. Therefore, familiar methods for vector space engines like stop word
lists or normalization procedures can be applied [51]. On startup, the keyword extractor
iterates through all files in the repository and isolates as many keywords as possible. Some
of the handled elements are:

• Endpoint URLs: The endpoint, which is present in every WSDL file, is split up to
multiple keywords containing domain names and suffixes.

• Types and their attribute names are parsed and split up if possible.

• Messages are parsed for their names and split up to single words.

• XML comments are parsed and treated as natural language. Like other elements,
the words are split if possible and fed to the search engine.

All query words are normalized to lower letters and tailing spaces are removed. After this
extraction, the vector for this document is transferred to the back-end by a single Web
service call. The transmitted data consists of an ID, in this case the endpoint URL, and a
pairwise list of all extracted terms and their raw frequencies in the document. All further
processing is handled by the back-end.

2.6.2.3 Query Processor

The query processor takes a query string, in this case ”Google Search Service”, and splits
it up to a list of keywords. The splitting is done by the same algorithm that is used in the
keyword extractor. If processed locally, a query-vector is generated and directly submitted
to the back-end where the result list is generated and delivered as the return value of the
original call. The result is a list of documents, sorted by their similarity rating. See Figure
2.4 for a screenshot where a sample result list is shown.

2.6.2.4 Joiner

To finally join one or more of these search engines, the required functionality needed to be
exposed as a Web service. Two methods of the front-end are visible from the outside:
RemoteQueryStats: This method takes a query string and returns all necessary values
to invoke a distributed query at another front-end, namely nk, N and a list of involved
query words.
processDistributedQuery: This method finally processes a distributed query on the
local back-end with the values retrieved by the above function.

For a distributed query, the invoking host first gathers all required information from all
peers and then invokes the distributed query with an assembly of all statistics. The result
must be displayed by the invoking host, of course.

40 2.6 Implementation

2.6.3 Back-end

The most essential part of the search engine consists of a single java package which contains
the necessary methods to add, delete and, of course, to query the vector space. The package
is deployed under the Axis framework which exposes two interfaces with basically the same
signature as a Web services4. The interfaces are named VolatileVSM and PersistentVSM.

Function name description

cleanup Performs a cleanup of the vector space
(clears unused terms)

deleteDocument deletes a vector with the given ID
getDocumentIDS retrieves a list of all indexed document ID’s
addVector adds a new vector with a list of term-frequency pairs
getAllSorted retrieves a sorted list of all matches to a given query
getAllSortedDistributed retrieves a sorted list of all matches to a given query

with modified values for N and nk

getBestMatching retrieves a list of the m best matches to a given query
getBestMatchingDistributed retrieves a list of the m best matches to a given query

with modified values for N and nk

getDocCount retrieves the number of contained documents (N)
getDimensionCount retrieves the number of total dimensions
getStatistics retrieves the necessary statistics to perform

a distributed invocation for a given query

Table 2.1: Interface elements

As the name suggests, they both provide the same set of operations differing only in their
persistency mode. The volatile version operates on hash tables to store the vectors while
the persistent version transforms the queries into SQL statements and operates on the
connected MYSQL database to fulfill the request. Table 2.1 shows all provided methods
and a short description of the functionality. The following subsections will depict how the
actual implementation looks like and how an estimation for the computational expense can
be given based on the used data structure.

2.6.3.1 Table generation

When using the interface for the persistent engine, the engine automatically generates the
needed tables to hold the necessary data. In each call, the name of the repository is used to
identify those tables. Appendix A.2 shows a listing of the actually involved java code, where
the tables are created. Three tables are necessary to build a working repository and they
are created automatically if they do not exist already. Database wrappers like Hibernate

4http://copenhagen.vitalab.tuwien.ac.at:8080/axis/servlet/AxisServlet

Chapter 2: A Vector Space based Search Engine for Web Services 41

for Java provide a similar functionality but are more complex to use and, therefore, not
necessary for smaller applications. The tables are checked whenever a new call is made to
the Web service to guarantee that a working repository exists.

2.6.3.2 Query processing

The created statements are best explained by discussing how a query is processed with
the weighting functionality enabled. For this purpose, we assume a 3× 3 matrix with the
following structure:

d1 d2 d3

t1
t2
t3




x11 x21 x31

x12 x22 x32

x13 x23 x33




The first requirement is to be able to weight one matrix element according to the previously
discussed weighting formula:

x′ij = xij ∗ ld(
N

nj

+ 1)

To do so, queries for N as a whole and nj in each iteration have to be created. The first
element N or the cardinality of all documents is trivial:

N = |D| ⇒ N = SELECT count(*) FROM Documents D

Appendix A.2 shows the corresponding JAVA code where the statement is executed in line
41. Next, the term frequency nj has to be defined for the current term. One iteration is
necessary for each term in the query. The value is calculated as:

nj =
N∑

i=1

bij with bi =

{
0 if xij = 0

1 otherwise.

⇒ SELECT count(*) FROM Relations r where r.term id = currentTermID

Again, the JAVA implementation is shown in A.2 line 63. Finally, the concrete value xij of
a single term has to be processed in each iteration. The query is the same as before with
the only difference that the selection now retrieves the frequency, resulting in the following
statement:

⇒ SELECT frequency FROM Relations r where r.term id = currentTermID

This query is essentially the same as the one before. In the implementation they are
executed as one query to save time. That completes all necessary queries to weight a single
element according to the tf x idf algorithm. The computation expense is linear to the
query size, because an iteration of every contained term is necessary. On the other hand,
dimensional reduction has a positive impact here because it causes less iterations on the

42 2.6 Implementation

vector space. A term that does not occur in the collection automatically drops out of the
algorithm and, therefore, reduces the iteration size.
Now that the values can be weighted at runtime, the similarity measure can be processed
following the formula:

cos(dm, dn) =

∑N
i=1 xmixni√∑N

i=1 x2
mi

∑N
i=1 x2

ni

or in the more concrete case, d2 and d3 shall be processed:

cos(d2, d3) =
(x21x31) + (x22x32) + (x23x33)√
(x2

21 + x2
22 + x2

23)(x
2
31 + x2

32 + x2
33)

The goal is to still use one iteration for the whole query and calculate all necessary values
in the same step. This can be done by splitting numerator and denominator and complete
them during each iteration step. The temporal values are stored in three hash tables.
Table 2.2 shows each iteration step and the content of the hash table.

term content of z-Hash content of N1-hash content of N2-hash
t1 (x21x31) (x2

21) (x2
31)

t2 (x21x31) + (x22x32) (x2
21 + x2

22) (x2
31 + x2

32)
t3 (x21x31) + (x22x32) + (x23x33) (x2

21 + x2
22 + x2

23) (x2
31 + x2

32 + x2
33)

Table 2.2: iteration steps

After the execution the final value can, therefore, be calculated with:

cos(d3, d2) =
z-Hash√

N1-hash ∗ N2-hash

The hash tables contain all relevance ratings for all documents relevant to the query. The
key is defined by the documentID and line 51 of the implementation shows the method
where the relevance rating is produced according to the above method.
A very positive side effect of this iterative method to process the cosine value is the pos-
sibility to apply an early termination mechanism. After the first iteration, the result will
always be valid. Each subsequent iteration adjusts the multidimensional angle more accu-
rate of course, but it is possible to define a time constraint and break the iteration when
the maximum time for query processing is met. The result will not be complete but if
the most important terms were processed, the result shifts just marginally. In the im-
plementation, the early termination feature is enabled and visible in the iteration loop in
line 54 where maximumTimeoutMS is used for the upper bound of milliseconds, the search
is allowed to take. By adjusting this value, the performance of the search engine can be
set to a maximum time, which comes handy when large vectors with a lot of matching
keywords must be processed on a high-dimensional vector space.

Chapter 2: A Vector Space based Search Engine for Web Services 43

2.6.4 Implementation experience

Summarized in this section is a list of implementation experiences that came up when
writing the code of the search engine. Although they are only interesting from an engineers
perspective, they explain why some concepts could not be implemented as initially planned.

• Platform dependency: To demonstrate platform independency, the back-end was
written in JAVA and deployed under tomcat. The MYSQL database is connected
via JDBC using TCP connections. The actual database in the test environment
was set up in a linux environment along with other databases. Upon migration of
the database to a Windows machine, the implementation ceased to work, although
the connection was established correctly. The reason was, that MYSQL uses the
folder structure on operating system level to build tables. In Linux environments,
those entries are case sensitive but on Windows machines, the folder names are
automatically translated to lower case. That caused the engine to re-create the
tables with each query. This problem was easy to solve programmatically once it was
discovered.

• Tables and indices: The first version, which operated on plain tables, took an enor-
mous time span to process tuples of search terms. This time was decreased by
introducing indices for the primary keys of the tables upon creation.

• Parallel queries: Upon startup of the front-end, all documents have to be indexed
first. The original idea was to do that in parallel tasks with the asynchronous callback
functionality of .NET. The approach seemed possible because tomcat is able to handle
parallel requests and the .NET wrapper for the service provides the needed methods
to do so. After finishing the implementation, however, the Axis framework fired
unknown exceptions. Because it was not possible to determine which part of the
implementation caused the error, the synchronous method to add vectors was used
subsequently.

This completes the development of a vector space-driven Web service search engine
that works in distributed environments. The following chapters continue this concept
by enriching the concept and providing additional information about Web services. This
information is needed to build a better index for search and discovery on one hand and
also allows to provide the necessary information that enables users to decide which service
will be able to fulfill the required operation most accurately.

44 2.6 Implementation

Chapter 3

Bootstrapping and Exploiting Web
Service Metadata

Now that we have all this useful information,
it would be nice to do something with it.

Actually, it can be emotionally fulfilling just to get the information.
This is usually only true, however, if you have the social life of a kumquat.

Unix Programmer’s Manual

3.1 Metadata in Web services

This chapter deals with a fundamental problem that applies to almost every Web service.
How is it possible to retrieve a maximum amount of meta information about a Web service
with only a WSDL description to start with?
To answer this question, it is necessary to define, what metadata is. Simply put, meta-
data is information about data. For example, source, server location, production date,
etc. When it comes to Web service descriptions, certain classes of information are more
interesting than others. For this thesis, the range is narrowed down to three categories,
being Quality of Service (QoS), Location information, and Domain knowledge. Each sec-
tion will deal with the challenges to bootstrap this information with only WSDL files as
a starting point and no additional knowledge about implementation, hosting environment
or deployment.

45

46 3.2 QoS

3.2 QoS

The availability of a QoS description for a set of services is considered as an enabler for
solving many problems currently heavily investigated by different research groups. Such
problems include composition, especially dynamic composition [10,17,22,60,74] as well as
service discovery, search and selection of Web services [34, 38, 49] which is the goal of this
thesis.

Currently, Web services support Quality of Service (QoS) attributes [37,40] for service
descriptions by implementing the WS-mex specification [28]. Such attributes define non-
functional attributes of a service. This metadata includes availability, latency, response
time, authentication, authorization, cost, etc. Primarily performance-related aspects of
Web services are required by various researchers because they provide valuable information.
For the time being, those very specific measurements are not available a priori.

In this thesis, a framework is introduced, which provides the possibility to assess certain
QoS attributes for a given Web service of the search engine’s repository. The main contri-
bution lies in the automatic approach for bootstrapping and constantly monitoring QoS
parameters for existing services that are currently lacking such valuable descriptions. The
goal is to achieve both, a maximized dynamic sampling and a broad spectrum of usable
Web services. Sometimes, a service is very important and needs a high availability rating,
while in other cases the response time is of more interest. With this information available,
a better categorization of Web services is possible.

This section mainly deals with performance and availability related QoS attributes by
using a flexible Web service invocation mechanism combined with aspect-oriented program-
ming which allows to weave performance measurement aspects directly into the byte-code
of the Web service stubs [32]. Business related values, such as cost, payment, etc. are
omitted on purpose. They cannot be determined automatically but are provider-specific
and defined by the business and cost model implemented by the service provider.

The result is a basic set of QoS attributes for a given service. To further use them, the
concrete QoS attribute attachment mechanism is abstracted and supports two possibilities,
(a) publish the QoS attributes together with the service description in UDDI (proposed
by [62] or [52]) or (b) add them to the WSDL file by using WS-Policy [66].

3.2.1 Monitoring Approaches

Especially for performance-related attributes, several ways exist to assess those values in
the real world. Each one has a certain level of advantages and disadvantages which are
discussed here.

3.2.1.1 Provider-side instrumentation

The first and easiest way to bootstrap QoS parameters for Web Services is to directly
instrument the service at the provider side. This way also allows to appoint values for

Chapter 3: Bootstrapping and Exploiting Web Service Metadata 47

security or implementation-related attributes. It bears the enormous advantage of a known
service implementation. The service provider has to choose, if the dynamic attributes are
calculated directly within the service code (invasive instrumentation), or by utilizing an
artificial monitoring device (non-invasive instrumentation). Either case has two major
drawbacks:

• All monitoring is done from the provider side, which means that network latency
cannot be taken into account for a connecting client

• A service consumer has to trust the provider, to publish correct values.

Figure 3.1: Provider side instrumentation

The approach, visualized in Figure 3.1, allows a very accurate measurement of all
provider-specific values, even those not measurable like cost and security.

3.2.1.2 SOAP Intermediaries

By using an intermediary party, the traffic is not directly routed from client to server but
to an intermediate party that is responsible for maintaining QoS related data. The big
advantage with this approach lies in the trustworthiness of the received data. This third
party is effectively a proxy that is able to handle incoming requests and forward them
to the original destination. Although this approach solves the problem of trustworthiness
and partially the latency issue, it still has an enormous drawback. Because of the proxy
function, the third party will always be the bottleneck that limits scalability. Further-
more, the influence on the measured performance caused by the proxy is not negligible.
High-performance Web service implementations would certainly experience a performance
reduction when using this infrastructure.

In Figure 3.2, a graphical representation of this approach is depicted. It is obvious,
that this method is unable to assess non-functional data like cost, because these values are
explicitly created by the providing party.

48 3.2 QoS

Figure 3.2: Intermediary

3.2.1.3 Probing

Just like bots for search engines and Web crawlers, the possibility to implement probes to
collect data about Web service endpoints must be considered. This method bears a lower
runtime overhead compared to SOAP intermediaries but still has the disadvantage of not
being consumer-specific.

Figure 3.3: Probing

When invoking a service that is monitored by a probe as shown in Figure 3.3, the original
message is not altered in any way and the metadata is provided by the probing party
which invokes the original services on a scheduled basis. The problem is that providers

Chapter 3: Bootstrapping and Exploiting Web Service Metadata 49

might recognize when they are being probed and react differently than to real clients and
manipulate the performance measurement the probe produces.

3.2.1.4 Sniffing

The last method introduced here, makes use of a sniffer that captures all outgoing packets
from the client side. This way, the real traffic can be monitored and used to produce the
required QoS data. Other than all the methods presented above, the values produced here
are really consumer-specific. The performance rating strongly depends on the used client
and its location, which is the desired behavior. Two major disadvantages come with this

Figure 3.4: Sniffing

method:

• QoS parameters of unknown services are not available until they are invoked the first
time.

• The capturing process can only measure the time from the moment the packet leaves
until an answer is returned. This timeframe usually includes a subset of other time-
frames, such as processing time, wrapping time, etc. that have to be distinguished.

However, these problems can be solved. The following sections will explain how.

3.2.2 QoS Model

The first requirement is a basic QoS model which can be used to express QoS attributes
for Web services. The most important point to realize here is that many of the evaluated

50 3.2 QoS

attributes are dynamic and site-dependent. The service response time, for example, will
experience a significant variation, depending on the type of connection used to evaluate
it (e.g., Modem, DSL, T1 etc.). As a result, the produced values cannot be seen as
global attributes, but as site-specific statistics with a strong local context. This is an
intended behavior, because the parameters, influenced by the local conditions, increase the
significance of the whole value. Two Web services are assumed for example, named A and
B with the same implementation and the same hardware. The Web service consumer is
located at a remote place where the routing of the actual IP packets is the only difference
between the two services. Therefore, A may respond faster than B in this case while
B could be the faster service when queried from another place. With this framework, a
developer can choose the currently best suitable service depending on the provided QoS
attributes.

The model can be categorized into several groups with each group containing related
QoS attributes. Four main QoS groups, namely Performance, Dependability, Security and
Cost and Payment can be identified for non-functional attributes. As already mentioned
before, the focus lies on bootstrapping, evaluating and constantly monitoring the QoS
attributes of the first two groups. The other ones cannot be estimated automatically. The
first category and its elements concerns performance.

3.2.2.1 Performance

Processing time: Given a service S and an operation o, the processing time tp(S, o)
defines the time needed to actually carry out the operation for a specific request R. The
processing of the operation o does not include any network communication time and is,
therefore, an atomic attribute with the smallest granularity. Its value is determined by
the implementation of the service and the corresponding operation. To take Google as an
example, tp entitles the actual search time that is also displayed for search-requests sent
by the Web interface.

Wrapping Time: The wrapping time tw(S, o) is a measure for the time that is needed
to unwrap the XML structure of a received request or wrap a request and send it to the
destination. The actual value is heavily influenced by the used Web service framework and
even the operating system itself. In [68], the authors even split this time into three sub-
values where receiving, (re-)construction and sending of a message are distinguished. For
this purpose it does not matter if the delay is caused by the XML-Parser or maybe the im-
plementation of the socket connection, because it can assumed to be constant for the server.

Execution Time: The execution time te(S, o) simply is the sum of two wrapping times
and the processing time: te = tp + 2 ∗ tw. It represents the time that the provider needs
to finish processing the request. It starts with unwrapping the XML structure, processing
the result and wrapping the answer into a SOAP envelope that can be sent back to the

Chapter 3: Bootstrapping and Exploiting Web Service Metadata 51

requester.

Latency: The time that the SOAP message needs to reach its destination is depicted as
latency or network latency time tl(S). It is influenced by the type of the network connec-
tion the request is sent over. Furthermore, routing, network utilization and request-size
play a significant role for the latency.

Response Time: The response time of a service S is the time needed for sending a
message M from a given client to S until the response R for message M returns back to
the client. The response time is provider-specific, therefore, it is not possible to specify a
globally valid value for each client. The response time tr(S, o) is calculated by the following
formula: tr(S, o) = te(S, o) + 2 ∗ tl(S).

Round Trip Time: The last time-related attribute is the round trip time trt. It gives
the overall time that is consumed from the moment a request is issued to the moment the
answer is received and successfully processed. It comprises all values on both, requester
and consumer side. Considering the formulae above it can be calculated as:

trt = (2 ∗ tw)con. + tl + (tp + 2 ∗ tw)provider + tl + (2 ∗ tw)con.

See Figure 3.5 for a graphical representation of all involved time frames.

tw t l twtp twtw}

e

} t r

t

Con-

sumer

} t rt

NetworkCon-

sumer

ProviderNetwork

Figure 3.5: Service Invocation Time Frames

Throughput: The number of Web service requests R for an operation o that can be
processed by a service S within a given period of time is referred to as throughput tp(S, o).
It can be calculated by the following formula:

tp(S, o) =
#R

time period (in sec)

This parameter depends mainly on the hardware power and service engine stability of the
service provider and is measured by sending many requests in parallel for a given period

52 3.2 QoS

of time (e.g., one minute) and count how many request come back to the requester. The
evaluation process showed that most Web service engines have a maximum of parallel
requests they can process before they cease to function and throw exceptions or shut down
entirely.

Scalability: A Web service that is scalable, has the ability to not get overloaded by a
massive number of parallel request. A high scalability value states the probability for the
requester of receiving the response in the evaluated response time tr.

sc(S) =
trt

trt(Throughput)

,

where trt(Throughput) is the round trip time which is evaluated during the throughput test.

3.2.2.2 Dependability

Availability: The probability that a service S is up and running and producing correct
results. The availability can be calculated the following way:

av(S) = 1− downtime

uptime + downtime

The downtime and uptime are measured in minutes.

Accuracy: The accuracy ac(S) of a service S is defined as the success rate produced by
S. It can be calculated by evaluating all invocations starting from a given point in time
and examining their results. The following formula expresses this relationship:

ac(S) = 1− #failed requests

#total requests

Robustness: It is the probability that a system can react properly to invalid, incomplete
or conflicting input messages. It can be measured by tracking all the incorrect input
messages and put it in relation with all valid responses from a given point in time:

ro(S) =

n∑
i

f(respi(reqi(S)))

#total requests

The part respi(reqi(S)) represents the ith response to the ith request to the service S,
where n is the number of total requests to S. The utility function f is calculated as:

f =

{
1, isV alid(respi)
0, ¬isV alid(respi)

and is used to evaluate, if the response was correct for a given input.

Chapter 3: Bootstrapping and Exploiting Web Service Metadata 53

3.2.3 Bootstrapping, Evaluating and Monitoring QoS

The used bootstrapping and evaluation approach for the different QoS parameters from Sec-
tion 3.2.2 is such a client-side technique which works completely Web service and provider
independent. Many different steps are necessary to successfully bootstrap and evaluate
QoS attributes for arbitrary Web services. An overview of the main blocks of the system
architecture and the three different phases of the evaluation process are depicted in Figure
3.6.

Figure 3.6: System Architecture

Preprocessing Phase: In this initial phase, the WSDL Inspector takes the URL of one
or more WSDL files as an input and fetches it into the local service repository. Then,
the WSDL file is parsed and analyzed to determine the SOAP binding name (only SOAP
bindings are supported. HTTP GET or POST is not supported). From the name of
the binding, the corresponding portType element can be retrieved, thus, all operations
which have to be evaluated can be determined. Furthermore, all XSD data types defined
within the types tag have to be parsed to know all the available types needed for invoking
the service operations. The information gathered by analyzing the WSDL is used in the
evaluation phase to dynamically invoke different operations of a service. As a next step,
the Web service stubs are generated as Java files by using the WSDL2Java tool from
Axis [5]. The performance measurement code itself is implemented by using aspect-oriented

54 3.2 QoS

programming (AOP), thus, an aspect which captures the evaluation information where it
occurs is created. Aspect oriented programming is needed because the code generated by
WSDL2Java is not known a priori but has to hold the needed methods for performance
measurement. The aspect is discussed in detail in Section 3.2.5.
The Java source files together with the aspect are compiled with the AspectJ compiler
to generate the Java classes. All the aforementioned steps are fully automated by the
WebServicePreprocessor component and do not need to be executed every time a specific
service has to be evaluated. It has to be done only once, then the generated code is stored
in the local service repository and can be reused for further re-executions of the evaluation
process itself.

Evaluation Phase: During the evaluation phase, the information from the WSDL anal-
ysis in the preprocessing phase is used to map the XSD complex types to Java classes
created by the WSDL2Java tool. Furthermore, Java Reflection is heavily used, encapsu-
lated in the Reflector component, to dynamically instantiate these complex helper classes
and Web service stubs. The WebServiceInvoker component tries to invoke a service oper-
ation just by “probing” arbitrary values for the input parameters for an operation. If this
is not possible, e.g., because an authentication key is required, a template-based mecha-
nism is supported that allows to specify certain parameters or define ranges or collections
to be used for different parameters of a service operation. Such a template is also gen-
erated by the TemplateGenerator component during the preprocessing phase based on
the portType element information in the WSDL file. The main part of the evaluation is
handled by the WebServiceEvaluator and the EvaluationAspect. The aspect defines a
pointcut for measuring the performance related QoS attributes from Section 3.2.2. For
example, the response time tr is measured by defining a pointcut which timestamps be-
fore and after the invoke(..) method of the Axis Call class. The Call class handles
the actual invocation to the Web service within the previously generated stub code. The
response time itself is then calculated by subtracting the timestamp after the invoke(..)

call from the timestamp before the call. Due to the client-side mechanism, the QoS pa-
rameter such as the latency tl cannot be measured as comfortable as tr. Therefore, the
packet capturing library Jpcap [21] is used within the EvaluationAspect to measure the
latency and the processing time on the server by using information from the captured TCP
packets. Details are discussed in the following sections.

Result Analysis Phase: In this phase, the results generated from the WebServiceEvaluator
are collected by using the ResultCollector which represents a singleton instance. It col-
lects all results generated by the WebServiceEvaluator and the EvaluationAspect and
stores it in a database. Afterwards, the ResultAnalyzer iterates over these collected re-
sults and generates the necessary statistics and QoS attributes. Moreover, these resulting
QoS attributes can be attached directly to the evaluated service as mentioned in Section
3.2. It is relatively straightforward to do so, and, therefore, not explained in detail.

Chapter 3: Bootstrapping and Exploiting Web Service Metadata 55

Figure 3.7: Architectural Approach

3.2.4 Architectural Approach

The architecture for evaluating and thus invoking arbitrary Web services is quite flexible
because many design patterns from [23] were applied. In Figure 3.7, some parts of the archi-
tecture are depicted as UML class diagrams. The core class is the WebServiceEvaluator

which encapsulates all the evaluation specific parts. A WebService class encapsulates all
information about a Web service (endpoint, reference to WSDL, location in repository,
port type, binding information, etc). An evaluation is either performed at the opera-
tion level or the service level. The operation level denotes that only one given opera-
tion of a service is evaluated by using the evaluate(String operationName, Object[]

parameters) method. The service level means that all operations of a service are evaluate
by using the evaluate() methods, which implicitly invokes the aforementioned method
for every operation. Furthermore, different invocation mechanisms for a Web service with
respect to the way to generate reasonable input parameters for the different operations are
available.

The architecture encapsulates the algorithms to actually evaluate a service or invoke
certain operations of a service by using the strategy pattern [23]. Two strategies to eval-
uate an operation are implemented. The DefaultEvaluationStrategy simply calls a
service operation once with a given implementation of the IInvocationStrategy inter-
face. The QoS attributes are encapsulated in the EvaluationAspect, which is woven
into the byte code of the application and the stub code of the service. By contrast
ThroughputEvaluationStrategy allows to measure the throughput of a Web service by
sending multiple requests in concurrent threads to the service, according to the formula
given in Section 3.2.2.

56 3.2 QoS

Service Invocation Strategies. The invocation strategy defines how an invocation of a
service operation is done. Again, two different choices are available. The
DefaultInvocationStrategy implements a default behavior by iterating over all parts
of the input messages of a service and instantiating the corresponding input type as gen-
erated by the WSDL2Java tool. The instantiation of complex types (even nested ones) is
handled by the Reflector component. The TemplateInvocationStrategy uses the invo-
cation template generated during the service preprocessing to invoke the service operation.
The template can be edited by the user to add various pre-defined values for the different
input parameters. The template functionality is important for services that require some
sort of structured data to be called correctly. An example is a used ID or a password that
has to be provided for accessing the service. Generated input data would result in an erro-
neous invocation. In Listing 3.1, the main algorithm for invoking a service operation with
a previously generated template is depicted. The algorithm uses the stubs for the Web
service which are generated during the preprocessing phase and tries to find a value for
each parameter in the XML template file. If no parameters can be found in the template
or the template is not available, the Reflector tries to instantiate the required parameter
type with a default value (handled by the initalizeParameter() method).

The main advantage of this flexible architecture is the possibility to add new evalua-
tion and invocation mechanisms or even selecting them at runtime without changing the
structure of the system and the aspect.¨ ¥
public Object invokeOperat ion (St r ing operationName ,

Object [] paramValues) {
Operation op = s e r v i c e . getOperat ion (operationName) ;
Message inputMsg = op . getInput () . getMessage () ;
Class [] parameters = new Class [par t s . s i z e ()] ;
Object [] paramInstances = new Object [par t s . s i z e ()] ;

// go through each par t and t r y to f i nd Java c l a s s
// or s imple type and i n i t i a l i z e i t
for (Part p : inputMsg . getPart s ()) {

QName type = p . getTypeName () ;
Class param = convertXSDTypeToJavaType (type) ;
i f (param == null) { // i t i s not a s imple type

St r ing javaName = convertQNameToPackageName (type) ;
param = Class . forName (javaName , false , c l a s s l o a d e r) ;

}
parameters [i] = param ;
paramInstances [i] = i n i t a l i z ePa r ame t e r (operationName ,

p . getName () , param) ;
}
// use r e f l e c t i o n to invoke the opera t ion
Method m = s e r v i c e . getStubClass () . getMethod (

operationName , parameters) ;
return m. invoke (s e r v i c e . getStub () , paramInstances) ;

Chapter 3: Bootstrapping and Exploiting Web Service Metadata 57

}

public Object i n i t a l i z ePa r ame t e r (S t r ing operationName ,
S t r ing paramName , Class paramType) {

// t r y to f i nd param va lue from templa te
St r ing value = findParamValue (operationName , paramName) ;
i f (va lue != null) {

return convertToObject (paramType , va lue) ;
}
return Re f l e c t o r . i n s t a n t i a t e (paramType) ;

}§ ¦
Listing 3.1: invokeOperation Algorithm

3.2.5 Evaluating QoS Attributes using AOP

This approach measures the performance-related QoS values which is achieved by using
aspect-oriented programming (AOP). It is an ideal technique for modeling cross-cutting
concerns. The evaluation part is such a cross-cutting concern since it spans over each service
that needs to be invoked during the evaluation. The basic idea of the approach is described
in Figure 3.8. During the preprocessing phase, the stubs for the service which should be
evaluated by using the WSDL2Java tool are generated. For the Google Web service, as one
example, the main stub class that is generated is called GoogleSearchBindingStub. Each
stub method looks similar, first is the wrapping phase, where the input parameters are
encoded in XML. Secondly, the actual invocation is carried out by using the invoke(..)

method of the Call class from the Axis distribution. At last, the response from the service
is unwrapped and encoded as Java arguments and returned to the caller.

Therefore, the EvaluationAspect defines the following pointcut to measure the re-
sponse time tr:

po intcut wsInvoke () : t a r g e t (org . apache . ax i s . c l i e n t . Ca l l)
&& (c a l l (Object invoke (. .)) | |

c a l l (void invokeOneWay (. .))) ;

Whenever a service operation is invoked by using the WebServiceEvaluator, the
wsInvoke() pointcut defined for this join point is matched. Before the actual service
invocation the before advise is executed. This is where the actual evaluation has to be car-
ried out. It mainly consists of a timestamp and the generation of an EvaluationResult, as
well as starting the packet-sniffer to actually trace the TCP traffic caused by the following
request. After the wsInvoke() pointcut the execution of the corresponding after advise is
triggered, depending whether the service invocation was successful or not. At this point,
packet capturing can be stopped and the collected data can be extracted. The timestamps
taken before and after the invocation can directly be used to calculate the response time.
To distinguish between latency and execution time, the TCP level has to be investigated.

58 3.2 QoS

Figure 3.8: Aspect for Service Invocations (simplified)

3.2.5.1 TCP Reassembly and Evaluation Algorithm

The core element of the stub-based approach is the TCP sniffer and traffic analyzer. These
elements finally make it possible to perform the service evaluation at the client side. A
service invocation, which is a TCP communication after all, actually consists of at least
three sub-messages if the TCP level is observed. The first and the last are always handshake
messages, with no payload attached. More precisely, the TCP handshake consists of two
parts:

• The connection setup via a SYN packet, issued by the Web service client, and a
following SYN/ACK packet by the Web service provider to confirm the established
connection.

• The connection termination, again issued by the client to signal the end of the trans-
mission via a FIN, plus an optional ACK flag for previously received traffic followed
by the servers ACK and (FIN, ACK) to confirm the connection termination.

Each of those handshake messages only needs the time to overcome the network latency,
plus some negligible time span the operating system uses to create an acknowledge packet
and send it back. Therefore, at least two meaningful values for the network latency can be
gathered from one single request. A complete trace visualized by the packet capturing tool
Ethereal(Wireshark) is illustrated in Figure 3.9. The dashed lines highlight the handshake
and connection termination message exchange.

Chapter 3: Bootstrapping and Exploiting Web Service Metadata 59

Figure 3.9: TCP Handshake Traffic

Unfortunately, exploiting the traffic of the actual message transfer is not easily achieved
because it is harder to predict how the traffic eventually looks like. In a standard scenario,
the client sends a single HTTP message with one POST and receives an acknowledgement
packet that contains the SOAP encoded answer. Even in this very fundamental case, many
variations are possible:

• The Web server may or may not return a result value for the request. Therefore, it
is not clear a priori, how large the payload of the server answer is.

• The original request or even the answer could be of a rather large size, exceeding the
maximum TCP frame length, making either a multi-frame transmission or a TCP
frame length update necessary. The additional messages make it hard to isolate the
packet where the Web Server executes the operation and, therefore, consumes the
execution time that needs to be evaluated.

• The packet transmission may be disturbed at some point, forcing the sending partner
to retransmit the lost packet. Again, the obsolete packets must not be used to
calculate network latencies.

To overcome these obstacles, the following algorithm (see Listing 3.2) can be used to
analyze the message flow:

1 TCPPacketList sourceL i s t , d e s t i n a t i o nL i s t ;
2

3 f o r each (TCPPacket p in TCPTrace) {
4 i f (p i s outgoing) {
5 i f (p . sequenceNumber NOT IN sou r c eL i s t) OR
6 s ou r c eL i s t . getPacket (SequenceNumber) has no payload OR
7 p has no payload)) {
8 add p to s ou r c eL i s t with key p . SequenceNumber

60 3.2 QoS

9 }
10 } else i f (p i s incoming) {
11 add p to d e s t i n a t i o nL i s t with key p . AcknowledgeNumber ;
12 }
13 }

Listing 3.2: TCP Message Flow Algorithm

What this sequence basically does is to put the packages in two hash tables, indexed
by the packet’s sequence number for the client’s packages and acknowledge numbers for
the server’s packages. Packets from repeated transmissions or frame updates are omitted
because they are mapped to the same position in the tables and will be overwritten. After
all packets are received from a single request, the analyzing procedure iterates through the
list of source packages and tries to find a packet in the destination list with a matching
acknowledge number. Each match can then be used to calculate a latency and is added
to the list of latencies for the whole request. The largest latency in this list is assumed
to include the processing time and is not added to it. Finally, the arithmetic mean of
all collected latencies is subtracted from the largest time to calculate the execution time
without trailing latencies.

For massive amounts of requests at the same time, as it happens in a throughput
test for example, TCP packets sometimes interleave. This problem was met in two ways:
Firstly, dynamic filter rules for the TCP sniffer were used. This way, the captured packets
can be limited to a single endpoint IP and a port (which is 80 for HTTP in most cases).
Secondly, captured packets are sorted according to the outgoing port, which is determined
by the operating system’s port allocation algorithm. This way, it is possible to distinguish
between multiple requests to the same endpoint.

3.2.5.2 Implementation Details

The system is called QuATSCH which is short for ”Quality Assessment Tool for Web
Service Considering network Heterogeneity” and is implemented with the Java 5 platform
and AspectJ 1.5 [19] for implementing the evaluation part. For parsing and analyzing the
WSDL files the WSDL4J library from SourceForge1 was used. The transformation from
WSDL to Java classes is handled by the Axis WSDL2Java tool [5]. The calculation of the
latency and the execution time is done by using Jpcap [21], a Java wrapper for libpcap,
which allows to switch to the promiscuous mode to receive all network packets from the
NIC not only these addressed to a specific MAC address. These raw evaluation results are
collected and stored in a MySQL database.

3.2.6 Integration

One side effect of the implementation has a negative influence on integration capabilities
of the QoS assessment tool. The fact that network analyzers of any kind need direct

1http://sourceforge.net/projects/wsdl4j

Chapter 3: Bootstrapping and Exploiting Web Service Metadata 61

access to the network interface card of the executing machine requires to run it with root
or Administrator permissions. Especially for software that is exposed through a Web
interface, this is an enormous problem. In case of a security breach, a possible attacker
could easily gain root access to the hosting machine.
The other problem comes with the functionality of the software itself. Making a tool
publicly available, which can deliver a massive amount of parallel requests at the same time
is a potential way to initiate denial of service attacks to Web service providers. Especially
when the target service is hosted under an environment that does not cope with lots of
parallel requests like Axis, for example. Furthermore, some of today’s public Web services
are not designed for high loads and a constant polling interval like it is needed for this
purpose, would most probably cause more traffic to the target service than actual requests.
Therefore the QoS measuring tool is not integrated in the official Web site.

3.3 Location Data

Another form of service metadata is represented by the location of the server where the
Web service is hosted. Other than the QoS parameters, location data does not automati-
cally hold qualitative information. Even when a server is located far away, it may perform
better than a local service. Besides, performance ratings are already measured by the QoS
tool.
The data is used mainly to correlate other information. By tracking response times of
various services and comparing them to their destinations for example, a performance esti-
mation of newly added services could be given. Other possibilities to exploit the gathered
information exist and are briefly discussed below.

3.3.1 Concept

The starting point to evaluate the position of a Web server hosting a Web service is always
the endpoint address. This bit of information is the only source that can be used to gather
metadata without actually invoking the service. In contrast to user comments, message
names or port types, the endpoint is the only connection to the network layer. Furthermore,
it cannot be assigned at will.
This endpoint address provides the necessary host name which in turn maps to an IP
address. Determining the IP address of the server hosting the service in question is straight
forward and can be achieved by a simple DNS lookup. Determining the location of this
address, however, is a challenging task. It is possible to distinguish two classes of IP
addresses:

• Static IPs: Static IP addresses require their holders to register location information
of some sort when the address is requested. An example would be a company that
reserves an 8-Bit Subnet to provide the necessary addresses for its machines. The

62 3.3 Location Data

problem here is how to get the data entered by the consumer and relate it to world
map coordinates. For Europe, the Middle East and parts of Asia, the RIPE NCC
service2 is a central point of registration where lots of information about an IP address
is stored and can be queried. Comparable databases exist for other regions. For a
global IP lookup tool however, all these databases must be collected and combined
correctly to ensure usable readings for any possible IP.

• Dynamic IPs: Determining the exact location of a dynamic IP address is next to
impossible. Dynamic IPs are issued by internet service providers ISPs to their cos-
tumers, for example. To find out where the corresponding IP is located, the ISP
would have to provide a realtime list of the issued IPs and the costumer data. Do-
ing so would be a breach of consumer privacy. Besides, the high fluctuation rate
of dynamic IP addresses causes the collected data to be outdated almost instantly.
Fortunately, dynamic IP addresses are almost never used by Web service providers
if the service is designed with a high availability. Furthermore, even if a dynamic
address is used for a provider it can be assumed that the location is not very far from
the ISPs own location.

The implementation of such a database requires a high amount of resources and is in itself a
pure engineering task. One of the biggest providers of location information for IP addresses
is called maxmind. Their tool GeoIP essentially provides all the tasks presented above in
a Web application3 which is available for 25 daily lookups to demonstrate how it works.
For this thesis, a wrapper was created, that uses those daily queries to assess the necessary
endpoint information. The location evaluation tool itself can be accessed directly from the
VitaLab implementation4.

Figure 3.10: Location lookup of soap.amazon.com

2http://www.ripe.net/whois
3http://www.maxmind.com/app/locate_ip
4http://copenhagen.vitalab.tuwien.ac.at/locator/locator.aspx

Chapter 3: Bootstrapping and Exploiting Web Service Metadata 63

Looking up the endpoint of the Amazon Web service, produces the output shown
in Figure 3.10. The most essential values are latitude and longitude. Along with the
coordinates, the lookup also returns the state and city name of the position.

Figure 3.11: Google Maps location view

To get a visual view of the suggested location, a link to Google Maps is provided. The
exact endpoint URL that was used for the query is http://soap.amazon.com/onca/soap2.
It is reported to be located in Seattle, USA. The screenshot presented in Figure 3.11 shows
the coordinates in a graphically more appealing form. Nevertheless, the world coordinates
are the most important results of the lookup and all other operations will take them for
further use.

3.3.2 Exploitation

Some possibilities to exploit the gathered information were already mentioned above. Some
of them are more feasible than others. It is possible for example, to calculate metric
distances between the locations of two Web services (A and B), using the following formula:

d = rearth ∗ arccos(sin(Alat) ∗ sin(Blat) + cos(Alat) ∗ cos(Blat) ∗ cos(Blong − Along))

Although this formula is mathematically correct, it produces quite poor values for small
distances due to the imprecise calculations of cos(α) for small angles (α < 1 arcsecond).
Furthermore, the earth radius of 6350km is also just an approximated value. For most
applications though, the imprecision does not really matter because it still gives a good

64 3.3 Location Data

idea of the involved distances.
With the distance values between Web service providers it is now possible to search for
geographically near Web services. It would even be possible to create a cluster analysis
based on these values, but the result is more than questionable. In the end, the fact that
two Web services are on near locations does not influence their provided functionality.
Service settings on the other hand are a different matter. Web services located in China
have a good chance of using the UTF-16 or at least UTF-8 character set for the encoding
and probably Chinese as the description language. This could be valuable information to
rule out certain service implementations.

The most important way to use this location information though is for service per-
formance prediction. In Section 3.2.3, the problem how to handle new Web services was
mentioned. An estimation of the service QoS can only be given after the first service invo-
cation, which could be delayed because of scheduling or other reasons. For network-based
values however, is is possible to overcome these restrictions. Some of the values from the
QoS model presented in Section 3.2.2 are based on the restrictions the network topology
constitutes. High latency ratings can have several reasons ranging from bad routing over
packet losses to slow ISP uplinks. Predicting the latency value for an unknown host is par-
ticulary hard when the only known thing is an endpoint IP or host name. Nevertheless, an
estimated value may be needed even for newly added services. To provide a very rough esti-
mation of the minimum service response time, the gathered location information is utilized.

In most cases, network latency is caused by an over-utilization of the network route.
An estimation of the consumed time can be based on the assumption, that geographically
close hosts use similar routes to transport data packets to very distant locations. When
the same ISP is used, the only difference in the route will be the last few hops. Even when
different ISPs are used, the traffic will most likely take the same route for the majority of
the distance. Therefore, already bootstrapped surrounding Web services can be used as a
reference point for the expected network latency. To ensure that the estimated values at
least give an idea what to expect, the following points have to be considered.

• When assessing an endpoint host, the distance from the consumer dtarget must first
be calculated. This can be done by using the distance formula provided earlier in
this section.

• Of all the hosts already evaluated, only those relatively close to the target host must
be considered. As a rule of thumb, the distance from the target service to an adjacent
host should be less than 5% of the original distance: dadjacent < 0.05 ∗ dtarget

• From the remaining candidates, only the 90% percentile is considered. This way,
statistical outliers can be cut off. Such outliers can be caused by extremely fast
uplinks or modem connections, which result in an extraordinary latency value.

Chapter 3: Bootstrapping and Exploiting Web Service Metadata 65

• The latency values for all candidates are averaged and the standard deviation is
calculated and used as an initial estimation of the network latency to expect. At
this point, the precision/recall rating can be adjusted. By lowering the bound for
the standard deviation, the estimation becomes more precise. On the other hand it
means that less results can be produced.

Summed up, an estimation of the service latency depends on the size of the already eval-
uated repository. The more hosts near to the original target were already evaluated, the
better the estimation will be. Nevertheless, the estimated value will never be as precise as
an actually measured one. It merely serves as a straightedge of what to expect from the
invocation process.

The evaluation of the location information completes the assessment of the most im-
portant tangible Web service metadata. To gather further meta information, automatic
approaches are not enough. Some sort of user input is required where WSDL files cannot
provide enough information.

3.4 Semi automatic domain classification

Some information often required when searching service repositories is the class or domain,
a service belongs to. This information is next to impossible to automatically derive from
a WSDL file. Unless the description file uses an additional set of markup to describe the
domain the service or operation belongs to, no means to directly describe the service’s
domain affiliation in the WSDL file exists. This section introduces a classification system
for the service domain which is able to give a recommendation based on already entered
domain information.

3.4.1 Domain Tree

When classifying a service, the possible classes are usually represented in tree form. Each
possible category is entered in a node. Each node can contain sub-nodes which are of a
smaller granularity, giving the possibility to exactly define the best fitting domain. The
sample tree in Figure 3.12 visualizes some of the categories of the ACM computing clas-
sification system5. In a trivial system, a user that provides a Web service description is
simply asked to categorize the service with the available domains. Even though the user
is willing to do so, it may happen that the right sub-category is missing. Therefore, the
tree has to be extendable and let users add their custom subcategories to the available
structure. Furthermore, it must be possible to categorize a service with a node that is not
a leaf of the tree, if no exact match can be found. A Web service, for example, that takes

5http://www.acm.org/class/1998/overview.html

66 3.4 Semi automatic domain classification

Figure 3.12: Domain Tree example

a file, encrypts it and sends it back will best fit in the Data category of the domain tree
since more than one of the leafs fit.

Such an extensible domain tree is basically nothing new, and the gathered metadata is
not automatically created, but entered by the user. To guarantee, that each service comes
with this domain information, each user would have to be forced to enter that data upon
service registration. Such a method however, is a limiting fact for the usability of a service
registry. The more obligatory input a user has to provide, the more likely it is for the user
to skip the registration process entirely. Therefore, a system that can give a suggestion
for the most probable domain is needed. When the user decides to skip this part of the
service specification, a classification can still be performed.

3.4.2 Recommendation System

The emerging issue can be seen as an information retrieval problem. The critical part when
giving a recommendation about the topic that most likely fits a description is to find the
most closely related entries done by humans. When a list of similar entries was generated,
a categorization algorithm can be utilized to find the right topic. The following iteration
briefly explains how such an ”average” domain recommendation is built for a new entry.

1. An initial search is executed. Either the best n matches are used for further pro-
cessing, or a lower boundary (e.g. 0,8) for the similarity rating is defined. For an
example, three elements (A, B and C) are assumed to be closely related to the initial
query. The corresponding topics are (A: Operating Systems), (B: Files), (C: Storage).

2. Each element of the result set is processed. Every node has a weight assigned.
Whenever a node is visited by an element, this weight is increased by one. Element
A for instance, visits the nodes Computing, Software and Operating Systems.

3. After all weights are assigned, the tree is processed from the lowest level up. In each
level, values are decreased until only one or no node with an assigned value is left in
this level.

Chapter 3: Bootstrapping and Exploiting Web Service Metadata 67

4. The recommended topic for the query item Q lies along the longest path of the tree
with a weight still assigned.

Figure 3.13: Recommendation example

The example presented in the iteration is visualized in Figure 3.13, where the query
element is mapped to the Data domain. A positive side effect of this algorithm is that the
remaining weights (presented in yellow) give an idea how certain a specific topic was hit.
In the example, the query is definitely a member of the Computing area, whereas the Data
sub-domain is not guaranteed to apply. The result is finally presented to the user, who can
alter the suggestion if needed.

3.4.3 Vector generation

The quality of the suggestion depends on two criteria. First, a certain level of user input
is required to actually produce results at all. It is not possible to give a good recom-
mendation without this knowledge base. Second, and even more important is the initial
search mentioned in the first step of the enumeration. It suggests itself that the search
is performed by the engine introduced in Chapter 2. There is no argument against us-
ing the vector space principle to implement the search. The indexing method, however,
is a different case. Recapitulating the search functionality and the vector generation for
the WSDL search engine, the problem becomes obvious. These vectors mainly consist
of WSDL information like operation names, parameter names, service identification, and
the like. Using such a vector to search entries from similar domains is not guaranteed to
succeed. The only part of a WSDL file that would be adequate for this purpose is the
comment section. These comments can be assumed to describe the purpose of the service.
In practise, however, comments are not always usable. From over 270 real world WSDL
files, only 28 even contain a comment section. And from these files, 25 were generated,
holding a line like

WSDL created by Apache Axis version: 1.3

68 3.4 Semi automatic domain classification

as the only comment. The remaining 3 files, with a textual description of the service inside
the description file were Amazon, Google and a service called ws4lsql.wsdl. All other files
contained virtually unusable comments, at least where matchmaking for domain sugges-
tions are concerned.

A more experimental approach uses a completely different source to build up the nec-
essary vectors for the initial search. The idea behind it is, that with every Web service
comes a Web page. When analyzing the endpoint URL of an arbitrary Web service, the
corresponding Web page can be derived by cutting the URL address until a valid page
is returned. The endpoint address for the service described by xCharts.wsdl for exam-
ple is http://www.xignite.com/xChart.asmx. By cutting the URL to its domain name
http://www.xignite.com/, the company’s Web page can be retrieved. The page clearly
describes the service to be of the financial sector.
The problem here is the vector generation itself. Today’s Web pages are generally not com-
posed of simple markup where it is enough to delete the tags to retrieve the actual content.
Instead, they are overloaded with scripts, tables and other elements which cause an auto-
matic retrieval of the actual content to become a very challenging task. Data mining and
information extraction from Web sites are heavily investigated fields. Frameworks [6] exist,
that allow users defining certain criteria for data extraction. Thus, it would be possible to
generate the desired vectors from these Web pages. The problem, however, is not limited
to the extraction process alone.

• It already starts with the location of the Web page itself. The Web service mentioned
above is a good example. When created with the .NET framework, a Web service
endpoint may also deliver a custom Web page when accessed via a Browser. In
most cases though, the returned page will be a default site with just a listing of
the exposed methods, which do not hold any valuable information. Furthermore, the
need to distinguish between standard error pages (HTTP error code 404) and custom
pages arises. It can easily happen that custom error pages are mistaken for actual
content.

• Even when using an advanced tool for data extraction, the extracted vector is not
guaranteed to really represent information about the Web service in question. Pos-
sible reasons are shared domain names among companies or a multitude of services
from various domains, provided by a single company.

• Other than WSDL files, where certain elements are obligatory, Web pages are not
bound to a certain structure. Therefore, common methods from natural language
processing must be applied.

• Language differences in Web pages will cause strongly related pages to show as very
different unless some sort of translation methods is facilitated. The required resources
are usually quite expensive and limited to a single language. This is the reason why

Chapter 3: Bootstrapping and Exploiting Web Service Metadata 69

such methods are usually implemented in natural language search engines. Further-
more, the processing capability is always limited to the used resources.

• A complete new indexing infrastructure is needed to make the approach work.

3.4.4 Remarks

Summed up, the process to relate Web services based upon their Web content is not very
promising because of the arising problems and requirements. Instead, the already generated
vectors are used to search for services to recommend. This way, the recommendation will
maybe not be as detailed as it might be based on a complete Web page index, but the
recommendation concept is not designed as an exact system anyway. The goal is to give
an idea of the domain a service may fit into. For this purpose the already established data
structure is sufficient.
For the future however, possible alternatives for the recommendation system will be an
interesting field of investigation.

70 3.4 Semi automatic domain classification

Chapter 4

Result Classification using
Statistical Cluster Analysis

Inanimate objects are classified scientifically into three major categories -
- those that don’t work, those that break down and those that get lost.

Russell Baker, 1925

This chapter addresses the last issue mentioned in Section 1.5. With the functional-
ity provided by the search engine and the additional metadata being available, searching
repositories for WSDL files is now possible. An additional need that arises with the growing
number of entries is to automatically create a list of related services that match a given en-
try. The basic idea is the same that drove the development of the recommendation system
from Section 3.4. The big difference is the need to enrich the search-engine’s hits with a
number of related services that fulfill a similar task, or are of a similar domain without any
user input. Apart from the direct relation to the issued query, there is currently no estab-
lished method to relate these possible matches to each other. Such a functionality would
assist in browsing the content of the repository enormously. It is important to understand
though that the original search result is unaffected by those relations. The clusters are
built for each element of the search result and aim to provide a set of alternatives for each
entry in a result list.

In this part of the thesis, an approach is presented that uses statistical cluster analysis
to create the desired containment for the most significant matches of a given query. The
focus is laid on an efficient algorithm that is scalable to very large service repositories
and still supports distributed processing of queries for the generated matches. For this
purpose, the usual Euclidean distance for proximity measurement is substituted with the
multi-dimensional angle produced by the vector space search engine. Furthermore, the

71

72 4.1 Prerequisites

very complex runtime creation of the matrix for the distance measurements is discussed
and changed to a more effective method. This change is necessary, because large service
repositories otherwise result in cubic runtime complexity and are therefore limited in their
processing capacities.

4.1 Prerequisites

This section gives an overview of the most important issues related to general clustering
problems and Web service clustering in particular. The principal method is a modified
version of the common statistical cluster analysis. Because some of these methods are not
directly applicable here, certain adjustments have to be made to ensure they can still be
used.

4.1.1 Requirements

Statistical cluster analysis can be used for a broad spectrum of input data, ranging from
Boolean values or even nominal scales to relational scales. The more unambiguous the
data for the different variables can be set, the more significant the clustering result will
be. Therefore, it has to be dealt with the requirement to have float or integer values for
a numerical representation of a service description. Furthermore, the cluster algorithm
must not be limited to a specific number of variables and/or a maximum size for the
stored entries to allow it to be executed on a multidimensional term space. With these
requirements in mind, the indexing method can be examined.

4.1.2 General Indexing

When processing a WSDL description in general, the desired result is an index where
each characteristic is represented as a dimension of an n-dimensional vector space. This
requirement is generally the same as for the vector space engine. An example is shown in
Figure 6.1 of the related work section, where three fictional vectors are represented in a
three dimensional space. It depends on the used indexing procedure what the dimensions
mean. If domain-specific information is characterized by a dimension for example, the
cluster analysis will produce a result, where elements of similar domains are grouped and
identified as related to each other. How well the desired outcome matches the expectations
of a query therefore depends on the quality of the index as well as the used algorithms.
The following two types of index structures are possible when dealing with XML based
service descriptions.

Chapter 4: Result Classification using Statistical Cluster Analysis 73

4.1.2.1 Syntactic Indices

A syntactic index has the advantage of being able to process any valid WSDL file from
any source simply because input data is not restricted by any means. In Chapter 2,
such an index is used to create vectors for WSDL files and process queries upon them by
calculating document similarities. This method is a common approach used in all fields
of natural language processing. The list of keywords is then mapped to a vector space,
where every dimension represents a characteristic or in this case a keyword. All dimensions
together then span the n-dimensional vector space, where n is the number of characteristics
that have been quantified.
Per definition, this data structure is enough to describe any document as a single point
within the space with the possibility to expand the dimensionality when needed. Therefore,
also a cluster algorithm can be applied.

4.1.2.2 Rich Indices

Other than purely syntactic indices, a rich index deals with some sort of specialized infor-
mation contained in the original input data. The information can be of various structure.
The four most important values are listed below.

• Semantic descriptions: When a WSDL description is enriched with some sort of
semantic descriptions like RDF [63], this data can be parsed and stored for further
usage. The information can be mapped to a domain-specific ontology in most cases
and processed accordingly. For this purpose however, this possibility is not an option
because no real-world service really implements semantic descriptions in the form
of RDF tags. The same applies for semantic annotated Web service descriptions
(SAWSDL).

• Domain information: Other than semantic descriptions that might be entered di-
rectly into the WSDL file it is possible to use domain information about a specific
service. Unfortunately, the location data, like it was generated in the previous chap-
ter, cannot directly be used to span a vector space. The data itself is of Boolean
nature. Either a service belongs to a specific domain or it does not. Although
theoretically possible, it renders the output quite useless. For this reason, domain
information is used merely to provide additional information about the service in
question rather than influencing vector dimensionality.

• Location information: It can be gathered from the endpoint of a given service.
There are services like GeoIP that allow to determine the location and additional
information using the endpoint IP of a service. Other than domain information,
location data can be processed by cluster algorithms. To do so, the distance between
two services has to be calculated from the location information that was extracted.
This data forms a two dimensional plane where clustering can be applied again.

74 4.2 Basic Concepts of Statistical Clustering

• QoS descriptions: Similar to domain and location knowledge, QoS descriptions
for performance related aspects of Web services are a type of meta-data that can be
gathered for Web services as proposed in Chapter 3. When the evaluated QoS is used
to build indices, the clustering algorithm will produce groups of similar performance
values. This can be an intended behavior or an unwanted side-effect depending on
the desired clusters that should be produced as a result.

Although it is possible to merge information from the above categories with syntactical
information it is not recommended to do so. This is because vector spaces built from service
descriptions tend to span across a large number of dimensions. Even when additional
information like domain information for instance produce an exact match, the multitude
of other vectors that have to be considered is likely to move such vectors apart from each
other and, therefore, reduces the efficiency of the clustering algorithm. Thus, rich indices
should always span a decoupled vector space or a sub-space of the original vector space.
Sub-spaces cause the same effect as a decoupled vector space with the only difference,
that a complete and combined version could be used when needed. In this particular case
however, this possibility cannot be used. An index which is based on QoS will not benefit
from an index based on natural language processing, even when the numerical structure is
identical. A search which is issued on a combined space would result in a broken search
semantic. An example shall clarify this situation. A cluster analysis based on a search
string like ”credit card verification” expects to find clusters of the same domain. With a
merged QoS index however, the result would possibly contain a service that verifies lotto
numbers but has the same QoS attributes and list it as very strongly related. Therefore,
vector spaces should not be merged across different index strategies.
In this particular case the most feasible and also most depictive indexing method is the
syntactic clustering. First, the produced data cloud is of the highest density and on the
other hand it forces to make the changes that allow the algorithm to operate on spaces
with unbounded dimensionality.

4.2 Basic Concepts of Statistical Clustering

With an already established vector space for an existing WSDL repository, the clustering
approach can be discussed in detail. As already mentioned in the introduction, traditional
statistical cluster analysis does apply in a Web service environment with certain limitations.
Those limitations and how to overcome them is discussed in this section.

4.2.1 Proximity measure

When dealing with metric scale levels as in this approach, some ways exist to measure the
distance between two elements.

Chapter 4: Result Classification using Statistical Cluster Analysis 75

4.2.1.1 City-Block distance

In an m-dimensional vector space, the City-Block distance between two elements j and k
is calculated with

djk =
m∑

i=1

|xij − xik|.

This distance measurement is designed to be used for a data cloud where elements are not
very different from each other. The absolute value for the difference on each axis is added
pairwise. As a result, one dimension with a large deviance results in a large distance for
the tuple as a whole.

4.2.1.2 Euclidean distance

Although the City-Block distance is a valid measurement for this purpose, the Euclidean
distance bears the advantage of considering the direct distance between two points in the
vector space, no matter how large the value for a particular dimension is. The Euclidean
distance is calculated as follows:

djk =

√√√√
m∑

i=1

(xij − xik)2.

A variation of this measurement is the squared Euclidean distance. Its only difference to
the standard method lies in omitting the square root for the final value.

Both of the methods mentioned above are theoretically applicable in the current envi-
ronment. Nevertheless, the practical use shows the limitations and restrictions. The first
step when splitting a data cloud in the clusters is to calculate distances for every element
in the space. For statistical use, the number of elements is usually limited to amounts
of around 100 elements. The number of dimensions rarely exceeds 100 as well. For that
amount of data, the values can be processed relatively fast and precisely. For WSDL repos-
itories however, 104 entries are considered medium size. Furthermore, the dimensional size
of the vector space is also considerably larger. Depending on the input data 103 to 104

dimensions is a reasonable amount for documents that are of different structure as WSDL
descriptions. With those assumptions in mind, the expense to process standard distances
can be calculated:

1. All distances for all elements within the vector space have to be processed. Permuting
n elements without repeating, results in a Gaussian progression for the number of
needed iterations:

#Iterations =
n∑

k=1

k =
n(n + 1)

2

76 4.2 Basic Concepts of Statistical Clustering

So the number of iterations alone results in upper bound of O(n2) for the prob-
lem complexity. Additionally, each iteration needs to process as many elements, as
there are dimensions present. It is possible to pre-compute the distances on a local
repository. With a distributed vector space, however, access to all vectors is not
guaranteed.

2. In the next step, a cluster algorithm has to be applied, where near elements are
grouped by either hierarchical or agglomerative procedures. When assuming the
worst case scenario, each application of the cluster algorithm results in a pair of two
elements, leaving n− 1 elements for the next iteration of the algorithm. As a result,
the cluster algorithm consumes an additional (n− 1) ⇒ O(n) iterations in the worst
case.

3. Finally the results, and possibly results of remote vector spaces can be combined and
displayed.

Besides these performance-related drawbacks, there also arises a problem where documents
of different length are not considered in one cluster because they are represented by a differ-
ent cardinality. As an example, two descriptions are taken which are both of the financial
sector. After the indexing phase, both documents are represented by the keywords ”inter-
est” and ”investment”. Because one document is longer than the other, the cardinality is
different which means that the Euclidean distance puts those two documents in different
clusters even though they are strongly related.

With all these restrictions it is obvious that a better way to compute distance values
has to be found; One that copes with performance and precision at the same time.

4.2.1.3 Multidimensional Angle

An elegant solution for similarity or distance ratings in an n-dimensional vector space is to
use the multi-dimensional angles introduced in Section 2.5.3. In this approach, it is not the
absolute position of two points (p, q) in space and the Euclidean distance between them
but the cosine of the angle between two vectors reaching from the origin to p, q. With this
method, the imbalanced rating of longer documents compared to shorter ones is not an
issue anymore. In the example presented above, the vectors produce the same angle and
are, therefore, considered as close to each other.
In terms of performance, this approach also produces better results. When taking a sample
vector space with 104 dimensions, it can be assumed that a single document does not
incorporate all different dimensions. Therefore, dimensional reduction can be applied while
computing angles for two vectors. In this particular case, a dimension is only considered
when it is present in both vectors. Otherwise, it would drop out of the equation anyway.
The results show the saved computing time for a single vector query.

This approach also provides the possibility, to produce every angle for a single document
in the same iteration by storing denominators and reusing them for other elements as

Chapter 4: Result Classification using Statistical Cluster Analysis 77

shown in Section 2.6.3.2. With this method, the expense to produce the distance matrix
can be reduced to O(n) which is an acceptable but still improvable growth rate. For
high-performance search-engines where results are created on the fly, this leaves just two
options.

• All distances are processed in advance and re-calculated as soon as a new entry is
added to the vector space. This results in a huge amount of processing time for
adding elements. Furthermore, it strongly affects distribution capabilities of the
whole approach.

• Clusters are built for results of a search query only. That limits the amount of
elements to a reasonable size and besides improves visibility of the result.

In this implementation the latter solution is preferable because of the distribution capa-
bilities. With the limited size of the repository, the runtime overhead is tolerable.

4.2.2 Cluster algorithm

For the final cluster algorithm, quite a large range of possibilities exists but it is out of
scope of this chapter to discuss all advantages and disadvantages.

In general, partitioning and hierarchical methods can be distinguished. Depending on
the underlying data structure, various different algorithms to create clusters in data clouds
exist. The k-means method [31] is among the most popular of them and, therefore, posed
the first choice for a possible application. Structurally, k-means is a partitional cluster
method. The algorithm assigns each point in the data cloud to the cluster whose center
is nearest. The center is simply the average of all points in the cluster. For multiple
dimensions that means that each coordinate is the arithmetic mean of this dimension
for all points belonging to this cluster. The original k-means algorithm as proposed by
MacQueen [35] consists of the following steps:

1. Choose the number of clusters k.

2. Randomly generate k clusters and determine the cluster centers, or directly generate
k random points as cluster centers.

3. Assign each point in the data cloud to the nearest cluster center.

4. Shift the new cluster centers according to the added points.

5. Repeat steps 3 and 4 until some convergence criterion is met.

78 4.2 Basic Concepts of Statistical Clustering

With some minor adoptions and performance optimizations this algorithm is widely used to
generate clusters for all different kinds of quantified data. For this purpose though, there
are two drawbacks. First, the number of clusters has to be predefined. Unfortunately,
there is no way to estimate how many items of the original search result are strongly
related to each other. Therefore, a rule of thumb – like the elbow criterion for example
– would have to be applied to appraise the number of clusters that make sense in the
final result. The second drawback of this method is that it does not yield the same result
with each run, since the resulting clusters depend on the initial random assignments. For
these reasons a very similar but hierarchical method with an agglomerative approach was
used for this problem. Unlike the k-means method, each element is considered as a single
cluster at startup. With each iteration, new clusters are built and contained elements are
grouped to the new layout before the algorithm is started all over. Just like the k-means
algorithm, all elements are finally distributed to a cluster with the only difference that
the number is denoted by the iteration step and not defined at the start. For a better
visualization, however, a hierarchical method with a centroid fusion algorithm is preferable
to the partitional approach. It provides a good performance for the fusion process and is
limited in the necessary iteration steps. The algorithm is applied as follows:

1. Search for the pair in the distance matrix with the minimum distance dmin(a, b).

2. Create a new distance matrix where distances between clusters are calculated by
their mean value d(ā, b̄)

3. Save the distances and cluster partitions for later visualization.

4. Proceed with step 1 until the matrix is of size n = 1 which means that only one
cluster remains.

To give a better understanding of the involved algorithm, an example with a matrix of
size 5 is provided, including all necessary steps for the matrix reduction. The algorithm
starts to build the initial matrix by querying all relations to item A. If a relation exists,
it is entered into the matrix with its corresponding value and zero otherwise. A sample
initial matrix is shown in Table 4.1(a). Issuing a query with the vector of item A for
example would result in a rating of 0.8 for item E, 0.55 for item D and so forth. Each
element is processed this way until the necessary elements are entered into the compressed
matrix. Then the matrix is decompressed, to ease the following iteration steps. To do so,
the main diagonal has to be filled with the element which represents the strongest relation
(in this case 1). All other values can simply be mirrored due to the bijective nature of the
document relations.

Then the algorithm is processed in the above mentioned order. The highlighted element
is the minimum distance in the current reduction step and, therefore, determines which
elements will be combined for the next step. Higher values mean a smaller distance or put
differently, higher similarity, because they represent the cosine between two vectors angles.
The values on the main diagonal are not considered here. Furthermore, this value denotes

Chapter 4: Result Classification using Statistical Cluster Analysis 79

Table 4.1: Matrix reduction example

(a) Compressed initial Matrix

A B C D E
A - 0.3 0.5 0.55 0.8
B - - 0.7 0.6 0.85
C - - - 0.9 0.4
D - - - - 0.1
E - - - - -

(b) Decompressed initial Matrix

A B C D E
A 1 0.3 0.5 0.55 0.8
B 0.3 1 0.7 0.6 0.85
C 0.5 0.7 1 0.9 0.4
D 0.55 0.6 0.9 1 0.1
E 0.8 0.85 0.4 0.1 1

(c) Reduction step 1 (4 Elements)

A B CD E
A 1 0.3 0.525 0.8
B 0.3 1 0.65 0.85

CD 0.525 0.65 1 0.25
E 0.8 0.85 0.25 1

(d) Reduction step 2 (3 Elements)

A BE CD
A 1 0.55 0.525

BE 0.55 1 0.45

CD 0.525 0.45 1

(e) Reduction step 3(2 Elements)

ABE CD

ABE 1 0.4875

CD 0.4875 1

(f) Termination step

ABCDE

ABCDE 1

the coefficient that enables the visualization of the cluster. In each reduction step, the
new matrix is shrunk by one element and the new matrix elements are calculated as an
arithmetic mean value until the matrix reaches its trivial state of two remaining elements
as shown in Table 4.1(e), where the last distance is showed and the matrix reaches the
termination state 4.1(f). The last remaining value, which is 0, 4875 in this case, denotes
the distance of the centers of the two remaining clusters before they are fused. An agglom-
erative algorithm always processes the whole data cloud until one single cluster remains.
How the reduction steps are used can be decided later.

4.2.3 Results

In the result phase, the clusters can either be visualized in an elbow-diagram or as a
dendrogram. The advantage with already normalized values is that they are always in a
range [0, 1]. Additionally, the distance matrix gives a good idea of the different steps the
algorithm went through. With all distances calculated in the above example it is finally
possible to visualize the cluster distances in such a dendrogram. Figure 4.1 shows the
strong relation of the items C,D and B,E. Although the layout might suggest otherwise,
the dendrogram is not to be mistaken with a hierarchical organization because the cluster
elements are equal. It merely describes the distances of the produced clusters.

With this example it also becomes clearer why it is so difficult to use predefined numbers

80 4.3 Implementation

Figure 4.1: Dendrogram visualization

of clusters or a preset termination target. With the clusters set to 2 for example, the result
would just show the elements C,D and A,B,E as part of a cluster but not how strong
they are related to each other. Furthermore, when setting a termination distance of 0, 75,
the algorithm would end up with just one cluster which contains all elements. By looking
at the dendrogram, however, it immediately becomes clear which elements are grouped
tightly.

In the next section, an explanation of how to implement this rather theoretical approach
in the existing search engine will give further insight into the involved methods.

4.3 Implementation

To evaluate the efficiency and usability of the proposed approach, an implementation was
embedded into the existing search engine which was presented in Section 2.6. A discussion
of the involved performance measures and scalability issues based upon that implementa-
tion forms the main element of this section.

One criteria that was casting for the decision to implement the prototype with a Web
based interface was that it requires no additional features or installations to run it and test
the underlying functionality. The environment of this implementation is provided by the
VitaLab1 laboratory, just like for the implementation presented in Chapter 2. Supporting
various kinds of frameworks like ASP.NET on IIS, Apache Axis and the like, this envi-
ronment gives the freedom to choose the best solution to implement a particular research
prototype. Each of the integrated machines encompasses 2 Dual Core Intel Xeon CPU’s
with 3,2 GHz, 1GBit network interface, 2 GB of main memory and 10krpm RAID 1 HDs.
The machine where V-USE is deployed runs on Microsoft Windows Server 2003 Enterprise
Edition with Service Pack 1.

1http://www.vitalab.tuwien.ac.at/

Chapter 4: Result Classification using Statistical Cluster Analysis 81

4.3.1 Plug-in location

The major elements were already introduced in the previous sections. Figure 2.3 gives an
overview of the most important elements. This structure allows a decoupled development
of the search engine and the application for the user interface. The layout supports a
possible usage of the functionality by other means. Because of this structure it is also
possible to plug in the clustering functionality at two different points.

• The back-end where the vector space itself is handled. The advantage of this location
is simply a better debugging capability and a increased performance. The perfor-
mance gain is a result of the adjacency of the search engine. Processing n queries for
a n-element cluster means an equal amount of Web service invocations if handled by
the front-end application. Furthermore, the execution time for each single query as
well as the overall times can easily be extracted this way by simply logging them to
the Java runtime environment.

• The front-end on the other side, also bears one big advantage. The original vector
space engine is designed to allow repositories to be split into several smaller repos-
itories while queries can still be executed upon them as if on one single repository.
The already implemented method for runtime weighting and normalization is able to
map invalid vectors from spaces with different dimensional layout to any vector space.
The gained benefit is the possibility to split repositories in several sub-repositories
whenever the performance is not satisfactory and still keep the dimensional structure
and relations intact. For the clustering approach it would, therefore, make sense to
execute the queries to fill the cluster matrix at the client side where the distributed
spaces are joint in the first place. Nevertheless, it was decided to implement the
prototype with the method mentioned first, because distribution capabilities are no
issues upon development.

As a result, the clustering functionality is realized as an extension of the original Web
service and can be seen as a plug-in for the vector space engine on the server where it
is deployed. The system layout as depicted in Figure 4.2 shows the general architecture,
including the cluster plug-in as it is implemented in the back-end based approach.

4.3.2 Process flow

With this structure, a completed request causes the following order of events:

1. A request to the Web service endpoint reaches the axis servlet. Whether the request
was sent by the front-end or another VSM implementation is not important at this
point.

82 4.3 Implementation

Figure 4.2: System Architecture with cluster plugin

2. Depending on the request signature, the VSM Factory decides whether to instantiate
the persistent or volatile version of the search engine. The volatile engine is blanked
every time the tomcat servlet engine is restarted, because the vector matrix is im-
plemented with hash tables. In the persistent version, this limitation does not apply
naturally. Instead, the constructor makes sure that the requested database structure
is valid. The code for the table generation of the persistent engine is listed in A.2. If
not all tables exist they are created on the fly, thus providing an empty vector space
on startup.

3. In case of a normal query, the query generator decides whether to directly access
the local hash tables, or create the corresponding SQL statements to fetch the same
data from the database. It is important to remember that those queries effectively
implement a dimensional reduction of the original query vector. This means that
even for vector spaces with a large dimensional count, the processed data can be
kept low. Search queries normally do not exceed a size of 10 words, and, therefore,
dimensions. Documents that do not contain any of the query words at all, are
automatically omitted (see Section 2.6) and, therefore, do not cost any processing
time. This advantage does not apply to the cluster engine because when building the
matrix, every element of the original vector must be taken into account and results

Chapter 4: Result Classification using Statistical Cluster Analysis 83

in large query vectors of 100 and more dimensions. Furthermore, it is almost certain
that every document keeps at least one of the vector elements and, therefore, will
also produce a query rating. The actual numbers are discussed in Chapter 5.

4. After the query is executed, the result generator takes over and either produces a
sorted list of results that can be handed to the Web service dispatcher, or fill the
matrix of the cluster engine.

5. The cluster engine decompresses the matrix, and reduces it step by step until the
cluster algorithm is successfully finished. This reduction can be done in constant
time, because once the matrix is filled properly, the contained elements are already
of top priority.

6. The Web service dispatcher can now deliver the results to the caller and free all used
resources.

The above scenario describes how the back-end reacts to a request and executes the
corresponding operations. A more precise evaluation of the involved time-frames and the
delay caused by the cluster algorithm can be created by utilizing the prototype imple-
mentation with the Web interface [13]. The resulting values are strongly coupled to the
performance of the original implementation since it is used to find inter-document dis-
tances. A complete evaluation is given in Chapter 5, where all elements of the application
are discussed.

84 4.3 Implementation

Chapter 5

Evaluation

I think that God in creating Man somewhat overestimated his ability.

Oscar Wilde (1854 - 1900)

In this chapter, the introduced methods and implementation are evaluated. The first
sections will focus on the implementation that is available for use via the Web client.
This encompasses the Chapters 2 and 4. The other section deals with the implementation
which is available as a prototype only, without any public access. The included methods
are mainly of Chapter 3. The used case study deals with the involved issues from the per-
spective of a public registry or public service because they tend to be more heterogeneously
in their structure and, therefore, bring up more problems than in a corporate environment.

5.1 Web implementation

An exact and significant evaluation of prototypes and implementations for Web service
technology is always a very challenging undertaking. Partially because the usefulness of
a new method is hard to proof in a prototype but basically because of a lack of sufficient
real-world services. A restricted amount of descriptions for actually working services is
not big an issue for fundamental implementations that deal with services at a functional
level. For search engines and metadata related research though, this fact poses enormous
problems. Repositories with around 1000 distinct services are often too small to present a
real problem for the involved algorithms. The only possibilities left are to either produce
copies of already existing services, or create dummy services with no actual implementation
to simulate larger repositories [36]. In either case, the drawbacks are quite obvious, being
either duplicate entries and, therefore, insufficient search capabilities, or biased results

85

86 5.1 Web implementation

because of the generation algorithms to produce the services. In most cases, the best
method is to base an evaluation on a real repository and assess performance and scalability
capabilities by extrapolation.

5.1.1 Prototype execution

The file base is a critical issue for the numerical evaluation of such an approach. The
repository used for testing purposes contains a set of 275 distinct WSDL files from different
sources. Part of them were extracted by the UDDI cross-reference download, which is
no longer possible for the biggest ones (Microsoft and IBM) since they were shut down.
Therefore, UDDI is considered as a secondary option to gather public service descriptions
for current implementations.

The second source was the public Web service registry from xmethods1. Other than
UDDI registries, xmethods provides a multitude of possibilities to access the underlying
services reaching from standard Web pages to RSS feeds and even a Web service interface
to query the database. Additionally, the functionality to populate Web services with a set
of input parameters is provided. This way, the services can be tested for their availability
directly from the Web site.

With this repository, the VSM engine can be populated and afterwards readied for
a cluster analysis. To produce demonstrative results, two different queries for the initial
search were chosen. One aims to find the description of the popular Amazon Web service.
The corresponding query string is ”Amazon web service”. The other one tries to find a
service for verifying credit card numbers. Here the query is ”Credit card verification”.
These strings are simply entered into the search field of the Web site, while background
activities can be monitored at the server.

Both of the initial searches took 16 milliseconds to finish upon the 275-Element repos-
itory, using the persistent VSM engine. Looking at the queries one will see that both
of them encompass three dimensions. Starting from this point, the Files ”wsCreditVer-
ify.wsdl” and ”AmazonWebService.wsdl” were the best and also desired results found by
the search engine. After completing the search, the clustering functionality is available for
each result by clicking the ”cluster” button for the selected result element. Completing this
initial search as fast as possible is an important matter for the search engine. Otherwise
the Web page would respond slowly which is a very limiting fact for such a facility. The
most important steps when processing the query are as follows:

1. The query word is taken and normalized by the same algorithm that filters the WSDL
files. With the first string, the result is ”amazon web service”. This normalization
filters spaces, eliminates alphanumeric signs or cuts spaces where they are not needed.

2. Now the result can be put into a vector. To do so, a weight has to be applied for
each element. Balanced search is achieved with a weight of 1 for each dimension. So

1http://www.xmethods.org/

Chapter 5: Evaluation 87

the final vector is (1,1,1) with (amazon,web,service) as the corresponding terms. It
is also possible to weight terms otherwise, based on linguistic resources for example.

3. In the next step, all remote repositories are queried for their statistics with the given
vector as input. This is technically like an ordinary query with the difference that
results don’t have to be sorted, which saves computing time. Also it can happen
simultaneously on each remote host.

4. All statistics are merged and finally each vector space can be queried with the vector
and the accumulated statistics. The results are again merged according to their
relevance and displayed afterwards. When processing local vectors only, step 3 can
be omitted. The example from above produces a relevance rating of 0.953 for the
amazon query on the local repository.

To proceed with the clustering, the next step in the execution chain is to re-create
the original vector of the initial root Element. The Amazon Web service will serve as an
example. Here, the WSDL description file reflects with 210 dimensions/keywords in the
vector space. The list of all indexed keywords is listed in Appendix B.1. This screenshot
is taken from the original output of the search engine’s clustering implementation. The
high dimensionality means, the query that has to be executed on the vector space for the
matrix creation will cause a significantly larger load than a normal search query.

The settings of the cluster engine are such, that the initial matrix is of size 15x15. This
value can freely be chosen in the Web application. It defines, how much results of the
query with the root element are taken into the matrix. It’s important to remember, that
the queries are executed the same way an ordinary query gets processed. Therefore, the
matrix is filled with elements from the whole repository. It also means, the same amount
of queries has to be executed to fill the matrix. The number was chosen because it provides
a fair tradeoff between good performance and a meaningful result. The 15 elements that
build the matrix of the Amazon-Cluster took 165,5 ms average, plus an additional 65 ms
for the sorting algorithm of the result. Compared to the 16ms of the initial query, the
impact of the dimensional reduction algorithm becomes clear. That means, a matrix of
size 15 takes about 3,5 seconds to fill. This time does not directly depend on the size of the
underlying repository but on the speed of the executed queries. Therefore, with a growing
size of the desired elements comprised by the final cluster, the time to fill the matrix grows
linear, independent from the repository size.

After the cluster matrix is filled, the cluster algorithm itself can proceed in its execution
and reduce the initial matrix step by step until it is of size 1. The matrix reduction for a
15-elements matrix takes a constant time and finishes in approximately 150 ms on the test
machine. The result of the overall procedure is a list of n elements and the clusters they
belong to. The complete matrix from its compressed form that is the result of the query
until the algorithm reaches the trivial state is depicted in Appendix B.2. The processing
steps are exactly as described in Section 4.2.1.3:

88 5.1 Web implementation

1. The vector resulting from the initial search is used as a normal query. The best 15
results are the elements of the compressed matrix. Alternatively, it is also possible
to use the original result of the query and fill the matrix with these elements. Doing
so would result in a matrix that encompasses a ”thinned” space population, because
only elements of the result are considered. For the time being, the formally complete
method with a whole vector is used. The other possibility is discussed later.

2. A query with the vector of each element in the matrix must be processed to fill the
matrix fr all other elements.

3. The result is decompressed to a 15x15 matrix. To do so, the main diagonal is filled
with 1. All other elements are mirrored.

4. In each step, just like in Table 4.1, the biggest element (or smallest distance) except
the main diagonal is searched. These elements are combined. The distance is mem-
orized and shown in the output as the cluster coefficient for each step. See Figure
B.4 for a screenshot of all coefficients for the amazon cluster in particular.

5. The elements in the previous step are combined by shrinking the matrix by one
dimension. All elements in the corresponding line and column are fused to represent
the average angle of both elements. Now the previous step is repeated until the
matrix is of size 1.

To correctly read the Appendix and all values, Figure B.3 shows all elements of the
initial matrix in a numbered order. After combining two elements, however, say element 2
and 6, the new element 2 is already a combination of 2 and 6 (26) and element 6 is deleted,
while all successive elements move forward by one. Therefore, after step 1, the elements
do not match the numbers of the cluster coefficients any more. They rather entitle the line
and column of the reduction matrix, which is marked red besides. The similarity values of
the clusters after each reduction step can be visualized in a graphical representation.

Figure 5.1 shows how close the combined elements were after each reduction step that
was carried out. This graphic shows a complete cluster analysis, with no termination before
the last cluster is built. It shows very tight relations between the first four combinations
of the amazon cluster and the first three of the credit card service. Medium distances of
0.4 - 0.7 can be seen as moderately relevant, while those below are of low significance.
Alternatively, it is possible to define a termination point either by setting a maximum
distance a cluster may reach or a maximum number of clusters that should be built. When
using a maximum distance, all elements in a more or less tight cluster are considered to be
strongly related to each other, while the individual distances are not viewed with special
concern. This allows quite easily to visualize cluster results, because individual distance
values don’t have to be displayed. On the other hand, the result looses a lot of its value
when omitting these elements. The decision which method to use, or if a complete analysis
is preferable to one with an early termination depends purely on how the result should be
presented to the user.

Chapter 5: Evaluation 89

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10 12 14

C
lu

st
er

 s
im

ila
rit

y

Matrix reduction step

Distance diagram

WSCreditVerify
Amazon Web Service

Figure 5.1: Cluster similarity diagram

In this case, the complete result is used. The previously presented diagram however,
is not enough to know which elements are grouped. For this purpose, the distances are
visualized by using a dendrogram. See Figure 5.2 for the example of the Amazon-Cluster
with 15 elements.

When examining the graphic, the four tightly clustered elements mentioned above can
be identified. Note that the elements for the numbers in the dendrogram can be found
in Table 5.1 or Figure B.3 of the appendix. First is a very tight cluster of Amazon and
”ECOWS WS sample” which essentially is a copy of the Amazon WSDL file. This file
was injected to ensure that the cluster algorithm puts them in the same cluster with the
minimum distance. The next cluster (3 and 4) consists of variations of the Google Web
service. Services 2 to 5 are various versions of the same description either gathered from
different sources or being different versions, changed by the provider. This cluster is later
joined by element 2 at a distance of about 0.4. The first moderately tight cluster is built by
”xExchanges” and ”Exchanges”, both services to query worldwide exchange rates, joined
by ”InsiderTransactionInfo”, also a service for the financial sector.

Altogether, the search and cluster algorithms produce the desired results. A search

90 5.1 Web implementation

Figure 5.2: Dendrogram for ”Amazon.wsdl”

query can easily be enhanced by creating a cluster analysis of the result contents. For
the Amazon service a search engine like Google produces a close cluster because they
comprise similar functionality like search and query execution. Other elements, like the
above mentioned from the financial sector, are not strongly related to Amazon directly, but
their close relation to each other is recognized by the algorithm. From a usability point of
view, there are still two possibilities left that have to be considered.

When creating the initial matrix, there are essentially two ways to do so.

1. The method used in the example is to execute a query, then select one of the results
and do a subsequent query with this vector as the search element. The best n matches
are then used to produce the initial matrix.

2. Another possibility would be, to use the result of the initial query to populate the
matrix elements without an additional query process. The difference would be that
all elements contained in the matrix are directly related to the query string. On
the other hand, it would also mean that resulting clusters are not complete but may
comprise additional elements.

Again, both methods are theoretically possible and sound. It is simply a matter of user
preferences what to actually use.

5.1.2 Performance

As mentioned in the earlier chapters, it is quite difficult to measure performance without a
decent set of elements in the repository. Therefore, the performance evaluation is based on

Chapter 5: Evaluation 91

Document Number Service Name

0 AmazonWebServices
1 ECOWS WS sample
2 GoogleSearch
3 GoogleSearch(2)
4 google search service
5 GoogleSearch(1)
6 Exchanges
7 xExchanges
8 ElmarSearchServices
9 ws4lsql
10 WolframSearch2
11 InsiderTransactionInfo
12 JetFoldersService
13 xHoldings
14 ZacksCompany

Table 5.1: Document names

an extrapolation of existing elements to demonstrate scalability issues. Furthermore, it has
to be kept in mind that the presented implementation is still a research prototype where
the time to optimize performance is limited. The matrix generation process for example
was accelerated to 40% of the original time by introducing proper database indices and
adjusting the queries accordingly. There are still possibilities to enhance further, but those
enhancements are not essential for the approach itself. The actual numbers are shown in
Table 5.2.

The measures where taken with the same query used in all the above examples, with
the query string being ”amazon web service”. For the cluster creation, the matrix size is
again set to 15 elements.

Repository size [Files]
Performance Element 274 549 1096
Cross-query average [ms/element] 167,2 278,1 580,3
Sort time[ms/element] 62 140 282
Keyword retrieval time [ms] 16 15 18
Original Query time [ms] 31 53 92
Matrix reduction time[ms] 110 110 110
Overall time for size 15 Matrix [ms] 3750 6112 12322

Table 5.2: Performance comparison

92 5.1 Web implementation

The cross-query time entitles the time used to execute a query that fills one line of
the initial matrix and is an average of all 15 queries. It can be seen, that it grows linear
each time the repository size doubles. Directly related to it is the overall time used to
execute the whole cluster algorithm. This proves that the theoretical assumption to be
able to execute a cluster algorithm with less than O(n2) effort is correct. However, a linear
growth is not the best result for the cluster algorithm. When looking at the original query
time in the table, the impact of the dimensional reduction becomes obvious. Instead of
doubling the time to process a query, the necessary time barely triples for a repository
of four times its original size. And there is still room for further enhancements in this
direction, by optimizing the generated database queries for instance. At the moment, the
query generator is optimized for normal search queries, because the search engine is still
the main focus. Because of the heightened possibility of term occurrences in a cluster
query, new ways to reduce the query time for whole vectors have to be found. The times
for retrieving the keywords of a single vector are remaining more or less constant, because
they can be handled in a simple query. Small fluctuations in the exact values are caused
by the java timestamp functionality which is limited in its precision and varying speed in
the database connection.

Another performance-relevant issue is the persistence mode, the search engine is set to.
The volatile form shows a much better performance, of course. Here the queries are not
executed on a database but directly on the memory-based hash tables. Nevertheless, this
does not affect scalability issues in the first place. The measurements and estimations of
effort presented in this chapter basically still apply. The change merely effects the concrete
execution times. That means, when using the volatile form of the search engine, queries
are executed much faster but the grow rate for the computation expense is the same as for
the database.

An important aspect of this research is implied by the general structure of the search
engine itself. As already mentioned in the previous chapters, the search engine is designed
to work on distributed repositories. That means, queries can be processed on the local
repository with a single request, or on a compound repository that acts like a large one
as explained in Section 2.6. Because the steps needed to fill the cluster matrix are noth-
ing more than large queries, it is possible to process them the same way as an ordinary
distributed query. To do so, the cluster processing has to be moved to the front-end side,
because this is where the final result list is generated. The current implementation uses
the server-side method because it is easier to debug and implement, but when the query
processor is optimized for the clustering requests, it can also provide a client-side version
for the cluster engine that is able to take advantage of the original distribution capabilities.
As a result, it would be possible to define a maximum time, a search or cluster request
can take before it has to be split in two separate repositories [49]. The split parts could
then be processed in parallel which increases scalability and of course performance. When
looking at the values from the server side evaluation in Table 5.2, it becomes obvious that
the cross-query time acts as a bottleneck for the whole approach. Figure 5.3 visualizes the
performance gain for the cross-query times when the distribution capabilities are enabled.

Chapter 5: Evaluation 93

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

 0 2 4 6 8 10 12 14 16

C
ro

ss
-q

ue
ry

 a
ve

ra
ge

 [m
s]

Repository size [x100 elements]

Performance comparison for split repositories

Without splitting
Split at 500 elements

Figure 5.3: Performance gain with split repositories

The partitioning was such, that repositories are split once they reach 500 elements. Then,
an empty vector space is created and all elements are evenly distributed. The resulting
federation is connected via the VSMJoiner Web service of the front end. This Web service
allows to process distributed vector spaces as described in Section 2.6. The queries for the
matrix generation were run on the federation which produces the result in a fraction of the
original time because of the parallel processing capabilities. A small overhead of 10 ms in
the processing time occurs because of the additional effort to merge the results once they
return from each peer. Without the complete implementation of the clustering approach
on the client side, it is only possible to run the matrix generation queries on the distributed
version but since it showed that those queries take most of the time, the speed gain is con-
siderably big. This method to speed up the whole process allows to define an upper bound
for the execution time of both, the original queries and the cluster algorithm as a whole.
It was not necessary to activate any of these performance restrictions while evaluating the
approach. The processing speed is very satisfying for the repository at hand. Even for very
large repositories, splitting them will be the last way to increase performance. First, the
implemented methods for dimensional reduction and the early termination facilities will
be exploited as far as possible. The ability to join split repositories is of much greater im-
portance where registry federations are needed. It removes the constraint to decide where
to actually search for a Web service, as long as the largest ones are joint.

In a nutshell, the performance of the implemented approach lives up to the expectations
and the original concept. At the same time, there is still the possibility for performance

94 5.2 QoS prototype

enhancements and tweaks, especially where the database access and query generation is
concerned.

5.2 QoS prototype

The second part that requires a thorough evaluation is the concept to bootstrap QoS
information for unknown service implementations. Other than the search and cluster
engine of the previous section, where it was possible to access every point throughout
the whole implementation, the QuATSCH tool has to cope with unknown services and
servers which sometimes complicates evaluation procedures. To minimize these influences,
a simple Web service with a pre-defined behavior was developed that allows to demonstrate
the accuracy of the proposed method. The QoSTestingService2 consists of the following
operations:

• waitTenMs

• waitHundretMs

• waitTenSec

• waitOneMin

The operations of the Web service just wait the specific period of time (as encoded in the
operation name) before they return. By using these operations for evaluating the approach,
it is possible to clearly determine the measurement accuracy of the different QoS attributes
introduced in Section 3.2.2.

The QoSTestingService is deployed in the VitaLab3 environment on a Dual Pentium
Xeon with 3.2 GHz and 2 GB RAM. The client machine where the QuATSCH tool is
installed and invoked is a Laptop with an Intel Core Duo T2400 (1.83 GHz) with 2 GB
RAM. This way it was possible to test the tool in both, a real-world world environment
and the high-speed environment of the local lab which is similar to a corporate network en-
vironment. For the real-world simulation discussed below, the client machine is connected
to the Internet using DSL with an approximate downstream of 4096 kbps and 512 kbps
upstream.

Figure 5.7 to 5.6 show the measurements where the waitHundresMs operation of the
QoSTestingService Web service was accessed from outside the lab through the WAN con-
nection. The focus lies on this operation because it reflects usual execution times around
the Web quite well. Figure 5.6 shows the evaluated execution times along with an average
value as the dotted line. The average execution time was estimated to 119 ms (milliseconds)
for a total of 100 requests. The variation to the real execution time of 100 ms is caused by

2http://copenhagen.vitalab.tuwien.ac.at:8080/axis/services/QoSTestingService?wsdl
3http://www.vitalab.tuwien.ac.at

Chapter 5: Evaluation 95

 0

 200000

 400000

 600000

 800000

 1e+06

 0 20 40 60 80 100

M
ic

ro
se

co
nd

s

Request Number

Response Times of QoSTestingService operation waitHundretMs

Precise Response Times
Average Response Time

Figure 5.4: Response times

the varying network latencies visualized in Figure 5.5 on the one hand and the spike in one
of the response times on the other. Nevertheless, it was possible to figure out the service
execution time with a precision of ±20% for the 100ms range in a real-world environment.
In the lab environment, where latencies are more stable and, therefore, produce a smaller
fluctuation in the statistic calculations, it was possible to assess the execution time of the
100 ms operation with ±1% deviation and the 10ms operation with ±8-12% deviation.

One has to keep in mind, that in a real-world scenario, a service where the execution
may exactly take 100ms could by all means take 150 ms to respond after all. A possible
reason would be an overloaded server, where requests are scheduled for execution. From
the client side, this would just result in a delayed response and, therefore, it is perfectly
valid to just rate the execution time with 150 ms.

All the values presented above are results of single executions with at least one second
of time difference. To get an idea how the service behaves when it receives a large amount
of parallel requests, the same service and the same operation was measured during a
throughput test. Each throughput test run consists of 1000 individual requests. Table
5.3 shows a comparison of the evaluated values. It can be seen that the operations per
second is quite high, nevertheless, the limit of the Axis framework was reached because it
produced quite a large amount of failed requests when further increasing the number of
requests per throughput test-run.

Besides demonstrating the accuracy of the measurement it is also interesting to see
the evaluation employed on a real-world Web service, e.g., Google in this case. In order to
evaluate the GoogleSearch Web service, more precisely the doGoogleSearch operation, the
template-based invocation mechanism is needed to be able to invoke the service, because

96 5.2 QoS prototype

 0

 10000

 20000

 30000

 40000

 50000

 0 20 40 60 80 100

M
ic

ro
se

co
nd

s

Request Number

Network latencies of QoSTestingService operation waitHundretMs

Precise Latency
Average network latency

Figure 5.5: Network Latencies

 0

 50000

 100000

 150000

 200000

 250000

 300000

 0 20 40 60 80 100

M
ic

ro
se

co
nd

s

Request Number

Execution Times of QoSTestingService operation waitHundretMs

Precise Execution time
Average Execution Time

Figure 5.6: Execution times

Chapter 5: Evaluation 97

Throughput test-run Standard test-run

Execution Time 127 ms 124 ms
Response Time 186 ms 172 ms
Average Latency 8,1 ms 6,5 ms
Operations per Second 76,8 ——–
Scalability 0,92

Table 5.3: Test-run comparison

GoogleSearch requires a valid key to use the service.

QuATSCH automatically generates a default template during the evaluation, thus the
client only has to provide some reasonable values for the service invocation. In this case
the template from Listing 5.1 was used, where a key and a search query are specified. The
search string is ”Monica Bellucci”, to make sure that a reasonable amount of results is
found. Please note that no throughput tests were conducted on the Google search service,
because this might be rated as a denial of service attack by Google on one hand, and because
free keys issued by Google are usually limited to a small amount of search requests per day.

<?xml version=” 1 .0 ” encoding=”UTF−8”?>
2 <s e r v i c e name=”GoogleSearch ”>

<opera t ion name=”doGoogleSearch”>
<param name=”key” type=” s t r i n g ”>

<value>kcXJusVQYARSFq7T+4R+Kyqq/cqQAodqm</ value> <!− − key i s not va l i d − −>
</param>

7 <param name=”q” type=” s t r i n g ”>
<value>”Monica Be l l u c c i ”</ value>

</param>
<param name=” s t a r t ” type=” in t ”/>
<param name=”maxResults ” type=” in t ”/>

12 <param name=” f i l t e r ” type=”boolean ”/>
<param name=” r e s t r i c t ” type=” s t r i n g ”/>
<param name=” sa f eSea r ch ” type=”boolean ”/>
<param name=” l r ” type=” s t r i n g ”/>
<param name=” i e ” type=” s t r i n g ”/>

17 <param name=”oe” type=” s t r i n g ”/>
</ opera t i on>

</ s e r v i c e>

Listing 5.1: GoggleSearch Invocation Template

The results of the evaluation are quite interesting, because the accuracy is not as high
as it should be expected from Google. As one can see in Figure 5.7, the response time of
the first 100 test runs varies quite heavily, probably depending on the load of the service.

The most interesting values of all 222 test runs are summarized in Table 5.4. Comparing
these results to searches issued by the Web-based Google search engine shows why the Web
service is still considered to be in beta state and no new keys are issued for trial purposes.
Both, response time and execution time are considerably slower than searches done via the
Web interface. Because of the limited usage of the Web service interface it can be assumed

98 5.2 QoS prototype

 0

 2e+06

 4e+06

 6e+06

 8e+06

 1e+07

 0 20 40 60 80 100

M
ic

ro
se

co
nd

s

Request Number

Response Times of GoogleSearch operation doGoogleSearch

Precise Response Time
Average Response Time

Figure 5.7: GoogleSearch Response Times

Results
Execution Time 1497ms
Response Time 3143ms
Round Trip Time 4236ms
Average Latency 125ms
Accuracy 79 %

Table 5.4: Google Evaluation Results

that Google simply doesn’t provide load-balancing and other performance-critical methods
on this side. The rather low average latencies are most probably a result of the Web-server
setup which is designed to handle incoming requests in a minimum of time, no matter
where the request is originally aimed at. Another reason may be the time Google needs to
verify the provided key and decide if the incoming request is valid.

For general purpose, the results show that the desired times and performance ratings
can be assessed with a good precision. Furthermore, possible peaks in service responses
or packet loss is tolerated by the statistical approach and also reflects in the service’s
dependability ratings.

Chapter 6

Related Work

I don’t want to achieve immortality through my work...
I want to achieve it through not dying.

Woody Allen

This chapter gives an overview on the most important publications directly related to
the work presented in the previous chapters. The core concept of vector spaces and how to
search them will be the main focus here. Other topics blend into the concept on different
points and hence form the research background this thesis is based upon.

6.1 Vector Space basics

6.1.1 General

In the field of information retrieval, the vector space model constitutes a common method to
search for a specific document or to retrieve the most relevant documents for a search query.
Especially when whole articles are processed (e.g., in news repositories or for Websites),
the vector space model is known to produce good results for both, document similarity
rating, and query processing. In most cases, a vector space engine is used as a centralized
service, where all needed data is stored in a single repository. With the original concept
which was proposed by Salton [54], searching in such a repository was leveraged to a point,
where performance became a secondary issue. Some additional problems arise, when there
is the need to create a search engine that uses a distributed document repository with
different term spaces as it was presented in Chapter 2.
This section intends to recap the related work for the Vector Space Model with special

99

100 6.1 Vector Space basics

attention to the distribution capabilities of it’s different sub-categories. The principles and
concepts are already well-established and are therefore mentioned as related work instead.
In other words, the goal is to explain here how the developed solution evolved from the
basic concept to the distributed version that forms the basis of this thesis.

6.1.2 Principle

The following example should provide a better understanding on how this term space is
built in the first place. Two fictive and one real WSDL files are used as samples. The real
file is the same as in Section 2.2.1 but only one of it’s elements is used for the time being.

• The start will always be a term space of zero dimensions. No vectors are available
yet.

• Now three documents are added subsequently. For an easier understanding, the doc-
uments are assumed to contain less than the usual amount of keywords. The first
document keeps the element ”Product” and ”Info”. This creates a two-dimensional
term space:

C=
Dimension d1

Product 1
Info 1

• After adding a document with the elements (or methods) ”Info” alone and one with
the words ”get”,”Product” and ”Info”, the term space is expanded by one term or
dimension to:

C=

Dimension d1 d2 d3

Product 1 0 1
Info 1 1 1
get 0 0 1

The presented form with binary values is the simplest way of a document representation
based on vectors. The result is a three dimensional, binary vector space with a population
of N = 3. Because of its low dimensionality, it is even possible to visualize the vectors as
arrows inside a cube (see Figure 6.1). This form of a vector space is suited best to visualize
where the problem with distributed repositories lies. Once, all desired documents (e.g.
WSDL files) are represented within the common term space, the relevance between them
can be rated according to various rating procedures. A possible way to rate documents
is the cosine value, where the angle between two vectors is taken as a measure for the
documents’ similarity. Search queries are processed the same way. Once a query is received,

Chapter 6: Related Work 101

Figure 6.1: Three dimensional vector space

it is projected into the term space and treated like any other document. In the above
example, a query for the word ”get” would result in a query vector dq = (0, 0, 1) which
is compared to already existing documents. In the above case, document d3 will be the
most relevant result, since it is the only one with an occurrence of the dimension ”get”.
Building term spaces based on binary values however, is not useful in most cases, because
no weighting scheme can be applied. Therefore, raw term frequencies are assigned instead
of binary values for the elements of a vector.

6.1.3 Raw term frequency:

Vectors weighted by raw term frequency have some important properties:

1. Documents with many occurrences of a specific term are considered of higher rele-
vance to a query.

2. Long documents stand a better chance of being retrieved than short documents,
because of the bigger number of overall words.

3. No matter how frequent a term is in the overall collection, it is always of the same
importance within a vector.

These properties comprise some advantages when it comes to distribution. Since a single
element of a vector is independent from auxiliary values, no additional considerations to
allow distribution have to be taken. Instead, the weighted values are treated exactly like
the boolean values in the section before. Unfortunately, this form of weighting is unsuitable
for document collections with a broad spectrum of document lengths. And this must be

102 6.1 Vector Space basics

assumed for the underlying data. Therefore, some advanced weighting had to be done, to
ensure an acceptable recall rating for query operations. This applies to both, the natural
language and the code-part of Web service descriptions as already explained in Section
2.5.1. For this reason, weighting was introduces.

6.1.4 Weighting and rating schemes

Where Salton uses the dual logarithm for the calculation of the tf x idf, some ap-
proaches [25] are known to use the common logarithm:

idf = log(
N

nk + 1
).

Both variations target to achieve the same goal. Which one to actually use can be decided
in the implementation.

For the rating algorithms presented in 2.5.3, certain alternatives exist. Some of these
additional rating algorithms are [33] [71]:

• The Dice Coefficient which is designed to relate documents based on the number of
matching bigrams. using it for this purpose is theoretically possible but limited in
its significance. A vector representation of a document does not follow a predictable
order in the occurrence of its keywords and, therefore, cannot be used to produce
meaningful bigrams.

• The Jaccard Coefficient can be seen as the predecessor. This coefficient is defined as
the size of the intersection divided by the size of the union of two sets.

J(A,B) =
|A ∩B|
|A ∪B|

For distance measurements, the Jaccard distance is calculated by subtracting the
coefficient from 1:

Jδ(A,B) = 1− J(A,B) =
|A ∪B| − |A ∩B|

|A ∪B|
This measurement can be used for distance measurements in binary vector spaces.
For this purpose it is very well suited, because the require operations are very efficient
in processing. For non-binary vectors however, the Jaccard coefficient has to be
extended which essentially leads to the cosine value as it is used in this thesis.

• Overlap Coefficient. Other than the cosine value, the overlap coefficient measures
the degree of similarity two documents have compared to the minimum cardinality
of keywords.

O(A,B) =
|A ∩B|

min(|A|, |B|)

Chapter 6: Related Work 103

This coefficient is also suitable for binary elements.

• The Levenshtein Distance is another distance measure worth mentioning. Its purpose
is to rate orthogonal relations of terms. It is used to calculate word distances. The
words ’right’ and ’might’ for instance, would be recognized as related with just one
substitution. It is thinkable to calculate the Levenshtein distance for terms within
the vector space and this way relate terms to each other. For vector spaces with high
dimensionality but few common terms, it could be used to produce better ratings.
How good such a method would actually work is worth a discussion and is part of
future investigation possibilities.

For WSDL files, the cosine value proved to be the optimal solution. When extending
the search engine to other data structures however, is has to be considered if one of the
mentioned algorithms may be more suitable.

6.1.5 Linguistic methods

Several methods common for information retrieval do not directly apply to the proposed
concept. Stop word lists are a good example. For natural language processing, stop word
lists are collections of very common words that occur in most documents without adding
real value. Therefore, they can be omitted. The result is a smaller vector space with
essentially the same level of information. Unfortunately, the case is different here. Most
of the code entries will be method names or type labels. Those elements will not contain
parts that are not useful. If a method is named getHighestUserRatio(), for example, the
label consists of four important words. Applying a stop word list here would be very
counterproductive. Instead, it is tried to split method names and type definitions into
single keywords. Splitting method names where capital letters occur is just one of many
possibilities. In cases where the splitting fails, it does not automatically mean that the
result is corrupted. It just means that the chance of a match for this specific method are
lower than average.

6.1.6 Vector space assembly and synchronization

The approach presented in Section 2.5.1 describes an autonomous growth for each dis-
tributed vector space. The resulting discrepancies in the weighting scheme are handled
by the runtime weighting and evaluation facility. Apart from this approach, there is also
the possibility to synchronize the vector spaces with each other. This method is preferable
for prototypes where the repositories are of high availability [65]. In this trivial approach,
once a change of any kind (adding new documents, or updating old values) occurs, every
term space must update all affected values before performing any other operation on the
same space. Therefore, this method is not feasible for environments, where connections
between participating nodes are not guaranteed. Furthermore, when a new node joins the

104 6.2 Measuring service metadata

network, it would have to adept the already built up term space of another node first,
including all vectors and keywords. The result would be a massive traffic overhead and
reduced independency of the overall system.

6.2 Measuring service metadata

In comparison to the field of information retrieval, which builds the foundations of the
search engine, performance related research, especially where Web services are concerned
are still highly investigated on a fundamental level. Partially this is, because quality
of service research encompasses different research domains such as the network, software
engineering and more recently service-oriented computing community. A lot of research is
dedicated to the area of QoS modeling and enriching Web services with QoS semantics.
Most of the existing work leaves open the way how QoS parameters and other metadata
are bootstrapped or evaluated in the first place. Even the categories and classification
methods are not well established but still discussed in many research papers.

In [68] for example, Wickramage and Weerawarana define 15 distinguishable periods
in time, a SOAP request goes through before completing a round trip. This value, which
is also referred to as response time, can be split up into different components where it is
essential to bootstrap as much of them as possible. The presented approach does not use
all 15 periods identified in this work, because not all periods are interesting to consumers
of a service or cannot be determined from the client.

Suzumura et al. [57] did some work that focuses on performance optimizations of Web
services. Their approach is to minimize XML processing time (which is called wrapping
time here) by using differential de-serialization. The idea is to de-serialize only these parts
which have not been processed in the past. Here, the goal is not try to optimize the
performance, but to measure the different attributes, without dealing with the wrapping
time itself.

A QoS model and a UDDI extension for associated QoS to a specific Web service is
proposed in [52]. The QoS model proposed in this thesis is very similar to the model
at hand, however, the author does not specify how these values are actually assessed and
monitored. It is assumed the QoS attributes of a service are specified by the service provider
in UDDI. In [62], another approach for integrating QoS with Web services is presented.
The authors implemented a tool-suite for associating, querying and monitoring QoS of a
Web service. In contrast to this work, it is not specified how QoS attributes are actually
measured and evaluated to associate them to certain Web services.

In [56], Song and Lee propose a simulation based Web service performance analysis tool
called sPAC which allows to analyze the performance of Web process (i.e., a composition)
by using simulation code. Their approach is to call the Web service once under low load
conditions and then transform these testing results into a simulation model. Chapter 3
of this thesis also focuses on the performance aspects of Web services whereas it does not

Chapter 6: Related Work 105

deal with Web processes. Furthermore, simulation code is not used. The evaluation is
performed on real Web services even with the constraint that access to the Web service
implementation is not available.

QoS attributes in Web service composition also raise a lot of interest due to the fact
that they can be used by the compositor to dynamically choose a suitable service for the
composition regarding the performance, price or other attributes. A simple, but illustrating
example of such a composition is presented in [41]. In [73] and [74], the authors propose
a QoS model and a middleware approach for dynamic QoS-driven service composition.
They investigate a global planning approach to determine optimal service execution plans
for composite service based on QoS criteria. In contrast to the presented approach, the
authors do not specify how QoS attributes for atomic services are measured and assessed.
It is assumed that the atomic services already have reasonable QoS attributes.

6.3 Search and Clustering

Search and search-related aspects of Web services are highly investigated fields throughout
the service-oriented community. In most cases, Web service discovery is the driving force
behind the research. The reason is simply that this particular area still rises some very
interesting issues that need to be addressed. Service discovery in ad-hoc networks that
are based on Web services [20] for instance, has to deal with some very special problems
regarding information propagation and centralization. It is basically the same problem that
arises with all peer-to-peer (P2P) networks. The highly fluctuating nature of such designs
either depend on a single point of failure or have to encompass a feature to propagate service
information suitably. Ordinary methods for service discovery, like UDDI registries most
certainly fail in such environments because they are not adaptable enough. Furthermore,
they lack the very important feature of joining service repositories as it is necessary for
federations of Web services. This particular issue was addressed by [55], for example.
Here, the authors specifically deal with this problem and developed a discovery mechanism
that allows a user to find services in a federated service environment. The system is
called MWSDI and relies on a decentralized structure without a central component. The
general layout of the presented discovery approach allows a setup that is independent of
the underlying structure. It can work in centralized environments as part of an ordinary
services registry. At the same time it is possible to deploy the search engine in a federated
environment or as part of an ad-hoc network.

Other work focuses not on the principle structure of the service infrastructure but on
the quality of the search result itself. Almost every registry ever built encompasses some
sort of search facility to pick up contained services. In most cases the search functionality
is implemented by a full text search on the underlying database. In other words, searching
those repositories is not always concerned as particularly important, let alone a convenient
and more powerful way to relate search results and repository content. Only recently, those
topics seem to have gained attention. In [11], a search engine named BASIL is introduced

106 6.3 Search and Clustering

that tries to relate Web services by using bias-based techniques. Here, the repositories are
supposed to encompass only data-intensive services like searching for DNA sequences. The
similarity measure is based on the exchanged documents and is therefore a personalized
type of search approach rather than a general one as proposed here. Some of the used
techniques are similar to the work presented in [49] with the difference that the weighting
is not performed at runtime but in advance. Furthermore, the approaches work on different
repository structures. Another example for a Web service search engine is woogle [16] where
services can also be queried and tested for their availability.

Some other aspects of service discovery are discussed in [52]. Here, the authors propose
an extension of the current UDDI infrastructure to add QoS descriptions for a given service.
Due to the relative openness of the UDDI technology, this approach can actually work with
existing technologies. On the other hand, this openness is sometimes seen as one of the
major reasons why UDDI has failed to dominate the public Web service domain. In [7] a
rather formal approach is presented, where semantic annotations are utilized for automated
service discovery. Apart from the discovery issues, the description logic could also be
used to formally describe inter-service relationships. Those relationships can reach from
input/output matching on syntactical level up to QoS descriptions of whole compositions.
In [70] a method to select services based on their quality is proposed. The selection
algorithm assumes services where QoS parameters are already described and focuses on
optimizing an end-to-end composition with respect to the overall QoS.

For the statistical background, there is of course plenty of reference material available.
The theoretical foundation for creating the service relationship is best described with sta-
tistical cluster analysis [18]. This methods are used in various research fields to describe
similarities of metric values of all kinds. The main problem faced here is the high com-
plexity of ordinary methods. The usually exponential growth rate limits its capabilities for
high dimensional data structures enormously. To cope with this problem, [31] introduced a
modified cluster algorithm that performs dimensional reduction and clustering at the same
time. The method is designed to increase performance in large vector spaces with 1000 and
more dimensions. Even though the application area is different in this work, some of the
ideas are built on a common ground. Compared with this work, a whole data cloud with
a strong cluster layout has to be processed to categorize the single elements while here is
has to be dealt with the issue to find possible clusters for a particular query. Furthermore,
dimensional reduction has to be applied before the original cluster algorithm to speed up
the matrix generation rather than increase the performance of the algorithm itself.

Chapter 7

Conclusion and Future Work

A conclusion is the place where you got tired of thinking.

Harold Fricklestein

7.1 Conceptual implications

7.1.1 Clustering and search performance

The search and cluster capabilities presented in this thesis are created with the purpose to
allow Web service consumers to easily find and relate specific services to a given query. The
theoretical basis is formed by statistical methods of cluster analysis in n-dimensional vec-
tor spaces with numerical characteristics. The implementation shows that the approach is
feasible and even exceeds the expectations in certain respects. The implementation of the
cluster engine shows that the possibilities for the processing power does not end at O(n)
expense. It is quite the opposite. By using the developed method, the query processing
speed is the only limitation for the whole method. By further enhancing the query process
for complete vectors, it is theoretically possible to enhance the cluster speed even beyond
O(n) in the future. In the best case, the growth rate converges to the same amount as it is
currently possible for the original search. This assumption is based on the observation that
common queries perform better due to the dimensional reduction that can be applied when
retrieving related documents. A similar method to reduce the query time for the matrix
generation has to be implemented to reduce the involved processing time. Furthermore,
an optimization of the generated database queries for the specific form of request issued
by the cluster algorithm can further enhance performance. Without altering the query
algorithm though, the gain will be proportional and is, therefore, not considered with the

107

108 7.1 Conceptual implications

utmost priority for the future.
Performance tweaks usually require some elaborate implementation work, without a con-
ceptual gain. Furthermore, research prototypes are always bound to a limited amount of
man-hours and no direct need exists to enhance performance over a certain level. Those
reasons often drive researchers to advance their field in conceptual form other than the
engineering perspective and explains the software quality of many research prototypes,
partially including the one at hand.

7.1.2 Search engine adoptions

One of the conceptual issues worth discussing is the entry point for the cluster algorithm.
In the prototype a query is first issued with the vector of one result element to fill the
cluster matrix. This starting point is selected by the Web interface.
Alternatively, it is also possible to fill the matrix with the results of the original query
itself. As an effect, the cluster matrix would not represent the n most related elements
compared to one WSDL file but the nearest matches for the query and their relations to
each other. It can be seen as a thinner populated space where the original result vectors are
”highlighted”. The remaining vectors are still necessary to build the right vector-relations,
otherwise a reduced vector space with n elements for a n-sized matrix could be used.
This would certainly speed up the processing time, but it is not possible without loosing
important term information. Although formally not complete, this cluster might provide
a better understanding of the document relations and, therefore, be of greater value to
the user than a cluster analysis based on a complete vector. This issue is at least worth
investigating and will be part of future tasks.

7.1.3 Semantic indexes

Finally, the presented indexing method opens the opportunity to switch from keyword-
based indices to quality-based ones. The current method ensures to provide an unbiased
representation of the contained services. The target in this thesis is to provide natural
language enabled query processing which will be the preferred method for most cases. In
some cases though, it could be necessary to search for certain quality elements of a service.
The approach presented here works for both query methods. To extend the capabilities to
quality information, the various Quality of Service (QoS) parameters have to be indexed by
the search engine. By using QuATSCH, those values are available. They could be used for
indexing services with quality-based vectors. Furthermore, other metadata like the location
information can be used to further enrich the service vector and, therefore, leverage the
discovery capability from a purely syntactic to a quality enabled level. What remains to
be seen is whether it is of any use to do so. Creating a vector with QoS information is
quite easy. It is possible to introduce a dimension for each criteria presented in Section
3.2.2, resulting in a static vector space with 11 dimensions. Every assessed Web service is
indexed with their corresponding value or percentage rating, normalized if needed. When

Chapter 7: Conclusion and Future Work 109

issuing a query though, the result would be a Web service which has the most similar
QoS ratings, and not the best. When searching for response times of 650ms and execution
times of 100ms for example, a service with response time 620ms and execution time 105ms
would list as a very close hit. This example makes it obvious that the vector space model
is not the appropriate search model for every data structure but strongly depends on the
indexing procedure.
For service ranking based on QoS, a simple database query would certainly provide a much
better solution. Another possibility is to use the generated metadata to enrich the results
produced by the search engine. Developing an algorithm that adjusts the rating according
to service quality, location or user domain would certainly be an interesting aspect.

7.2 Outlook

In this thesis a novel distributed Web service search engine based on the vector space model
for information retrieval was presented. In addition to the search engine, automatic meth-
ods for metadata generation for Web services were presented along with the underlying
technologies necessary to achieve this goal. The evaluation section discussed the imple-
mented prototypes and some of the implications the technology has on used methods.
To formally evaluate and optimize the search engine’s performance parameters, a test col-
lection with real-world examples was created and tested by both prototypes. Because of
the limited number of available services, the extend of entries processed by the engine was
limited. With future Web service ecosystems this number can hopefully be increased to
further evaluate scalability and performance issues.

Apart from the search engine, an approach was presented, that allows to automatically
generate the most relevant non-functional metadata for a given Web service implementa-
tion. These parameters are required in various research fields, including automatic compo-
sition and substitution approaches. Nevertheless, the encountered problems and limitations
suggest that it is and will always be very hard to automatically generate working applica-
tions out of Web services without human judgement and interaction. Creating metadata
or even service ontologies may help to a limited degree to automate this processes but a
final evaluation will most likely always be reserved for a human expert.

Part of the introduced metadata generation processes presented in this thesis are needed
for dynamic service composition, which involves taking Quality of Service (QoS) attributes
of Web services into account. Performance and availability QoS attributes enables run-
time composition of composite Web services with the only limitation that service alternates
are known in advance. The most critical performance and availability metrics and mea-
surements for Web services were presented here. The evaluated measurements of both,
generated and real-world services clearly show that the approach is accurate and useful for
building large-scale Web service ecosystems.

110 7.2 Outlook

Another part of future tasks will be to seamlessly integrate all components in the Web
based application and even expose the most important methods as Web services. The
challenge is to find the right balance between a feasible implementation that features all
required functions and a possible overloaded application with possible security issues.

To summarize, the work presented in this thesis is best described as one important and
currently missing element in the course of designing a usable system for service discovery
and Web service relationship management.

Bibliography

[1] Marco Aiello, Christian Platzer, Florian Rosenberg, Huy Tran, Martin Vasko, and
Schahram Dustdar. Web Service Indexing for Efficient Retrieval and Composition. In
Proceedings of the IEEE Joint Conference on E-Commerce Technology (CEC’06) and
Enterprise Computing, E-Commerce and E-Services (EEE’06), San Francisco, USA,
June 2006.

[2] Ruj Akavipat, Le-Shin Wu, and Filippo Menczer. Small world peer networks in dis-
tributed web search. WWW 2004, May 17-22 2004.

[3] Gustavo Alonso, Fabio Casati, Harumi Kuno, and Vijay Machiraju. Web Services –
Concepts, Architectures and Applications. Springer Verlag, 2004.

[4] Vo Ngoc Anh, Owen de Kretser, and Alistair Moffat. Vector-space ranking with
effective early termination. SIGIR 01, 2001.

[5] Apache Software Foundation – Apache Axis. http://ws.apache.org/axis (Last
accessed: Dec. 05, 2007), 2005.

[6] Robert Baumgartner, Sergio Flesca, and Georg Gottlob. Visual web information
extraction with lixto. In The VLDB Journal, pages 119–128, 2001.

[7] Boualem Benatallah, Mohand-Said Hacid, Alain Leger, Christophe Rey, and Farouk
Toumani. On automating web services discovery. The International Journal on Very
Large Data Bases, 14(1):84–96, 3 2005.

[8] David Booth, Hugo Haas, Francis McCabe, Eric Newcomer, Michael Champion, Chris
Ferris, and David Orchard. Web Services Architecture – W3C Working Group Note.
http://www.w3.org/TR/ws-arch (Last accessed: Dec. 05, 2007), 2004.

[9] Christoph Bussler, Dieter Fensel, and Alexander Maedche. A conceptual architecture
for semantic web enabled web services. SIGMOD Record, 2002, 2002.

[10] Fabio Casati and Ming-Chien Shan. Dynamic and adaptive composition of e-services.
Information Systems, 26(3):143–163, 2001.

111

112 Bibliography

[11] James Caverlee, Ling Liu, and Daniel Rocco. Discovering and ranking web services
with BASIL: a personalized approach with biased focus. In Proceedings of the 2nd
International Conference on Service Oriented Computing (ICSOC’04), pages 153–162.
ACM Press, 2004.

[12] Erik Christensen, Francisco Curbera, Greg Meredith, and Sanjiva Weerawarana.
Web Services Description Language (WSDL) 1.1. W3C, 2001. URL:
http://www.w3.org/TR/wsdl (Last accessed: Dec. 05, 2007).

[13] Christian Platzer. V.U.S.E. - The Vector Space Web Service Search Engine.
http://vuse.de.vu/ (Last accessed: Dec. 05, 2007), 2007.

[14] Owen Conlan, David Lewis, Steffen Higel, Declan O’Sullivan, and Vincent Wade.
Applying adaptive hypermedia techniques to semantic web service composition. In-
ternational Workshop on Adaptive Hypermedia and Adaptive Web-based Systems (AH
2003), 2003.

[15] Francisco Curbera, Matthew Duftler, Rania Khalaf, William Nagy, Nirmal Mukhi,
and Sanjiva Weerawarana. Unraveling the web services web: an introduction to soap,
wsdl, and uddi. IEEE Internet Computing, 2002.

[16] Xing Dong, Alon Halevy, Jayant Madhavan, Ema Nemes, and Jun Zhang. Similarity
Search for Web Services. In Proceedings of the 30th VLDB Conference, Toronto,
Canada, 2004.

[17] Schahram Dustdar and Wolfgang Schreiner. A Survey on Web services Composition.
International Journal of Web and Grid Services, 1, 2005.

[18] Hans-Friedrich Eckey, Reinhold Kosfeld, and Martina Rengers. Multivariate Statistics.
Gabler, 9 2002.

[19] Eclipse Foundation, Inc. Eclipse AspectJ. http://www.eclipse.org/aspectj/ (Last
accessed: Dec. 05, 2007), 2005.

[20] Roy Friedman. Caching web services in mobile ad-hoc networks: opportunities and
challenges. In Proceedings of the second ACM International Workshop on Principles
of Mobile Computing (POMC’02), pages 90–96. ACM Press, 2002.

[21] Keita Fujii. Jpcap – Java package for packet capture.
http://netresearch.ics.uci.edu/kfujii/jpcap/doc/index.html (Last ac-
cessed: Dec. 05, 2007), 2005.

[22] Keita Fujii and Tatsuya Suda. Dynamic service composition using semantic infor-
mation. In ICSOC ’04: Proceedings of the 2nd international conference on Service
oriented computing, pages 39–48, New York, NY, USA, 2004. ACM Press.

Bibliography 113

[23] Erich Gamma, Richard Helm, Ralph Johnson, and John M. Vlissides. Design Patterns:
Elements of Reusable Object-Oriented Software. Addison-Wesley, 1995.

[24] Martin Gudgin, Marc Hadley, Noah Mendelsohn, Jean-Jacques Moreau, and Hen-
rik Frystyk Nielsen. SOAP Version 1.2. http://www.w3.org/TR/soap12-part1/

(Last accessed: Dec. 05, 2007), 2003.

[25] Monika Henzinger, Brian Milch, BayWei Chang, and Sergey Bin. Query-free news
search. ACM/WWW, 2003.

[26] David Holmes and M. Catherine McCabe. Improving precision and recall for soundex
retrieval. In Proc. of ITTC (IEEE), 2002.

[27] IBM. Ibm business registry. https://uddi.ibm.com/ubr/registry.html (Last ac-
cessed: Dec. 05, 2007), 2005.

[28] IBM, BEA Systems, Microsoft, SAP AG, Computer Associates, Sun Microsys-
tems, webMethods. Web Service Meta Data Exchange Specification, August
2006. http://specs.xmlsoap.org/ws/2004/09/mex/WS-MetadataExchange.pdf

(Last accessed: Jan. 05, 2008).

[29] Lukasz Juszczyk, Anton Michlmayr, Christian Platzer, Florian Rosenberg, Alexan-
der Urbanec, and Schahram Dustdar. Large Scale Web Service Discovery and Com-
position using High Performance In-Memory Indexing. In Proceedings of the IEEE
Joint Conference on E-Commerce Technology (CEC’07) and Enterprise Computing,
E-Commerce and E-Services (EEE’07), Tokio, June 2007.

[30] Nick Koudas, Beng chon Ooi, Heng Tao Shen, and Anthony K.H. Tung. Lcd: Enabling
search by partial distance in a hyper-dimensional space. ICDE, 2004.

[31] Fernando De la Torre and Takeo Kanade. Discriminative cluster analysis. In Pro-
ceedings of the 23rd International Conference on Machine learning (ICML’06), pages
241–248. ACM Press, 2006.

[32] Ramnivas Laddad. AspectJ in Action: Practical Aspect-Oriented Programming. Man-
ning Publications, 2003.

[33] Michael D. Lee, Brandon Pincombe, and Matthew Welsh. A comparison of machine
measures of text document similarity with human judgments. Submitted Manuscript,
2004.

[34] Yutu Liu, Anne H. Ngu, and Liang Z. Zeng. QoS computation and policing in dy-
namic web service selection. In Proceedings of the 13th international World Wide Web
conference on Alternate track papers & posters (WWW’04), pages 66–73, New York,
NY, USA, 2004. ACM Press.

114 Bibliography

[35] James B. MacQueen. Some Methods for classification and Analysis of Multivariate
Observations. In Proceedings of 5-th Berkeley Symposium on Mathematical Statistics
and Probability, volume 1, pages 281–297, Berkeley, 1967. University of California
Press.

[36] Ivan Magdalenic, Boris Vrdoljakand, and Zoran Skocir. Towards dynamic web service
generation on demand. International Conference on Software in Telecommunications
and Computer Networks, (SoftCOM 2006), 2006.

[37] Anbazhagan Mani and Arun Nagarajan. Understanding quality of service for web
services. http://www-128.ibm.com/developerworks/library/ws-quality.html

(Last accessed: Dec. 05, 2007).

[38] E. Michael Maximilien and Munindar P. Singh. Toward autonomic web services trust
and selection. In Proceedings of the 2nd international conference on Service oriented
computing (ICSOC’04), pages 212–221, New York, NY, USA, 2004. ACM Press.

[39] Sheila McIlraith, Tran Cao Son, and Honglei Zeng. Semantic web services. IEEE
Intelligent Systems (Special Issue on the Semantic Web), 2001.

[40] Daniel A. Menasce. QoS issues in Web services. IEEE Internet Computing, 6(6):72–75,
November/December 2002.

[41] Daniel A. Menasce. Composing Web Services: A QoS View. IEEE Internet Comput-
ing, 8(6):88–90, November/December 2004.

[42] Anton Michlmayr, Florian Rosenberg, Christian Platzer, Martin Treiber, and
Schahram Dustdar. Towards Recovering the Broken SOA Triangle - A Software En-
gineering Perspective. In Proceedings of the 2nd International Workshop on Service-
oriented Software Engineering (IW-SOSWE’07), Dubrovnik, Croatia, September 2007.

[43] Microsoft. Microsoft public uddi registry. http://uddi.microsoft.com/inquire

(Last accessed: Mar. 14, 2005), 2005.

[44] OASIS. Universal Description, Discovery and Integration v3.0 (UDDI) Specifica-
tion, February 2005. http://www.oasis-open.org/committees/uddi-spec (Last
accessed: Dec. 05, 2007).

[45] Dimitris Papadias, Qiongmao Shen, Yufei Tao, and Kyriakos Mouratidis. Group
nearest neighbor queries. Proceedings of ICDE, 2004.

[46] Mike P. Papazoglou. Service-oriented computing: concepts, characteristics and di-
rections. In Proceedings of the Fourth International Conference on Web Information
Systems Engineering, pages 3–12, Dezember 2003.

Bibliography 115

[47] Mike P. Papazoglou, Paolo Traverso, Schahram Dustdar, and
Frank Leymann. Service-Oriented Computing Research Roadmap.
http://infolab.uvt.nl/pub/papazogloump-2006-96.pdf (Last accessed: Dec. 05,
2007), 2006. Technical Report/Vision Paper on Service oriented computing European
Union Information Society Technologies (IST), Directorate D - Software Technologies
(ST).

[48] Mike P. Papazoglou and Willem-Jan van den Heuvel. Service Oriented Architectures:
Approaches, Technologies and Research Issues. VLDB Journal, 2006. forthcoming.

[49] Christian Platzer and Schahram Dustdar. A Vector Space Search Engine for Web
Services. In Proceedings of the 3rd European IEEE Conference on Web Services
(ECOWS’05), 2005.

[50] Christian Platzer, Florian Rosenberg, and Schahram Dustdar. Securing Web Services:
Practical Usage of Standards and Specifications, chapter Enhancing Web Service Dis-
covery and Monitoring with Quality of Service Information. Idea Publishing Inc.,
2007.

[51] Martin Porter. Porter stemming algorithm, 10 2004.
http://www.tartarus.org/~martin/PorterStemmer/ (Last accessed: Dec. 05,
2007).

[52] Shuping Ran. A model for web services discovery with QoS. SIGecom Exch., 4(1):1–10,
2003.

[53] Florian Rosenberg, Christian Platzer, and Schahram Dustdar. Bootstrapping perfor-
mance and dependability attributes of web services. pages 205–212. IEEE Computer
Society, 2006.

[54] Gerard Salton and Michael J. McGill. Introduction to Modern Information Retrieval,
volume 1. McGraw-Hill, Inc., 1983.

[55] Kaarthik Sivashanmugam, Kunal Verma, and Amit Sheth. Discovery of Web Services
in a Federated Registry Environment. ICWS, 0:270, 2004.

[56] Hyung Gi Song and Kangsun Lee. sPAC (Web Services Performance Analysis Center):
Performance Analysis and Estimation Tool of Web Services. In Proceedings of the 3rd
International Conference on Business Process Management (BPM’05), pages 109–119,
2005.

[57] Toyotaro Suzumura, Toshiro Takase, and Michiaki Tatsubori. Optimizing Web services
performance by differential deserialization. In Proceedings of the IEEE International
Conference on Web Services (ICWS’05), pages 185–192, 2005.

116 Bibliography

[58] Tanveer Syeda-Mahmood, Gauri Shah, Rama Akkiraju, Anca-Andrea Ivan, and
Richard Goodwin. Searching service repositories by combining semantic and onto-
logical matching. ICWS, 0:13–20, 2005.

[59] Stefan Tai, Nirmit Desai, and Pietro Mazzoleni. Service Communities: Applications
and Middleware. In Proceedings of the 6th International Workshop on Software En-
gineering and Middleware (SEM’06), pages 17–22. ACM Press, 2006.

[60] Stefan Tai, Rania Khalaf, and Thomas Mikalsen. Composition of coordinated web
services. In Proceedings of the 5th ACM/IFIP/USENIX International Conference on
Middleware, pages 294–310, New York, NY, USA, 2004. Springer-Verlag New York,
Inc.

[61] Xiaoying Tai, Minoru Sasaki, and Yasuhito Tanaka. Improvement of vector space
information retrieval model based on supervised learning. ACM, 2000.

[62] Min Tian, A. Gramm, Hartmut Ritter, and Jochen Schiller. Efficient Selection and
Monitoring of QoS-aware Web services with the WS-QoS Framework. In Proceedings
of the International Conference on Web Intelligence (WI’04), Beijing, China, 2004.

[63] W3C. Resource Description Framework (RDF). http://www.w3.org/RDF (Last ac-
cessed: Dec. 05, 2007), 2000.

[64] W3C. OWL Web Ontology Language Overview.
http://www.w3.org/TR/owl-features/ (Last accessed: Dec. 05, 2007), 2004.
W3C Recommendation 10 February 2004.

[65] Zhiwei Wang, Michael Wong, and Yiyu Yao. An analysis of vector space models based
on computational geometry. ACM/SIGIR, 1992.

[66] Web Services Policy Framework. http://www-
128.ibm.com/developerworks/library/specification/ws-polfram/ (Last accessed:
Dec. 05, 2007), 2004.

[67] Sanjiva Weerawarana, Francisco Curbera, Frank Leymann, Tony Storey, and Don-
ald F. Ferguson. Web Services Platform Architecture : SOAP, WSDL, WS-Policy,
WS-Addressing, WS-BPEL, WS-Reliable Messaging, and More. Prentice Hall PTR,
2005.

[68] Narada Wickramage and Sanjiva Weerawarana. A benchmark for web service frame-
works. In Proceedings of the IEEE International Conference on Service Computing
(SCC’05), 2005.

[69] SKM Wong, Wojciech Ziarko, and Patrick Wong. Generlized vector space model in
information retrieval. ACM, 1985.

Bibliography 117

[70] Tao Yu, Yue Zhang, and Kwei-Jay Lin. Efficient algorithms for web services selection
with end-to-end qos constraints. ACM Transactions on the Web, 1(1):6, 2007.

[71] Zhi-Wen Yu, Xing-She Zhou, Jian-Hua Gu, and Xiao-Jun Wu. Adaptive proram
filtering under vector space model and relevance feedback. Proceedings of ICMLC,
2003.

[72] Budi Yuwono and Dik L. Lee. Search and ranking algorithms for locating resources
on the world wide web. IEEE, 1996.

[73] Liangzhao Zeng, Boualem Benatallah, Marlon Dumas, Jayant Kalagnanam, and
Quan Z. Sheng. Quality driven web services composition. In Proceedings of the 12th
International Conference on World Wide Web (WWW’03), pages 411–421, New York,
NY, USA, 2003. ACM Press.

[74] Liangzhao Zeng, Boualem Benatallah, Anne H.H. Ngu, Marlon Dumas, Jayant
Kalagnanam, and Henry Chang. Qos-aware middleware for web services composi-
tion. IEEE Transactions on Software Engineering, 30(5):311–327, May 2004.

118 Bibliography

Appendix

Appendix A

Code listings

A.1 UDDI cross-reference downloads

1 pub l i c c l a s s UDDIregistry
{

pr i va t e WsDescription d e s c r i p t i o n = new WsDescription () ;
pub l i c ArrayList keys = new ArrayList () ;
pub l i c ArrayList wsdls = new ArrayList () ;

6 pr i va t e s t r i n g URL = ”http :// uddi . m i c ro so f t . com/ i nqu i r e ” ;
pub l i c bool running = f a l s e ;
// The cons t ruc t o r j u s t t a k e s a UDDI inqu i r y URL
pub l i c UDDIregistry (s t r i n g URL)
{

11 i f (URL != ””) t h i s .URL = URL;
keys . Clear () ;
wsdls . Clear () ;

}
// s t a r t s data e x t r a c t i o n

16 pub l i c void s t a r tEx t r a c t i on ()
{

Thread t ;
t =new Thread (new ThreadStart (retrieveTmodelKeysThread)) ;
t . S ta r t () ;

21 Thread . S leep (2 0) ;
}
pub l i c void retrieveTmodelKeysThread ()
{

char query = ’ a ’ ;
26 t h i s . running = true ;

119

120 Appendix

// Read a l l UDDI en t r i e s
Inqu i r e . AuthenticationMode =
AuthenticationMode . WindowsAuthentication ;
Inqu i r e . Url = URL;

31 query−−;
while (query != ’ z ’)
{

query ++;
FindTModel ftm = new FindTModel () ;

36 ftm .Name = query . ToString () ;
t ry
{

TModelList tml = ftm . Send () ;
f o r each (TModelInfo tmi in tml . TModelInfos)

41 {
keys .Add(tmi . TModelKey) ;

}
}
catch (Exception e)

46 {
// no error hand l ing r equ i r ed

}
}
retrieveURLS () ;

51 }
pr i va t e void retrieveURLS ()
{

for (int i =0; i<keys . Count ; i++)
{

56 // Process ing each TModel Key
GetTModelDetail gtmd = new GetTModelDetail () ;
gtmd . TModelKeys .Add((s t r i n g) keys [i]) ;
TModelDetail tmd = gtmd . Send () ;
f o r each (TModel tm in tmd . TModels)

61 {
// URLS are in the overv iew documents
wsdls .Add(tm . OverviewDoc . OverviewURL) ;
downloadURL(tm . OverviewDoc . OverviewURL) ;

}
66 }

}
pr i va t e void downloadURL(URL)
{

Bibliography Appendix

s t r i n g f i l ename ;
71 s t r i n g destDi r=”C:\\WSDLS” ;

t ry
{

HttpWebRequest myReq =
(HttpWebRequest)WebRequest . Create (URL) ;

76 HttpWebResponse resp =
(HttpWebResponse)myReq . GetResponse () ;

Stream rece iveStream = resp . GetResponseStream () ;
f i l ename = destDir+URL;

81 StreamWriter sw = F i l e . CreateText (f i l ename) ;
StreamReader readStream =

new StreamReader (rece iveStream , t rue) ;
char [] read = new Char [bu f f e r l e n g th] ;
int count = readStream . Read (read , 0 , bu f f e r l e n g th) ;

86 while (count > 0)
{

for (int k = 0 ; k < count ; k++)
sw . Write (read [k]) ;
count = readStream . Read (read , 0 , bu f f e r l e n g th) ;

91 }
re sp . Close () ;
sw . Flush () ;
sw . Close () ;
readStream . Close () ;

96 }
catch (Exception s)
{

Console . WriteLine (”Error downloading URL”+s . Message) ;
}

101 }
}

Listing A.1: UDDI data extraction code

122 Appendix

A.2 V-USE table generation

private void checkTables () throws VSException
{

3 boolean t e rmf lag = fa l se ;
boolean i d f l a g = fa l se ;
boolean j o i n f l a g = fa l se ;

try
8 {

Statement stm = con . createStatement () ;
Resu l tSet r s = stm . executeQuery (”SHOW TABLES; ”) ;

while (r s . next ()){
13 // For Windows Systems use . to lowerCase () on the comparison

i f (r s . g e tS t r i ng (1) . equa l s (termTable)) t e rmf lag = true ;
i f (r s . g e tS t r i ng (1) . equa l s (r e lTab l e)) j o i n f l a g = true ;
i f (r s . g e tS t r i ng (1) . equa l s (idTable)) i d f l a g = true ;

}
18

// I f one o f the needed Tables does not e x i s t , c r ea t e them .
i f (! (t e rmf lag&&i d f l a g&&j o i n f l a g))
{

// Drop the t a b l e s
23 stm . executeUpdate (”DROP TABLE IF EXISTS ‘ ”+ termTable+” ‘ ; ”) ;

stm . executeUpdate (”DROP TABLE IF EXISTS ‘ ”+ idTable+” ‘ ; ”) ;
stm . executeUpdate (”DROP TABLE IF EXISTS ‘ ”+ re lTab l e+” ‘ ; ”) ;

// Create the new Tables
28

/∗ ∗/
stm . executeUpdate (”CREATE TABLE ‘ ”+ re lTab l e+” ‘ (term id b i g i n t (20)
NOT NULL de f au l t ’ 0 ’ , document id b i g i n t (20) NOT NULL de f au l t ’ 0 ’ ,
f r equency DOUBLE NOT NULL de f au l t ’ 0 ’ , PRIMARY KEY

33 (term id , document id)) ENGINE=MyISAM DEFAULT CHARSET=ut f8
COMMENT=’The m n r e l a t i o n ’ ; ”) ;

/∗ ∗/

38 stm . executeUpdate (”CREATE TABLE ‘ ”+ idTable +” ‘ (id b i g i n t (20)
NOT NULL auto increment , ‘ document ‘ VARCHAR(255) NOT NULL,
PRIMARY KEY (id)) ENGINE=MyISAM DEFAULT CHARSET=ut f8
COMMENT=’The documents f o r the VSE ’ ; ”) ;

43

Bibliography Appendix

/∗ ∗/
stm . executeUpdate (”CREATE TABLE ‘ ”+ termTable+” ‘ (id b i g i n t (20)
NOT NULL auto increment , term VARCHAR(255) NOT NULL
COMMENT ’The ac tua l term name ’ ,PRIMARY KEY (id))

48 ENGINE=MyISAM DEFAULT CHARSET=ut f8 COMMENT=’Terms f o r Engine ’ ; ”) ;
/∗ ∗/

// Add i n d i z e s f o r f a s t e r query execu t ion
53 stm . executeUpdate (”ALTER TABLE ‘ ”+ termTable+” ‘ ADD INDEX ‘ ”+

termTable+” index ‘ (‘ term ‘) ; ”) ;
stm . executeUpdate (”ALTER TABLE ‘ ”+ idTable+” ‘ ADD INDEX ‘ ”+

idTable+” index ‘ (‘ document ‘) ; ”) ;
}

58 }
catch (SQLException e)
{

throw new VSException (”Unable to c r e a t e r equ i r ed t ab l e s f o r VM
− p l e a s e check TABLE permi s s i ons . ”+e . getMessage ()) ;

63 }
}

Listing A.2: VUSE table creation

124 Appendix

A.3 V-USE query execution

1 private boolean processQuery (S t r ing [] QueryWords , double [] f r e quenc i e s ,
boolean useWeighting , long maximumTimeoutMS)throws VSException

{
St r i ngBu f f e r sb = new St r i ngBu f f e r () ;

for (S t r ing s t : QueryWords)
6 sb . append (s t+” ; ”) ;

// Process ing each Query word
Hashtable<Str ing , Double> qhash = new Hashtable<Str ing , Double >() ;
i f (QueryWords . l ength != f r e qu en c i e s . l ength)

11 // I f the c a l l s i gna tu re was not correc t , throw an excep t ion
throw new VSException (” Suppl ied ar rays are not o f the same length ”) ;

// Otherwise , put a l l terms in to the Hashtab le
else

{
16 for (int i = 0 ; i < QueryWords . l ength ; i++)

{
qhash . put (QueryWords [i] , f r e qu en c i e s [i]) ;

//Put t ing word QueryWords [i] i n to the queryword ha sh t ab l e ”) ;
}

21 }

// Now t ry to process the query
try
{

26 // Take beg in time (f o r ea r l y terminat ion)
long begint ime = System . cur rentT imeMi l l i s () ;

// r e s u l t i s an ins tance v a r i a b l e t ha t keeps the f i n a l r e s u l t
// i n i t i a l i z e d by i t s maximum s i z e

31 r e s u l t = new Result (QueryWords . l ength) ;

// Firs t , g e t a l l term id ’ s represen ted by t h i s Vector
// A l l database access are processed as prepared s ta tements
St r i ngBu f f e r statement = new St r i ngBu f f e r (”SELECT id , term FROM ”) ;

36 statement . append (termTable) ;
statement . append (” WHERE term IN (”) ;
for (int i = 0 ; i < QueryWords . l ength ; i++)
statement . append (” ’ ”+QueryWords [i]+” ’ , ”) ;
statement . append (” ’ ’) ; ”) ;

41 PreparedStatement pstm=con . prepareStatement (”SELECT count (∗) from ”+ idTable+” ; ”) ;
Resu l tSet number = pstm . executeQuery () ; number . next () ;
int N = number . g e t In t (1) ;
int nk = 0 ;

46 // Now N i s known
pstm = con . prepareStatement (statement . t oS t r i ng ()) ;
Resu l tSet query = pstm . executeQuery () ;
Resu l tSet fqResu l t ;
PreparedStatement f requencystatement = con . prepareStatement

51 (”SELECT frequency , document id from ”+ re lTab l e+” where term id = ? ; ”) ;

// query i s the i t e r a t o r with the id ’ s o f a l l contained terms o f the Query
while (query . next () && (System . cur r entT imeMi l l i s ()−maximumTimeoutMS < begint ime))
{

56 long currTermID = query . getLong (1) ;

// Get a l l f r e quenc i e s o f a l l documents conta in ing t ha t term
f requencystatement . setLong (1 , currTermID) ;
fqResu l t = frequencystatement . executeQuery () ;

61 // Determine nk
f qResu l t . l a s t () ;

Bibliography Appendix

nk = fqResu l t . getRow () ;
fqResu l t . b e f o r eF i r s t () ;

66 // now commence the document i t e r a t i o n
while (fqResu l t . next ())
try
{

i f (useWeighting)
71 r e s u l t . addElement (fqResu l t . getLong (”document id”) ,

getWeight (fqResu l t . getDouble (” f requency ”) ,N+1,nk+1) ,
getWeight (qhash . get (query . g e tS t r i ng (”term”)) ,N+1,nk+1)) ;

else r e s u l t . addElement (fqResu l t . getLong (”document id”) ,
f qResu l t . getDouble (” f requency ”) , qhash . get (query . g e tS t r i ng (”term”))) ;

76 }
catch (Exception e)
{

// One element sk ipped o f t h i s query , resume with the o ther s
Log .ERROR(”Skipped an Element o f the Query . ”+query . g e tS t r i ng (”term”)) ;

81 Log .ERROR(”docID was : ”+fqResu l t . getLong (”document id”)) ;
Log .ERROR(” frequency was : ”+fqResu l t . getDouble (” f requency ”)) ;
Log .ERROR(”Term was : ”+query . g e tS t r i ng (”term”)) ;

}
}

86

// Query proces s ing f i n i s h ed , f i n a l i z e the r e s u l t
r e s u l t . s e tF in i sh ed (System . cur r entT imeMi l l i s ()−maximumTimeoutMS < begint ime) ;
r e s u l t . setProcess ingTime (System . cur rentT imeMi l l i s ()−begint ime) ;

91 i f (r e s u l t . i sF i n i s h ed ())
Log . INFO(” Fin i shed query in ”+ r e s u l t . getProcess ingTime ()+” m i l l i s e c ond s ”) ;

else Log .ERROR(”Hit query time l im i t . Returned p a r t i a l r e s u l t . ”) ;
return r e s u l t . i sF i n i s h ed () ;

}
96 catch (Exception e)

{
Log .ERROR(”Exception whi l e p r o c e s s i ng : ”+e . getMessage ()) ;
r e s u l t = null ;

return fa l se ;
101 }

}

private double getWeight (double f requency , double N, double nk)
{

106 return (f requency ∗ (Math . l og ((N/nk)+1)/(Math . l og (2)))) ;
}

/∗−−
111 ∗ The f o l l ow i n g two methods are code from the Resu l t c l a s s which r e s u l t i s an ins tance o f

∗ zHash , n1Hash and n2Hash are ha sh t a b l e s with the s i gna ture Hashtable<Long , Double >.
∗/

116 // g e t s the re l evance o f one element in the r e s u l t s e t
public double getRelevance (long documentID)
{

i f (zHash . containsKey (documentID))
{

121 double Z = zHash . get (documentID) ;
double N1 = n1Hash . get (documentID) ;
double N2 = n2hash . get (documentID) ;
return (((Z/Math . pow((N1∗N2) , 0 . 5)) ∗ qHash . get (documentID)) / (queryLength)) ;

}
126 // I f t h i s document i s NOT in the r e s u l t s e t , i t s not r e l e v an t

else return −1D;

126 Appendix

}

// Adds one element to the r e s u l t s e t
131 public void addElement (long documentID , double value , double queryFrequ)

{
// Adds one document with a s p e c i f i c document ID and the corresponding va lue
double Z = value ∗queryFrequ ;
double N1 = Math . pow(value , 2) ;

136 double N2 = Math . pow(queryFrequ , 2) ;
int N = 0 ;

i f (zHash . containsKey (documentID))
{

141 Z += zHash . get (documentID) ;
N1 += n1Hash . get (documentID) ;
N2 += n2hash . get (documentID) ;
N = qHash . get (documentID) ;

}
146

zHash . put (documentID ,Z) ;
n1Hash . put (documentID ,N1) ;
n2hash . put (documentID ,N2) ;
qHash . put (documentID,++N) ;

151 }

Listing A.3: VUSE query execution

Appendix

Appendix B

Screenshots

B.1 Amazon Cluster - Initial Vector

Figure B.1: Query vector for Matrix creation

B.2 Amazon Cluster - Matrix reduction

127

128 Appendix

Bibliography Appendix

130 Appendix

Bibliography Appendix

Figure B.2: Matrix reduction steps

132 Appendix

B.3 Amazon Cluster - Cluster elements

Figure B.3: Matrix element listing

B.4 Amazon Cluster - Cluster coefficients

Figure B.4: Matrix reduction coefficients

Bibliography Appendix

B.5 Search result example

Figure B.5: Search result example

