
TECHNISCHE UNIVERSITÄT WIEN

DISSERTATION

View-Based and Model-Driven Approach for
Process-Driven, Service-Oriented Architectures

ausgefhrt zum Zwecke der Erlangung des akademischen Grades eines

Doktors der technischen Wissenscha�en

unter der Leitung von

Univ.Prof. Mag.rer.soc.oec. Dr.rer.soc.oec. Schahram DUSTDAR

Priv.-Doz. Dr.rer.nat. Uwe ZDUN

E184-1

Institut fr Informationssysteme

eingereicht an der

Technischen Universitt Wien

Fakultt fr Informatik

von

Hoang-Huy TRAN-NGUYEN, Dipl.-Ing.
Matrikelnummer: 0527396

Argentinier Str. 8/184-1

A-1040 Wien, sterreich.

Wien, am Okt 20 2009.

Abstract

Service-oriented computing is an emerging paradigm that made an important shi� from traditional tightly

coupled, hard-to-adapt so�ware development tomore platform neutral, loosely coupled so�ware development.

�e interoperable and platform independent nature of services supports an approach to business process

development by using processes, running in a process engine, to invoke existing processes or services from

their process activities (aka process tasks). We call this kind of architecture process-driven, service-oriented
architecture (SOA).

As the number of elements involved in a business process architecture, for instance, processes, process activities

and services, grows, the complexity of process development and maintenance also extremely increases along

with the number of the elements’ relationships, interactions, and data exchanges – and becomes hardly

manageable.�is occurs because of two major issues that have not been solved yet in existing approaches for

process-driven SOA. On the one hand, the process descriptions comprise various tangled concerns, such as

the control �ow, data dependencies, service invocations, security, compliance, etc.�is entanglement seriously

reduces many aspects of so�ware quality such as the understandability, adaptability, andmaintainability. On
the other hand, the di�erences of language syntaxes and semantics, the di�erence of granularity at di�erent

abstraction levels, and the lack of explicit links between process design and implementation languages hinder

the interoperability, reusability, understandability, and traceability of so�ware components or systems being

built upon or relying on such languages.

�is dissertation presents a novel approach for addressing the aforementioned challenges. Our approach

exploits a combination of the concept of architectural views – a realization of the separation of concerns
principle – and the model-driven development paradigm – a realization of the separation of abstraction levels –
to achieve the followingmajor contributions: �rst, it captures di�erent perspectives of a business process model

in separated, (semi-)formalized view models in order to adapt to various stakeholders’ interests; second, it
separates di�erent abstraction levels in a business process architecture; third, it provides a seamless, extensible

integration solutions for improving interoperability and reusability of process descriptions; �nally, it reduces
the complexity of dependency management and enhances traceability in process development.

As a proof-of-concept, the aforementioned concepts has been realized in the View-basedModeling Framework,

which is an extensible development framework for process-driven SOAs.�is approach has been evaluated on

a number of research- and industry-based case studies. In addition, a number of qualitative comparisons have

been conducted to assess our approach and compare it with existing related approaches for process-driven

SOA development.

Kurzfassung

Service-oriented Computing ist ein au:ommendes Paradigma, das eine wichtige Vernderung von traditio-

neller, stark gekoppelter und schwer zu adaptierender So�ware-Entwicklung hin zu plattformneutraler und

lose gekoppelter So�ware-Entwicklung mit sich bringt. Services sind interoperabel und plattformunabhngig

und untersttzen daher einen Ansatz zur Entwicklung von Gesch�sprozessen, welche in einer Prozess-Engine

ablaufen um existierende Prozesse und Services aus den Prozessaktivitten heraus aufzurufen. Wir nennen

diese Art der Architektur prozessgetriebene, service-orientierte Architectur (SOA).

Wenn die Anzahl der Elemente in der Gesch�sprozessarchitektur, wie Prozesse, Prozessaktivitten und Services,

ansteigt, nimmt auch die Komplexitt der Entwicklung undWartung von Prozessen zusammen mit der Anzahl

der Beziehungen, Interaktionen und dem Austausch von Daten dieser Elemente zu – und wird schnell schwer

handzuhaben. Das geschieht, weil die Anstze fr prozessgetriebene SOA bislang zwei Hauptprobleme noch

nicht gelst haben. Zum einen umfassen die Prozessbeschreibungen diverse, untereinander verwobene Belange,

wie Kontroll�uss, Datenabhngigkeiten, Service-Aufrufe, Sicherheit, Compliance, etc. Diese Verwobenheit

hat einen negativen Ein�uss auf die So�ware-Qualitt, wie Verstehbarkeit, Adaptierbarkeit und Wartbarkeit.

Zum anderen verhindern die Unterschiede der Sprachsyntaxen und -semantiken, die Unterschiede in der

Granularitt auf verschiedenen Abstraktionsebenen und das Fehlen expliziter Bindeglieder zwischen Pro-

zessentwurfssprachen und Prozessimplementierungssprachen die Interoperabilitt, Wiederverwendbarkeit,

Verstehbarkeit und Nachvollziehbarkeit von So�ware-Komponenten oder Systemen, die mit diesen Sprachen

erstellt werden oder von ihnen abhngig sind.

Die vorliegende Dissertation prsentiert einen neuen Ansatz, um diese Herausforderungen zu meistern. Dieser

Ansatz nutzt eine Kombination von Architektursichten – als eine Realisierung des Separation-of-Concern-

Prinzips – und von modellgetriebener Entwicklung aus, um die folgenden Hauptbeitrge zu leisten. Erstens

werden verschiedene Perspektiven eines Gesch�sprozessmodells in separaten, (semi-)formalen Sichtenmodel-

len festgehalten, um sich den Interessen verschiedener Beteiligter am Prozess anzupassen. Zweitens werden

verschiedene Abstraktionsebenen in einer Gesch�sprozessarchitektur separiert. Drittens wird eine bergangs-

lose und erweiterbare Integrationslsung zur Verbesserung von Interoperabilitt und Wiederverwendbarkeit

prsentiert. Zu guter Letzt wird die Komplexitt des Abhngigkeitsmanagement reduziert und die Nachvollzieh-

barkeit in der Prozessentwicklung erhht.

Als Realisierung der Konzepte wird das View-based Modeling Framework, das ein erweiterbares Rahmen-

werk fr process-driven SOAs darstellt, vorgestellt. Der Ansatz wurde in einer Reihe von Forschungs- und

Industriefallstudien evaluiert. Zustzlich wurden verschiedene qualitative Vergleiche angestellt, um den Ansatz

zu bewerten und ihn mit anderen Arbeiten zu vergleichen.

Acknowledgements

�is work would never have been made possible without the signi�cant support of my mentor, Professor

Schahram Dustdar. He gave me a great chance to work in his group – a hot spot of inspiration, enthusiasm,

and innovation. He has safely and skillfully guided me through the entirety of the work presented in this

dissertation. He has strongly and professionally in�uenced my way of thinking and working.

I am in great debt to Uwe Zdun for your kind advice, guidance, enthusiasm, and tireless support. Saying thank

you is de�nitely not enough. It is a big pleasure for me to work with you to foster various insightful ideas,

especially on the notion of architectural views and the model-driven paradigm. I also would like to thank

my colleagues at the Distributed Systems Group, past and present, for many fruitful discussions, comments,

and supports, especially thanks Ta’id Holmes for his important contributions on the modeling of human

interactions. Also thanks to my colleagues at the Faculty of Computer Science and Engineering, HCMC

University of Technology, Vietnam, for your support, especially thanks to Dr. Nguyen�anh Son and Dr.

�oai Nam for your kind recommendation, advice and encouragement.

I am grateful to anonymous reviewers for numerous critical comments and insights that extremely helpful for

building up this work as well as my professional career.

I am truly grateful to my beloved wife, Minh Xuân, for your deep love, endless patience, and graceful

encouragement.�ank you, my dear, for loving me, taking care of my busy life, and being with me in every of

most di�cult moments.

�is work is one of grateful presents that I would like to dedicate to my parents, parents in-law, brothers and

sisters. I do always engrave your great love, sympathy, patience, support, and encouragement in my heart.

Last but, of course, not least, thanks to many friends of mine for helping a lot in setting up and enlightening

my life in Vienna.

�is work was partially supported by the Technologiestipendien Südostasien Doktorat by Austrian Federal

Ministry for Science and Research (Bundesministerium fr Wissenscha� und Forschung – BMWF) and the

European Union FP7 STREP project COMPAS, grant no. 215175 (http: // www. compas-ict. eu).

http://www.compas-ict.eu

Dedicated to my wife and family.
I love you so much.

Contents

Contents 1

List of Figures 3

List of Tables 5

Chapter 1 Introduction 7

Problem statement

Scienti�c contributions

Research methodology

Dissertation structure

Chapter 2 State of the Art 17

Introduction

Service-oriented architectures

Process-driven, service-oriented architectures

Model-driven development

Architectural views

Chapter 3 View-based, Model-driven Approach for Process-driven SOAs 35

Fundamental concepts

View-based Modeling Framework

Formalization of basic process concerns

Formalizations of additional process concerns

View manipulation mechanisms

Code generation

Tool support

Discussion

Summary

Chapter 4 View-based Reverse Engineering 66

Introduction

�e view-based reverse engineering approach

General approach for view extraction

2 CONTENTS

View-based reverse engineering approach for process-driven SOAs

Tool support

Discussion

Summary

Chapter 5 View-based, Model-driven Traceability 82

Introduction

View-based, model-driven traceability framework

Tool support and case study

Discussion

Conclusion

Chapter 6 Evaluation 109

Introduction

Scenario-driven evaluation

Quantitative analysis

Chapter 7 Conclusion 135

Contribution summary

Future work

Bibliography 141

Index 157

List of Figures

Figure 1.1 Research methodology . 13

Figure 2.1 A typical service-oriented architecture. 18

Figure 2.2 Layered view of SOA and process-driven SOA 20

Figure 2.3 A typical process-driven development life cycle 22

Figure 2.4 A typical process-driven SOA development scenario 24

Figure 2.5 A sample BPMN diagram - a Travel Booking process 24

Figure 2.6 A typical BPEL/WSDL implementation 26

Figure 2.7 Fundamental concepts of Model-Driven Development 31

Figure 2.8 Architectural view and relevant concepts (IEEE 1471:2000) 33

Figure 3.1 Fundamental concepts of the view-based, model-driven approach 36

Figure 3.2 Layered architecture of the view-based, model-driven approach 37

Figure 3.3 �e Ecore meta-model – an MOF-compliant meta-model 38

Figure 3.4 View-based modeling framework architecture 39

Figure 3.5 �e Core model . 40

Figure 3.6 �e Travel Booking process’s Core model 41

Figure 3.7 �e FlowView model. 42

Figure 3.8 �e Travel Booking process’s FlowView 44

Figure 3.9 �e CollaborationView model 45

Figure 3.10 A CollaborationView and an InformationView of the Travel Booking process . . . 46

Figure 3.11 �e InformationView model . 46

Figure 3.12 �e HumanView model . 47

Figure 3.13 �e TransactionView model . 48

Figure 3.14 �e EventView model . 49

Figure 3.15 Illustration of VbMF extensibility based on the Core model 50

Figure 3.16 BpelInformationView model - an extension of the InformationView model 51

Figure 3.17 A BpelCollaborationView and BpelInformationView of the Travel Booking process . 52

Figure 3.18 View-based model-to-code transformation (aka code generation) 56

Figure 3.19 Illustration of the code generation template rules 56

Figure 3.20 View-based, model-driven development toolchain 57

4 LIST OF FIGURES

Figure 3.21 �e proof-of-concept tooling of the view-based, model-driven approach 58

Figure 4.1 Overview of the view-based reverse engineering approach 67

Figure 4.2 Recovering the FlowView from Travel Booking BPEL code 71

Figure 4.3 Recovering the CollaborationView from Travel Booking BPEL code 75

Figure 4.4 View-based reverse engineering toolchain for process-driven SOAs 77

Figure 5.1 �e Travel Booking process development 83

Figure 5.2 Overview of the view-based, model-driven traceability approach 86

Figure 5.3 View-based traceability meta-models 87

Figure 5.4 View-based, model-driven traceability framework architecture 91

Figure 5.5 View-based modeling and traceability toolchain 92

Figure 5.6 Establishing traceability between VbMF views and process implementations . . . 92

Figure 5.7 Mapping process designs to VbMF views and establishing trace dependencies . . . 93

Figure 5.8 Generating process code from VbMF views and establishing trace dependencies . . 94

Figure 5.9 CRM Ful�llment process in view-based, model-driven integrated environment . . 96

Figure 5.10 Traceability between CRM Ful�llment process design and FlowView. 97

Figure 5.11 Traceability between CRM CollaborationView and BpelCollaborationView. . . . 98

Figure 5.12 Traceability between CRM FlowView and BpelCollaborationView 99

Figure 5.13 Traceability between VbMF views and process implementations 100

Figure 5.14 Traceability between VbMF views and process deployment descriptors 100

Figure 5.15 A sample traceability path . 101

Figure 6.1 Modeling the CRM Ful�llment process at high-level 112

Figure 6.2 Modeling of data objects and communications with BPMN 113

Figure 6.3 Modeling high-level data handling and communications using VbMF 114

Figure 6.4 Re�ning the high-level views into BPEL-speci�c views 115

Figure 6.5 Existing artifacts of the Billing Renewal process 117

Figure 6.6 A FlowView extracted from the Billing Renewal BPEL code 118

Figure 6.7 Extracting low-level representations of the Billing Renewal process 120

Figure 6.8 Overview of the Order Handling process 121

Figure 6.9 Illustration of the reusability . 123

Figure 6.10 Using VbMF to quickly adapt to business requirement changes 125

Figure 6.11 Using VbMF to adapt to technological changes 127

Figure 6.12 Adjusting transformation templates for generating process code in new technology . 127
Figure 6.13 Comparison of the complexity of processes and VbMF views 130

Figure 6.14 �e potential ratio of reuse of process views 132

Figure 6.15 Comparison of the Process-driven Concern Di�usion metric (lower is better) . . . 134

Figure 7.1 Summarization of our key contributions 136

List of Tables

Table 2.1 �e summary of existing process modeling and development languages 21

Table 3.1 View-based Modeling Framework components 40

Table 3.2 �e semantics of basic control structures of the FlowView model 43

Table 3.3 �e comparison of related work of VbMF 63

Table 3.4 �e comparison of related work of VbMF (cont’d) 64

Table 4.1 Recovering the FlowView model from BPEL 70

Table 4.2 Recovering the CollaborationView fromWSDL 72

Table 4.3 Recovering the CollaborationView and BpelCollaborationView from BPEL 74

Table 5.1 �e complexity and dependency statistics of the Travel Booking process 84

Table 5.2 �e comparison of related work of VbTrace 106

Table 5.3 �e comparison of related work of VbTrace (cont’d) 107

Table 6.1 Comparison of VbMF and the industry-driven approach for process development . . 111

Table 6.2 Comparison of VbMF and the industry-driven approach for process adaptation . . 126

Table 6.3 Summary of the scenario-driven evaluation 128

Table 6.4 �e complexity of process descriptions and VbMF views 129

Table 6.5 Measures of the reusability of process models in VbMF 131

Table 6.6 Measures of process-driven concern di�usion 133

List of Acronyms

BPEL Business Process Execution Language

BPDM Business Process De�nition Meta-

model

BPML Business Process Modeling Language

BPMN Business Process Modeling Notation

CORBA Common Object Requesting Broker

Architecture

DSL Domain-Speci�c Language

EMF Eclipse Modeling Framework

EPC Event-Driven Process Chain

FDL WebSphere© FlowMark©De�nition Lan-

guage

IDEF3 Integrated DEFinition for Process De-

scription Capture Method

Java EE Java Platform Enterprise Edition

jPDL jBPM Process De�nition Language

MDA Model-Driven Architecture

MDD Model-Driven Development

MDE Model-Driven Engineering

MDSD Model-Driven So�ware Development

MOF Meta-Object Facility

OCL Object Constraint Language

PIM Platform-Independent Model

PDM Platform De�nition Model

POJO Plain Old Java Object

PSM Platform-Speci�c Model

RBAC Role-Based Access Control

REST REpresentational State Transfer

RM-ODP Reference Model of Open Dis-

tributed Processing

RPC Remote Procedure Call

SOA Service-Oriented Architecture

SOC Service-Oriented Computing

UML Uni�ed Modeling Language

URI Uniform Resource Identi�er

VbMF View-based Modeling Framework

VbTrace View-based Traceability Framework

WCF Windows Communication Foundation

WS-BPEL Web Services Business Process Ex-

ecution Language

WS-CDL Web Services Choreography De-

scription Language

WSDL Web Services Description Language

XPDL XML Process De�nition Language

YAWL Yet Another Work�ow Language

Chapter 1

Introduction

“ Everything is vague to a degree you do not realize till you
have tried to make it precise (“�e Philosophy of Logical

Atomism”). ”— Bertrand Russell (1872-1970)

1.1 Problem statement

Service-oriented architecture (SOA) is a popular architectural style for developing distributed

systems and so�ware. SOAs have made an important shi� from traditional tightly coupled, hard-

to-adapt so�ware development to more platform neutral, loosely coupled so�ware development.

In SOAs, systems and so�ware functionalities are exposed in terms of services. Each service has a

standard interface and is made accessible over a network. Services communicate with each other by

exchanging messages
5,41,126

.

�e interoperable and platform independent nature of services supports a novel approach, namely,

process-driven, service-oriented architecture 59. In process-driven SOAs, systems and so�ware are

described in terms of processes using high-level, notational modeling languages and implemented

in executable languages. A typical process comprises a number of activities, the control �ow, and

the process data. Each activity corresponds to a communication task (e.g., invoking other services,

processes, or an interaction with a human) or a data processing task.�e control �ow describes how

these activities are ordered and coordinated to accomplish particular business goals.

Leveraging the underlying service-oriented architectures, process-driven SOAs provide an e�cient

development paradigm that supports decoupling the business logics from the speci�c platform

technologies and implementation languages. In addition, process-driven SOAs aim at supporting

business agility, i.e., to enable a quicker reaction on business changes in the IT by manipulating high

level- process descriptions instead of code.�e increasing attention of both research and industry

in process-driven SOAs has led to a number of encouraging results, for instance, the fostering

of several standards, methodologies, and techniques, such as IDEF3
96
, ARIS/EPC

34
, WS-CDL

173
,

BPMN
121
, BPML

16
, BPEL

67,109
, XPDL

181
, and UML Activity Diagram extensions

116
for modeling

8 1.1. Problem statement

and developing processes.

An important problem process-driven developers face today is the increasing size and complexity

of process descriptions. �is occurs because the process descriptions integrate various tangled

concerns: control �ows, data processing and dependencies, service invocations, fault and transaction

handling, event handling, and human interactions, etc. As such, the complexity of developing and

maintaining the processes increases along with the number of invocations and data exchanges and

quickly become hardly manageable as the number of services or processes involved in a process

grows. �is complexity resides in di�erent phases of process-driven development ranging from

design to implementation, deployment, and maintenance.

In addition, this problem also appears at di�erent abstraction levels
59
due to not only the di�erences

of syntax and semantics but also the di�erences of granularity. Processes are usually speci�ed

using highly abstract and notational elements, such as the elements in IDEF3, BPMN, EPC, or UML

Activity Diagrams. As business experts are rather familiar with domain knowledge and concepts than

technology-speci�c ones, these abstract, notational elements are suitable to capture desired business

functionality, but they are not executable. �erefore, IT experts necessarily need to be involved

in development of the processes by transforming these abstract design elements into executable

descriptions. For example, IT experts can translate the high-level process model into BPEL, specify

the processes interfaces and involved services in terms of WSDL
170

and XML schema
177
, and/or

implement some business logics using particular technologies, such as Web Services
171
, RESTful

Web Services
47,128

, and Java EE
151
. Additional deployment con�gurations (e.g., process descriptors)

might need to be de�ned in order to successfully deploy and execute the implemented processes.

Processes expressed in execution languages are o�en more concrete, technology-speci�c, and of

�ner granularity than the design counterparts. Additionally, there are a number of implementation

artifacts that are not present in process designs, such as process deployment con�gurations, service

bindings, service implementation endpoints, XML schema de�nitions, etc.

To the best of our knowledge, the complexity of process descriptions and the discordance between

di�erent levels of abstraction, as described in the previous paragraph, have not been thoroughly

addressed in the literature. As a consequence, these problems impair various quality properties

in process-driven SOA development, maintenance, and evolution, such as the understandability,

adaptability, interoperability, reusability, and traceability.

Understandability and adaptability Business process developers have to deal with constant needs

for change, for instance, concerning business requirement changes or IT technology changes.

�erefore, the processmodels should enable a quicker reaction on business changes in the IT by

manipulating business process models instead of code. Most of the existing business processes

are developed andmaintained by IT experts in low-level, executable languages. Process designs,

if they exist, are o�en done in highly abstract and notational languages. Unfortunately, there

are no explicit links between process design and implementation languages. As a consequence,

1.1. Problem statement 9

it is di�cult for the business analysts to get involved in process development and maintenance

because for these tasks an understanding of many technical details is required. Hence, IT

experts are required for many tasks in managing, developing, and maintaining the process

models. For each change, regarding both business and technology related concerns, the IT

experts have to investigate, analyze, andmodify a number of executable code fragments and/or

related process models that is cumbersome and error-prone. In addition, there is a lack of

the separation of process concerns as well as the adaptation of process representations to the

needs, knowledge, and experience of a particular stakeholder.�us, in order to thoroughly

understand or analyze a certain concept of either a process design or an implementation, a

certain stakeholders has to go across numerous dependencies between various concerns, some

of which are even not suitable for the developer’s expertise and skills.

Interoperability and reusability Business experts o�en design processes in high-level abstraction

languages, such as BPMN, EPC, or UML Activity Diagram, and IT experts implement them

using executable languages, such as BPEL/WSDL. An important issue that hinders the inter-

operability of existing process representations is the huge divergence of these languages.�e

di�erence of language syntax and semantics as well as the di�erence of granularity hinder the

smooth integration of the various fragments in process descriptions described in di�erent

languages, and therefore, reduce the interoperability of those languages. In addition to the

aforementioned divergence of languages, the entanglement of di�erent process concerns also

suppresses the reusability of process models. In order to reuse a certain excerpt of a process

model, the stakeholder has to go across various concerns. Existing process languages and

tools have not properly supported cross referencing between process languages, for instance,

between UML Activity Diagram and EPC and BPMN and BPEL, or between two BPEL de-

scriptions and so on. As a consequence, the reusability of process descriptions, either in

high-level or low-level languages, are merely achieved by using the “copy-and-paste” approach,

which is very tedious and error-prone.

Traceability Understanding trace dependencies between process design and implementation is

vital for change impact analysis, change propagation, documentation, and many other ac-

tivities
148
. Unfortunately, artifacts created during the process development life cycle likely

end up being disconnected from each other.�is impairs the traceability. First of all, there

are no explicit links between process design and implementation languages not only due to

the di�erences of syntax and semantics but also the di�erences of granularity. �e second

factor is the complexity caused by tangled process concerns that multiplies the di�culty of

analyzing and understanding the trace dependencies. Finally, there is a lack of adequate tool

support for establishing and maintaining the trace dependencies between process designs and

implementations.

10 1.2. Scientific contributions

1.2 Scientific contributions

One of the successful approaches to manage complexity is separation of concerns 35,53,152
. Process-

driven SOAs use a speci�c realization of this principle, modularization 53
: Services expose standard

interfaces to processes and hide unnecessary details for using or reusing. �is helps in reducing

the complexity of process-driven SOA models, but from the stakeholders’ point of view this is

o�en not enough to cope with the complexity challenges explained above, because modularization

only exhibits a single perspective of the system focusing on its (de-)composition. Other – more

problem-oriented – perspectives, such as a business-oriented perspective or a technical perspective

(used as an example above), are not exhibited to the stakeholder. In the �eld of so�ware architecture,

architectural views (or view for short) have been proposed as a solution to this problem. A view
is a representation of a system from the perspective of a related set of concerns69. �e notion of

views o�ers a separation of concerns that has the potential to resolve the complexity challenges in

process-driven SOAs, because it o�ers more tailored perspectives on a system, but it has not yet

been exploited in process modeling languages or tools.

Inspired by the notion of views, we suggest a view-based approach to modeling of process-driven

SOAs. Namely, perspectives on business process models and service interactions – as the most

important concerns in process-driven SOA – are used as central views in our approach.�e approach

is extensible with all kinds of other views. We then formalize the notion of view using view models.

�at is, the structure and semantics of each view are speci�ed by a corresponding view model.

In particular, our approach o�ers separated view models, such as the collaboration, information,

control �ow, event, transaction, and human view models, each of which represents a speci�c part

of the business process.�e view models can be viewed and manipulated separately to get a better

understanding of a particular concern, or they can be integrated to produce a richer view or a more

thorough view of the processes and services. �is way, we use view models – the formalizations

of process views – to separate and manage the various tangled concerns of business processes in a

�exible and extensible manner.

As the notion of views aims to reduce the complexity of business processes, the challenging gap

between di�erent abstraction levels, mentioned in the previous section, is still unsolved. We support

stakeholders in bridging this gap by using a model-driven stack that is a speci�c realization of

the model-driven development (MDD) paradigm
57,150

. �is model-driven stack separates view

models into abstract and technology-speci�c layers. �e abstract view models aim at providing

problem-oriented concepts and structures by which business experts can better understand, analyze,

and manipulate. Platform-speci�c and technical details are excluded from these abstract views and

only provided in the technology-speci�c views that are relevant to the IT experts.�en, we develop

a Core model as the basis for deriving other view models along with various mechanisms, such

as view extension/re�nement, view integration, code generation, and reverse engineering. �is

way, we support stakeholders in (semi)-automatically creating and maintaining the dependency

1.2. Scientific contributions 11

relationships between view models at the same or di�erent abstraction levels.

Numerous existing process-oriented systems have been built upon executable process languages

such as BPEL. Process’s functionality are exposed in service description languages such as WSDL.

Unfortunately, there is no explicit link between the process design languages (e.g., EPC, BPMN, and

UML Activity Diagram) and the implementation counterparts (e.g, BPEL, jPDL, and BPML) such

that business objectives comprised in the process designs are unexpectedly disconnected from the

implementations. Hence, the business experts, who understand the business objectives best, hardly

analyze and modify the “as-is” business processes because they are confronted with several tangled

technical details in the process implementations. On the other hand, stakeholders hardly checkwhich

parts of the process implementations are accordant with certain parts of the process design and vice

versa, hardly estimate the ripple-e�ect of a certain part of the process designs or implementations,

and so on. Existing approaches to business process development have not considered and addressed

these issues thoroughly. Our solutions for these problems are twofold. We �rstly devise a view-based

reverse engineering approach in order to extract view models from existing process descriptions.

�e resulting view models are either abstract or technology-speci�c, and they can be tailored or

adapted to stakeholders’ needs and knowledge.�is way, our reverse engineering approach helps

stakeholders to get involved in process re-development and maintenance at di�erent abstraction

levels. Secondly, we propose a view-based traceability approach as an orthogonal dimension of

our model-driven stack in order to support stakeholders in (semi-)automatically creating and

maintaining the dependency relationships between various process development artifacts. Our view-

based traceability approach not only captures the relationships among elements of VbMF, but also

helps reconciling the dependency gap between process designs (e.g., BPMN) and implementations

(e.g., BPEL) by using VbMF as an intermediate layer.

In summary, this research contributes a novel approach that addresses two major challenging issues

in process-driven SOAs: (1) managing the complexity of the process development and (2) bridging

the gap between di�erent levels of abstraction from process design to implementation. In particular,

our approach contributes various valuable aspects to process development, including:

• Reducing the complexity of process development: Exploiting the notion of views, our ap-

proach o�ers the stakeholders a number of tailored perspectives that are much more relevant

and appropriate to their needs and knowledge. A certain stakeholder can work on a speci�c

view, a combination of related views, or a thorough view of the business process according to

his distinct knowledge and skills. As such, stakeholders may focus solely on their concerns of

interest, and therefore, better contribute their speci�c expertise to process development. In

other words, our approach aids the stakeholders mastering the horizontal dimension, i.e., the
dimension of di�erent process concerns, of process-driven SOAs in a more �exible manner.

• Enhancing adaptability and automation : We devise a model-driven stack in which views

are separated into di�erent abstraction levels ranging from abstract, high-level view models to

12 1.2. Scientific contributions

technology-speci�c views. One the one hand, our approach o�ers stakeholders the ability of

working with suitable levels of abstraction, especially, with concerns of interest, as described

in previous paragraph, according to their speci�c knowledge and skills. One the other hand,

this approach helps the stakeholder mastering the vertical dimension, i.e., the dimension

of abstraction levels, by developing modeling mechanisms, such as view extensions and

integration, to bridge the gap between these abstraction levels. �is bridge is expanded

further as we developmodel-to-code transformationmechanisms for automatically generating

executable code and runtime con�gurations from the technology-speci�c view models.

• Enhancing interoperability and reusability : Interoperability and reusability su�er from the

heterogeneous nature of the participants of a so�ware system. SOA has partially reconciled

this heterogeneity by de�ning standard service interfaces as well as messaging mechanisms for

communicating between services. Process-driven SOAs provide an e�cient way of coordinat-

ing various services in terms of processes to accomplish a speci�c business goal. However, the

huge divergence of process modeling languages raises a critical issue that deteriorates the in-

teroperability and the reusability of so�ware components or systems. Our approach harnesses

the notion of views and the Partial Interpreter pattern 184
in order to adapt process models to

suit knowledge and skills of various stakeholders. Using the Partial Interpreter pattern, we

devise a number of view-based interpreters to extract more or less abstract view models from

process descriptions.�is way, di�erent kinds of process modeling languages can be analyzed

to build up the relevant representations (or view models). Next, using mechanisms such as

the extension mechanisms, view integration, and code generation mentioned in the previous

paragraph, these views can be manipulated to produce more appropriate representations

according to stakeholders’ requirements, or to re-generate code in executable languages.�is

way, our approach not only supports the reuse of information in process models at di�erent

abstraction levels and in di�erent process concerns, but also the reuse of information from

existing process models, e.g. written in BPEL.

• Enhancing dependency management and traceability : An adequate dependency manage-

ment is crucial in process development because it strongly supports tracing development

artifacts, change impact analysis, managing process evolution, etc. We devise a view-based,

model-driven traceability approach that adds a vertical dimension to the aforementioned

model-driven stack. In our traceability approach, a traceability meta-model is devised for rep-

resenting numerous kinds of traceability meta-data acquired during the process development

life cycle. As such, the traceability approach acts as an intermediate bridge that o�ers stake-

holders the ability of leveraging the traceability meta-data for tracing development artifacts,

analyzing the impact of a certain change in process models, or managing the evolution of the

process development.

We also prototypically develop a proof-of-concept framework for process-driven SOA development.

1.2. Scientific contributions 13

�e framework consists of a forward engineering and a reverse engineering toolchain . In the

forward engineering toolchain, we o�er various tailored and adapted views that are more relevant

to the knowledge and needs of particular stakeholders, e.g. business analysts or IT experts. �e

code generation process is driven by model transformations from view models or integrated models

into executable code. On the other side, stakeholders can use the reverse engineering toolchain for

integration of legacy business process descriptions .�ese descriptions are represented in terms of

appropriate view models that can be manipulated or re-used to develop other processes than those

developed in the forward engineering toolchain.

1. IDENTIFY KEY PROBLEMS

2. DEVISE CONCEPTUAL SOLUTIONS

CONCEPT OF
ARCHITECTURE VIEW

MODEL-DRIVEN
PARADIGM

PROBLEM OF
COMPLEXITY

ABSTRACTION
LEVEL GAP

3B. DEVISE PROOF-OF-CONCEPT

FORWARD ENGINEERING
TOOLCHAIN

REVERSE ENGINEERING
TOOLCHAIN

VIEW-BASED MODELING FRAMEWORK

VBTRACE: VIEW-BASED, MODEL-DRIVEN
TRACEABILITY FRAMEWORK

4. EVALUATE & DISSEMINATE

INDUSTRIAL CASE STUDIES

3A. SOLIDIFY FOUNDATION CONCEPTS

(SEMI-)FORMALIZED REPRESENTATIONS OF
PROCESS CONCERNS: VIEW MODELS

SEPARATION OF ABSTRACT, HIGH LEVEL AND
TECHNOLOGY-SPECIFIC VIEW MODELS

VIEW-BASED MODELING MECHANISMS:
EXTENSION, INTEGRATION, CODE GENERATION

VIEW-BASED REVERSE ENGINEERING

VIEW-BASED, MODEL-DRIVEN TRACEABILITY

SEMBIZ PROJECT (FIT-AUSTRIA)

COMPAS (EU FP7 PROJECT)

Figure 1.1: Research methodology

14 1.3. Research methodology

1.3 Research methodology

To achieve the aforementioned contributions, we have conducted the research tasks illustrated in

Figure 1.1.

Milestone 1: First of all, we studied the state-of-the-art of languages, standards, technologies as well

as scienti�c approaches in the �eld of process-driven SOAs and identi�ed two major problems,

explained in Section 1.1, that have not been addressed in the literature yet.

Milestone 2: We came up with our solutions for these problems that resulted in a foundational

publication
155
. �is work introduces the conceptual vision of our approach based on the

notion of views and the model-driven development paradigm.

Milestone 3A: Later, the above-mentioned concepts are solidi�ed via a number of subsequent tasks

of which the most important ones are the (semi-)formalizations of process views in form

of view models and the separation of abstraction levels via the model-driven stack. �ese

tasks are complemented by the various mechanisms such as extension, view integration, code

generation to make our approach �exible and extensible to many other concerns
62,97,154,155

.

In addition, we designed a view-based reverse engineering approach that is able to interpret

existing process descriptions and extract view models that are relevant to the stakeholders

needs and knowledge
156,157

. Last but not least, we proposed a view-based, model-driven trace-

ability approach that supports stakeholders in establishing and managing the dependencies of

development artifacts during the process life cycle.

Milestone 3B: In parallel, we have implemented a view-basedmodeling framework (VbMF), includ-

ing the forward engineering and reverse engineering toolchains, and a view-based traceability

framework (VbTrace) as proof-of-concept prototype of our approach
158
.

Milestone 4: �e aforementioned proof-of-concept prototypes are also used for evaluating our ap-

proach via two industrial case studies as well as the comparison with the related work
155–158,187

.

Moreover, our view-based, model-driven approach also contributed an important modeling

and integration foundation to two scienti�c projects: SemBiz
49
and COMPAS

42
.

�e outcomes of these scienti�c tasks include a number of publications at international conferences

and workshops, which are:

1. Huy Tran, Uwe Zdun, and Schahram Dustdar. View-based and Model-driven Approach for
Reducing the Development Complexity in Process-Driven SOA. In First International Working

Conference on Business Process and Services Computing (BPSC), pp. 105–124, LNI, 2007.

1.4. Dissertation structure 15

2. Huy Tran, Uwe Zdun, and Schahram Dustdar. View-based Integration of Process-driven
SOA Models At Various Abstraction Levels. In First International Workshop on Model-Based

So�ware and Data Integration (MBSDI), pp. 55–66, Springer, 2008.

3. Huy Tran, Uwe Zdun, and Schahram Dustdar. View-Based Reverse Engineering Approach for
EnhancingModel Interoperability and Reusability in Process-Driven SOAs. In 10th International
Conference So�ware Reuse, LNCS 5030, pp. 233–244, Springer, 2008.

4. Ta’id Holmes, Huy Tran, Uwe Zdun, and Schahram Dustdar. Modeling Human Aspects of
Business Processes - A View-Based, Model-Driven Approach. In 4th European Conference on

Model Driven Architecture Foundations and Applications (ECMDA-FA), LNCS 5095, pp.

246–261, Springer, 2008.

5. Huy Tran, Ta’id Holmes, Uwe Zdun, and Schahram Dustdar. Chapter 2: Modeling Process-
Driven SOAs - a View-Based Approach. Eds. J. Cardoso and W. van der Aalst, Handbook of

Research on Business Process Modeling, IGI Global, 2009.

6. Huy Tran, Uwe Zdun, and Schahram Dustdar. VbTrace: Using View-based and Model-driven
Development to Support Traceability in Process-driven SOAs, Journal of So�ware and Systems

Modeling, DOI: 10.1007/s10270-009-0137-0, Nov 2009.

7. Uwe Zdun, Huy Tran, Ta’id Holmes, Ernst Oberortner, Emmanuel Mulo, and Schahram

Dustdar. Compliance in Service-oriented Architectures, Information Systems Journal, Wiley,

2009 (submitted).

1.4 Dissertation structure

�e rest of this dissertation is organized as following.

Chapter 2 introduces the background literature, including the basic concepts as well as the state of

the art in service-oriented computing (SOC) and process-driven, service-oriented architec-

tures (SOAs), model-driven development (MDD), and architectural views.

�e major contributions are covered by three following chapters:

Chapter 3 presents the view-based, model-driven approach that exploits the notion of views and

leveraging the MDD paradigm to address existing problems in process-driven SOA develop-

ment.�is chapter contributes a forward engineering toolchain for process development.

Chapter 4 is about the view-based reverse engineering approach for interpreting and extracting

view models at high or low levels of abstraction from existing process descriptions. �is

chapter shapes a reverse engineering toolchain for process-driven SOA development.

16 1.4. Dissertation structure

Chapter 5 contributes an additional dimension to the realization of theView-basedModeling Frame-

work presented in Chapter 3 that supports stakeholders in (semi-)automatically establishing

and maintaining the trace dependencies between various development artifacts.

�e evaluation and summarization of the dissertation come in the last chapters, including:

Chapter 6 presents the illustration of our approach via a scenario-driven approach that examines a

number of industrial case studies. We also conduct a qualitative analysis of our approach with

respect to important quality properties such as the complexity, reusability, and separation of

concerns.

Chapter 7 summarizes our major contributions, discuss open problems, and broadens our visions

with some future works.

Chapter 2

State of the Art

2.1 Introduction

Our main contribution in this dissertation aims to address existing problems in the �eld of process-

driven, service-oriented architectures (SOA) using a view-based, model-driven approach. In this

approach, we consolidate the separation of concerns principle – realized in terms of the notion of

architectural views – and the separation of abstraction levels – realized in terms of the model-driven

paradigm – to support stakeholders in dealing with the complexity of process-driven SOA devel-

opment in a �exible, adaptable, and (semi-)automatic manner with respect to particular needs,

knowledge, and experience of each stakeholder.�erefore, the concepts and contributions presented

in our approach are relevant to di�erent scienti�c disciplines, including process-driven SOA de-

velopment, model-driven development, so�ware reuse, and traceability. In this chapter, we brie�y

introduce basic concepts and the state of the art in these scienti�c disciplines.

2.2 Service-oriented architectures

Service-oriented computing (SOC) is an emerging cross-disciplinary paradigm for distributed

computing that uses services to support the development of interoperable, evolvable, and massively

distributed application
127
. Services are autonomous, platform-independent entities that can be

described, published, discovered, and loosely coupled by using standard protocols
37,127

. Service-

oriented Architecture (SOA) is the main architectural style for SOC.

�ere are a number of di�erent perspectives into SOC/SOA. For instance, a business expert envisions

a set of services that a business wants to expose to their customers and partners, or other portions

of the organization
15
. A system architect envisages an architectural style consisting of service

providers, consumers, and service descriptions as well as a set of architectural principles and patterns

that address characteristics such as modularity, encapsulation, separation of concerns reusability,
composability, and interoprability 15. A developer considers SOA a programming model comprising
standards, tools, and technologies such as Web Services 15.

�e popularity of SOC/SOA is con�rmed by industry observers and market research organizations:

Research and Markets reports SOA markets at $450 million in 2005 growing to $1.6 billion in 2006,

$2 billion in 2007, and only slightly growing to $3.3 billion in 2008 due to global economy crisis.

18 2.2. Service-oriented architectures

�e SOA markers are anticipated to grow at an average rate of 8% initially reaching 95% per year

by 2015 for $16.75 billion
136–139

. CAWily recently released the results of a survey that covered 615

companies in the process of SOA-based e�orts
21
. In this survey, 73% say their organizations have

either deployed an SOA application whilst 27% are planning an SOA deployment. In addition, 92%

say their SOA initiatives met or exceeded business unit objectives, while only 8% say they did not
21
.

�ese numbers all point to exponential growth and enormous popularity of SOA and SOC in a

global perspective.

find publish

invoke
Service
Consumer

Service
Provider

Service
Registry

reply

Service
Descriptions

Figure 2.1: A typical service-oriented architecture (adapted from
171
)

Services are o�en made accessible via network systems and can be invoked by means of public,

standard interfaces.�e communication between services can involve either simple data exchanges

or complex coordinations of activities of two or more services. A service interface is a platform- and

protocol-independent speci�cation that describes what functionality is provided by the service and

how to access this functionality
5,41,126

.�is way, SOAhas a potential to deliver several bene�ts, such as

supporting interoperability to reconcile the heterogeneity nature of so�ware and systems, integrating

legacy systems and applications, supporting business agility by decoupling service interfaces from

implementation details of business functionality, and so on
5,41,126

.

Two essential roles in a typical SOA are service provider and service consumer (or so-called ser-

vice client), see Figure 2.1. A service provider o�ers functionalities of so�ware and systems to

its clients via public interfaces whilst a service consumer utilizes these functionalities by sending

appropriate messages to the corresponding service endpoints speci�ed in the service interfaces.

Service descriptions, including service interfaces, providers’ information, etc., might be stored in

a service registry where the clients can query and lookup for a particular service, functionality, or

provider
5,41,126

. �ere is a wide range of technologies that can be used to implement SOAs, such

as Common Object Request Broker Architecture (CORBA)
114
, Java EE

131
, Representational State

Transfer (REST)
47
, Remote procedure call (RPC)

70
, Web Services

171
, andWindows Communication

Foundation (WCF)
104

, to name but a few. Web Services and REST are currently the most prominent

SOA-based technology
128,171

.

De�nition 2.1 (W3C, Web Service). AWeb Service is a so�ware system designed to support interop-
erable machine-to-machine interaction over a network. It has an interface described in a machine-

2.3. Process-driven, service-oriented architectures 19

processable format (speci�cally WSDL). Other systems interact with the Web Service in a manner
prescribed by its description using SOAP-messages, typically conveyed using HTTP with an XML
serialization in conjunction with other Web-related standards 172.

REST is an architectural style for designing distributed systems and applications
47
. �e REST

architectural style is based on the four principles:

• Identi�cation: Resources are identi�ed by URIs that provided a global addressing space for

resource and service discovery.

• Manipulation: Resources are manipulated through a uniform interface that is a �xed set of

create, read, update, and delete operations: PUT, GET, POST, and DELETE.

• Self-descriptive messages: Messages include enough meta-data to describe how to process the

message.

• Stateless communication:�e communication is constrained by no context being stored.

�e biggest advantage of Web Services and REST over its competitors is the use of Internet as the

communication medium
127
. RESTful Web Services are services implemented using HTTP and the

principles of REST. As a consequence, such RESTful services can be considered as a collection of

resources
128
. Web Services utilizes several technologies and (de facto) standards

5,126,180
, such as

Web Services Description Language (WSDL)
170,175

for de�ning service interfaces, Simple Object

Access Protocol (SOAP)
169,174

for delivering XML messages between services over existing network

infrastructures, Universal Description Discovery and Integration (UDDI)
108

for publishing and

discovering services, WS-Policy
176

for specifying policy requirements and constraints, and so on.

2.3 Process-driven, service-oriented architectures

A promising vision of SOC/SOA is to better support the integration of business functionality in

terms of loosely coupled services that span across organizations and computing platforms to either

accomplish a certain business goal or quickly react to the changes of business environment and

technology
127
.

A process-driven SOA
59
extends SOAs with a process composition layer, and therefore, bene�ts

from those SOA’s advantages. Particularly, process-driven SOAs delivers a development paradigm

for systematically and e�ciently accomplishing business functionality by using processes running

in a process engine to invoke existing business services from process activities (see Figure 2.2).

In process-driven SOAs, the notion of process is central. A process consists of many activities

each of which may perform a service invocation, human interaction, or data processing task.�e

process control �ow speci�es the execution order of these activities to achieve a speci�c business

20 2.3. Process-driven, service-oriented architectures

Platform & Technology
Layer

SOA Layer

Process-driven SOA
Layer

DBMS Legacy
Systems ERPData

Warehouse CRM Technologies

Service 1 Service 2 Service 3 Service 4 Service 5

Business-oriented Layer

Customer
Management

Process

Purchase Order
Process

Finance ManufacturingLogistic Retails

Figure 2.2: Layered view of SOA and process-driven SOA

goal. Processes are o�en deployed in a process engine for executing and coordinating functionality

provided by the other services or processes. Moreover, a process itself can also be exposed to its

users as a service with standard interfaces, and therefore, can be invoked by the users, services, or

other processes.

Process-driven SOAs aim at enhancing the productivity and �exibility via process management. In

this approach, the high-level business processes are aligned with the IT infrastructure. Organizations

can quickly adapt to changes in business requirements or environments by (re)-engineering the

high-level business processes.�e processes are then implemented by connecting their tasks with

the functionality provided by the underlying so�ware and systems. In comparison to manipulating

business logics embedded in code, changing high-level processes is more e�cient because these

processes are more comprehensible and relevant to knowledge and skills of the business experts.

Process-driven SOA has roots in the business process management and work�ow management

�eld
160,165

. Various theoretical models have been used as the underlying foundation for describing

business processes, such as Petri-net and its variants
56,79,140,165

, π-calculus models
91,106,130,191

, and

state machines
19,36,44

, to name but a few .

Several contemporary languages for process modeling and development have emerged based on

these formal backgrounds, such as Business Process De�nition Metamodel (BPDM)
120
, Business

2.3. Process-driven, service-oriented architectures 21

ProcessModeling Notation (BPMN)
121
, Business Process Execution Language (BPEL)

67,109
, Business

Process Modeling Language (BPML)
16
, Event-Driven Process Chains (EPC)

34,80,142
, WebSphere©

FlowMark© De�nition Language (FDL)
66
, Integration De�nition for Function Modeling (IDEF3)

96
,

jBPM Process De�nition Language (jPDL)
75
, UML Activity Diagram Extensions

112,116
, XML Process

De�nition Language (XPDL)
181
, and Yet Another Work�ow Language (YAWL)

164
. Among of those

languages, BPMN and BPEL are widely-accepted as (de factor) standards for business process design

and implementation, respectively. We brie�y summarize these languages in Table 2.1.

Name Maintainer Notation Exchange format Language type

BPDM 120
OMG Yes Yes Modeling/Execution

BPML 16
BMPI No No Execution

BPMN 121
OMG Yes No Modeling

BPEL67,109
OASIS No Yes Execution

EPC 34,80,142
- Yes No Modeling

FDL66
IBM Yes Yes Modeling/Execution

IDEF396 KBS Inc. Partial No Modeling

jPDL 75
jBoss Yes Yes Modeling/Execution

UML/AD 112,116
OMG Yes Yes Modeling

XPDL 181
WfMC No Yes Execution

YAWL 164
Van der Aalst et al. Yes No Modeling

Table 2.1:�e summary of existing process modeling and development languages

2.3.1 Process-driven development life cycle

IEEE 1471 Std
69

de�nes a life cycle as a framework containing the processes, activities, and tasks
involved in the development, operation, and maintenance of a so�ware product, which spans the life of
the system from the de�nition of its requirements to the termination of its use. Zur Mühlen

192
suggests

a typical process life cycle including design, implementation, enactment, and evaluation phases. In

Figure 2.3, we separate these phases into design time and run-time, respectively, and annotate with

relevant process modeling/development languages and involving stakeholders .

In reality, there are many stakeholders, who might involve in the process development life cycle

with di�erent interests and concerning, such as clients, users, managers, business analysts, project

managers, so�ware architects, developers, evaluators, integrators, infrastructure administrators, and

so on. From now on, we use two abstract roles to represent the stakeholders who are relevant to the

process development life cycle, especially at the design time, including:

• Business experts are the stakeholders who understand business- and domain-oriented concepts

and knowledge best. Business experts can analyze and formulate the process, from the business

22 2.3. Process-driven, service-oriented architectures

Process Design Languages:
EPC,BPMN,UML AD,jPDL

Process Execution Languages:
BPEL/WSDL, BPML,FDL,jPDL

Design time

Run-time

Business experts

IT experts

Design/
Modeling

Evaluation

Enactment

Implementation

Domain, business-
oriented

Technology-
specific

Figure 2.3: A typical process-driven development life cycle

point of view, to satisfy a certain business goal, but they pose limited, almost no, technical

experience and skill.

• IT experts, in contrast to the business experts, pose expertise in technical landscape but not

being familiar with business- and domain-oriented concepts. IT experts will involve in process

implementation, deployment, and execution.

During the �rst phase, business experts create process models using high-level, notational modeling

languages, such as EPC, BPMN, or UML Activity Diagrams.�e business experts, with the help of

high-level languages and tools, de�ne necessary tasks and the order of these tasks in the business

process in order to accomplish a certain business goals.

Process models designed by the business experts are usually conceptual and high-level so that they

cannot be executed in process engines. �erefore, the process models are interpreted and imple-

mented by IT experts in terms of executable descriptions using technology-speci�c languages, such

as BPEL and WSDL, in the implementation phase. One the one hand, the IT experts translate high-

level, business-oriented concepts, for instance, business tasks, into concrete, technical descriptions,

e.g., service invocations or human interactions. On the other hand, these technical descriptions

have to be adequately aligned with the existing IT infrastructures.

In the third phase, the implemented process can be deployed into a process engine for execution and

monitoring.�e engine executes process tasks according to the execution order described by the

2.3. Process-driven, service-oriented architectures 23

control �ow. In the course of process execution, run-time events and execution logs can be collected

for using in the evaluation phase. In this �nal phase, the ”as-is” processes can be analyzed, revised,

and/or optimized, and become the input for subsequent iterations of the life cycle.

Our work in this dissertation mainly focuses on the process-driven development at the design

time. Nonetheless, the resulting View-based Modeling Framework, based on our approach, can also

support stakeholders at run-time by generating deployment and monitoring con�gurations.�e

View-based Modeling Framework presented in Chapter 3 supports forward engineering for business

processes and is complemented with the reverse engineering toolchain presented in Chapter 4.

2.3.2 Forward and reverse engineering

Forward engineering and reverse engineering are two important processes in so�ware development

and maintenance. Forward engineering is the traditional process of moving from high-level abstrac-
tion and logical, implementation-independent designs to the physical implementation of a system 30

.

Forward engineering denotes the progress from analyzing requirements through creating designs to

implementing and deploying so�ware and systems .

Reverse engineering tackles the opposite direction, i.e., the process of raising the abstraction level

in order to help stakeholders understanding legacy code, especially when so�ware or system’s

documentation is obsoleted or lost.�e concept of reverse engineering has its origin in hardware

technology. In this context, reverse engineering is the process of retrieving the speci�cation of

complex hardware systems through analyzing of system’s structure, functions, and operations
135
. In

the �eld of so�ware engineering, reverse engineering is the process of analyzing a system to identify
the system’s components and their relationships, and to create representations of the system in another
form or at a higher level of abstraction 14,30

. In the course of reverse engineering, the outcome of the

implementation phase, i.e., either source code or binary code is translated back to relevant forms in

the previous phases, for instance, system designs in the analysis phase.

During the reverse engineering process, the so�ware system under consideration is unmodi�ed.�e

evolution of existing so�ware systems is o�en performed by a re-engineering e�ort. A re-engineering

process includes the reverse engineering phase for comprehending and analyzing the “status quo”

followed by somemodi�cations or restructuring. Finally, the forward engineering phase is performed

to derive system’s implementations
30
.

In Figure 2.4, we present a typical process development scenario wherein business experts design

business processes in terms of BPMN diagrams while IT experts interpret the designs and implement

the processes in BPEL and deploy them into a Web Services platform. Due to the popularity and

high adoption of these languages in both academia and industry, we use these two languages as

representatives for exemplifying, illustrating, and evaluating our approach in the sense that BPMN

is the process design/modeling language and BPEL is the process implementation language. In

24 2.3. Process-driven, service-oriented architectures

Low level, executable languages
(BPEL)

Web Services Technologies
(WSDL, UDDI, SOAP,XML)

IT experts

High level, notational languages
(BPMN)

A

B

C
Business experts

Forward
Engineering

Reverse
Engineering

Figure 2.4: A typical process-driven SOA development scenario

the subsequent sections, we introduce the basic concepts, structures, and semantics of these two

languages.

2.3.3 Process design languages

�e Business Process Modeling Notation (BPMN) is a standard notational language introduced

in May, 2004, by the Business Process Management Initiative (BPMI). Since 2005, BPMN has

been mainly developed and maintained by the Object Management Group (OMG)
121
. �e main

goal of BPMN is to enable stakeholders, especially business experts, to specify, document, and

communicate business processes in the form of process diagrams that are very similar to �owcharts.

A process diagram is constructed from various notations and elements categorized into Flow Objects,
Connecting Objects, Swimlanes, and Artifacts 121 .

Tr
av
el
A
ge
nc
y

Customer

Check
CreditCard

Card valid?
Get

Itenirary
Request Book

Flight

Book
Hotel

Book
Car

Cancel
Itinerary

No

Inform
CustomerItineratyData

CheckResult

Itinerary
Result

Yes

Successfully
booked?

Yes
No

Successfully
booked?

No

Yes

Successfully
booked?

No

Yes

Figure 2.5: A sample BPMN diagram - a Travel Booking process

2.3. Process-driven, service-oriented architectures 25

A typical BPMN process diagram consists of various nodes each of which is of the type Flow Object,
including:

• Event: something that can happen during the process execution.

• Activity: a process task that must be performed.

• Gateway: a decision node that determines branching and merging of execution paths.

Connecting Objects are used to link these nodes, for instance, a Sequence Flow from node A to node

B indicates that A must be done before B, aMessage Flow from two process participants speci�es

that there is a message travel from one participant to the another, and an Association can associate a

certain Data Object, that is a speci�c kind of Artifact, to a Flow Object.�e activities of a process

diagram then can be visually organized into various logical groups by using two essential kinds of

Swimlanes: Pool and Lane. Figure 2.5 shows a Travel Booking Process64, which is designed using

BPMN notations. Further details can be found in the OMG BPMN speci�cation
121
.

�e Travel Booking process starts when a customer enters the data for his itinerary. �en, credit

card information is checked for correctness and validity. If the credit card data is invalid, the process

ends with a cancelation. Otherwise, three di�erent tasks are performed for booking the �ight,

hotel, and car.�ese booking task are repeated until the corresponding reservations are successfully

�nished. When all the reservations are completed, either a successful noti�cation along with di�erent

reservation codes or an error noti�cation will be returned to the customer.

2.3.4 Process implementation languages

A process can be implemented in an executable language, such as the Business Process Execution

Language (BPEL)
67,109

. BPEL processes are typically exposed to its consumers (e.g., other services

or processes) as services with standard interfaces in Web Services Description Language (WSDL)
170

.

BPEL is initially proposed as an executable language for specifying the orchestration ofWeb Services.

�e most notable and stable version of BPEL, BPEL 1.1, which has been widely adopted as a de

facto standard for process development, is developed by a number of leading companies including

IBM, Microso�, SAP, BEA Systems, and Siebel Systems
67
. BPEL 1.1 is a convergence of two other

languages: Microso�’s XLANG, which is based on the π-calculus, and IBM’s Web Services Flow

Language (WSFL), which is based on Petri-nets. Later on, BPEL has been submitted to OASIS for

standardization in 2003.�e newest version of this language is WS-BPEL 2.0 proposed by OASIS in

April, 2007
109

.

Figure 2.6 depicts a skeleton of a typical process implementation that includes two types of descrip-

tions:

26 2.3. Process-driven, service-oriented architectures

<process>
<partnerLinks>

...
</partnerLinks>
<variables>

...
</variables>
<faultHandlers .../>
<eventHandlers>

...
</eventHandlers>
<compensationHandlers>

...
</compensationHandlers>
<sequence>

<receive ... />
...
<invoke ... />
...
<reply .../>

</sequence>
</process>

<definitions>
<types ...>

...
</types>
<message ...>

...
</message>
<portType ..>

...
</portType>
<partnerLinkType ...>

...
</partnerLinkType>
...

</definitions>

BPEL descriptionWSDL description

Figure 2.6: A typical BPEL/WSDL implementation

WSDL AWSDL description describes the Web Service interface, including the portType(s) that
declare the functionality exposed to its external partners, themessage(s) that de�ne the format

of each portType’s input and output, and the partnerLinkType(s) that embody information

about the process’s partners.

BPEL A BPEL description, which is encoded in XML form, consists of the de�nition of the process,

including process activities, the control structure, internal variables, and the various handlers

for events, faults, and compensation.

In BPEL, an activity might carry an communication task or a data processing.�e communication

task is one of three types: receiving a message from a partner (<receive>), invoking other services

or processes (<invoke>), or replying to the partner who sent a message before (<reply>).�e

data processing task in BPEL is merely assigning a variable or property with a certain value using an

(<assign>) activity. Variables and properties of a BPEL process are declared using <variable>,

<property> and <propertyAlias>, respectively.

�ese above process activities are orchestrated by di�erent BPEL control structures, such as a

<sequence> encapsulates many activities each of which runs sequentially a�er another, a <flow>

allows the concurrent execution of enclosing activities, a <switch> changes the execution path to

one of many choices of which the conditional value is evaluated to true, and a <while> performs an

execution loop as long as the condition is still true.

<process name="TravelBooking">

<!-- Links to process partners -->

<partnerLinks>

<partnerLink name="Client" partnerLinkType="Client" myRole="TravelBookingAgency"/>

<partnerLink name="CreditBureau" partnerLinkType="CreditBureau" partnerRole="

CreditBureau"/>

2.3. Process-driven, service-oriented architectures 27

<partnerLink name="CarAgency" partnerLinkType="CarAgency" partnerRole="CarAgency" />

<partnerLink name="FlightAgency" partnerLinkType="FlightAgency" partnerRole="

FlightAgency"/>

<partnerLink name="HotelAgency" partnerLinkType="HotelAgency" partnerRole="HotelAgency"

/>

</partnerLinks>

<!-- Process variables-->

<variables>

<variable name="iteniraryInput" messageType="ItineraryRequest"/>

<variable name="iteniraryOutput" messageType="ItineraryResponse"/>

<variable name="carBookingInput" messageType="CarBookingRequest"/>

<variable name="carBookingOutput" messageType="CarBookingResponse"/>

<variable name="cardCheckingInput" messageType="VerifyRequest"/>

<variable name="cardCheckingOutput" messageType="Result"/>

<variable name="flightBookingInput" messageType="FlightBookingRequest"/>

<variable name="flightBookingOutput" messageType="FlightBookingResponse"/>

<variable name="hotelBookingInput" messageType="HotelBookingRequest"/>

<variable name="hotelBookingOutput" messageType="HotelBookingResponse"/>

<variable name="isCarBooked" type="boolean"/>

<variable name="isFlightBooked" type="boolean"/>

<variable name="isHotelBooked" type="boolean"/>

</variables>

<!-- Main control flow -->

<sequence name="TravelBooking">

<receive name="GetItineraryRequest" operation="book" partnerLink="Client" portType="

TravelBooking" variable="iteniraryInput" createInstance="yes"/>

<assign name="InitializeStatusVariable">

...

</assign>

<assign name="PrepareCardChecking">

...

</assign>

<invoke name="CheckCreditCard" operation="verify" inputVariable="cardCheckingInput"

outputVariable="cardCheckingOutput" partnerLink="CreditBureau" portType="

CreditBureau"/>

<if name="ValidCreditCard">

<condition>$cardCheckingOutput.response/status</condition>
<sequence name="ItineraryProcessing">

<flow>

<sequence>

<assign name="PrepareBookHotel">

...

</assign>

<while>

<condition>not($isHotelBooked)</condition>
<sequence>

<invoke inputVariable="hotelBookingInput" name="BookHotel" operation="book"

outputVariable="hotelBookingOutput" partnerLink="HotelAgency" portType

="HotelBooking"/>

<assign name="GetHotelBookingStatus">

<copy>

<from>$hotelBookingOutput.response/status</from>
<to variable="isHotelBooked"/>

28 2.3. Process-driven, service-oriented architectures

</copy>

</assign>

</sequence>

</while>

</sequence>

<sequence>

<assign name="PrepareBookFlight">

...

</assign>

<while>

<condition>not($isFlightBooked)</condition>
<sequence>

<invoke name="BookFlight" operation="book" inputVariable="

flightBookingInput" outputVariable="flightBookingOutput" partnerLink="

FlightAgency" portType="FlightBooking"/>

<assign name="GetFlightBookingStatus">

<copy>

<from>$flightBookingOutput.response/status</from>
<to variable="isFlightBooked"/>

</copy>

</assign>

</sequence>

</while>

</sequence>

<sequence>

<assign name="PrepareBookCar">

...

</assign>

<while>

<condition>not($isCarBooked)</condition>
<sequence>

<invoke name="BookCar" operation="book" inputVariable="carBookingInput"

outputVariable="carBookingOutput" partnerLink="CarAgency" portType="

CarBooking"/>

<assign name="GetCarBookingStatus">

<copy>

<from>$carBookingOutput.response/status</from>
<to variable="isCarBooked"/>

</copy>

</assign>

</sequence>

</while>

</sequence>

</flow>

<assign name="PrepareConfirmation">

...

</assign>

<reply name="InformCustomer" operation="book" partnerLink="Client" portType="

TravelBooking" variable="iteniraryOutput"/>

</sequence>

<else>

<sequence>

<assign name="PrepareCancellation">

2.3. Process-driven, service-oriented architectures 29

...

</assign>

<reply name="InformCancellation" operation="book" partnerLink="Client" portType="

TravelBooking" variable="iteniraryOutput"/>

</sequence>

</else>

</if>

</sequence>

</process>

Listing 2.1:�e Travel Booking process in WS-BPEL 2.0

In addition, BPEL provides many other activities and structures for handling events, such as

<eventHandlers>, <pick>, <onMessage>, and <onAlarm>, handling compensation, such

as, <compensationHandlers> and <compensate>, processing faults and exceptions, such

as, <throw>, <faultHandlers>, <catch>, and <catchAll>. For further details of BPEL

process descriptions, please reference the BPEL 1.1
67
andWS-BPEL 2.0

109
as well as W3CWSDL

speci�cation
170
. Listing 2.1 presents the BPEL description of the Travel Booking process shown in

Figure 2.5. �e Travel Booking process exposes its functionality to the partners in terms of Web

Services.�e description of the exposed Web Services is presented in Listing 2.2. For the sake of

readability, some information such as namespace declarations, namespace pre�xes, namespace

URIs and the details of data transformations of the <assign> elements have been omitted.

<definitions name="TravelBooking">

<types>

<schema>

<import schemaLocation="travelbooking.xsd" namespace="http://travelbooking.at"/>

</schema>

</types>

<!-- Exchange messages types -->

<message name="ItineraryRequest">

<part name="request" element="tns:ItineraryRequest" />

</message>

<message name="ItineraryResponse">

<part name="response" element="tns:ItineraryResult" />

</message>

<!-- Main portType of the process -->

<portType name="TravelBooking">

<operation name="book">

<input message="ItineraryRequest" />

<output message="ItineraryResponse" />

</operation>

</portType>

<!-- Types of links to the partners -->

<partnerLinkType name="Client">

<role name="TravelBookingAgency" portType="TravelBooking" />

</partnerLinkType>

<partnerLinkType name="CreditBureau">

<role name="CreditBureau" portType="CreditBureau" />

30 2.4. Model-driven development

</partnerLinkType>

<partnerLinkType name="CarAgency">

<role name="CarAgency" portType="CarBooking" />

</partnerLinkType>

<partnerLinkType name="FlightAgency">

<role name="FlightAgency" portType="FlightBooking" />

</partnerLinkType>

<partnerLinkType name="HotelAgency">

<role name="HotelAgency" portType="HotelBooking" />

</partnerLinkType>

</definitions>

Listing 2.2: WSDLWeb Services description of the Travel Booking process

2.3.5 Process enactment

�e process implementation, i.e., a set of relevant BPEL andWSDL descriptions, can be deployed

on a BPEL execution engine (or so-called BPEL process engine) which instantiates the process and

executes process activities according to the orchestration described by the control �ow.�ere are a

number of BPEL process engines, including open source products such as ActiveBPEL
1
, Apache

ODE
9
, Intalio Server (dual license)

73
, Orchestra

124
, etc., and propriety products such as Oracle

BPEL Process Manager (formerly known as Collaxa BPEL Server)
123
, and IBMWebSphere Process

Server
65
. Each process engine o�en requires additional con�gurations to deploy and execute business

processes properly.�ose con�gurations are merely developed by IT experts because platform- and

technology-speci�c knowledge and skills are needed. Due to the speci�c process engine realization

of each vendor, deployment con�gurations are di�erent from each other.

2.4 Model-driven development

Model-driven development (MDD)* is an emerging so�ware development methodology aiming at

enhancing development speed and so�ware quality
57,150

. In MDD, models are �rst-class artifacts

that can be used not only for documentation and communication solely, but also for many other

purposes, such as reasoning about business or solution domain, analyzing the architecture of the

solution, generating code, and so on, in the so�ware life cycle
20,57,150

.

Mello et al. proposed a de�nition of model
99
:

De�nition 2.2. A model is a coherent set of formal elements describing something (e.g., a system,
bank, phone or a train) built for some purpose that is amenable to a particular form of analysis,
such as communication of ideas between people and machines, completeness checking, race condition

*
Model-driven development is also called model-driven engineering (MDE) or model-driven so�ware development

(MDSD) in the literature.

2.4. Model-driven development 31

analysis, test case generation, viability in terms of indicators such as cost and estimation, standards,
and transformation into an implementation.

Kurtev et al.
84
presented a formal framework for MDD approaches, in which, the de�nitions of

models and the system and their relationships are given as follows:

De�nition 2.3 (System). System is a delimited part of the world considered as a set of elements in
interaction.

De�nition 2.4 (Model). Model is a representation of a given system, satisfying the substitutability
principle.

De�nition 2.5 (Principle of substitutability). A model M is said to be a representation of a system S
for a given set of questions Q if, for each question of this set Q, the model M will provide exactly the
same answer that the system S would have provided in answering the same question.

Schematic
Recurring Code

Meta-model

Individual Code

1 1
1

based on

uses

produces

defined using

uses

Domain

subDomain*

Model
(DSL abstract syntax)

represents

DSL
concrete syntax

represents

Model Instance

defined in

*

*

Transformation

*

1
*

1..* *

**

*

1..*

*

1

Figure 2.7: Fundamental concepts of Model-Driven Development

�e OMG’s MDA speci�cation
113

is one speci�c MDD approach which is di�erent from the MDD

approach in general.�e MDA primarily focuses on interoperability, platform independence, and

merely based on, as well as o�en limited to, OMG speci�cations such asMOF
117
, UML

116
, OCL

118
, etc.

MDD is not bound to speci�c standards or technologies and advocates the idea of using customized,

tailored domain-speci�c languages (DSL) to capture precise representations of structure, function

or behavior of systems or so�ware in a particular domain
150
. Figure 2.7 presents the key concepts of

the MDD paradigm
150,186

.

A domain under considerationmay be divided into smaller sub-domains. Domain-speci�c languages

(DSLs) are usually used for modeling domain concepts and knowledge in MDD. DSLs are small,

sometimes declarative languages that can o�er powerful expressiveness through appropriate nota-

tions and abstractions of a particular problem domain
166,179,183

.�e most important characteristics

32 2.5. Architectural views

of DSLs, with respect to general-purpose languages, are the compactness and expressiveness in a

certain domain such that domain experts themselves can understand, analyze, validate, modify, and

even develop DSLs
166,179,183

.

A DSL has one or many concrete syntaxes, which are either textual or graphical. A DSL’s concrete

syntax can be used to de�ne formal models. �is concrete syntax is based on a language model

(abstract syntax)
185

which speci�es the structure and static semantics of the DSL’s concrete syntax.

DSL’s abstract syntax is embodied in a meta-model.�us, DSLs are sometimementioned asmodeling
language. �e model, i.e., DSL’s abstract syntax has to conform to a meta-model that speci�es

structure and the semantics of that model
150
.

Model transformation plays a very important role in which another model can be created from

a source model according to some prede�ned mapping rules
51,57,150

. For instance, a platform-

independent model (PIM) is mapped into a platform-speci�c model (PSM), or code is generated

from a PSM
51,150

. �e mappings between models, i.e., PIM to PIM or PIM to PSM, are model-to-
model transformations, while the generations of code from PSMs aremodel-to-code transformations

(or so-called, code generation) 51,150. As such, model transformations establish relationships between

models at the same or di�erent levels of abstraction as well as between models and generated code.

�erefore, they become very important factors in MDD for enhancing development automation

and bridging abstraction levels.�e results of code generation are usually schematic recurring code

that form the basic skeleton of the systems or so�ware under developing.�e rests must be �lled

by non-generated code (or so-called, individual code or handwritten code) which are manually

implemented
150
.

Stahl and Völter state a number of advantages that MDD brings to so�ware development, such as in-

creasing productivity through automation, enhancing so�ware quality and reusability by generating

code from proven patterns and architectures, and improving manageability of complexity through

appropriate abstractions
150
.�erefore, we use MDD paradigm to realize the separation of abstraction

levels in order to organize the process representations according to speci�c stakeholders interests, for

instance, high-level representations used by business and domain experts whilst technology-speci�c

representations employed by IT experts.

2.5 Architectural views

Nowadays, so�ware and systems are too complex such that they cannot be fully described by one

single perspective but multiple point of views of di�erent stakeholders are required
32,53

. In the �eld

of so�ware architecture, architectural views have been proposed as a solution to this problem. An

architectural view (or view for short) is the central concept of ISO/IEC 42010, the precedence of

IEEE 1471:2000, Recommended Practice for Architectural Description of So�ware-Intensive Systems69,
for documenting and analyzing so�ware architectures. Other important concepts that make up

2.5. Architectural views 33

the ISO/IEC Standard 42101 are stakeholder, architectural concern, and viewpoint 69 (see Figure 2.8,
which is based on the conceptual model of the IEEE architectural description

69
).

Architecture

Architectural
Description

System

Stakeholder

Concern

ViewViewpoint

Model

has

described
by

aggregates

organized by

identifies

identifies

conforms to

used to cover

is addressed
to

is important to

has

establishes method for

selects

participates in

1..*
1..*

1..*

1..* 1..*

1..*

1..*
1..* 1..*

1

1

1..*1

1..*

1..*

1..*

Figure 2.8: Architectural view and relevant concepts (IEEE 1471:2000)

ISO/IEC Std 42010
69
focuses on architectural descriptions which describe the fundamental organi-

zation of a system’s components as well as their relationships to each other and to the environment.

An architectural description is recommended to separate into a number of architectural views.�e

de�nition of architectural view is given as follows:

De�nition 2.6 (Architectural view). An architectural view is a representation of a whole system from
the perspective of a related set of concerns69.

Each view addresses one or more architectural concerns that the system stakeholders are interested

in. A view must conform to a viewpoint that speci�es conventions for creating and analyzing the

view. In other words, a viewpoint de�nes the abstract syntax of the modeling language used to

develop architectural views.

Several approaches proposed di�erent interpretation of architectural views used for documenting

so�ware and systems. Kruchten presented the “4+1” architectural viewmodel that o�ers four di�erent
viewpoints

82
.�e Logical View is used for capturing system’s functionality from an end-user’s point

of view, the Process View describes dynamic aspects of the system, Development View represents the

system’s organization from developers’ perspectives, and Physical View illustrates the system from

a system engineer’s point-of-view, for instance, the mapping(s) of the so�ware onto the hardware,

how applications are installed and how they execute in a network of computers
82
. �e ��h view,

namely, use cases or scenarios view, selectively describe or consolidate the other views. Kruchten’s

“4+1 views” approach is the foundation of the Rational Uni�ed Process (RUP)
83
.

ISO/IEC Std 10746
74
proposes the Reference Model of Open Distributed Processing (RM-ODP) as a

34 2.5. Architectural views

reference model to coordinate di�erent open distributed processing (ODP) standards for distributed

systems. �e reference model de�nes a framework comprising �ve viewpoints for representing

a basis of the system’s speci�cation. �e enterprise viewpoint focuses on the purpose, scope and

policies for the system.�e information viewpoint focuses on the semantics of the information and

the information processing.�e computational viewpoint enables distribution through functional

decomposition on the system into objects which interact at interfaces.�e engineering viewpoint
focuses on the mechanisms and functions required to support distributed interactions between

objects in the system.�e technology viewpoint focuses on the choice of technology of the system.

Each viewpoint is based on a particular viewpoint language that de�nes concepts and rules for

describing systems from the corresponding viewpoint.

Hofmeister et al.
61
present a method for so�ware architecture design, namely, Siemens’ 4 Views

(S4V) that o�ers four architectural views to separate di�erent engineering concerns in order to

reduce the complexity of architecture design.�e conceptual view captures the system’s functionality

in terms of decomposable, interconnected components and connectors.�emodule view re�ects

the organization of the system’s architecture through two orthogonal structures: decomposition

and layers.�e execution architecture view represents the system’s structure in terms of its runtime

elements. Finally, the code architecture view is used to describe the organization of the so�ware

artifacts.

Recently, Clements et al. examine several architectural styles as well as provide guidance for choosing

appropriate architectural views for analyzing, reconstructing, design communication, deriving code,

and so on
32
. �e authors emphasize the importance of using multiple views in the architectural

description to communicate to the various stakeholders.

�e notion of views o�ers a separation of concerns that has the potential to resolve the complexity

challenges in process-driven SOAs.�erefore, we propose in this dissertation a view-based approach
tomodeling of process-driven SOAs. Perspectives on process representations and service interactions

are used as central concepts in our approach. We then formalize the notion of view using viewmodels

as well as organize views into di�erent abstraction levels using the MDD paradigm. In particular,

our approach o�ers separated process views, such as the collaboration, information, control �ow,

event, transaction, and human view models, each of which represents a speci�c part of the business

process.�ese views can be viewed and manipulated separately to get a better understanding of a

particular concern, or they can be integrated to produce a richer view or a thorough view of the

processes and services. We dedicate the whole Chapter 3 to present and discuss all aspects of our

view-based, model-driven approach.

Chapter 3

View-based, Model-driven
Approach for Process-driven SOAs

“�e orthogonal features, when combined, can explode into
complexity (“�e Philosophy of Ruby”). ”— YukihiroMatsumoto

3.1 Fundamental concepts

A typical business process embodies various tangled concerns, such as the control �ow, data process-

ing, service and process invocations, fault handling, event handling, human interactions, transac-

tions, to name but a few.�e entanglement of those concerns increases the complexity of process

development and maintenance as the number of involved services and processes grow.

In order to deal with this complexity, we use the notion of architectural views (or views for short)
to describe the various process concerns. In particular, a view is a representation of one particular

concern of a process. We devise di�erent view models for formalizing the concept of architectural

view. A view model speci�es the abstract syntax, i.e., the view’s structure, and the static semantics,

i.e., the meaning of the view’s structure which a view derived from that view model must conform to.

�e view models, in turn, are de�ned on top of themeta-model. Figure 3.1 shows the fundamental

concepts of our view-based, model-driven approach along with their relationships to each other.

In Figure 3.1, we present the formalizations of basic process concerns such as the control �ow, service

invocations, and data processing, in terms of the FlowView, CollaborationView, and InformationView
model, respectively.�ese view models, which are presented in detail in the subsequent sections,

are built up around a Core model. �e Core model is intentionally developed for conceptually

representing the essence of a business process.�at is, the Core model covers three distinct concepts:

the process, the relationships between process and the environment, i.e., the services, and the internal

representation of the process, i.e., the process views. Process concerns described by the view models

merely relate to these concepts in the sense that each concern involves either the process’s interior or

exterior, or both. In other words, the other view models derive and extend the foundational concepts

36 3.1. Fundamental concepts

Meta-model

Core
Model

conforms
to

FlowView
Model

CollaborationView
Model

InformationView
Model

extends extends extends

New-Concern-View
Model

extends

ExtensionView
Model

IntegratedView
Model

extends
(refines)

extends
(refines)

integrates integrates

Extension
View

Integrated
View

View

conforms to conforms to

conforms
to

conforms
to

conforms
to

Schematic Recurring
Code/Configurations

generates generates generates Elements

Relationship

Exclusive
relationship

Key

Figure 3.1: Fundamental concepts of the view-based, model-driven approach

provided in the Core model as shown in Figure 3.1. As a result, the Core model plays an important

role in our approach because it provides the basis for extending and integrating view models, and

establishing and maintaining the dependencies between view models.

Nonetheless, our view-based approach is not limited to these concerns, but can be extended to

cover various other concerns, for instance, human interactions, transactions, event handling have

been realized as extensions
62,97

. A new concern can be integrated into our approach by using a

corresponding New-Concern-Viewmodel that extends the basic concepts of the Core model and

de�nes additional concepts of that concern. By adding new view models for additional process

concerns, we can extend the view-based approach along the horizontal dimension, i.e., the dimension

of process concerns, to deal with the complexity caused by the various tangled process concerns.

�ere are many stakeholders involved in process development at di�erent levels of abstraction. For

instance, business experts require high-level abstractions that o�er domain or business concepts

concerning their distinct knowledge, skills, and needs, while IT experts merely work with low-level,

technology-speci�c descriptions.�e MDD paradigm provides a potential solution to this problem

by separating the platform-independent and platform-speci�c models. A platform-independent

3.1. Fundamental concepts 37

Core
Model

FlowView
Model

CollaborationView
Model

InformationView
Model

HumanView
Model

BpelCollaborationView
Model

BpelnformationView
Model

BPEL4PeopleView
Model

Technology-
specific Layer

Abstract
Layer

TransactionView
Model

extends
(refines)

extends
(refines)

extends
(refines)

extends extends extends extendsextends

horizontal dimension
mastering the complexity of tangled process concerns

ve
rt

ic
al

 d
im

en
si

o
n

b
rid

gi
ng

 a
bs

tr
a

ct
io

n
le

ve
ls

BpelFlowView
Model

extends
(refines)

Figure 3.2: Layered architecture of the view-based, model-driven approach

model is a model of a so�ware system that does not depend on the speci�c technologies or platforms

used to implement it while a platform-speci�cmodel links to particular technologies or platforms
51,113

.

Leveraging this advantage of the MDD paradigm, we devise a model-driven stack that has two basic

layers: abstract and technology-speci�c.�e abstract layer includes the views without the technical

details such that the business experts can understand and manipulate. �en, the IT experts can

re�ne or map these abstract concepts into platform- and technology-speci�c views.�e technology-

speci�c layer contains the views that embody concrete information of technologies or platforms.

On the one hand, a technology-speci�c view model can be directly derived from the Core model,

such as the TransactionViewmodel shown in Figure 3.2. One the other hand, a technology-speci�c

view model can also be an extension of an abstract one, for instance, the BpelCollaborationView
model extends the CollaborationViewmodel, the BPEL4PeopleViewmodel extends the HumanView
model

62
, etc., by using the model re�nement mechanism (see Figure 3.2). By re�ning an abstract

layer down to a technology-speci�c layer, our view-based approach helps bridging the abstraction

levels along the vertical dimension, i.e., the dimension of abstraction, which is orthogonal to the

horizontal dimension described in the previous paragraph (see Figure 3.2).

According to the speci�c needs and knowledge of the stakeholders, views can be combined to

provide a richer view or a more thorough view of a certain process. For instance, IT experts may

need to involve the process control �ow along with service interactions which is only provided via

an integration of the FlowView with either the CollaborationView or BpelCollaborationView.

Based on the aforementioned view model speci�cations, stakeholders can create di�erent types

of views for describing speci�c business processes. �ese process views can be instances of the

38 3.2. View-basedModeling Framework

concerns’ view models, extension view models, or integrated view models (see Figure 3.1).�ey can

be manipulated by the stakeholders to achieve a certain business goal, or adapt to new requirements

in business environment or changes in technology and platform. Finally, we providemodel-to-code
transformations (or so-called code generations) that take these views as inputs and generate process

implementations and deployment con�gurations.�e resulting code and con�gurations, which may

be augmented with hand-written code, can be deployed in process engines for execution.

In the subsequent sections, we present in detail the concepts and mechanisms described above

as well as the realization of these concepts in our prototype, namely, the View-based Modeling

Framework (VbMF).

3.2 View-based Modeling Framework

EClassifier

name: EString

ENamedElement

EClass

EDataType

ETypeElement
0..1

eType

EModelElement

EObject

eSuperType
*

EStructuralFeature

EAttribute

EReference
eOpposite

0..1

eAttribute

*

eReference

*

eReferenceType
1

eAttributeType 1

Figure 3.3:�e Ecore meta-model – an MOF-compliant meta-model

�e meta-model, which is the basis of our view models, can be simple or more elaborate like Meta-

Object Facility (MOF)
117
. For better integration and interoperability with existing modeling and

development tools which are using MOF-compliant models and utilizing the XMI standard
119

for

persisting models, we choose the EclipseModeling Framework (EMF)
38
for realizing our view-based,

model-driven approach. Figure 3.3 shows an excerpt of the EMF Ecore meta-model which is used as

the basis for deriving our view models.

Based on Ecore, we �rstly de�ne the Core model as the foundation for the View-based Modeling

Framework. A�er that, di�erent view models are derived from the Core model to represent the

various process concerns. In Figure 3.4, we present the overall architecture of VbMF in which

modeling artifacts such as view models and views are created, manipulated, and maintained. We

categorize distinct functional components of VbMF as shown in Table 3.1.

3.3. Formalization of basic process concerns 39

Process Description
Language Syntax &

Semantics

View

View
Model

Process Description
(BPEL, WSDL, XML

Schema, etc.)

Schematic
Code

based on

designs,
extends

generated from

creates

based on

based on

defined in

interprets

uses

generates

uses

produces

Reverse engineering tool-chain Forward engineering tool-chain

View-based
Interpreter

View
Integrator

Code
Generator

View Editor

View Model
Editor

produces

uses

Figure 3.4: View-based modeling framework architecture

�ese components of VbMF shape the forward and reverse engineering toolchain shown in Figure 3.4.

In the VbMF forward engineering toolchain, abstract views are designed �rst. Next, these abstract

views are re�ned down to their lower level counterparts, which are technology-speci�c views.�e

code generator then uses the technology-speci�c views to produce schematic process code and/or

the necessary con�gurations for deployment and execution. In the course of the reverse engineering

toolchain, the view-based interpreters take as input legacy process descriptions and produce abstract

or technology-speci�c views that can be re-used later in the forward engineering toolchain.

3.3 Formalization of basic process concerns

In this section, we present in detail the (semi-)formalized representations of basic process concerns

in terms of viewmodels, including the control �ow, process interactions, and data handling concerns.

3.3.1 Core model

Aiming at the openness and the extensibility, we devised the Core model as a foundation for creating

the other view models (see Figure 3.5).�e Core model comprises a number of conceptual classes:

View, Process, and Service. Each of these classes can be extended further.�e Core model conforms

to the Ecore meta-model shown in Figure 3.3. In particular, classes shown as rectangle shapes, for

40 3.3. Formalization of basic process concerns

Component Description

View model
editors

Viewmodels editors are based on the viewmodels. Using these editors, a new viewmodel

can be developed from scratch by deriving the Core model. Moreover, an existing view

model can also be extended with some additional features to form a new view model.

We use the basic Ecore editor generator
38
to develop our view model editors.

View editors View editors can be (semi)-automatically generated from VbMF view models based on

the editor generations provided in EMF
38
. �e view editors support stakeholders in

creating new views or editing existing ones. For the sake of simplicity and illustration

purposes, we choose the simplest visualization of the view editors, which is a tree-view

editor.

View integrators View integrators aid the stakeholders in combining view models to produce a richer view

or a more thorough view of a certain process.

Code generators Code generators generate schematic recurrent code and con�gurations from one or many

views. Before generating outputs, the code generators will validate the conformity of the

input views against the corresponding view models.

View-based
interpreters

View-based interpreters are the key contributions of our view-based reverse engineering

approach which can be used to extract appropriate views from existing process descrip-

tions such as BPMN, WSDL, and BPMN (cf. Chapter 4)

Table 3.1: View-based Modeling Framework components

instance, NamedElement, Namespace, Element, View, Service, and Process, are instances of EClass.
�e attributes of a class, for instance, name and nsURI of the NamedElement class, are instances of
EAttribute, and the relationships between two classes are instances of EReference.

Element

Service Process View**

view

*
requires

1..*
provides

element*

name:String
nsURI:String

NamedElement

CoreModel

process1service*

Figure 3.5:�e Core model

At the heart of the Core model is the View class that represents the concept of architectural view.

Each speci�c view (i.e., a specialization of the View class) represents one perspective of a Process. A
Service stands for functionality that the corresponding Process provides or requires.�e meaning

of Process is self-explained. A View also stands for a container of several Elements representing the

3.3. Formalization of basic process concerns 41

objects that describe process interior. Di�erent instances of each of those classes can be distinguished

through the features of the common supertype NamedElement, de�ning a name property (name)
and a namespace URI (nsURI). Figure 3.6 depicts a Core model of the Travel Booking process

described in Figure 2.5 and Listing 2.1 and 2.2.

The CoreModel

TravelBooking
process

The
TravelBooking

process’s Views

Services required
or provided by the

process

Figure 3.6:�e Travel Booking process’s Core model

�e view models that represent concerns of a business process are mostly de�ned by extending the

concepts of the Core model. As such, the view models are independent of each other, and the Core

model becomes the place where the relationships among the view models are maintained. Hence,

the relationships between concepts of the Core model are necessary not only for extension and

dependency management, but also for de�ning the integration points used to merge view models as

mentioned in the description of the integration mechanisms below.

3.3.2 FlowView model

As we mentioned above, the notion of process is central in process-driven SOAs.�erefore, the �ow

of control is one of the most important concerns of a process which is formalized by a FlowView

model. A FlowView model embodies many activities and control structures. �e activities are

process tasks such as service invocations or data handling, while control structures describe the

execution order of the activities in order to achieve a certain goal.

�ere are several approaches to modeling process control �ows such as state-charts, block struc-

tures
67,109

, UML Activity Diagram extensions
116
, Petri-nets

56,140,162,165
, and so on. Despite of this

diversity in control �ow modeling, it is widely accepted that existing modeling languages have the

following patterns in common: Sequence, Parallel Split, Synchronization, Exclusive Choice, Simple
Merge, and Structured Loop 161,162

. Furthermore, zur Mühlen and Recker report a statistical result

42 3.3. Formalization of basic process concerns

[core]
View

/start

1
FlowView

Task

CompositeTask AtomicTask

Sequence Parallel

Exclusive

1..*
has

condition : String
task : Task

Branch

task : Task

Default
1..* branch 0..1 default

[core]
Element

[core]
Element

condition:String
task: Task

Loop

Figure 3.7:�e FlowView model

in
193

how modeling elements are commonly used in practice. �e statistics indicates only a few

of control structures are regularly used by process modelers in reality
193
, which is accordant with

the above observation of the common patterns.�erefore, we adopt these patterns as the building

blocks of the FlowView model. Other, and more advanced, patterns can be added later by using

extension mechanisms to augment the FlowView model. We de�ne the semantics of the control

structures in the FlowView model with respect to these patterns in Figure 3.2.

�e primary class of the FlowView is the Task (see Figure 3.7), which is the base class for other

classes such as Sequence, Parallel, and Exclusive. Another important entity in the FlowView is

the AtomicTask, a specialization of Task, that represents a single concrete action, such as a service

invocation, a data processing task, etc.�e actual description of each AtomicTask is only given in

another speci�c view rather than in the FlowView. For instance, a service invocation is described in

a CollaborationView, while a data processing action is speci�ed in an InformationView. In other

words, an AtomicTask is a placeholder or a reference to a speci�c activity. It is an interaction or a

data processing task, which is de�ned respectively in the corresponding concern’s view.�erefore,

every AtomicTask becomes an integration point that can be used to merge a FlowView with another

view, for instance, an InformationView or a CollaborationView.�e CompositeTask is an abstract

representation of a group of related activities.

Sequence, Parallel, Exclusive, and Loop classes are straightforward realizations of the patterns de-

scribed in Table 3.2. Both Sequence and Parallel consist of unlimited number of process tasks which

are executed sequentially or concurrently. A Sequence or a Parallel completes when all of the enclosed

tasks have �nished. An Exclusive structure consists of one ormany Branches, each of which embodies

3.3. Formalization of basic process concerns 43

Structure Description

Sequence An activity is only enabled a�er the completion of another activity in the same Sequence
structure.�e Sequence structure is therefore equivalent to the semantics of the Sequence
pattern described in

162,163
.

Parallel All activities of a Parallel structure are executed in parallel.�e subsequent activity of the

Parallel structure is only enabled a�er the completion of all activities in the Parallel structure.
�e semantics of the Parallel structure is equivalent to a control block starting with the

Parallel Split pattern and ending by the Synchronization pattern presented in
162,163

.

Exclusive Only one of many alternative paths (Branches or Default) of control inside an Exclusive
structure is enabled according to a condition value of each branch. A�er the active branch

�nished, the process continues with the subsequent activity of the Exclusive structure.�e

semantics of the Exclusive structure is equivalent to a control block starting with the Exclusive
Choice pattern and ending by the Simple Merge pattern proposed in

162,163
.

Loop �e Loop executes the containing task zero or more times while a pre-de�ned condition

still evaluates to true.�e condition is evaluated before the �rst iteration of the Loop and is

re-evaluated prior to each of subsequent iterations. Once the condition evaluates to false,

the thread of control passes to the task immediately following the Loop 162,163
.

Table 3.2:�e semantics of basic control structures of the FlowView model

a condition that decides the path of execution at run-time, and references to a particular Task being
executed if the corresponding condition is satis�ed. A Default may be included in an Exclusive
structure in which the exceptional conditions that are not covered by any Branch’s condition are

handled. A Loop, which is a specialization of Task, can be used for describing an iteration of a certain

process task under some conditions. In Figure 3.8, we illustrate a FlowView that represents the

control �ow of the Travel Booking process.

3.3.3 CollaborationView model

A business process is o�en developed by composing the functionality provided by various parties,

such as services or other processes. Other partners, in turn, may use the process. All business

functions required or provided by the process are typically exposed in terms of standard interfaces

(e.g.,WSDL portTypes). So far, we havemodeled these concepts in theCoremodel by the relationships

between the two classes Process and Service.�e CollaborationView model extends these concepts

to represent the interactions between the process and its partners (see Figure 3.9).

In the CollaborationView model, the Service of the Core model is extended by a tailored and speci�c

Service class that exposes a number of Interfaces. Each Interface provides some Operations, each of

which stands for a particular functionality provided by the associated Service.�e provided attribute
of a Service is either true if that Service is provided by the process or false otherwise.

44 3.3. Formalization of basic process concerns

TravelBooking
FlowView

AtomicTask

Exclusive

Parallel

Sequence

Loop

Figure 3.8:�e Travel Booking process’s FlowView

Each party involved in the process is described by a Partner class.�e ability and the responsibility

of a process’s Partner are modeled by the associated Role. Functionality provided by a Partner is
modeled by the Interface associated with a certain Role of the Partner. A collaboration between

the process and a Partner is represented by an Interaction linking to that Partner. �e type of

communication in each Interaction is either input, output, or both. In addition, an Interaction has a

createInstance attribute that indicates whether the Interaction triggers the execution of the process

or not.�is feature is needed to inform the process engine when to instantiate and start executing

the process. It serves as the entry point for the process just like themain()method in programming

languages such as C/C++ and Java. Last but not least, an Interaction task is performed whenever

the process invokes a service or another process, or the process is invoked itself via its provided

interface.�erefore, each Interaction is associated with a speci�c service’s Interface and Operation
(see Figure 3.9).

Partner, Role, Interface, Operation, and Interaction are subtypes of the Element from the Core model.

3.3. Formalization of basic process concerns 45

[core]
View

*

Collaboration
View

type:{IN,OUT,INOUT}
createInstance:boolean
interface: Interface
operation:Operation

Interaction

[core]
Element

provided:boolean

Service

Interface

[core]
Service

1..*

exposes

Role
myRole:Role[0..1]
partnerRole:Role[0..1]

Partner

*

*

1..*

1

associates with

*associates
with

1
*

Operation

1..*

Figure 3.9:�e CollaborationView model

It means that those are classes of the CollaborationView, which is one speci�c subtype of the process

Views. Furthermore, those classes inherit the name attribute that can be used in the named-based

matching algorithm described in Section 3.5 to integrate view models.

In summary, the relationships between a process and the external environment, i.e., other processes

or services, are modeled by a number of interactions. Each of these interactions requires a speci�c

role of a certain partner of the process. A partner’s role is rei�ed through the functionality provided

in terms of services each of which may expose one or many operations via its well-de�ned interfaces.

We presents a CollaborationView of the Travel Booking process in Figure 3.10a.

3.3.4 InformationView model

�e third process concern we consider in the context of this chapter is data handling which is formal-

ized by the InformationView model (see Figure 3.11).�is view model involves the representation

of data object �ows inside the process and message objects traveling back and forth between the

process and its partners.

In the InformationView model, the BusinessObject class, which may have a generic type, namely,

Type, is the abstraction of any piece of information, for instance, a purchase order received from the

customer, or a request sent to a banking service to verify the customer’s credit card, and so forth.

Each InformationView comprises of a number of BusinessObjects. Messages exchanged between the

process and its partners or data �owing inside the process might go through some Transformations
wherein input data is converted or extracted to yield new pieces of output data.�e transformations

are performed inside a DataHandling class.�e source or the target of a certain transformation is

46 3.3. Formalization of basic process concerns

a) TravelBooking CollaborationView b) TravelBooking InformationView

Interactions

Services

Roles

Partners

BusinessObject

DataHandling

Types

Figure 3.10: A CollaborationView and an InformationView of the Travel Booking process

[core]
View

Information
View

Data
Handling

Type

[core]
Element

Transformation

*

1..*

ObjectReference

1 1

BusinessObject *1
references

*1

hasType

source target

*

Types

*

Figure 3.11:�e InformationView model

3.4. Formalizations of additional process concerns 47

represented by an ObjectReference that holds a reference to a particular BusinessObject.

To summarize, the InformationView model conceptualizes the data that are either processed inside

the process or exchanged between the process and its partners.�e Information view is the subtype

of the View class. Its elements, described in the previous paragraphs, specialize the Element class of
the Core model. Figure 3.10b presents an InformationView of the Travel Booking process.

3.4 Formalizations of additional process concerns

To illustrate the extensibility of our approach along the horizontal dimension in order to cover newly

added process concerns, we present in this section some extra view models developed to formalize

long-running transaction, event handling, and human interaction concerns of processes.

3.4.1 HumanView model

HumanTask

[core]
Element

HumanView

role

*task

*

*
task

[core]
View

*

[core]
Service

Role
role

*
processRole

process1

Figure 3.12:�e HumanView model

A process task’s functionality is o�en accomplished by invoking external services. However, business

processes might also involve human interactions, for instance, a customer submits a purchase order

that triggers an order processing process, a manager accepts or declines a loan approval in a loan

approval process, and so on. We call such process elements HumanTasks. HumanTasks, thus, are
special process tasks that are performed by a person. HumanTasks may need certain input values as

well as a task description and may produce some output data.

Besides the HumanTask as a special process element, the HumanView model shown in Figure 3.12

de�nes human roles and their relationships to the respective process and tasks. Roles are abstracting
concrete users that may play certain roles.�e HumanView thus establishes a role-based abstraction.

�is role-based abstraction can be used for role-based access control (RBAC)
46
. RBAC, in general,

is administered through roles and role hierarchies that mirror an enterprise’s job positions and

48 3.4. Formalizations of additional process concerns

organizational structure. Users are assigned membership into roles consistent with a user’s duties,

competency, and responsibility.

Examples for di�erent types of Roles are task owner, process supervisor, and escalation recipient.

By binding, for instance, the role of a process supervisor to a process, RBAC can de�ne that those

users that are associated with this role may monitor the process execution. Similarly, the owner of a

HumanTaskmay complete the task by sending results back to the process.

We can specify an activity as de�ned within a FlowView to be a HumanTask in the HumanView

that is, for instance, bound to an owner, i.e., the person who performs the task. Likewise, process

stakeholders can be speci�ed for the process by associating them with the HumanView.

3.4.2 TransactionView model

[core]
Element

Scope

[core]
Element

Transaction
View

Compensate

compensateTask: String

CompensationHandler

compensationHandler0..1

FaultHandler

faultHandler0..1

*
scope

[core]
View

*compensate

task:String

BPELCatchAll
faultName:String
faultVariable:String
task:String

BPELCatch

*
bpelCatchAll 0..1

bpelCatch

1
associates with

0..1

has globalScope

Figure 3.13:�e TransactionView model

�e TransactionViewmodel depicted in Figure 3.13 represents long-running transactions of processes.

�is view embodies concepts which are speci�c to the BPEL standards
67,109

. A Scope speci�es the
behavior context of one or group of process activities. In such a context, developers may de�ne a

CompensationHandler, which invokes necessary activities to compensate the functionality done

by the activities associated with the corresponding scope, and a FaultHandler for dealing with

occurring faults or exceptions. In addition, the TransactionView also consists of some Compensates
that explicitly invokes a certain CompensationHandler of the linked Scope. For more details of the

transaction handling concern, refer the BPEL standards
67,109

.

Scope, Compensate, CompensationHanlder, and FaultHanlder are subtypes of the Element of the
Core model because these elements, independently developed though, need to be integrated into

3.4. Formalizations of additional process concerns 49

the FlowView model of a process to augment the transactional semantics for that process.

3.4.3 EventView model

EventHandler

[core]
Element

EventView

createInstance:boolean

Pick

portType:String
operation:String
partnerLink:String
variable:String
task: Task

OnMessage

onMessage*

forDuration:String
untilDeadline:String
task: Task

OnAlarm

eventHandler

*

onAlarm*

[flow]
FlowView

onMessage

1..*

onAlarm

*

[flow]
Task

Figure 3.14:�e EventView model

�e EventView model (see Figure 3.14) describes the process ability to manage and handle events.

On the one hand, a process can be triggered by message-based events, for instance, callbacks from

the process partners.�is type of events is represented by the OnMessage class. On the other hand,

the process or its activities is also activated by timing events, for instance, the purchase order process

will wait for a manual payment from the customer for one week. We model this type of events

by the OnAlarm class that allows the modelers to specify timing period via one of its attributes:

forDuration or untilDealine. When corresponding event arrive, OnMessage and OnAlarm will

activate the enclosing process task.

�ere are two kinds of containers ofOnMessage andOnAlarm: Pick and EventHandler.�e di�erence

between Pick and EventHandler is the logical scope of e�ect, the explicitness, and the synchrony.

�e modelers will use a Pick, which is a specialization of Task of the FlowView, in a certain part of

the process control �ow to specify that the process must wait for particular events to occur. �e

Pick is done when all the process tasks in the activated event are completed.�e EventHandler is
used to handle the events occurring in a certain scope – a logic group of process tasks. If the events

do not arrive, the control �ow of the scope, which the EventHandler is attached to, is not a�ected

or interfered by the EventHandler. In other words, an EventHandler stands loose from the rest of

the process tasks in the scope such that when there are process tasks in the scope active, it is still

50 3.5. View manipulation mechanisms

possible to receive and handle an event speci�ed in the EventHandler.

3.5 View manipulation mechanisms

3.5.1 Extension mechanism

During the process development life cycle, various stakeholders take part in the process with di�erent

needs and responsibility. For instance, the business experts - who are familiar with business concepts

and methods - sketch blueprint designs of the business process functionality using abstract and

high-level and/or notational languages such as �ow-charts, EPC
80
, BPMN

121
, and UML Activity

Diagram extensions
116
. Based on these designs, the IT experts implement the business processes

using executable languages, such as BPEL
67,109

. As a consequence, these stakeholders work at

di�erent levels of abstraction of the process models.

*

Collaboration
View

type:{IN,OUT,INOUT}
createInstance:boolean
interface: Interface
operation:Operation

Interaction

provided:boolean

Service

Interface

1..*

exposes

Role myRole:Role[0..1]
partnerRole:Role[0..1]

Partner

*

*

1..*

1

associates with

*associates
with

1

*

Operation

1..*

[collaboration]
CollaborationView

*

correlation

BPCollaboration
View

initiate:boolean

Correlation

messageType:String
part: String
query: String

PropertyAlias

*propertyAliastype:String

Property

property

*

1

associates with

GenericInteraction

property: Property[*]

CorrelationSet

* correlationSet

1..*
has

type=OUT

Reply

type=IN

Receive

type=INOUT

Invoke

VariableReference

1variable variable1

inVariable

1

outVariable

1

[core]
Element

Operation

Channel

MessageReference

1

inout0..1 0..1
*

fault

1

/start

1
FlowView

Task

CompositeTask AtomicTask

Sequence Parallel

Exclusive

1..*
has

condition : String
task : Task

Branch

task : Task

Default
1..* branch 0..1 default

condition:String
task: Task

Loop

Element

Service Process View**

view

*
requires

1..*
provides

element*

name:String
nsURI:String

NamedElement

CoreModel

process1service*

CollaborationView modelCore model

FlowView model

BpelCollaborationView model

Figure 3.15: Illustration of VbMF extensibility based on the Core model

�e FlowView, CollaborationView, and the InformationView model are the cornerstones to create

abstract views.�ese abstract views aim at representing the high-level, domain-related concepts, and

therefore, they are in the �rst place useful the business experts. Moreover, these views are also useful

for technical experts and for enhancing the communications between di�erent the business experts

and IT experts. Nonetheless, the IT experts o�en need more information, especially platform- and

technology-speci�c descriptions. According to the speci�c requirements on the granularity of the

3.5. View manipulation mechanisms 51

[information]
InformationView

BPEL
InformationView

[information]
DataHandling

Assign

[information]
Transformation

Copy

[information]
BusinessObject

[information]
ObjectReference

Variable

XSDElement

Message

DataObjectSpec

FromSpec ToSpec

literal:String

FromLiteral

expr:String

FromExpr

variable:Variable
part[0..1]:String

FromVariable

partnerLink:String

FromPartnerLink

0..1

element

0..1

messageType

variable:Variable
part[0..1]:String

ToVariable

partnerLink:String

ToPartnerLink

/variable

*

/assign

*

/copy

*

expr:String

ToExpr

(a) BpelInformationView model – Part 1

BPEL
InformationView

targetNamespace:String

Schema

type: Type[0..1]

XSDElement

[information]
Type

Messageelement[0..1]:XSDElement
type[0..1]:Type

Part

PrimitiveType XSDSimpleType

XSDComplexType

0..1

sequence

minOccurs:int
maxOccurs:int

XSDSequence

0..1

subSequence

element*

0..1

*

has

part

1..*

[core]
Element

[core]
Element

element 1..*

[information]
BusinessObject

*

import

0..1
/provides

[information]
Types

Messages

/message schema

[information]
Types

(b) BpelInformationView model – Part 2

Figure 3.16: BpelInformationView model - an extension of the InformationView model

52 3.5. View manipulation mechanisms

views, we can re�ne these views toward more concrete, technology-speci�c views using extension
mechanisms.

a) TravelBooking BpelCollaborationView b) TravelBooking BpelInformationView

Figure 3.17: A BpelCollaborationView and BpelInformationView of the Travel Booking process

A view re�nement is performed by, �rstly, choosing adequate extension points, and consequently,

applying extension methods to create the resulting view. An extension point of a certain view is a

view’s element which is enhanced in another view by adding additional features (e.g., new element

attributes, or new relationships with other elements) to form a new element in the corresponding

view. Extension methods are modeling relationships such as generalization, extend, etc., that we

can use to establish and maintain the relationships between an existing view and its extension. For

instance, the FlowView, CollaborationView, and InformationView model are extensions of the Core

model using the generalization relationship. In Figure 3.15, we demonstrate the extensibility of

3.5. View manipulation mechanisms 53

the Core model by the FlowView and the CollaborationView model as well as the extensibility of

the CollaborationView model by an enhanced view model, the BpelCollaborationView model. A

similar BPEL-speci�c extension has also been developed for the InformationView model. For the

sake of readability, the extension of the InformationView model presented in Figure 3.16 comprises

two parts that represent data processing (see Figure 3.16a) and data structure (see Figure 3.16b),

respectively. Figure 3.10(a) depicts a BpelCollaborationView – an extension of the CollaborationView

– and Figure 3.10(b) shows a BpelInformationView – an extension of the InformationView – of the

Travel Booking process. �ese extension views inherit and re�ne the elements of their abstract

counterparts.

In the same way, more speci�c view models for other technologies can be derived. In addition,

other process concerns such as long-running transactions, event handling, human interactions, as

described above, have been extended by using new view models derived from the basic view model

using the same approach as used above.

3.5.2 Integration mechanism

In our approach, the FlowView – as the most important concern in process-driven SOA – is o�en

used as the central view. Views can be integrated via integration points to produce a richer view

or a more thorough view of the business process. We devise a name-based matching algorithm

for realizing the view integration mechanism (see Algorithm 3.1). �is algorithm is simple, but

e�ectively used at the view level (or model level) because from a modeler’s point of view in reality,

it makes sense, and is reasonable, to assign the same name to the modeling entities that pose the

same functionality and semantics. Nonetheless, other view integration approaches such as those

using class hierarchical structures or ontology-based structures are applicable in our approach with

reasonable e�ort as well.

Before discussing in detail the name-based view integration, we propose the de�nition of conformity

of model elements and integration points. Let m be an element of a certain view model, the symbol

m̂ denotes the hierarchical tree of inheritance of m, i.e., all elements which are ancestors of m, and

m.x denotes the value of the attribute x of the element m.

De�nition 3.1 (Conformity). Let M1, M2 be two view models and m1 ∈ M1 and m2 ∈ M2. Two
elements m1 and m2 are conformable if and only if m1 and m2 have at least one common parent type
in their tree of inheritance or m1 is of type m2, or vice versa.

Using m1 ↑ m2 to denote m1 and m2 are conformable, De�nition 3.1 is given as:

m1 ↑ m2 ⇐⇒ (m̂1 ∩ m̂2 ≠ ∅) ∨ (m1 ∈ m̂2) ∨ (m2 ∈ m̂1)

De�nition 3.2 (Integration point). Let M1, M2 be two view models and two views V1, V2 be instances
of M1 and M2, respectively. A couple of elements e1 and e2, where e1 ∈ V1 and e2 ∈ V2, e1 is an instance

54 3.6. Code generation

of m1, and e2 is an instance of m2, is an integration point between V1 and V2 if and only if m1 and m2

are conformable and e1 and e2 have the same value of the attribute “name”.

Using I(e1, e2) to denote the integration point between two views V1 and V2 at the elements e1 and
e2, and x ≻ y to denote x is an instance of y, De�nition 3.2 can be written as:

I(e1 , e2∣e1 ∈ V1 , e2 ∈ V2 , e1 ≻ m1 , e2 ≻ m2 ,V1 ≻ M1 ,V2 ≻ M2) ⇐⇒ (m1 ↑ m2) ∧ (e1 .name = e2 .name)

�e main idea of the name-based matching for view integration is to �nd all integration points

I(e1, e2) between two views V1 and V2 and merge these two views at those integration points.�e

merging at a certain integration point I(e1, e2) is done by creating a new element which aggregates

the attributes and references of both e1 and e2.�is idea is realized by the code from line 7th to line
20th in Algorithm 3.1.

�e complexity of the name-based matching algorithm is approximately O(k + l + k × l), where
k = ∣V1∣ and l = ∣V2∣.�is complexity can be signi�cantly reduced by generating and maintaining a

con�guration �le containing the integration points of every pair of views with tool support.�is is

reasonable in reality because the integration points can be directly derived from the relationships

between the FlowView and other views. For instance, a developer uses the modeling framework

to realize an AtomicTask that performs a service invocation. �e service invocation is de�ned

by an Invoke activity in the BpelCollaborationView with the same name. �e tooling then can

automatically derive an integration point between the AtomicTask and the Invoke activity. Later
on, the view integration algorithm only loads the con�guration �les and performs view merging

rather than iterates through all elements of two input views.�is way, the complexity of the view

integration algorithm is reduced to approximately O(P), where P is the number of integration

points between V1 and V2. We note that P ≤ k × l . In reality, the number of elements which are

used for view integration are o�en much less the total number of elements of the containing view,

and therefore, P ≪ k × l). Nonetheless, this approach requires additional support by the modeling

framework for deriving and maintaining the integration points, which is beyond the scope of our

work.

3.6 Code generation

�ere are two basic types of model transformations: model-to-model and model-to-code. Amodel-
to-model (M2M) transformation maps a model to another model. Model-to-code (M2C), so-called

code generation, o�en produces schematic recurring, and maybe executable, code, that makes up

the so�ware products from the models
150
. In both types of transformation, the transformation

rules are o�en de�ned, �rstly, based on the source model. In addition, the transformation rules in

M2M require the speci�cation of the target model while the transformation rules in M2C may need

speci�c platform-de�nition models
51,150

.

3.6. Code generation 55

Algorithm 3.1: View integration by name-based matching

Input: View V1 and view V2

Output: Integrated view V12

begin1

V12.initialize()2

E1 ← V1.getAllElements()3

E2 ← V2.getAllElements()4

V12.addElements(E1)5

V12.addElements(E2)6

/* Look for conformable elements and integrate their attributes and

references into a newly created element */

foreach e1 ∈ E1 do7

f ound ← false8

while not found do9

e2 ← E2.next()10

if (e1.name = e2.name) ∧ (e1.superType ↑ e2.superType) then11

f ound ← true12

create enew13

enew .mergeAtributes(e1.getAttributes(), e2.getAttributes())14

enew .mergeReferences(e1.getReferences(), e2.getReferences())15

V12.addElements(enew)16

V12.removeElements(e1,e1)17

end18

end19

end20

return V1221

end22

In our view-based approach, the model transformations are merely model-to-code that take as

input one or many views and generate schematic code in executable process languages, such as

BPEL
67,109

(see Figure 3.18). In the literature, there are di�erent code generation techniques such as

template-based transformation, inline generation, or code weaving have been proposed
150
. In our

proof-of-concept implementation, we use the template-based technique which has been realized

using the XPand language of the openArchitectureWare framework
122

to implement the code

generations. Nevertheless, other above-mentioned techniques can be leveraged in our approach

with reasonable modi�cations as well.

Figure 3.18 shows our view-based code generator which is de�ned based on the view models.

56 3.7. Tool support

View

View model

instance-of

Template

Code
Generator

Schematic code/
configurations

Individual
Codeuses

produces

uses

based on

uses

Figure 3.18: View-based model-to-code transformation (aka code generation)

Existing process views can be used by the code generator to produce schematic code and runtime

con�gurations of the process implementation.�e generated schematic code and con�gurations

sometime need to be complemented with manually written code (also called individual code) in

order to ful�ll particular business functionality. A typical scenario in a model-driven paradigm,

according to the best practices of process-driven development, is not to embed certain special

business logics in process models in order to enhance the level of abstraction, high reusability and

interoperability of the models. To serve this purpose, the code generator can combine the individual

code with the schematic code to produce �nal process implementation that can be deployed for

execution in a process engine.

a) Code generation template rule in XPand language b) The generated schematic recurring BPEL code

Figure 3.19: Illustration of the code generation template rules and the generated schematic BPEL code

In Figure 3.19a, we present an excerpt of our template-based code generation rules in the XPand

language along with the schematic BPEL code generated by using the template rules (see Figure 3.19b).

Further details of the XPand language can be found in the openArchitectureWare framework

documentation
122
.

3.7. Tool support 57

Abstract views

Code
Generator

Process implementation
Deployment configuration

Transformation templates

Technology-specific views

Business experts

IT experts

Figure 3.20: View-based, model-driven development toolchain

3.7 Tool support

�e view models, components and model manipulation mechanisms mentioned above are the

essential parts shaping the view-based, model-driven development toolchain shown in Figure 3.20.

�is toolchain supports stakeholders in modeling and implementing business process in a forward

engineering approach.

In this toolchain, business experts, who are familiar with domain- and business-oriented concepts

and knowledge, involve in process development by using the VbMF abstract views.�e IT experts,

who mostly work with technical details to implement and deploy business processes, re�ne the

abstract views into technology-speci�c views. During the course of modeling or implementation,

stakeholders, either business experts or IT experts, can utilize the view integration mechanism in

order to achieve an appropriate view or a more thorough view of the process. A�er the stakeholders

�nish developing the corresponding VbMF views, the code generators can be used to produce

schematic process code in terms of BPEL and WSDL as well as necessary process deployment

con�gurations.�e IT experts may involve in developing individual code (or so-called manually

written code) that complements the generated schematic code with speci�c business logics or

deployment con�gurations.�e aforementioned development process can be iterated until process

functionality is fully accomplished to ful�ll a certain business goal.

We realized the aforementioned toolchain by facilitating the Eclipse Modeling Framework (EMF)
38

58 3.7. Tool support

1 2 3

4 5

Figure 3.21: �e proof-of-concept tooling of the view-based, model-driven approach for process-driven

SOAs: (1) FlowView Editor, (2) (Bpel)InformationView Editor, (3) (Bpel)CollaborationView Editor, (4) Code

generation template rules, and (5) Generated process code

and openArchitectureWare MDD framework
122

(see Figure 3.21).�e greatest advantage of using

the Eclipse Modeling Framework is that we gain a better integration and interoperability with

existing development tools developed based on EMF Ecore, a MOF-compliant meta-model, and

XMI – a standard for serializing models.�e View-based Modeling Framework provides di�erent

editors for manipulating views, such as the FlowView Editor, the (Bpel)CollaborationView Editor,

the (Bpel)InformationView Editor, and so on. For the sake of demonstration, we mainly use the tree-

based editors which are generated from our view models by the EMF generator.�e template-based

code generation rules are developed using the XPand language editor provided in openArchitec-

tureWare framework
122
. Using these rules, we can automatically generate process implementations

including BPEL and WSDL descriptions.

Many tasks of the modeling toolchain can be automated through the work�ow engine provided

by openArchitectureWare MDD framework. �e openArchitectureWare work�ow engine takes

a declarative XML-based con�guration, namely, a work�ow. A work�ow is typically made up of

various work�ow components which are POJOs derived from oAW prede�ned interfaces.�ese

work�ow components can be used for reading and instantiating models, checking them for OCL-

3.7. Tool support 59

based constraint violations, transforming models, and the �nally, for generating code. VbMF

provided a prede�ned work�ow for loading process views, checking the conformity of views against

the corresponding view models, and generating process implementations in BPEL andWSDL as

well as process deployment con�gurations for some BPEL engines such as ActiveBPEL
1
and Apache

ODE
9
(see Listing 3.1).

<workflow>

<!-- Declare VbMF view models -->

<bean class="org.eclipse.mwe.emf.StandaloneSetup" >

<registerEcoreFile value="framework/model/vb/core.ecore"/>

<registerEcoreFile value="framework/model/vb/flow.ecore"/>

<registerEcoreFile value="framework/model/vb/collaboration.ecore"/>

<registerEcoreFile value="framework/model/vb/information.ecore"/>

<registerEcoreFile value="framework/model/vb/bpelcollaboration.ecore"/>

<registerEcoreFile value="framework/model/vb/bpelinformation.ecore"/>

<registerEcoreFile value="framework/model/vb/bpelevent.ecore"/>

</bean>

<component class="org.eclipse.mwe.emf.Reader">

<uri value="${core}"/>

<modelSlot value="core"/>

</component>

<component class="org.eclipse.mwe.emf.Reader">

<uri value="${flow}"/>

<modelSlot value="fv"/>

</component>

<component class="org.eclipse.mwe.emf.Reader">

<uri value="${information}" />

<modelSlot value="iv" />

</component>

<component class="org.eclipse.mwe.emf.Reader">

<uri value="${collaboration}" />

<modelSlot value="cv" />

</component>

<component class="org.eclipse.mwe.emf.Reader">

<uri value="${event}" />

<modelSlot value="ev" />

</component>

<!-- Generate WSBPEL 2.0 process implementation -->

<component class="org.openarchitectureware.xpand2.Generator">

<metaModel idRef="vbmm" />

<expand value="framework::template::wsbpel::WSBPEL({fv, iv, cv, ev}) FOR core" />

</component>

<!-- Generate ActiveBPEL deyployment configuration -->

<component class="org.openarchitectureware.xpand2.Generator">

<metaModel idRef="vbmm" />

<expand value="framework::template::pdd::PDD({fv, iv, cv, ev}) FOR core" />

60 3.8. Discussion

</component>

<component class="org.openarchitectureware.xpand2.Generator">

<metaModel idRef="vbmm" />

<expand value="framework::template::wsdlCatalog::wsdlCatalog({fv, iv, cv, ev}) FOR

core" />

</component>

<!-- Generate Apache ODE configuration -->

<component class="org.openarchitectureware.xpand2.Generator">

<metaModel idRef="vbmm" />

<expand value="framework::template::odeDD::DD({fv, iv, cv, ev}) FOR core" />

</component>

</workflow>

Listing 3.1: wsbpel.oaw: A work�ow de�nition for generating process code and deployment con�gurations

3.8 Discussion

�ere are several existing standardization e�orts on proposing process modeling languages such

as BPMN
121
, EPC

34,80,142
, IDEF3

96
, and BPDM

120
, and executable languages such as BPEL

67,109
,

XPDL
181
, and BPML

16
.�e process modeling languages are o�en of the same abstraction level as the

VbMF abstract layer whilst the executable languages are correspondent to the technology-speci�c

layer.�e commonality of these languages is to consider the business process model as a whole.�ey

do not support the separation of the process model’s concerns in order to deal with the signi�cant

complexity of process development as the number of involving services and processes increase. In

addition, there are no explicit links between a certain process modeling and an executable language.

As a consequence, it requires additional e�ort tomaintain the integrity and consistency of themodels,

or to validate the models
100,125

. White suggests an interesting approach that uses BPMN diagrams

as high-level representations of BPEL processes in order to bridge the gap between process design

and implementation
182
. As this approach utilizes the existing process modeling/implementation

languages, the aforementioned issues which are caused by the intrinsic characteristics of these

languages, remain unsolved.

�e concept of architectural views is not new. However, to the best of our knowledge, there are

only a few approaches that exploit the notion of views to support business process modeling and

development. Mendling et al.
102

present a view integration approach inspired by the idea of schema

integration in database design. Process models based on Event-Driven Process Chains (EPCs)
34,80,142

are investigated, and the pre-de�ned semantic relationships between model elements such as equiva-
lent, sequence, andmerge operations are performed to integrate two distinct views. Semantics-based

merging is a promising approach to model integration, but it is hard to apply it in order to integrate

two di�erent types of models, for instance, to merge a control �ow model with a data model.�us,

the authors mainly focus on the merging of process behaviors (i.e., the control �ow).

3.8. Discussion 61

�e AMFIBIA approach
10,11

presents a meta-model for formalizing di�erent aspects of business

processes and provides an open framework to integrate various formalisms through a central notion

of interface.�e major contribution in AMFIBIA is to exploit dynamic interactions of those aspects.

AMFIBIA’s framework has a core model with a small number of important elements, which are

referred to, or re�ned in other models.�e distinct point to our framework is that in AMFIBIA the

interaction of di�erent ‘aspects’ is only performed by event synchronization at run-time. Using view

extension and integration mechanisms in our framework, the integrity and consistency between

models can be veri�ed earlier at the model level. Nonetheless, AMFIBIA o�ers no support for the

separation of abstraction levels and adaptation to stakeholders’ interests.

�e ISO Reference Model for Open Distributed Processing (RM-ODP)
74
is a standard reference

model which de�nes a set of di�erent view points such as enterprise, information, computational,

engineering, and technology viewpoints. Each viewpoint has its own language and a clear semantics.

�ese concepts, similar to those in AMFIBIA and our approach, are de�ned based on the principle of

separation of concerns to help stakeholders thinking from di�erent perspectives in order to manage

complexity of distributed applications.�e advantage of our approach compared to these approaches

is that our view-based model-driven framework does not only support the separation of process

concerns but also the separation of process models into di�erent levels of abstraction, for instance,

abstract and technology-speci�c layers.

IDEF3
96

is a scenario-based framework proposed for modeling business processes. IDEF3 provides

two fundamental views: the process-centered and the object-centered view. �e process-centered

view provides a graphical representation that supports domain experts and analysts in describing

business processes with respect to events, activities, and their relationships. �e object-centered

view is a mean for capturing information about objects of various kinds and their transformations

during the course of a particular process.�ese two views are essentially similar to our FlowView
and InformationViewmodel.�e other process concerns such as service and process interactions,

transactions, event handling, etc., have not been considered in IDEF3.

Our work shares some concepts with the approach proposed by van der Aalst et al.
159
. In this

approach, the authors develop a conceptual SOA-based architecture framework around the idea of

modularization which is close to the service component architecture (SCA)
13
, an industry standard

for SOAs. �e key concept in this approach is the notion of components, which is more or less

equivalent to our process concept of the Core model, and the relationships between components.

�e authors emphasize the separation of activities from data elements, but neither mention the

capability of extending or integrating other concerns that could be parts of a business process nor

the separation of abstraction levels.

Dubray proposes WSPER
76
– an abstract SOA framework which is based on some similar concepts

as those presented by val der Aalst et al.
159
, such as service, resource, and assembly. WSPER is

intentionally designed to provide an adequate formalism for SOAs and a programming language

62 3.8. Discussion

based on this formalism. In particular, WSPER o�ers three meta-models: a service meta-model for
capturing services, interfaces, and operations, a resource meta-model for describing data and various

data types including unstructured, semi-unstructured, or structured, and a assembly meta-model
for specifying di�erent kinds of deployment units derived from SCA

13
, such as assemblies and

components. WSPER mainly focuses on services and composite services, and therefore, provides

neither adequate representations for high-level stakeholders such as business experts nor the ability

for extending to other concerns such as transactions, event handling, etc.

�ere are a number of approaches using UML extensions (e.g., UML Pro�les) for modeling business

processes
88,146

.�ese approaches merely focus on high-level, domain- and business-oriented con-

cepts and knowledge, such as customers, process goals and enterprise goals, services and products,

etc., rather than the actual design and implementation of processes. Skogan et al.
147

propose another

approach for process-driven modeling by using UML extensions. In this approach, a toolchain is

devised to extract and formalize WSDL descriptions using UML models. Service compositions

are captured by UML Activity Diagrams (AD) with special stereotypes. Finally, code in executable

languages is generated from a composition model. �e authors neither consider separation of

concerns in service composition nor integration of other concerns except service interfaces and the

control �ow.

Schmit and Dustdar present an approach to transactional Web Services modeling
143
. Although this

approach considers only one concern of a business process model, it is an initial e�ort on supporting

separation of process views into layers and maintaining references between various layers. �e

transaction model described in this approach can be integrated and extended in VbMF to represent

the transaction concerns of processes (see Section 3.4).

Aspect-oriented so�ware development (AOSD) is an emerging programming paradigm that in-

creases modularity by supporting the explicit separation of cross-cutting concerns
48,78

. Char� et

al. present an aspect-oriented approach to BPEL, AO4BPEL,
24–27

for improving the modularity of

composite Web Services speci�cations and supporting dynamic adaptation of service compositions.

Out of the advantages of AO4BPEL for supporting better modularity and dynamic adaptability
24–27

,

this approach only works at a low level of abstraction, i.e., executable languages such as BPEL, or

VbMF technology-speci�c layer and o�ers no support for high-level process modeling languages

such as BPMN, EPC, or UML AD. Cappelli et al.
22
suggest a better aspect-oriented approach that

o�ers a meta language AOPML to modularize and represent the cross-cutting concerns of business

processes. AOPML allows developers to associate various aspects, for instance, logging, auditing,

etc., to a certain process model language. �e authors have chosen BPMN, a process modeling

language, for demonstrating how AOPML works in reality. However, we observe that the involving

aspects are too technical such that the business experts, who use BPMN to design the business

processes, hardly work with.�is is also a common characteristic of aspect-oriented approaches:

they merely work at the code level rather than supporting higher levels of abstraction.

3.8. Discussion 63

Table 3.3 and 3.4 summarize qualitative comparisons of our view-based, model-driven approach for

process-driven SOAs, VbMF, and a number of closely related work.

Support for separation of concerns Support for separation of abstrac-
tion levels

Support for adaptation of stake-
holder interests

AMFIBIA
by Kindler et

al.
10,11

AMFIBIA supports the separation of

various aspects of processes including

the control, organization, and infor-

mation aspect. Further aspects can

also be added into AMFIBIA.

Not supported Not supported

AO4BPEL
by Char� et

al.
24–27

AO4BPEL supports the modularity of

aspects of process implementation.

Not supported Not supported

AOPML by

Cappelli et

al.
22

AOPML supports the modularity of

aspects of process implementation.

Not supported Not supported

RM-ODP by

ISO
74

RM-ODP provides �ve generic and

complementary viewpoints on the sys-

tem and its environment.

Not supported Not supported

Transactional
WS by Schmit

et al.
143

�is approach introduces a layered ar-

chitecture including structure, trans-
action, security and work�ow.

Not supported Not supported

UML-based
by Skogan et

al.
147

Not supported �is approach based on

MDA/UML
113

and o�ers an

extension of the UML Activity Di-

agram for describing Web Service

compositions at high-level. �ese

composition models are claimed

to be independent of executable

languages and platforms.

Not supported

View inte-
gration by

Mendling et

al.
102

�is approach merely o�ers mech-

anisms for merging two di�erent

views.

Not supported Not supported

VbMF VbMF initially supports separation of

concerns by the notion of views and

o�ers di�erent (semi-)formalizations

of process concerns in terms of view

models.

VbMF initially supports separation

of abstraction levels by a realiza-

tion of theMDDparadigm that pro-

vides two fundamental layers: ab-

stract and technology-speci�c view

model.

According to particular needs, knowl-

edge, and experiences, the stakehold-

ers can work at either abstract layer or

technology-speci�c layer. In addition,

stakeholders can employ the view in-

tegration mechanism to see a richer

view or a thorough view of the pro-

cess.

Table 3.3:�e comparison of related work of VbMF

64 3.8. Discussion

Option for extensibility Support for view inte-
gration

Support for code genera-
tion

Tool support

AMFIBIA
by Kindler et

al.
10,11

�e authors claim that

additional aspects can be

added and integrated into

AMFIBIA but have not

elaborated how this can be

done.

Not supported Not supported �e authors stated that a pro-

totypical aspect-oriented im-

plementation has been devel-

oped on top of EMF.However,

no implementation details are

described in
10,11

.

AO4BPEL
by Char� et

al.
24–27

Additional aspects, which

are merely technical, can

be associated with process

models.

Not supported Not supported AO4BPEL o�ers an aspect

deployment tool for deploy-

ment, undeployment, and list-

ing deployed aspects.

AOPML by

Cappelli et

al.
22

Additional aspects, which

are merely technical, can

be associated with process

models.

Not supported Not supported Not supported

RM-ODP by

ISO
74

�e conceptual framework

provided in RM-ODP

needs further e�orts on

realizing in particular

so�ware systems.

Not supported Not supported RM-ODPmainly o�ers a con-

ceptual framework aiming at

the distribution, interopera-

tion, and portability of so�-

ware systems.

Transactional
WS by Schmit

et al.
143

Not supported Not supported Not supported Not supported

UML-based
by Skogan et

al.
147

Not supported Not supported Yes. Executable code for

Web Service compositions,

such as BPEL, can be gener-

ated from high-level com-

position models. As a

consequence, the abstrac-

tion of these compositions

models is likely similar to

that of the executable lan-

guages.

Not explicitly supported

View inte-
gration by

Mendling et

al.
102

Not supported Yes. Two behavioral

views can be merged ac-

cording to the similarity

of activity semantics.

Not supported Not supported

VbMF VbMF provides the ex-

tension mechanisms for

expanding the framework

with additional concerns

or re�ning existing view

models.

View integration is ba-

sically accomplished by

using the name-based

matching algorithm to

produce a richer view or

a thorough view of pro-

cesses.

Process implementation,

such as BPEL and WSDL,

can be generated from

technology-speci�c views

through template-based

transformation rules.

A prototypical Eclipse-based

workbench based on MOF-

compliant EMF Ecore and

openArchitectureWare (cf.

Section 3.7). XMI standard
119

is utilized for model persis-

tence, and thereby, better

support integration and

interoperability of existing

MOF-compliant tools.

Table 3.4:�e comparison of related work of VbMF (cont’d)

3.9. Summary 65

3.9 Summary

In this chapter, we presented our view-based, model-driven approach for process-driven SOAs. We

elaborated on how the notion of views have been exploited for dealing with the complexity of the

horizontal dimension, i.e., the dimension of di�erent concerns, of process-driven SOA development,

and how the model-driven development paradigm is leveraged for the separation of abstraction

levels.

We illustrated the realization of these concepts in terms of a View-based Modeling Framework for

process-driven SOA development. In this framework, the notion of views is central. We developed a

number of view models for (semi-)formalizing process concerns, such as the control �ow, service

interactions, and data processing as well as additional concerns, such as human interactions and

transaction. In order to provide view models which are more appropriate and relevant to the various

stakeholders’ interests, we devised a model-driven stack that organizes these view models into

abstract and technology-speci�c layer.�e abstract layer includes view models that o�er high-level

concepts and structures such that business experts can easily understand and manipulate them to

accomplish a certain business goal.�e technology-speci�c layer consists of view models that are

merely relevant to IT experts who are responsible for implementing, deploying, and maintaining the

processes.�is combination of the separation of concerns principle and the separation of abstraction

levels o�ers a �exible, extensible methodology for process-driven SOA development.

Furthermore, our framework also o�ers di�erent modeling and development mechanisms to stake-

holders. �e various editors that embody the view extension and view integration mechanisms

support stakeholders in creating and manipulating viewmodels and views. In addition, the code gen-

erator generates process implementations from views, and therefore, enhances the automation and

productivity in process development.�ese mechanisms, along with the aforementioned concepts,

shape out forward engineering toolchain for process-driven SOAs.

Chapter 4

View-based Reverse Engineering

“ Grasp the subject, the words will follow. ”—Cato the Elder (234BC–149BC)

4.1 Introduction

In the context of process-driven SOAs, many companies have built up an enormous repository of

existing process code in executable languages, such as BPEL/WSDL, jPDL, BPML, and FDL.�ere

are three important issues that the companies are confronted with concerning the evolution of those

processes. First, the legacy process code contains many tangled concerns, such as the control �ow,

service invocations, data processing, fault and event handling, transactions, and so forth. Second,

the languages used to describe these processes are rather technology-speci�c, and therefore, the

abstract, high-level representations are not explicitly available at the code level.�ird, there is no

explicit link between process design languages, such as BPMN, EPC, and UML Activity Diagram,

and process implementation languages, such as BPEL and BPML. Hence, due to the mismatches

of syntax and semantics and many other reasons, the cohesion of the high-level description and

process code is likely obscured.

As a consequence, this hinders the adaptation of business processes to the evolution of both business

environment and technology.�e stakeholders, by their knowledge, experience, and skills, involve in

the evolution by analyzing the “as-is” processes and, if necessary, re-designing or re-developing them

to adapt to new requirements, policies, technologies, etc. Unfortunately, a legacy process description,

due to its complexity and technology speci�city, as described in the previous paragraph, is o�en

inappropriate to particular needs and knowledge of a certain stakeholder, especially domain/business

experts.�us, such stakeholders hardly understand, analyze, maintain, or reuse fragments of existing

executable process descriptions.

Our view-based approach introduced in Chapter 3 can potentially resolve these issues. Using this

approach, the process models are organized into separated and formalized concerns at di�erent

abstraction levels. In addition, view extension and integration mechanisms can be used to provide

better view models tailored to the stakeholders’ interests. However, for budgetary reasons, devel-

4.2. The view-based reverse engineering approach 67

oping the process views, required in our approach, from scratch is a poor and costly option. A

promising alternative is an (semi)-automated re-engineering approach comprising two activities:

reverse engineering for building more appropriate and relevant representations of the legacy code

and forward engineering for manipulating the process models, and for re-generating certain parts

of the process code. During the reverse engineering process, high-level, abstract and low-level,

technology-speci�c views of the process models are recovered from the existing code. In this way,

the reverse engineering approach helps stakeholders to gain more appropriate representations of the

processes such that they can e�ciently get involved in process re-development and maintenance at

di�erent abstraction levels.

An appropriate reverse engineering of business processes, on the one hand, has to be able to adapt

and tailor process models to stakeholder knowledge and needs. On the other hand, it is also able

to enhance the integration, reusability, and interoperability of various process models. �e view-

based reverse engineering approach presented in this chapter aims at achieving these goals. In the

subsequent sections, we present this approach in detail and realize it in terms of a reverse engineering

toolchain that �ts into the View-based Modeling Framework described in Chapter 3.

4.2 The view-based reverse engineering approach

View model

Abstract View

Technology-
specific View

High-level
languages

Low-level
languages

Legacy process
descriptionsinterprets

defines

produces

produces corresponds

corresponds

refines to

described in

described in

conforms
to

conforms
to

View-based
Interpreter

Figure 4.1: Overview of the view-based reverse engineering approach

Figure 4.1 depicts the overview of the view-based reverse engineering approach that comprises

a number of view-based interpreters, such as FlowView interpreter, InformationView interpreter,
and CollaborationView interpreter, and so on. Each interpreter is responsible for interpreting and

recovering the corresponding view from existing process descriptions. Recall that in VbMF a

particular view must conform to its view model. �erefore, the interpreter of a certain view is

de�ned based on the view model to which the corresponding view conforms. For instance, a

FlowView might consist of the modeling elements such as Task, Parallel, Sequence, Exclusive, Branch,

68 4.3. General approach for view extraction

Default, and Loop according to the FlowView model described in Figure 3.7. In order to recover the

FlowView from process descriptions, the FlowView interpreter walks through the input descriptions

to retrieve related information of these elements and ignores the others.

�e major objective of the view-based reverse engineering approach is to recover relevant represen-

tations of di�erent abstraction levels from existing legacy processes. In particular, our approach

extracts relevant concerns of the process represented in terms of view models by using view inter-

preters. �e resulting views can be further integrated to adapt to speci�c needs, knowledge, and

experience of particular stakeholders. �e approach is able to produce high-level, abstract views

for business analysts and technology-speci�c views for IT experts from existing process code base.

�e abstract parts extracted from the process code are integrated into VbMF using the higher-level

views, whereas the technology-speci�c parts are integrated using the technology-speci�c views as

described in Figure 4.1. Additionally, the views obtained from the reverse engineering toolchain, in

turn, can be manipulated using the view integration mechanisms, presented in the previous chapter,

to produce richer views which �t better to stakeholders’ interests, or to produce a more thorough

view of the whole process. Any change on the views can be propagated by means of code generation

provided in VbMF (cf. Section 3.5).

4.3 General approach for view extraction

�e process descriptions comprise the speci�cation of business functionality in a certain language,

for instance, as we exemplify in this chapter, BPEL. Moreover, the process functionality also ex-

poses through service interfaces, for instance, expressed in WSDL. To extract appropriate views

from process descriptions, i.e., BPEL and WSDL speci�cations, we need high-level interpreters

such as FlowView interpreter, CollaborationView interpreter, InformationView interpreter as well
as technology-speci�c interpreters such as BpelCollaborationView interpreter, BpelInformationView
interpreter, and so forth.

Our general approach to de�ne view interpreters is based on the Partial Interpreter pattern
184
.�is

pattern is typically applied when the relevant information to be interpreted from a language is

only a (small) sub-set of the source document’s language, and thus, the complexity of the whole

language should be avoided in the subsequent interpretation. In particular, we concentrate on

speci�c view models. �e approach based on Partial Interpreter enables us to de�ne modular,

pluggable view interpreters, and the framework to be easily extensible with new views and view

extraction interpreters.�e solution is to provide a Partial Interpreter for view extraction, which only

understands the speci�c language elements required for one view.�ere is a generic parser that is

responsible for parsing the process descriptions.�e parsing events generated by this generic parser

are interpreted by the Partial Interpreters, which only interpret the language elements relevant to a

particular view. Hence, the following steps are necessary for de�ning view extraction interpreters:

4.4. View-based reverse engineering approach for process-driven SOAs 69

1. De�ne a generic interpreter for parsing the content of the process modeling language (and

other relevant languages). In the case of BPEL and WSDL, this is a generic XML parser and a

parsing event model, which can be interpreted by the Partial Interpreters.

2. For each view: De�ne a mapping speci�cation between the elements in the process modeling

language elements and the viewmodel elements.�at is, themapping speci�cation contains all

elements of a particular view model, and describes how they map to a sub-set of the elements

in the process modeling language (and other relevant languages).

3. For each view: De�ne a view-speci�c interpretation speci�cation that interprets only the

relevant elements for a particular view from the process modeling language.�at is, the Partial

Interpreter speci�cation explains how a view model can be �lled with the information from

the process modeling language (and other relevant languages).

�e Partial Interpreter’s mapping speci�cation and view-speci�c interpretation speci�cation are

both de�ned generically on basis of the view models. Hence, they can be reused for many concrete

view models.

In the subsequent sections, we present the details of the realization of the view-based reverse

engineering in which abstract views such as FlowView and CollaborationView as well as technology-

speci�c views such as BpelCollaborationView can be (semi-)automatically recovered from the

existing process code.

4.4 View-based reverse engineering approach for process-driven

SOAs

In this section, we clarify our view-based reverse engineering approach by investigating an exemplary

process-driven SOA technology: BPEL and WSDL. BPEL/WSDL is chosen for exempli�cation

because these are widely adopted languages for process implementation and service description

in research and industry today. Nevertheless, our approach is not limited to BPEL and WSDL

technologies but is generally applicable for other process-driven SOA technologies by de�ning

relevant view models and Partial Interpreter speci�cations.

4.4.1 Recovering abstract, high-level representations

4.4.1.1 Recovering the FlowView

In order to recover the FlowView from BPEL code, the FlowView interpreter, which is based on the

FlowView model (see Figure 3.7), walks through the process description in BPEL and collects the

70 4.4. View-based reverse engineering approach for process-driven SOAs

information of atomic and structured activities.�en, it creates the elements in the FlowView and

assigns their attributes with relevant values as speci�ed in Table 4.1.

According to the speci�cation of the FlowView model (see Figure 3.7), a FlowView includes the

elements representing the orchestration of process tasks.�erefore, the FlowView interpreter only

considers this aspect of BPEL processes and ignores the rests.

BPEL element FlowView element
<invoke|receive|reply|assign name="..."> fv::AtomicTask.setName()

<sequence name="..."> fv::Sequence/setName()

<flow name="..."> fv::Parallel/setName()

<if name="..."><condition>"..."</condition> fv::Exclusive/setName()

<elseif><condition>"..."</condition> fv::Branch/setCondition()

<else> fv::Default

<while name="..." condition="..."> fv::Loop/setName()/setCondition()

Table 4.1: Recovering the FlowView model from BPEL descriptions (the notion fv:: is used to indicate the

FlowView’s namespace)

In particular, the hierarchy and the execution order of a BPEL process are essentially de�ned using

the control structures, such as <sequence> – a step-by-step execution of activities, <flow> – a

concurrent execution of activities, <if>-<elseif>-<else> – a conditionally exclusive branch,

and <while> – a condition iteration of a certain task.�ese control structures can be nested and

combined in arbitrary manners to represent various complex control �ows in BPEL processes. With

respect to their syntax and semantics speci�ed in the BPEL speci�cation
109

, those structures are

straightforward mapped into the FlowView model (see Table 4.1).

In addition, a BPEL process might have one or many primitive activities, such as <invoke> – a

service invocation, <receive> – waiting for a message from partners, <reply> – sending back a

response to a partner, and <assign> – assigning values to variables and properties.�ose activities

are mapped into the corresponding AtomicTask elements of the FlowView. By abstracting these

di�erent activities away from their concrete meanings such as “receiving an XML message (i.e., an
order) from a partner who plays a role of Customer (i.e., a customer)”, “invoking a service or process
via the operation x of the portType p provided by the partner who plays a role of a banking institution”,
etc., the resulting FlowView is merely presented to the stakeholders in form of a “plain” business

logic (i.e., an orchestration of process activities) accomplishing particular business goals. In this way,

stakeholders, especially business experts, can better understand, analyze, and modify the FlowView

to adapt to new requirements or changes.

Figure 4.2 depicts the recovering of the FlowView from Travel Booking BPEL code described in

Listing 2.1 by using the FlowView interpreter. As the FlowView interpreter merely extracts the BPEL

control structures such as <sequence>, <flow>, <if>-<elseif>-<else>, and <while> and the

4.4. View-based reverse engineering approach for process-driven SOAs 71

<process name="TravelBooking">
<sequence name="TravelBooking">
<receive name="GetItineraryRequest" ... />
<assign name="InitializeStatusVariable".../>
<assign name="PrepareCardChecking" .../>
<invoke name="CheckCreditCard" .../>
<if name="ValidCreditCard">

<condition>...</condition>
<sequence name="ItineraryProcessing">
<flow>
<sequence>

<assign name="PrepareBookHotel" .../>
<while>
<condition>...</condition>
<sequence>
<invoke name="BookHotel" .../>
<assign name="GetHotelBookingStatus" .../>

</sequence>
</while>

</sequence>
<sequence>

<assign name="PrepareBookFlight" .../>
<while>
<condition>...</condition>
<sequence>
<invoke name="BookFlight" .../>
<assign name="GetFlightBookingStatus" ... />

</sequence>
</while>

</sequence>
<sequence>

<assign name="PrepareBookCar" .../>
<while>
<condition>...</condition>
<sequence>
<invoke name="BookCar" .../>
<assign name="GetCarBookingStatus" .../>

</sequence>
</while>

</sequence>
</flow>
<assign name="PrepareConfirmation" .../>
<reply name="InformCustomer" .../>

</sequence>
<else>

<sequence>
<assign name="PrepareCancellation" .../>
<reply name="InformCancellation" .../>

</sequence>
</else>

</if>
</sequence>

</process>

b) The extracted TravelBooking FlowView a) Travel Booking process code in BPEL

Figure 4.2: Recovering the FlowView from Travel Booking BPEL code

process activities such as <assign>, <invoke>, <receive>, and <reply>, and corresponding

activities’ names, the remaining information will be omitted in Figure 4.2.

4.4.1.2 Recovering the CollaborationView

�e CollaborationView interpreter is realized using the same approach as the FlowView interpreter.

However, the CollaborationView comprises not only the elements from the process descriptions (i.e.,

BPEL �les) but also from the service interface descriptions of the processes (i.e., WSDL �les). Hence,

�rst of all, the interpreter has to collect all information of service interfaces, messages, roles, and

partners fromWSDL �les.�en, the interpreter creates corresponding elements and relationships in

the CollaborationView according the mapping rules given in Table 4.2. Next, the interpreter walks

through the BPEL code to extract information from the collaborative activities. Each of the BPEL

collaborative activities, such as <invoke>, <receive>, or <reply>, shall appear on the resulting

72 4.4. View-based reverse engineering approach for process-driven SOAs

CollaborationView with the same name as in the FlowView. However, these activities shall contain

additional collaborative attributes as depicted in Table 4.3.

WSDL element CollaborationView element
<definition> cv::Service

<message name="..."> cv::Message/setName()

<portType name="..."> cv::Interface/setName()

<operation name="..."> cv::Operation/setName()

<input name="..." message="..."> cv::Channel

<output name="..." message="..."> cv::Channel

<partnerLinkType name="..."> cv::Partner/setName()

<Role name="..."> cv::Role/setName()

<service name="..."> cv::Service.setName()

Table 4.2: Recovering the CollaborationView fromWSDL descriptions (the notion scv:: is used to indicate

the CollaborationView’s namespace.)

4.4. View-based reverse engineering approach for process-driven SOAs 73

BPEL element CollaborationView BpelCollaborationView

<invoke

name="..."

partnerLink="..."

portType="..."

correlation set="..."

inputVariable="..."

outputVariable="..."

operation="...">

cv::Interaction(INOUT)

+setName()

+setPartner()

+setInterface()

bcv::Invoke

+setName()

setPartner()

+setInterface()

+createCorrelation()

+setInput()

+setOutput()

+setOperation()

<receive

name="..."

partnerLink="..."

portType="..."

correlation set="..."

variable="..."

operation="..."

createInstance="...">

cv::Interaction(IN)

+setName()

+setPartner()

+setInterface()

+setCreateInstance()

bcv::Invoke

+setName()

+setPartner()

+setInterface()

+createCorrelation()

+setVariable()

+setOperation()

+setCreateInstance()

<reply

name="..."

partnerLink="..."

portType="..."

correlation set="..."

variable="..."

operation="...">

cv::Interaction(OUT)

+setName()

+setPartner()

+setInterface()

bcv::Invoke

+setName()

+setPartner()

+setInterface()

+createCorrelation()

+setVariable()

+setOperation()

<correlationSet

name="..."

properties="...">

bcv::CorrelationSet

+setName()

+setProperty()

<correlationSets> bcv::CorrelationSets

<property

name="..."

type="...">

bcv::Property

+setName()

+setType()

<propertyAlias

propertyName="..."

messageType="..."

part="..."

query="...">

bcv::PropertyAlias

+setProperty()

+setMessageType()

+setPart()

+setQuery()

<partnerLink

myRole="..."

partnerRole="...">

cv::Role() &

cv.setMyRole() cv::Role() &

cv::Partner.setPartnerRole()

(inherits from

the parents -- the

CollaborationView

(Continued on next page)

74 4.4. View-based reverse engineering approach for process-driven SOAs

BPEL element CollaborationView BpelCollaborationView

Table 4.3: Recovering the CollaborationView and BpelCollaborationView fromBPEL descriptions (the notions

cv:: and bvc:: are used to indicate the namespaces of the CollaborationView and BpelCollaborationView,

respectively)

4.4. View-based reverse engineering approach for process-driven SOAs 75

In addition to creating the corresponding elements of the CollaborationView, the interpreter uses

the information collected in the former step to establish the necessary relationships between these

elements. For instance, the relationship between cv::Interaction and cv::Partner elements is derived

from the association between the communication activities (e.g., <invoke>, <receive>, <reply>)

and the corresponding <partnerLink>, or the relationship between cv::Partner and cv::Role is
derived from the association among the <partnerLinkType> and <role> elements in the WSDL

descriptions and the <partnerLink> elements in the BPEL code. In Figure 4.3, we illustrate the

recovering of the CollaborationView from BPEL code of the Travel Booking process (see Listing2.1)

by using the CollaborationView interpreter.

a) Travel Booking BPEL code b) The extracted CollaborationView c) The Properties View

Figure 4.3: Recovering the CollaborationView from Travel Booking BPEL code

4.4.2 Recovering low-level, technology-specific representations

So far the abstract, high-level representations of process models such as FlowView and Collabora-

tionView are recovered from existing BPEL andWSDL descriptions. Out of these abstract views, the

technology-speci�c views can be derived using the re�nement mechanism with the support of IT

experts. However, existing process implementations, including BPEL and WSDL descriptions, em-

body low-level, technical representations of the processes as well.�erefore, instead of deriving the

technology-speci�c views from the abstract counterparts, which is error-prone and time-consuming,

we leverage the view-based reverse engineering approach to parse the process implementation and

recover the embodied low-level, technology-speci�c representations of the process. Moreover, the

low-level view interpreters are developed by reusing the realization of the abstract interpreters and

enriched with additional feature according to the corresponding view models.�is is likely the same

manner that a technology-speci�c view inherits and enriches an abstract counterpart.�is way, the

integrity and consistency of an abstract view and the corresponding technology-speci�c views are

maintained because they are both recovered from the same inputs. Nonetheless, maintaining of the

consistency requires additional supports by the tooling and is one of our future works.

76 4.5. Tool support

We illustrate the recovering of low-level, technology-speci�c views using the view-based reverse

engineering approach in Table 4.3. �e CollaborationView is a high-level representation of the

BpelCollaborationView, which is at a lower level of abstraction.�e BpelCollaborationView enriches

the CollaborationView with either newly added elements or inherited elements with additional

properties. In Table 4.3, the right column shows the elements of the BpelCollaborationView recovered

from the BPEL descriptions. Many of those elements are partially inherited the information of the

relevant elements of the CollaborationView shown in the middle column of Table 4.3. �us, we

can inherit the corresponding parsing elements from the CollaborationView interpreter and only

develop parsers for additional features of the BpelCollaborationView.

4.5 Tool support

�e view-based reverse engineering approach described in the previous sections has been realized

to form a toolchain that supports stakeholders in extracting appropriate representations of process

descriptions in terms of high-level or low-level, technology-speci�c view models (see Figure 4.4).

In this reverse engineering toolchain, existing process implementations in terms of BPEL and

WSDL descriptions, and process deployment con�gurations in XML-based representations, are

taken as inputs for the various view-based interpreters, respectively.�e outcomes of these view-

based interpreters are either VbMF abstract views – the high-level representations of processes or

technology-speci�c views – the low-level representations of processes.�e stakeholders, according

to their particular needs, knowledge, and experience, can work with their representations of choice.

For instance, business experts will mainly involve in the abstract, high-level process views whilst IT

experts are more interested in the technology-speci�c views.

We have developed the view-based interpreters using XPath technology
168

to extract XML-based

information from process implementations such as BPEL and WSDL and build up corresponding

in-memory views. A�er that, these in-memory views are then serialized and stored in model

repositories in terms of XMI-compliant descriptions
119

by using model serialization techniques

provided in the Eclipse Modeling Framework
38
.�ese process views, in terms of XMI-compliant

descriptions, can be (re-)used later in VbMF.

4.6 Discussion

Our work presented in this chapter is a reverse engineering approach 30
, based on the separation

of concerns by using the notion of views, and the separation of abstraction levels based on the

MDD paradigm.�is approach contributes a reverse engineering toolchain that complements the

forward engineering toolchain provided in VbMF (cf. Section 3.7). �erefore, VbMF now can

support reengineering 6,12.�e reverse engineering toolchain provides means for re-structuring and

4.6. Discussion 77

Abstract views

View-based
Interpreter

Process implementation
Deployment configuration

Technology-specific views

Business experts

IT experts

Figure 4.4: View-based reverse engineering toolchain for process-driven SOAs

modi�cation whilst the forward engineering toolchain are provided in order to re-generate modi�ed

so�ware systems.

In the context of reverse engineering, view-based approaches are an emerging area of interest. For

instance, the approaches reported by Chebbi et al.
28
, Chiu et al.

31
, and Schulz and Orlowska

144

focus on inter-organizational processes (in term of cross-organizational work�ows) and use views to

separate the abstract process representations (aka public processes) from the internal processes (aka

private processes). Bobrik et al.
17
present an approach to process visualization using personalized

views and a number of operations to customize the views. Zou et al.
191

propose an approach for

extracting business logic, also in term of work�ows, from existing e-commerce applications.

All these approaches aim at providing perspectives on business processes at a high-level of abstraction

and maintaining the relationships among di�erent abstraction levels in order to quickly re-act to

changes in business requirements. However, these approaches have in common that only the control

�ow of process activities (aka the work�ows) is considered. Other process concerns, as for instance

service/process interaction, data processing, etc., have only been partially exploited, or even not

targeted. In addition, these approaches do not support enhancing process views or propagating

changes as provided in our approach, for instance, through view integration, view extension and

code generation.

Kazman et al.
77
describe the Dali workbench, an approach for understanding and analysis the system

architecture.�e extraction process begins with extracting views from source code using some kinds

78 4.6. Discussion

of lexical analyzers, parsers or pro�lers. Next, the relationships among views are established by view

fusion to improve the quality and the correctness of views. However, because of the complexity of

typical process models, this approach is hardly applicable to capture the whole process description

in a unique view.

In the context of process-driven modeling, there are a number of standard languages of which some

provide high-level descriptions, examples are: BPMN
121
, EPC

80
and abstract BPEL in WS-BPEL

2.0
109

.�ese languages provide high-level representations of processes and hide the technical details.

�ese representations are relevant to the business analysts. However, these languages still comprise

numerous tangled concerns such as the control �ow, data handling, service invocations, transactions,

to name but a few. As a consequence, the representations provided by these languages are hardly

tailorable and customizable.

A number of recent research approaches concentrate on the transformations between process

modeling and development languages. For instance, Mendling et al.
103

discuss the transformation

of BPEL to EPCs. Ziemann et al.
188

present an approach to model BPEL processes using EPC-based

models. Recker et al.
134

translate between BPMN and BPEL. Mendling et al.
101

report on e�orts in

X-to-BPEL and BPEL-to-Y transformations.�ese transformation-based approaches mostly focus

on one concern of the process models, namely, the control �ow, which describes the execution order

of process activities. �ey o�er no support for extension of process models or integrating other

concerns of process models, such as service interactions, data handling, transactions, and so forth.

All the above-mentioned approaches and standards have di�culties in handling the complexity of

process models: Because the business process contains numerous tangled concerns, the complexity

of process model increases as the number of process elements, such as message exchanges, service

invocations, data handling tasks, transactions, etc. grows.�us, on the one hand, these approaches

are less e�cient than our approach in dealing with huge existing process repositories, developed in

other languages or dialects, or integrating arbitrary process modeling tools. On the other hand, these

approaches have not o�ered the adaptability to di�erent stakeholders’ interests, the better reusability

of legacy process code, as well as the interoperability process modeling and development languages.

Our view-based reverse engineering approach poses a number of distinct characteristics, which are:

• Enhancing adaptability in process development:�e adaptability of process representations to

di�erent requirements of stakeholders is supported by the separation of process concerns and
the separation of abstraction levels, two major contributions of our view-based, model-driven

approach. Moreover, it is enhanced by two methods developed in VbMF: view extension and

view integrationmechanisms (cf. Section 3.5).�e view extension mechanisms (cf. Section 3.5)

allows stakeholders to enrich existing view models with additional elements and extra at-

tributes for the existing elements of the original view models. In this way, the abstract views

can be gradually re�ned into less abstract views by increasing their granularity with added

technology-speci�c features until the resulting views are appropriate to the stakeholders’s

4.6. Discussion 79

needs. Our view-based reverse engineering approach presented in this chapter complements

these mechanisms by introducing respective interpreters for high-level and low-level view

models to extract the corresponding views from the existing process code. Furthermore,

process views extracted by the view-based reverse engineering are potential inputs for view

integration (cf. Section 3.5) to produce new richer views by merging existing views to adapt to

particular needs and knowledge of the stakeholders.

• Enhancing interoperability of process development languages: Interoperability su�er from the

heterogeneous nature of the participants of a so�ware system. SOA partially reconciles this

heterogeneity by de�ning standard service interfaces as well as messaging mechanisms for

communicating between services. Process-driven SOAs provide an e�cient way of coor-

dinating various services in terms of processes to accomplish a speci�c business goal. �e

huge divergence of process modeling languages raises a critical issue that deteriorates the

interoperability of di�erent process representations. Our view-based reverse engineering

approach leverages the notion of views in a reverse engineering toolchain that recovers views

from existing process code.

�e high-level views are platform-independent models used to capture abstract concepts

of process descriptions. In other words, these views are at the same abstraction levels as

existing process modeling languages, such as EPC, BPMN, and UML Activity Diagram.�us,

the reverse engineering methodology presented in this chapter can be extended to map

process representations in these languages into VbMF high-level views.�is has a number of

advantages. Firstly, it uses one kind of modeling approach for all types of views. Secondly,

it can potentially avoid semantic mismatch or transformation between modeling concepts.

Nonetheless, this approach has the disadvantage that existing modeling representations (say

realized in EPCs, BPMN or UML Activity Diagrams) would have to be mapped to the high-

level view models, which could be a considerable e�ort for huge existing process repositories.

But in general this is possible and can even be largely automated, because our FlowView

– the central notion of process-driven approaches – represents basic control �ow patterns

that almost exist in all existing modeling language; the CollaborationView describes generic

interactions that typically occur between a process and its partners; and the InformationView

abstracts the various data objects and data processing. Hence, an adequate view interpreter

for a particular language can distill these views from the process descriptions in that language

in the same manner as those presented in the previous sections. Alternatively, our approach

can probably be extended with a new view model, such as a control �ow view of EPC, BPMN,

or UML Activity Diagram.

A high-level view then can be re�ned to a lower level view which covers the speci�cs of a

particular technology. For example, the CollaborationView can be re�ned to the BpelCollabo-

rationView. Using the same approach, we can de�ne appropriate view models and interpreters

for recovering corresponding views from process implementations in low-level, executable

languages such as BPEL. As a consequence, a stakeholder can work on an appropriate view or

80 4.7. Summary

can examine a certain combination of several views instead of confronting with various kinds

of process descriptions or digging into the implementation code in executable languages.

• Enhancing reusability of process descriptions: Reusability is the degree of using the existing so�-
ware artifacts instead of developing new ones from scratch.�erefore, enhancing reusability

leads to the increasing of productivity, IT cost reduction, and so on. Furthermore, so�ware

quality is improved because existing proven techniques and knowledge can be reused to

develop new so�ware or systems.

SOAs are potentially enabling so�ware reuse by specifying so�ware functionality using stan-

dard service interfaces where service consumers and providers can communicate regardless

of the underlying programming language and platform. Process-driven SOAs provide an

e�cient way of coordinating various services using processes to accomplish a speci�c business

goal. Unfortunately, existing languages pose some intrinsic features that inhibit the reusability

in process modeling and development. �ese languages consider business processes in a

whole, and therefore, provide stakeholders with the process representations containing many

tangled concerns. In order to reuse a certain excerpt of a process, the stakeholder has to go

across various concerns, some of which are even not suitable for the stakeholder’s expertise

and skills. Moreover, existing process languages and tools do not support cross referencing

between process languages, for instance, between UMLActivity Diagram and EPC and BPMN

and BPEL, or between two BPEL descriptions and so on. As a consequence, the reusability of

process descriptions, either in high-level or low-level languages, are merely achieved by using

the “copy-and-paste” approach, which is very tedious and error-prone.

Using VbMF, process descriptions are separated into di�erent views representing distinct

process concerns. �e integration of views are performed via name-based matching (see

Section 3.5).�erefore, stakeholders can reuse particular existing VbMF elements or views

by referencing them accordingly. Our view-based reverse engineering approach indirectly

enhances the reusability of process descriptions by mapping existing process descriptions into

corresponding views which can be re-used in VbMF later.

4.7 Summary

�e view-based reverse engineering approach presented in this chapter can help the various stake-

holders of a process-driven SOA to overcome two important issues. Firstly, it exploits the notion of

views to deal with the complexity of existing process repositories and to adapt the process represen-

tations to the stakeholders’ interests. Secondly, it provides the ability of integrating diverse process
models and o�ers explicit relationships for understanding and maintaining process models and for

propagating changes. Hence, process models at di�erent abstraction levels and di�erent process

concerns can be reused for developing the others. �is has been achieved by developing a novel

concept for a reverse engineering toolchain, based on partial interpreters and view models, and by

4.7. Summary 81

seamlessly integrating this reverse engineering toolchain into our View-based Modeling Framework,

which also supports means for forward engineering, such as view integration, view extension, and

code generation.�e view-based reverse engineering approach enables the reuse of existing process

code, e.g. implemented in BPEL and WSDL, in the View-based Modeling Framework.

Chapter 5

View-based, Model-driven
Traceability

“When we try to pick out anything by itself we �nd that it is
bound fast by a thousand invisible cords that cannot be broken,
to everything in the universe. ”— JohnMuir (1838–1914)

5.1 Introduction

In Chapter 2, we introduce the process-driven, service-oriented architecture (SOA) for realizing

business processes. In process-driven SOAs, business processes are o�en designed in highly abstract

and primarily notational modeling languages such as BPMN, EPC, or UML Activity Diagrams.

Process designs are suitable for business experts to represent domain- and business-oriented concepts

and functionality but mostly non-executable because many technical details are missing.�us, IT

experts necessarily need to be involved in the process development to transform the process designs

into executable speci�cations. For example, IT experts can translate abstract, high-level concepts

of process designs into concrete, �ne-grained elements in executable process languages, such as

BPEL, and specify the process interfaces in Web Service Description Language (WSDL). Additional

deployment con�gurations might also need to be de�ned in order to successfully deploy and execute

the implemented processes.

Understanding trace dependencies between process design and implementation is vital for change

impact analysis, change propagation, documentation, and many other activities
148
. Unfortunately,

artifacts created during the process development life cycle likely end up being disconnected from

each other.�is impairs the traceability of artifacts. We identify the following important factors that

complicate the establishing and maintenance of trace dependencies :

• �ere are no explicit links between process design and implementation languages.�is lack

of dependency links is caused by not only syntactic and semantic di�erences but also the

di�erence of granularity as these languages describe a process at various levels of abstraction.

5.1. Introduction 83

• A substantial complexity is caused by tangled process concerns. Either the process design

or implementation comprises numerous tangled concerns such as the control �ow, data

processing, service invocations, transactions, fault and event handling, etc. As the number of

services or processes involved in a business process grows, the complexity of developing and

maintaining the business processes also increases along with the number of invocations, data

exchanges, and cross-concern references, and therefore, multiplies the di�culty of analyzing

and understanding the trace dependencies.

• �ere is a lack of adequate tool support to create and maintain trace dependencies between

process designs and implementations.

Interaction

Data
Handling

Transaction

BPEL

Message
Service
Interface

Schema

WSDL+XML Schema

Service
Binding

Flow
Partner

LinkTypes

Process descriptors

Service endpoints

Design (BPMN)

Implementation (WSBPEL)

Deployment
configuration

Process Engine
(ActiveBPEL, ApacheODE, IBM WS,...)

Figure 5.1:�e Travel Booking process development

To illustrate the aforementioned factors we use the well-knownTravel Booking process (see Figure 2.5,

Listing 2.1, and Listing 2.2). Figure 5.1 shows the process development scenario from design to

implementation and deployment. We summarize the statistics of the complexity in terms of the

number of elements as well as their dependencies in Table 5.1. Even though the syntactic and semantic

di�erences are omitted in Figure 5.1, the elements represented in executable process languages (here:

BPEL andWSDL) are more concrete and of much �ner granularity than the design counterparts

(here expressed in BPMN). Practically, abstract, high-level model elements are o�en described or

implemented by one or many technology-speci�c elements. For instance, a Data Object in BPMN is

o�en represented by the corresponding variable in BPEL and the message type fromWSDL or the

XML Schema type. In addition, some artifacts which are necessary for describing speci�c features in

process implementation or for successfully deploying the process have no corresponding elements

84 5.1. Introduction

Design (BPMN) Implementation (BPEL) Deployment

Task 7 BPEL activity 13 Partner Reference 5

Correlation 7 Endpoint Reference 4

Control structure 6
Flow control 12

Service Reference 5

Control edge 17

Data object 10 BPEL variable 10

Data association 13 Message 11

XML schema type 11

Data handling 30

Partner (pool) 5 PartnerLink 5

Partner association 5 PartnerLinkType 5

PortType 5

Role 5

Binding 4

Service 4

Total element 63 Total element 122 Total element 14

Dependency 37 Dependency 145 Dependency 20

Cross-concern dep. 20 Cross-concern dep. 55 Cross-concern dep. 20

Table 5.1:�e complexity and dependency statistics of the Travel Booking process

in the process design. For instance, there are no corresponding design concepts or elements for

the correlation of service invocations in BPEL, service bindings and service endpoints in WSDL, to

name but a few. Existing process development approaches or tools merely support the stakeholders

in importing, parsing, validating, and referencing elements between languages of the same level of

abstraction, for instance, between BPEL, WSDL, and XML Schema, but have no support for cross

references between process designs and implementations.

�e complexity caused by numerous tangled process concerns such as the control �ow, service

and process interactions, data handling, transactions, and so forth, hinders the understanding and

analyzing of trace dependencies. Table 5.1 shows the statistics of the cross-concern dependencies of

process design (20/37), process implementation (55/145), and deployment con�guration (20/20).

�ese numbers mean: In order to thoroughly understand or analyze a certain concept of either

a process design or an implementation, the developer has to go across numerous dependencies

between various concerns, some of which are even not suitable for the developer’s expertise and

skills.

We present a view-based, model-driven traceability approach that supports stakeholders in (semi-)-

automatically creating and maintaining traceability between process designs and implementations

and/or deployment con�gurations. In the context of this chapter, BPMN
121
, a standard for business

process modeling, is used as a representative example of a process design language, whilst BPEL
109

and WSDL
170
, which are very popular process/service modeling descriptions used by numerous

5.2. View-based, model-driven traceability framework 85

companies today, are used as a representative examples for languages for implementing executable

processes. Although establishing trace dependencies alone is not su�cient for tasks like change

impact analysis or change propagation, it crucially lays the foundation for any such tasks. In this

sense, our approach presented in this chapter is the initial e�ort that overcomes the aforementioned

challenges to support (semi-)automatically eliciting and (semi-)formalizing trace dependencies

among model artifacts in model-driven development (MDD) at di�erent levels of granularity and

abstraction.�e (semi-)formalization of the trace dependencies is one of the features needed for the

interoperability of tools utilizing them.

In our approach, we exploit the notion of views and the model-driven stack introduced in Chapter 3

in order to separate process representations (e.g., process designs or implementations) into di�erent

(semi-)formalized view models. In this way, stakeholders can be provided with tailored perspectives

by view integration mechanisms (cf. Section 3.5) according to their particular needs, knowledge and

experience.�is is a signi�cant step toward the support of adapting process representations and trace

relationships to particular stakeholder interests. Additionally, view models are also organized into

appropriate levels of abstraction: high-level, abstract views are suitable for business experts whilst

low-level, technology-speci�c views are mostly used by IT experts. Given these levels of abstraction,

process designs are adequately aligned with the abstract view models, and the implementation

counterparts are lined up with the technology-speci�c view models.�is can be done in a (semi-)-

automatic manner using the view-based reverse engineering approach described in Chapter 4. Such

mappings produce trace dependencies between designs and the view models, and between the view

models and the source code that implements the processes. �ese dependencies are parts of the

traceability meta-model which is the key component of our traceability approach. Moreover, the

traceability meta-model also supports stakeholders in capturing intrinsic dependencies between

view models and view elements.

In Section 5.2, we presents our view-based, model-driven traceability approach along with the

details of the traceability meta-model. A CRM Ful�llment process from an industrial case study is

exempli�ed to illustrate our traceability approach and the realization of the approach in Section 5.3.

Section 5.4 is dedicated for discussing the related work.

5.2 View-based, model-driven traceability framework

5.2.1 Fundamentals concepts

In the previous section we introduce the view-based modeling framework (VbMF) which supports

stakeholders in modeling and developing processes using various perspectives which are tailored for

their particular needs, knowledge, and skills at di�erent levels of abstraction. We propose in this

section our view-based, model-driven traceability approach (VbTrace) in terms of a traceability

86 5.2. View-based, model-driven traceability framework

Vflow

V1abstract

V1technology-
specific

V
ie

w
-b

a
se

d
 M

o
d

el
-d

ri
ve

n

T
ra

ce
a

b
il

it
y

 F
ra

m
ew

o
rk

V2abstract

V3technology-
specific

Process implementation and deployment

CA1 CA2 CA3 CA4 CA5

DAProcess
designs

Legend
DA: Design artifact V: View models CA:Code artifact

Intrinsic trace dependencies Generated trace dependencies

VbMF

V2technology-
specific

Figure 5.2: Overview of the view-based, model-driven traceability approach

framework which is an additional dimension to the model-driven stack of VbMF (see Figure 5.2).

VbTrace supports stakeholders in establishing and maintaining trace dependencies between the

process designs and implementations (i.e., process code artifacts) via VbMF.�e trace dependencies

between process design and abstract, high-level views and those between low-level, technology-

speci�c views and code artifacts can be automatically derived during the mappings of process

designs and implementations into VbMF views using an extended version of the view-based reverse

engineering approach presented in Chapter 3. �ese trace dependencies are represented by the

solid arrows in Figure 5.2.�e relationships between a view and its elements are intrinsic whilst the

relationships between di�erent views are established by using the name-based matching mechanism

for integrating views (cf. Section 3.5).�ese relationships are indicated in Figure 5.2 by dashed lines

because they aremerely derived from the viewmodels andmechanisms provided byVbMF.�erefore,

we will concentrate more on the former kind of trace dependencies, i.e., the trace dependencies

between process designs and implementations and view models. Nonetheless, the case study in

Section 5.3 will illustrate a complete consolidation of the aforementioned kinds of trace dependencies

as a whole. In the subsequent sections, we present the view-based traceability meta-model that

is a (semi-)formalization of trace dependencies between process development artifacts. Based on

the traceability meta-model, we extend and use the components and mechanisms provided by

VbMF to shape a view-based, model-driven traceability framework that supports stakeholders in

(semi-)automatically establishing and maintaining the corresponding trace dependencies .

5.2. View-based, model-driven traceability framework 87

Traceability
Model

1..*source

ElementTrace

xpath: String
uuid: String

ElementReference

*

link

ArtifactTrace
elementTrace

*

target1..*

description: String

TraceRationale

*

annotated with

TraceLink

location: String
nsURI: String
uuid: String

ArtifactReference

target11source

Code

element

*

element

*

SchematicCode

CodeFragment
element

*

*

contains

FormalizeGenerateExtend Use

path: String
lineStart: Integer
lineEnd: Integer

FragmentPosition

position

1

Design
Element

ViewElement

Design

ViewModel

ViewToView

ViewToCode

DesignToView

CodeToCode

ViewElementPair

DesignViewPair

ViewCodePair

CodeFragmentPair

a) Conceptual traceability meta-model

b) View-based traceability meta-model

RelationTypeRole

Depend ConflictSatisfy

Figure 5.3: View-based traceability meta-models: (a) the conceptual traceability meta-model, and (b) the

view-based, model-driven traceability meta-model

5.2.2 View-based traceability meta-model

At the heart of VbTrace, we devise a traceability meta-model that provides concepts for precisely

eliciting trace dependencies between process development artifacts.�is traceability meta-model is

designed to be rich enough for representing trace relations from process design to implementation

and be extensible for further customizations and specializations. Figure 5.3a shows the conceptual

overview of the meta-model that de�nes a TraceabilityModel containing a number of TraceLinks.
�ere are two kinds of TraceLinks representing the dependencies at di�erent levels of granularity:
ArtifactTraces describing the relationships between artifacts such as BPMN diagrams, view models,

BPEL and WSDL �les, and so on; ElementTraces describing the relationships between elements

of the same or di�erent artifacts such as BPMN notations, view elements, BPEL activities, WSDL

messages, XML Schema elements, and so forth. �e source and target of an ArtifactTrace are
ArtifactReferences each of which consisting of either the location path, the namespace URI, or the

88 5.2. View-based, model-driven traceability framework

UUID* of the corresponding artifact. An artifact may contain a number of elements described by

the ElementReferencemeta-class. Every ElementReference holds either an XPath expression
168

or a

UUID which is a universal reference of the underlying actual element.

Each ElementTracemight adhere to some TraceRationales that comprehend the existence, semantics,

causal relations, or additional functionality of the link. �e TraceRationale is open for extension

and must be specialized later depending on speci�c usage purposes, for instance, for reasoning on

trace dependencies concerning the traceability types
116,148

: dependency, require, transform, extend,

generalize/re�ne, implement, generate, use, etc., or setting up dependency priorities or development

roles associated with the trace link. Figure 5.3b depicts the extensibility of TraceRationales by a
number of concrete realizations such as Role standing for stakeholders roles and RelationType which
is further specialized by several types of commonly used trace dependencies

116,148
.

�e traceability meta-model explained so far provides abstract and generic concepts shaping the

basis for a typical traceability approach. In the context of our traceability approach, these abstract

concepts are re�ned to represent trace dependencies of the various view models at di�erent levels of

granularity (see Figure 5.3b). We devise four concrete types of TraceLinks: DesignToViews represent
traceability between process designs and VbMF, ViewToViews describe internal relationships of
VbMF, i.e., relationships between view models and view elements, ViewToCodes elicit the traceability
fromVbMF to process implementations, and �nally,CodeToCodes describe the relationships between
the generated schematic code and the associated individual code.

Languages used for designing processes typically comprise highly abstract, notational elements

that business experts are familiar with. A process design artifact presented in the traceability meta-

model by the Designmeta-class. Each Design includes several DesignElements standing for process
design notational elements. �e mapping from process designs onto the VbMF abstract layer

produces trace links of the DesignToView type. Moreover, each DesignToView maintains one or

many DesignViewPairs which are responsible for tracing the mapping relationships at the level of

elements, i.e., mapping from design elements to view model elements.

One of the important modeling artifacts provided by VbMF is the ViewModel that embodies a

number of ViewElements. Because there is probably a dependency between two view models, we

use ViewElementPairs to capture the relationships between view elements of those view models in

a �ne-grained manner. In particular, a ViewToView inherits the two associations from its parent

ArtifactTrace and holds a number of ViewElementPairs standing for the �ner granularity of the

traceability among view model elements.

In VbMF, the technology-speci�c view models are rarely developed from scratch but might be

gradually re�ned from existing abstract view models. As such, extracting of trace links is straight-

forward because VbMF provides the necessary information concerning model re�nements. �e

technology-speci�c view models can also be extracted from process implementations using the

*
UUID: Universally Unique Identi�er

5.2. View-based, model-driven traceability framework 89

reverse engineering approach presented in Chapter 4. In contrast, process implementations (i.e.,

code artifacts) can be automatically produced from technology-speci�c view models by VbMF code

generators. By extending the reverse engineering interpreters and the code generators, we obtain

the relevant trace links in terms of ViewToCodes, and even �ner grained relationships at the level

of code fragments by using ViewCodePairs that keep references from ViewElements to generated
CodeFragments. A CodeArtifact is composed of one or many CodeFragments each of which might

contain other code fragments. For instance, a WSDL
170

�le is a CodeArtifact that has a number of

fragments such as XML schema de�nition, message types, service interfaces, service bindings, and

service implementations.

Code artifacts generated from the model-driven stack of VbMF are mostly schematic recurring code

that needs to be augmented by manually written code, for instance, using the patterns suggested

in
150
. �erefore, the traceability meta-model provides another concept for code association, the

CodeToCodemeta-class. Each CodeToCode should hold a reference between a certain SchematicCode
and one of its required manually written Code instances.

Last but not least, the abstract TraceRationale concept is realized and extended by, but not limited to,

a number of popular trace relationships such as Extend, Generate, Implement and Use that can be

employed to augment the semantics of the trace dependencies explained above. Additional rationales

or semantics can be derived in the same manner for any further requirements.

-- artifact-to-artifact traces

context DesignToView inv:

source.isKindOf(Design) and target.isKindOf(ViewModel)

context ViewToView

inv: source.isKindOf(ViewModel) and target.isKindOf(ViewModel)

context ViewToCode

inv: source.isKindOf(ViewModel) and target.isKindOf(Code)

context CodeToCode

inv: source.isKindOf(SchematicCode) and target.isKindOf(Code)

-- element-to-element traces

context DesignViewPair

-- each source must be an element of container’s sources

inv: source->forAll(container.source.element->includes(source))

-- each target must be an element of container’s targets

inv: target->forAll(container.target.element->includes(target))

context ViewElementPair

-- similar to those for DesignViewPair

inv: source->forAll(container.source.element->includes(source))

inv: target->forAll(container.target.element->includes(target))

context ViewCodePair

-- each source must be an element of container’s sources

inv: source->forAll(container.source.element->includes(source))

-- each fragment must belong to the set of container’s fragments

90 5.2. View-based, model-driven traceability framework

inv: fragment->forAll(container.fragment->includes(fragment) or container.fragment->

collect(subFragment)->includes(fragment))

context CodeFragmentPair

-- each fragment must belong to the set of container’s fragments

inv: fragment->forAll(container.fragment->includes(fragment) or container.fragment->

collect(subFragment)->includes(fragment))

inv: fragment->forAll(container.fragment->includes(fragment) or container.fragment->

collect(subFragment)->includes(fragment))

Listing 5.1: OCL constraints for the traceability meta-model

Note that the relationships between Design and DesignElement, between View and ViewElement,
and between Code and CodeFragment in the traceability meta-model are merely presented for

clari�cation purpose because those relationships can be straightforwardly derived from process

design artifacts, VbMF modeling artifacts, and code artifacts, respectively. Toward more strictly

modeling of aforementioned traceability links, Listing 5.1 presents OCL constraints
118

for the meta-

classes of the traceability meta-model that are required for specifying more precise semantics as well

as for the veri�cation of traceability model instances built upon the meta-model.

In summary, the traceability meta-model provides essential concepts for eliciting trace dependencies

at di�erent abstraction levels ranging from process design artifacts to abstraction levels of VbMF

view models down to code artifacts of process implementations. Each trace link between two levels

of abstraction can also support elicitation of the di�erences of granularity, such as pairing design

elements and view elements, or view elements and code fragments. Furthermore, the traceability

meta-model is open for extension to �ner granularity by deriving new subclasses of pairings such as

DesignViewPair, ViewElementPair, and ViewCodePair, or for adding new higher or lower abstraction

levels by deriving new sub-types of the TraceLink, ArtifactTrace, or ElementTracemeta-classes. In the

subsequent sections, we present the view-based traceability architecture along with the components

and mechanisms that supports stakeholders in (semi-)automatically establishing and maintaining

the trace dependencies based on the concepts of the aforementioned meta-model.

5.2.3 View-based, model-driven traceability framework architecture

�e view-based, model-driven traceability framework architecture shown in Figure 5.4 extends the

components of VbMF (see Figure 3.4) in order to acquire traceability relationships. For instance, the

extended View/Instance Editors produces trace links between viewmodels, between viewmodels and

elements, as well as between elements of di�erent view models.�ese relationships, as mentioned

above, are intrinsic parts of VbMF views, and therefore, are straightforwardly extracted. In addition,

the extended View Interpreters can be utilized for collecting trace dependencies between process

designs and view models, and between view models extracted from process implementations and

the corresponding implementations. Last but not least, the extended Code Generator can establish

5.2. View-based, model-driven traceability framework 91

Model
Repository

Extended Code
Generator

View models,
instances

Extended
View-based
interpreters

Process
implementations
(BPEL, WSDL)

Process
deployment
descriptions

VbTrace
DesignToView

Technology
specific

view instances

Code
generation
templates

Process implementations and deployments

Code
(manually

written
code)

Schematic
Recurrent CodeLegacy

process descriptions

ViewToCode

Process
designs

Process design
supporting tools

(BPMN Designers)

Abstract
view

instances

ViewToCode

View/Instance
Editors

View models,
instances

ViewToView

VbMF specific flows VbTrace flowsLegend:

VbTrace
model

Figure 5.4: View-based, model-driven traceability framework architecture

trace links from view models used for generating executable process code to the resulting source

code artifacts. �ese extended components retrieve the aforementioned trace dependencies and

deliver them to the VbTrace as instances of the traceability meta-model.�e traceability meta-model

and its instances are models themselves, and therefore, can be persisted in the model repository

of VbMF for later use and maintenance. �e model repository is one of our ongoing works, but

beyond the scope of this work.

5.2.4 View-based modeling and traceability toolchain

�e traceability meta-model and components mentioned above are essential parts forming the

view-based modeling and traceability toolchain shown in Figure 5.5. In this toolchain, process design

are mapped into VbMF abstract views whilst process implementations are aligned with VbMF

technology-speci�c views by extending the view-based reverse engineering approach presented in

Chapter 3. During these mappings, the extended view-based interpreters are able to establish the

relevant trace dependencies DesignToViews and ViewToCodes, respectively, as well as the �ne-grain
relationships that are DesignViewPairs and ViewCodePairs.

Nonetheless, theViewToCodes andViewCodePairs can also be derived in the course of the generation
of process implementations (e.g., BPEL and WSDL code) and deployment con�gurations (e.g.,

process descriptors for deploying and executing processes in the ActiveBPEL
1
, an open source BPEL

engine), from VbMF technology-speci�c views. �e transformation templates specify the rules

for generation code from VbMF models. We extend these templates to generate the relevant trace

92 5.2. View-based, model-driven traceability framework

Process
design

Abstract views

Code
Generator

Process
implementation

Deployment
configuration

Transformation
templates

Technology-specific views

Figure 5.5: View-based modeling and traceability toolchain

dependencies between the view models, view elements, and the generated code artifacts and code

fragments.

In the following sections, we elaborate on extending the view-based interpreters and code generation

templates using some scenarios in which trace dependencies are established by using our extended

code generators and extended view-based interpreters.

5.2.4.1 Establishing trace dependencies using extended view-based interpreters

b) Trace dependencies produced from the extended FlowView
interpreter

a) Extended FlowView interpreter for extracting FlowView from BPEL code
and establishing corresponding trace links

Figure 5.6: Establishing traceability between VbMF views and process implementations

�e view-based reverse engineering approach presented in Chapter 4 can be utilized for extracting

5.2. View-based, model-driven traceability framework 93

VbMF views from existing process implementations in BPEL and WSDL. We extend this approach

such that the relevant trace dependencies are also established during the course of the reverse engi-

neering process. Figure 5.8a presents an excerpt of the FlowView interpreter in Java code that can

extract AtomaticTasks of the FlowView from BPEL code. In addition, we instrument additional Java

code for creating trace dependencies between the BPEL code fragment and the resultingAtomicTasks.
�e generated trace dependencies are parts of the Traceability model shown in Figure 5.6b. �is

approach can also be applied for the other view-based interpreters such as the CollaborationView,

InformationView, BpelCollaborationView, and BpelInformationView interpreters in order to auto-

matically establish the relevant trace dependencies between BPEL andWSDL descriptions andVbMF

views. For better supporting stakeholders in reasoning and analyzing the resulting trace dependen-

cies, for instance, change impact analysis, Generate and Formalize are automatically annotated to

each trace dependency.

b) Trace dependencies produced from the mapping of BPMN elements
onto VbMF views

a) Extended template rules for mapping a DataObject (BPMN) to a
BusinessObject (InformationView) and establishing corresponding
trace links

Figure 5.7: Mapping process designs to VbMF views and establishing trace dependencies

Although the view-based reverse engineering approach is exempli�ed using process implementation

languages such as BPEL and WSDL, it is extensible and applicable for mapping the concepts of

a process design into VbMF abstract views. Let us recall that VbMF view models at the abstract

layer are intentionally designed for business experts. As a result, the concepts embodied in these

view models have a close relationship to the elements of languages used for designing processes,

such as BPMN, UML Activity Diagram, EPCs, and so on. A minor di�erence of these high-level

view interpreters to the view interpreters mentioned above is that we realize the view-based reverse

engineering approach using openArchitectureWare Xpand and Xtend languages
122

due to their

su�cient transformation mechanisms. Figure 5.7a shows an excerpt of the template-based trans-

formation rules written in XPand language that maps a BPMN Data Object into a BusinessObject
element of the InformationView. In addition, the transformation rules also generate relevant trace

dependencies between the design and view elements. We illustrate in Figure 5.7b a part of the

traceability model comprising twoDesignToView trace links between the design and the FlowView of

the CRM Ful�llment process from the case study presented in Section 5.3.�ese trace dependencies

are augmented with the Formalize of type TraceRationale.

94 5.3. Tool support and case study

b) Trace dependencies produced from code generationa) Extended template rules for generating BPEL <receive> from
VbMF technology-specific views and establishing corresponding
trace links

Figure 5.8: Generating process code from VbMF views and establishing trace dependencies

5.2.4.2 Establishing trace dependencies using extended code generators

Code generation (or so-calledmodel-to-code transformation) is an important step of any realization

of the MDD paradigm to gain productivity and ensure better so�ware quality
150
. �e results of

code generation process are o�en the schematic, recurring code that shapes the skeleton of the

so�ware or systems. Somemanually written code (aka individual code)might augment the generated

schematic code in order to realize the individual parts of the business logic
150
. VbMF provides a

template-based code generation approach that is able to generate schematic implementations of

processes in terms of BPEL and WSDL descriptions. �is approach has been realized in VbMF

using the openArchitectureWare Xpand and Xtend languages
122
. We extend the template-based

code generation rules in VbMF such that the trace dependencies between the involved views, view

elements, and generated code fragments are automatically established. Figure 5.8a presents an

excerpt of the VbMF code generation rules for generating BPEL <invoke> elements from VbMF

technology-speci�c views along with our instrumented rules for generating trace dependencies.

�e resulting trace dependencies are illustrated in Figure 5.8b containing a ViewToCode trace link
between the VbMF BpelCollaborationView and BPEL <invoke> fragment extracted from the case

study (cf. Section 5.3). Although these trace dependencies are generated in the opposite direction

to those extracted from the reverse engineering of process implementations, they share similar

semantics and rationales of the trace relations that are Generate and Formalize.

5.3 Tool support and case study

In this section, we illustrate the realization of the aforementioned concepts in VbTrace via an

industry case study adapted from the CRM Ful�llment process (cf. Section 6.2.1). Figure 5.9 shows

the design of the CRM Ful�llment process in terms of a BPMN diagram.�e process is implemented

5.3. Tool support and case study 95

using process-driven SOA technology: BPEL and WSDL. BPMN, BPEL, and WSDL are used for

exempli�cation because these are likely the most popular process and service description languages

that are widely adopted in research and industry today. Nevertheless, our approach is not limited to

those but is generally applicable for other process-driven SOA technologies. To illustrate the process

deployment con�gurations, we exemplify a speci�c BPEL engine, namely, ActiveBPEL, and develop

the necessary con�gurations for the deployment, enactment and monitoring of the CRM Ful�llment

process.

In the subsequent sections, we �rst quickly introduce the tool support for our traceability approach.

Next, we present in detail the steps of establishing andmaintaining appropriate traceabilitymeta-data

between process designs and VbMF, among VbMF views, and between VbMF views and process

implementations. At the end of this section, we introduce a sample of using traceability path derived

from the traceability model for better understanding and analyzing the relationships of process

development artifacts.

5.3.1 View-based, model-driven integrated development environment

We have realized the concepts of our view-based, model-driven traceability approach presented

based on the aforementioned VbMF implementation and integrated them with VbMF in terms of a

view-based, model-driven integrated development environment. In order to e�ectively reuse and

extend VbMF concepts and mechanisms, the traceability framework is derived from the EMF Ecore

meta-model. �e biggest advantage of using Eclipse Modeling Framework is that we gain better

interoperability with the Eclipse BPMNModeler
39
which is developed based on EMF Ecore.

For the sake of demonstration, we use the BPMNdiagrams designed in the Eclipse BPMNModeler to

represent the process design, and extend the tree-based editor generated by EMF for presenting and

manipulating Traceability models from now on.�e components of our traceability framework, such

as Extended Code Generators and Extended View-based Interpreters (see Figure 5.4), are derived from
corresponding VbMF components (see Figure 3.4) using the mechanisms described in Section 5.2.4.

Figure 5.9 shows the design of the CRM Ful�llment process in terms of a BPMN diagram in Eclipse

BPMNModeler.

5.3.2 CRM Fulfillment process development and traceability

Figure 5.9 depicts one of development perspective of the CRM Ful�llment process using our view-

based, model-driven integrated environment which is an Eclipse-based workbench.�e stakeholders

can create and manipulate process views in the various VbMF view editors or extract views from

process designs and implementations using the built-in view-based reverse engineering. Given

these process views, stakeholders can generate process implementations such as process code in

BPEL, service interfaces of processes in WSDL and process deployment con�gurations by using the

96 5.3. Tool support and case study

1 2

3 4

Figure 5.9: CRM Ful�llment process in view-based, model-driven integrated environment: (1)�e process

design in BPMNModeler (2) VbMF views, (3) Traceability view, and (4) Generated process implementation

prede�ned template-based code generation rules. Moreover, the code generation templates can also

be customized according to further needs by using the the XPand language editor
122
. In addition,

the trace dependencies established during the course of process development are presented to the

stakeholders in the Traceability view.

�e subsequent sections present the various scenarios to demonstrate how relevant trace dependen-

cies between process designs and VbMF views, between VbMF views, and between VbMF views

and process implementations are established during the course of modeling and developing the

CRM Ful�llment process.

5.3.2.1 Scenario 1: Traceability between process design and VbMF views

�e CRM Ful�llment process design is a BPMN diagram that comprises a number of notational

elements such as a pool, tasks, data objects, and sequential �ow connectors (see Figure 5.9). For the

sake of readability and demonstration, we adapt the design of CRM Ful�llment process and omit

the Data Objects which are irrelevant in this scenario.

In the context of process-driven SOAs, VbMF leverages the FlowView model as the central notation

because this model represents the orchestration of the process activities. We demonstrate the

5.3. Tool support and case study 97

Update
CustomerProfile

Verify
BankAccount

Create
Mailbox

Assign
SIP

Migrate
DN

Initialize
VMX

Ship
CPE

Check
DN

Assign
DN

Send
Invoice

Receive
Customer Order

Reply
Order Confirmation

Cancel
CustomerOrder Assign

Fax

Charge
Customer Account

a) CRM Fulfillment process design c) The CRM Fulfillment FlowView b) CRM Traceability model

Figure 5.10: Traceability between CRM Ful�llment process design and FlowView

mapping of the BPMN design onto the FlowView of the CRM Ful�llment process along with

the trace dependencies established during the mapping (see Figure 5.10) by using the approach

mentioned in Section 5.2.4. �e trace dependencies includes trace links at coarse-grained levels,

i.e., between the BPMN diagram and the FlowView model, or at �ner granularities, e.g., between

a BPMN task and a FlowView’s Atomic Task, between a BPMN GatewayDataBasedExclusive and
a conditional switch, namely, Exclusive of the FlowView, and so on. Taking the same approach of

mapping the CRM Ful�llment process design onto the FlowView, we have developed more view-

based interpreters for extracting abstract view models from the process design and establishing

tracing relationships.

Note that VbMF is a realization of the separation of concerns principle. In VbMF, the FlowView

model merely represents the control structures, i.e., the orchestration concern of business processes,

which describe the execution order of process activities in order to accomplish a certain business goal.

However, the FlowView does not contain any details of these tasks. Other views, according to their

speci�c syntaxes and semantics, provide the concrete de�nitions of each of FlowView’s tasks. For

instance, a service invocation task of the FlowView is realized in a CollaborationView or an extension

of the CollaborationView whilst a data processing task is de�ned in an InformationView or an

extension of the InformationView. In this way, the FlowView model aims at supporting stakeholders,

especially business experts, to quickly design the business functionality by orchestrating named

activities rather than being stuck with other details such as performing remote invocations, activity

compensation, and so on. �ese details are accordingly de�ned in abstract view models and/or

re�ned down to technology-speci�c view models by the relevant IT experts. As a consequence,

these views, regardless whether they are abstract or technology-speci�c, can be integrated with the

FlowView using the view integration mechanism in order to produce richer views or a thorough

98 5.3. Tool support and case study

view of the whole process with respect to the particular needs, knowledge, and skills of stakeholders.

a) CRM Fulfillment CollaborationView c) The CRM Fulfillment BpelCollaborationViewb) CRM Traceability model

Figure 5.11: Traceability between CRM CollaborationView and BpelCollaborationView

5.3.2.2 Scenario 2: Traceability between VbMF views

View models at the abstract layer of VbMF are intentionally designed for business experts alike

who are not familiar or able to work with the technical details. As such, these models supplement

the FlowView with adequate concepts and perspectives. In other words, the abstract views can be

considered platform-independent models (PIMs)
51,150

that have close relationships with process

designs rather than the implementation counterparts. In the model-driven stack of VbMF, an

abstract view can be gradually re�ned down to its corresponding technology-speci�c view. For

instance, the BpelCollaborationView is a stepwise re�nement of the more abstract CollaborationView

(cf. Figure 3.15). �us, re�nement relationships are important for tracing from process design to

implementations. We track these relationships by using trace links of the type ViewToView for

supporting the traceability between two view models, and a number of ViewElementPairs each of

which holds references to the corresponding view elements.

Figure 5.11 shows an illustration of establishing the trace dependencies out of the re�nement of the

CRM CollaborationView (Figure 5.11a) down to the CRM BpelCollaborationView (Figure 5.11(c))

described by the ViewToView and its constituent ViewElementPairs. For the sake of readability, we
only present a number of selected trace dependencies and use the arrows to depict the links described

by each dependency. Each trace dependency is augmented with the Re�ne of type TraceRationale.

Additionally, VbMF views can be integrated to produce richer views. For instance, a certain stake-

holder might need to see the orchestration of the CRM Ful�llment process activities along with the

5.3. Tool support and case study 99

a) CRM Fulfillment FlowView c) The CRM Fulfillment BpelCollaborationViewb) CRM Traceability model

Figure 5.12: Traceability between CRM FlowView and BpelCollaborationView

interactions between the process and other processes or services.�e combination of the FlowView

model and either the CollaborationView or the BpelCollaborationView based on the name-based

matching approach (cf. Section 3.5) can o�er such a perspective. Figure 5.12 shows an illustration of

establishing the trace relationships out of such combinations.�e main purpose of view integration

is to enhance the �exibility of VbMF for providing various adapted and tailored perspectives of the

process model. Because those perspectives might be used by the stakeholders for analyzing and

manipulating the process model, we track down the relationships caused by the above-mentioned

combination in the traceability according to speci�c stakeholders’ actions and augment them with

the Dependency type.

5.3.2.3 Scenario 3: Traceability between VbMF views and process implementations

In the previous sections, we illustrate themethods for establishing the traceability path connecting the

CRM Ful�llment process design to VbMF view models at the abstract layer down to the technology-

speci�c layer.�e relationships between view models and process implementations, however, can be

achieved in two di�erent ways. On the one hand, schematic code of process implementations or

process deployment descriptors can be generated from the technology-speci�c views (such as the

BpelCollaborationView, BpelInformationView, etc.) at the �nal step of VbMF top-down toolchain (cf.

Section 3.7). On the other hand, the reverse engineering approach (cf. Chapter 4) can automatically

extract view models from existing (legacy) process implementations. Regardless of using any of

these methods, the trace dependencies need to be recorded to maintain appropriate relationships

between view models and process implementations to fully accomplish the traceability path from

process designs to the implementation counterparts (see Figure 5.13)*.

Furthermore, a number of process engine speci�c descriptors are necessary for successfully deploying

and executing the CRM Ful�llment process. ActiveBPEL
1
is exempli�ed as the reference process

*
For the sake of readability, we omitted irrelevant elements and namespace bindings in the BPEL andWSDL code

and process deployment con�gurations

100 5.3. Tool support and case study

1 2

3

Figure 5.13: Traceability between VbMF views and process implementations

1 2

3

Figure 5.14: Traceability between VbMF views and process deployment descriptors

5.3. Tool support and case study 101

engine to deploy and execute the CRM Ful�llment process . Utilizing the extended code generators

mentioned in Section 5.2.4, VbMF can generate the process deployment descriptors and establish

the trace links. Figure 5.14 depicts the trace dependencies created during the course of generating

process deployment descriptor required by the ActiveBPEL engine from VbMF views.

5.3.3 Leveraging VbTrace – A sample traceability path

Receive
Customer Order

CRM Fulfillment
Diagram

CRM
CollaborationView

CRM
BpelCollaboration

View

«Code»
crm.bpel

«Interaction»
ReceiveCustomerOrder

«receive»
ReceiveCustomerOrder

CRM
FlowView

«AtomicTask»
ReceiveCustomerOrder

1 2 3

Legend
Artifact trace dependencies Element trace dependencies

Figure 5.15: A sample traceability path from the CRM Ful�llment process design (1) through VbMF views (2)

to process implementations (3)

Establishing trace dependencies alone is not su�cient for tasks like change impact analysis, change

propagation, artifact understanding, and so on, it is the important factor for supporting any such

tasks
148
. In this section, we examine a sample traceability path based on the traceability model

created in the previous sections to illustrate how our traceability approach can support these tasks.

Figure 5.15 depicts a simple traceability path from the CRM Ful�llment process design through

the VbMF framework to the process implementations. �e traceability path comprises the trace

dependencies between the process design and VbMF views mentioned in Section 5.3.2.1 followed

by the relationships among VbMF views retrieved in Section 5.3.2.2.�e process implementation

is reached at the end of the traceability path by using the trace dependencies between VbMF

technology-speci�c views and process code described in Section 5.3.2.3.

Let us assume that there is a business expert working on the BPMNModeler in order to analyze

the CRM Ful�llment process functionality and change the process design. �ese changes must

be accordingly re�ected in the process implementations in BPEL andWSDL and even in process

102 5.4. Discussion

deployment con�guration. Without our traceability approach, the IT experts have to look into the

BPMN diagram and manipulate BPEL, WSDL code and process descriptors manually.�is is time

consuming, error-prone and complex because there is no explicit links between these languages.

In addition, the stakeholders have to go across numerous dependencies between various tangled

concerns, some of which might be not relevant to the stakeholders expertise (cf. the statistics in

Table 5.1). Using our approach, the business experts can analyze and manipulate business processes

by using either the process designer or the VbMF abstract views such as the FlowView, Collabora-

tionView, InformationView, and so on, depending on their needs and knowledge.�e IT experts,

who mostly work on either technology-speci�c views or process code, can better analyze and as-

sess coarse-grained or �ne-grained implications of these changes based on the traceability path

connecting the process design and implementation at di�erent levels of granularity.

5.4 Discussion

Being extensively studied in literature and industry, dependency relationships between designs

and implementations are o�en used for tracing through development artifacts, supporting change

impact analysis, artifacts understanding, and other tasks
148

. Spanoudakis and Zisman
148

presented

a summary of the state-of-the-art traceability approaches that focus on the tracing between stake-

holders and requirements
55
between requirements

4,55,86,129,133,167,190
, between requirements and de-

signs
33,40,81,86,132,133

, between designs presented in
40,133,167,189

, between requirements and code
7,40,94,133

,

and between code artifacts
133
.�ere are only a few approaches for supporting traceability between

designs (e.g., UMLClass diagrams) and code
33,40,86,94,133

. Each of the aforementioned design-to-code

traceability approaches, however, merely focus on speci�c types of dependencies, for instance, overlap
relations40, evolution relations 33,94,133, and generalization/re�nement relations86.�ese approaches

do not mention the extensibility to other types of dependencies or the ability to cover di�erent levels

of granularity of trace dependencies.

�e di�erence of abstraction and granularity and the diversity of language syntaxes and semantics

hinder the automation of establishing and maintaining the traceability between high-level artifacts,

such as requirements or design speci�cations, and very low-level artifacts, such as executable code.

�ere are few promising e�orts on supporting automatic generation of trace dependencies that

use information retrieval techniques
7,8,58,89,90,95

or rule-based traceability
92,132,149

. To the best of

our knowledge, the traceability retrieved from the aforementioned approaches does not cover the

di�erence of granularity at multiple levels of abstraction, which is the �rst challenge we described in

Section 5.1. In addition, Ramesh and Jarke
133

and Lindvall and Sandahl
87
suggested that a traceability

approach only supports the representation of di�erent trace dependencies between artifacts, but the

interpretation, analysis, and understanding of the relationships extremely depend on the stakeholders.

According to his speci�c needs, knowledge, and experience, a stakeholder might be interested in

di�erent types of dependencies of di�erent levels of abstraction. Most of traceability approaches

5.4. Discussion 103

described above, except the one proposed by Gotel and Finkelstein
55
, have not provided adequate

support for di�erent stakeholder interests.

Recently, model-driven development (MDD)
51,113,150

, which gradually gains widespread adoption in

both industry and research, provides an e�cient paradigm to potentially reconcile the di�erence of

granularity at various levels of abstraction by introducing a number of intermediate (semi)-formal

modeling layers, such as the platform-independent models (PIMs) and platform-speci�c models

(PSMs)
51,113

. Each modeling layers can provide di�erent abstractions of systems and so�ware which

are tailored to speci�c stakeholders’ knowledge and experience. Moreover, model transformations

provide better facilities for the automation of creating and maintaining traceability relationships
2,52

.

A number of research approaches have exploited these advantages for establishing and maintaining

traceability between development artifacts
3,18,93,107,110,178

, to name but a few, in order to support

reducing the gap between design and implementation.

�e lightweight traceability approach TRACES can support tracing requirements across di�erent

models and levels of abstraction
3
. Based on the assumption that each artifact has a unique identi�er,

and code is fully generated from the models (which is hard to achieve in reality
150
) TRACES o�ers

mechanisms for eliciting traceability links from requirements to models, i.e., PIM and PSM, and

from the models to code
3
. Mäder et al.

93
analyze and classify Uni�ed Process (UP) artifacts to

establish a traceability link model that helps in (semi)-automatically establishing and verifying

traceability links in Uni�ed Process development projects along with a set of rules for management

of the links. Leveraging model transformations, Naslavsky et al.
107

propose an approach for creating

�ne-grained traceability among model-based testing artifacts in order to support result evaluation,

coverage analysis, and regression testing. Oldevik and Neple
110

present an approach for handling

text-based traceability links in model-to-code transformations (M2T) (aka code generations) which

is a key contribution to OMGMOFModel to Text Transformation standardization e�ort
115
.�is

approach provides a meta-model including a set of concepts for traceability between model elements

and locations in code artifacts.�e corresponding part of our traceability meta-model, i.e., the trace

dependencies between views and code artifacts, is inspired by the M2T approach
110
. Walderhaug et

al.
178

present a generic approach for traceability in MDD aiming to enhance sharing and integrating

of traceability information from di�erent development tools. �e authors propose a high-level

representation of the traceability process in the course of so�ware development that provides

general concepts for representing di�erent kinds of stakeholders and artifacts used for traceability,

such as trace model, trace repository, and the interactions between the stakeholders and these

artifacts. Bondé et al.
18
propose an approach that o�ers a traceability meta-model for representing

the relations between artifacts and the transformation operations associated with these relations.

Once the traceability is accomplished, it then can be used to enforce the interoperability of models

at di�erent levels of abstraction, for instance, between a PIM and PSM.

Our work has the commonalities with the MDD-based traceability approaches in using traceability

104 5.4. Discussion

meta-models for (semi-)formalizing trace dependencies in order to enhance the interoperability of

tools. In contrast to the related work, we introduce the combination of the separation of concerns
principles realized by the notion of views and the separation of abstraction levels realized by the

MDD paradigm as a better solution for supporting traceability in process-driven SOAs. We exploit

the notion of views to e�ciently represent di�erent process concerns such that stakeholders are

provided with tailored perspectives by view integration mechanisms according to their speci�c

needs, knowledge, and experience.�is is a signi�cant step toward the support of adapting process

representations and trace dependencies to particular stakeholder interests. In addition, the separation
of abstraction levels o�ers appropriate intermediate layers to gradually bring the business experts

working at high levels of abstraction close to the IT experts working at lower levels of abstraction.

Using the separation of process concerns in terms of (semi-)formalized views and the view integration

mechanism, the re�nement between two adjacent abstraction levels can be alleviated in a better and

more �exible manner. Obviously, the relationships between our modeling artifacts such as views

and view elements are intrinsic and can be retrieved straightforwardly from the view models.

Leveraging these modeling concepts and mechanisms, we perform the mapping of process designs

(here: BPMN) onto high-level, abstract views and process implementations (here: BPEL andWSDL)

onto low-level, technology-speci�c views and devise a traceability meta-model that is rich enough to

represent the trace dependencies from design to implementation through di�erent abstraction levels

and di�erent granularity. Furthermore, our framework is quite open for extensibility, such as adding

more traceability relationships at �ner granularity with adequate specializations of the ArtifactTrace
and the ElementTrace, adding more intermediate view model layer, or adding more appropriate

specializations of the TraceRationale meta-class to support enhancing traceability reasoning or

change impact analysis.

In the area of process-driven development, there are a number of approaches that de�ne trans-

formations between di�erent languages
100,101,103,125,134,188

. �ese approaches partially provide the

link between process design and implementation. However, most of these approaches focus on

only one process concern, namely, the orchestration concern, and ignore other signi�cant ones,

such as collaborations, data processing, fault handling, and so on. As a consequence, each of these

approaches is applicable for transforming of control structures of two speci�c kinds of languages,

for instance, BPMN and BPEL
125,134

, EPC and BPEL
103,188

, and so forth. As a consequence, these

approaches o�er neither the extensibility to support the various process concerns, except the control

�ow, nor the traceability of these concerns of processes. Nonetheless, our traceability approach

bene�ts from di�erent algorithms described originally in those approaches for mapping the control

�ow of process design onto our FlowView model (cf. Scenario 1).

Table 5.2 and 5.3 present qualitative comparisons of our view-based, model-driven traceability

approach, VbTrace, and a number of selected related work which are most closely related to VbTrace,

such as the MDD-based traceability approaches that utilize model-driven paradigm with modeling

5.4. Discussion 105

layers ranging from high-level into low-level and/or exploit model transformations for traceability

between design and implementation
3,93,110,178

. �e comparison criteria are adapted a paper of

Spanoudakis and Zisman
148
.

Support for multiple
trace relations

Generation of trace rela-
tions

Relation representa-
tion

Support adaptation of stake-
holder interests

TRACES by

Alesky et al.
3

TRACES o�ers the Refer-
ence or Realize relations

between requirements

and models and the Gen-
erate relations between

models and code. Realize
relations can be inferred

from above relations.

Creation of explicit trace-

ability links between re-

quirements and models

is the responsibility of

the modeler. Traceability

links can also be automat-

ically retrieved from code

generation.

TRACES does not ex-

plicitly present a formal-

ization of trace depen-

dencies.

Not supported yet

UP traceability
by Mäder et

al.
93

�is approach focuses on

four trace relations: Re-
�ne, Realize, Verify, and
De�ne.

Trace dependencies are

established with ade-

quate interventions of

stakeholders of UP.

Existing UML nota-

tional elements are used

for representing trace

dependencies. Trace

dependencies are stored

in the source code as

annotations.

Not supported yet

Model-based
testing by

Naslavsky et

al.
107

�is approach con-

centrates on the trace

relations between models

and test artifacts.

�e generation of test

cases and relevant trace-

ability model is currently

manual.

�e traceability model

describes the relation-

ships achieved in a

typical model transfor-

mation and is persisted

as an Ecore model.

Not supported yet

M2T by Olde-

vik et al.
110

M2T focuses on the trace

relations between models,

i.e., PSMs, and text gener-

ated from the models, i.e.,

Generate relations.

Trace dependencies are

automatically generated

from model-to-code

transformations.

M2T de�nes a meta-

model providing a set

of concepts for trace-

ability between model

elements and locations

in code artifacts.

Not supported yet

Generic MDD
traceability by

Walderhaug et

al.
178

As this approach presents

a high-level and generic

solution to traceability for

MDD, no concrete trace

dependencies are consid-

ered.�us, further e�orts

are required to specialize

and adapt the traceability

and repository models to

particular needs.

�is approach merely

refers to other traceability

approaches for achieving

trace dependencies such

as M2T.

A number of high-

level meta-model are

de�ned to represent

general concepts of

traceability, such as

trace model, artifact

type, trace type, etc. as

well as the stakeholders

interactions.

�is approach o�ers a

number of pre-de�ned

stakeholders roles, such as

developer, trace user, trace-

ability manager, and tool

supplier, who involve in the

MDD paradigm but does not

provide mechanisms to sup-

port the adaptation of trace

dependencies to the various

stakeholders interests.

(Continued on next page)

106 5.4. Discussion

Support for multiple
trace relations

Generation of trace rela-
tions

Relation representa-
tion

Support adaptation of stake-
holder interests

VbTrace Support multiple relation

types by the annotation of

adequate TraceRationales
(cf. Section 5.2.2).

Trace dependencies be-

tween process design and

views, between views and

code are accomplished

(semi-)automatically,

between views and view

elements are retrieved

straightforwardly (cf.

Section 5.3.2).

(Semi-)formalized

representation in terms

of a rich, extensible

traceability meta-model

aiming at support-

ing interoperability

and sharing of trace

dependencies (cf.

Section 5.2.2).

�e combination of separa-

tion of concerns and separa-

tion of abstraction levels is

a signi�cant step toward sup-

port the adaptation of process

representations and trace de-

pendencies to various stake-

holder interests. Moreover,

the Role meta-class, a spe-

cialization of TraceRationale,
can be annotated to the trace

links to better support adap-

tation and reasoning of trace

dependencies and traceability

path with respect to particu-

lar stakeholders.

Table 5.2:�e comparison of related work of VbTrace

Support intermediate
modeling layers

Support for multiple
granularities

Extensibility options Tool support

TRACES by

Alesky et al.
3

TRACES supports

traceability between

requirement and model

elements and between

model elements and

code but does not men-

tion any support for

intermediate modeling

layers (i.e., model and

code merely have an

equivalent abstraction).

Not supported Not supported A prototypical develop-

ment environment which

can be integrated with

Eclipse and CodeBeamer

for development and

traceability. Models are

stored in either XML or

XMI formats.

UP traceability
by Mäder et

al.
93

UP traceability focuses

on traceability between

four abstraction levels

of UP: requirement,

analysis, design, and

implementation models.

UP traceability aims to

support the traceability be-

tween basic UML artifacts

of UP abstraction levels.

UP traceability is merely

bound to UP/UML.

Not supported yet

Model-based
testing by

Naslavsky et

al.
107

�is approach uses

model-based control

�ow graphs and test

generation hierarchy

meta-model as the inter-

mediate layers between

UML sequence diagrams

and testing artifacts.

�is approach concen-

trates on �ne-grained

trace dependencies.

Not supported yet Not supported yet

M2T by Olde-

vik et al.
110

Not supported yet M2T only generates rela-

tions between model ele-

ments and code blocks.

Not supported yet Not supported yet

(Continued on next page)

5.5. Conclusion 107

Support intermediate
modeling layers

Support for multiple
granularities

Extensibility options Tool support

Generic MDD
traceability by

Walderhaug et

al.
178

�is approach needs fur-

ther e�orts to specialize

the traceability model

�is approach needs fur-

ther e�orts to specialize

the traceability model

�e extensibility of this ap-

proach is potential, how-

ever, requires additional ef-

forts.

�is approach merely of-

fers a generic, high-level

traceability approach aim-

ing at supporting sharing

and integration of tools.

No concrete tool supports

are mentioned.

VbTrace View-based modeling

framework o�ers the

separation of views into

di�erent intermediate

modeling layers at di�er-

ent levels of abstraction.

�e traceability meta-

model is rich and ex-

tensible for supporting

representation of many

levels of granularity of

trace dependencies (cf.

Section 5.2.2)

VbTrace o�ers the extensi-

bility of granularity levels

and intermediate model-

ing layers by re�ning either

TraceLink, ArtifactTrace
or ElementTrace, and

of the semantics of the

trace relations by special-

izing TraceRationle (cf.

Section 5.2.2). Moreover,

VbTrace is not bound to

the process concerns ex-

empli�ed in chapter such

as the control �ow, process

collaboration, and data

handling, but is extensible

to other concerns such as

transactions, event han-

dling, human interactions,

etc.
97

and Section 3.4

A prototypical Eclipse-

based integrated envi-

ronment based on EMF

MOF-compliant Ecore and

openArchitectureWare

MDD for process-driven

SOA development (cf.

Section 5.3.1). XML Meta-

data Interchange (XMI)

standard
119

is utilized

for model persistence,

and thereby, better sup-

port traceability sharing

and interoperability of

MOF-compliant tools.

Table 5.3:�e comparison of related work of VbTrace (cont’d)

5.5 Conclusion

Traceability support in process-driven SOAs development su�ers from the challenging gap due

to the fact that there is no explicit links between process design and implementation languages

because of the di�erences of syntaxes and semantics and the di�erence of granularity and abstraction

levels. In addition, the substantial complexity caused by various tangled process concerns and the

lack of adequate tool support have multiplied the di�culty of bridging this gap. �e view-based,

model-driven traceability approach is our e�ort to overcome the issues mentioned above and support

stakholders in (semi-)automatically eliciting and (semi-)formalizing trace dependencies between

development artifacts in process-driven SOAs at di�erent levels of granularity and abstraction.

A proof-of-concept Eclipse-based tool support has been developed and illustrated via the CRM

Ful�llment process extracted from an industrial case study.

�e view-based, model-driven traceability framework presented so far lays a solid foundation for

change impact analysis, artifact understanding, change management and propagation, and other

108 5.5. Conclusion

activities. Our ongoing work is to complement this framework with amodel repository that alleviates

collaborative model-driven development and traceability sharing with di�erent stakeholders as well

as tool integrations.

Chapter 6

Evaluation

“�e most interesting theoretical problems come from imple-
menting real systems. ”— Leslie Lamport

6.1 Introduction

So far we have introduced the view-based, model-driven approach, view-based reverse engineering

approach, and view-based, model-driven traceability approach for process-driven SOA development,

and a uni�ed modeling/development framework – VbMF and VbTrace – to build business processes.

In this chapter we show how these concepts can be utilized in reality by aligning VbMF/VbTrace

with a number of industrial use cases in order to demonstrate the pragmatic use our approach.

�e discussion in this chapter comprises two main parts. In the �rst part, we propose a scenario-

driven evaluation approach, in which we instantiate VbMF/VbTrace in a number of development

scenarios that cover the design time of the process life cycle. In each scenario, we demonstrate

and qualitatively analyze the way that VbMF/VbTrace supports stakeholders in modeling and

implementing processes. �e stakeholders can apply any of these scenarios or combine some, or

even all, of them according to particular context in the course of process development life cycle.�e

second part presents a quantitative analysis of our approach.

6.2 Scenario-driven evaluation

6.2.1 Scenario 1 – Greenfield

�e CRM Ful�llment process is a part of the customer relationship management (CRM), billing, and

provisioning systems of an Austrian Internet Service Provider
43
.�e main business functionality

of the CRM Ful�llment process is to handle a customer order of the company’s bundle of Internet

and telecom services including a network subscriber line (e.g., xDSL), email addresses, Web-based

administration (VMX), directory number, fax number, and SIP URL for VoIP communications.

110 6.2. Scenario-driven evaluation

�e process uses a wide variety of in-house services and services provided by various partners.

�e company has developed and deployed in-house services for customer relationship information

management, assigning fax numbers, SIP URLs, and mail boxes, initializing VMX, and sending

postal invoices to customers.

�e process uses a credit bureau service provided by a third party business partner of the �nancial

institution that acquires, stores, and protects credit information of individual and companies.�e

credit bureau service can verify a customer’s payment account for accuracy and validity and charge

the payment according to the customer’s purchase order. Customer premise equipment (CPE)

partners supply services for ordering and shipping home modems or routers. Telecom partners

o�er services for checking, assigning, and migrating customer directory numbers (DN). �ese

services expose their functionalities in terms of WSDL interfaces that can be orchestrated using

BPEL processes .

�e company has decided to adopt SOA to address challenges in the telecommunication market

which are the intensity of competition, a shorter time-to-market to meet a window of opportunity

that cannot miss, and the constant request on change of both business environment and technology.

Using an SOA approach will allow for a more rapid implementation, better integration with the

functionality provided by the partners, and greater �exibility and extensibility for future changes that

the business might need. A process-driven SOA is leveraged to orchestrate services to accomplish

the main business functionality of the CRM Ful�llment process.

�is scenario assumes the company starts developing the CRM Ful�llment process from scratch.

�us, the scenario is so-called a green�eld. In traditional development paradigms such as component-

based, object-oriented, etc., a green�eld scenario is seldom in reality because most of companies

have some prior development. Nevertheless, a green�eld scenario plays an important role in the

�eld of process-driven SOAs and model-driven development (MDD). On the one hand, the SOA

adoption of companies is merely initiative and growing, and therefore, many companies shall start a

SOA-based project from the beginning. On the other hand, a green�eld scenario is a showcase for

the forward engineering process development.�e forward engineering development, i.e., moving

from models to code, will repeatedly occur in a typical MDD paradigm
150
.�e forward engineering,

following up a reverse engineering, is also necessary in a re-engineering approach for re-generating

certain parts of the target so�ware and systems.

�e results of this green�eld scenario are the CRM Ful�llment process implementation as well

as deployment con�gurations used to deploy the process in a BPEL engine for enactment. �e

most widely-adopted process development in industry today is to utilize BPMN for designing and

BPEL/WSDL for realizing the process*. Our VbMF approach to a green�eld is described by the

forward engineering toolchain shown in Figure 3.20. In Table 6.1, we present a comparison of

*
�e WS-BPEL 2.0 standard provides the concept of abstract process as high-level representations of business

processes though, it lacks suitable notations. Hence, BPMN is still a prominent process design language.

6.2. Scenario-driven evaluation 111

Phase BPMN-BPEL/WSDL approach VbMF approach

Design Business experts design the process

using BPMN diagrams.

Business experts model the process using the VbMF

FlowView. Optionally, the business experts, some-

times together with IT experts, can specify some

high-level details using the high-level views such as

CollaborationView, InformationView, HumanView,

etc.

Implementation IT experts, sometimes together

with business experts, translate

the BPMN diagrams into exe-

cutable process descriptions in

BPEL/WSDL.

IT experts either re�ne the abstract views, if they

exist, or create low-level, technology-speci�c views

such as BpelCollaborationView and BpelInforma-

tionView. According to particular process function-

ality, IT experts might have to describe other pro-

cess concerns such as transactions, event handling,

and human interactions by using TransactionView,

BpelEventView, and BPEL4PeopleView, respectively.

A�er that, process implementations can be automati-

cally generated from VbMF views.

Deployment IT experts de�ne deployment con-

�gurations and deploy the imple-

mented process in a BPEL process

engine

Deployment con�gurations are generated.�e pro-

cess then can be deployed in a BPEL process engine.

Table 6.1: Comparison of VbMF and the industry-driven approach for process development

this industry-driven approach and our VbMF approach in di�erent process development phases:

modeling, implementation, and deployment. In the subsequence sections, we illustrate and compare

two approaches during the course of developing a “green-�eld” CRM Ful�llment process.

6.2.1.1 Modeling phase

In the modeling phase, the BPMN language is o�en used by business experts to describe process

functionality due to its friendly notational syntax and control structures. Figure 6.1a depicts the

CRM Ful�llment process design in terms of a BPMN diagram.

As we explained in Section 3.3.2, the building blocks of our FlowView are the basic patterns supported

by most of existing process modeling languages. Beside these control structures, the FlowView o�ers

the concept of AtomicTask which is an abstract of a human interaction, a data processing task, or an

invocation of functions, services, processes and subprocesses. Note that there is no technical detail

comprised in an AtomicTask according to the FlowView model speci�cation (cf. Section 3.3.2). As a

result, the business experts can be quickly acquainted with, and work with, the concepts and control

structures provided by the FlowView model. Figure 6.1b shows a FlowView of the CRM Ful�llment

112 6.2. Scenario-driven evaluation

CRM Fulfillment process

Update
Customer Profile

Verify
Payment

Account
valid?

Create
Mailbox

Assign
SIP

Migrate
DN

Initialize
VMX

Ship
CPE

Check
DN

Assign
DN

Receive
Customer Order

No

Assign
Fax

Charge
Payment

Reply
OrderConfirmation

Cancel
CustomerOrder

Send
Invoice

Compute
Price

Yes

(a) (b)

Figure 6.1: Modeling the CRM Ful�llment process at high-level: (a) Using BPMN; and, (b) Using VbMF

FlowView

process that represents the same functionality as that of the BPMN diagram depicted in Figure 6.1a.

6.2.1.2 Modeling high-level data handling and communications

A�er making a sketch design of the CRM Ful�llment process, the business experts, depending

on their particular knowledge and experience, can also add some high-level details for describing

necessary business objects or the interactions with various process partners. Figure 6.2 depicts the

aforementioned BPMN diagram annotated with additional elements for this purpose.�e business

experts add Data Objects, such as Order, VerifyResult, CheckResult, and Price, to specify the data

required produced by activities. Each Data Object is linked to an activity through an Association
represented by a dotted line with a line arrowhead. �e direction of an Association indicates the

�ow of data transfer. Moreover, a number of Lanes, such as CRM, CreditBureau, Sales, Provisioning,

Telecom, and Customer Premise Equipment Partner are used to represent process partners. An

interaction between the process and a partner is described by aMessage Flow – a red, dashed line

with an open arrowhead. Note that the CRM Ful�llment process design in BPMN constitutes all

6.2. Scenario-driven evaluation 113

P
ro

d
u

c
t

P
ro

v
is

io
n

in
g

 a
n

d
 F

u
lf

ill
m

en
t

C
u

s
to

m
e

r
C

a
re

Update
Customer Profile

Verify
Payment

Account
valid?

Create
Mailbox

Assign
SIP

Migrate
DN

Initialize
VMX

Ship
CPE

Check
DN

Assign
DN

Receive
Customer Order

No

Yes

DN
available?

Yes

No

Assign
Fax

Charge
Payment

Reply
OrderConfirmation

Cancel
CustomerOrder

Customer

Send
Invoice

Compute
Price

Verify
Result

Order

CheckResult

Price

CreditBureau

Sales

Provisioning

Telecom

CRM

Customer Premise Equipment Partner

Figure 6.2: Modeling of data objects and communications with BPMN

these tangled process concerns, i.e., the control structure, data handling, message exchanges with

partners, etc.�e complexity of the process design increases along with the number of DataObjects
and partners. As a consequence, the readability of the process design is signi�cantly reduced.

Instead of polluting the process design by di�erent tangled process concerns as that of the BPMN

diagram, our approach o�ers separate views for modeling high-level data handling and commu-

nications, which are the InformationView and CollaborationView, respectively. In Figure 6.3, we

illustrate a CollaborationView and an InformationView of the CRM Ful�llment process.�e Col-

laborationView de�nes the interactions with process partners and the roles that each partner plays

whilst the InformationView consists of business objects which are being exchanged with process

partners or manipulated inside the process.

6.2.1.3 Modeling low-level process views

�e CRM Ful�llment process design described in the BPMN language is not executable.�us, it

must be translated into a process executable language.�e defacto industry standard language for

implementing executable processes is BPEL
67,109

.�e IT experts, sometimewith the business experts’

supports, shall interpret the functionality given in the BPMN design and develop a BPEL process to

114 6.2. Scenario-driven evaluation

Interactions

Business
Objects

Roles

Figure 6.3: Modeling high-level data handling and communications using VbMF:�e CollaborationView

(le�) and InformationView (right)

realize such functionality. Due to the lack of explicit links between process design languages, say,

BPMN, and executable languages, say, BPEL, the implementation of the CRM Ful�llment process is

tedious and error-prone.

In contrast to the industry-driven approach, VbMF o�ers separate extension views for representing

technology-speci�c concepts, such as BpelCollaborationView, BpelInformationView, Transaction-

View, BpelEvent View, BPEL4People, etc. �ese technology-speci�c views are not disconnected

from the high-level representations but rather contains concepts which are re�ned from the corre-

sponding concepts in the high-level counterparts (cf. Section 3.5). Figure 6.4 presents two extension

views which are BpelCollaborationView and BpelInformationView for the CRM Ful�llment process.

Although process views are independently developed, the dependencies between these views are

established and maintained using the view-based traceability approach described in Chapter 5.

6.2.1.4 Code generation and process deployment

Code generation (or so-called model-to-code transformation) is o�en used to generate recurring

target, and maybe, executable, code from models. VbMF o�ered a template-based technique for

generating process implementation in terms of BPEL and WSDL (cf. Section 3.6). Using the VbMF

code generators, the stakeholders can produce not only the process BPEL code and service interfaces

in WSDL but also the process deployment con�gurations.

6.2. Scenario-driven evaluation 115

Figure 6.4: Re�ning the high-level views into BPEL-speci�c views: �e BpelCollaborationView (le�) and

BpelInformationView (right)

<workflow>

<!-- Define properties for the CRM Fulfillment process views -->

<property name="BASEDIR" value="evaluation/at/eweb/crm/vb" />

<property name="core" value="${BASEDIR}/crm.core" />

<property name="flow" value="${BASEDIR}/crm.flow" />

<property name="information" value="${BASEDIR}/crm.bpelinformation" />

<property name="collaboration" value="${BASEDIR}/crm.bpelcollaboration" />

<property name="output" value="output/crm" />

<!-- Call the VbMF predefined workflow to generate BPEL/WSDL code -->

<component file="framework/workflow/wsbpel.oaw" inheritAll="true"/>

</workflow>

Listing 6.1: A work�ow for generating BPEL/WSDL code from the CRM Ful�llment process views

116 6.2. Scenario-driven evaluation

In order to utilize the VbMF code generator, the IT experts shall create a simple work�ow that

de�nes appropriate properties such as the input paths pointing to the correspondingCRMFul�llment

process views and the output path for storing the generated code and con�gurations (see Listing 6.1).

At the end of the work�ow, we only need to invoke the work�ow provided by VbMF (cf. Listing 3.1).

Supporting code generation from models, i.e., the process views, is one of the biggest advantages

of VbMF comparing to the industry-driven approach. Rather than either tediously interpreting

and translating process designs into process implementations or directly involving in the process

code, the stakeholders just work with relevant process views according to their particular interests,

knowledge, and experience. Process code as well as deployment con�gurations are automatically

generated a�er all, and then, can be quickly deployed for testing. �is development process can

repeatedly occur. By generating process code and deployment artifacts from the process views, the

overall implementation time of building the CRM Ful�llment process is reduced. �is way, our

approach supports better business agility by shortening the development cycle and enhancing the

adaptation to functional requirement changes.

6.2.2 Scenario 2 – Legacy processes

In this scenario, we exemplify a part of the billing and provisioning system of a domain registrar

and hosting provider
43
.�e billing and provisioning system has been designed and implemented

based on the SOA paradigm.�e provisioning system manages a wide variety of services including:

credit bureau services (cash clearing, bank or credit card validation and payment, etc.), domain

services (whois, domain registration, domain transfer, etc.), hosting services (Web and email hosting,

provisioning, maintenance, etc.), and retail/wholesale services (order, upgrade, customer service

and support, etc.).�e core functionality of the billing and provisioning system has been realized

by a number of diverged technologies such as Java/J2EE, Ruby On Rails (RoR), and a Customer

Relationship Management system. �e company has developed a BPEL process, namely, Billing

Renewal process, in order to integrate and orchestrate its core functionality and the services pro-

vided by external business partners. Figure 6.5 presents the overall architecture of the billing and

provisioning system and the existing artifacts of the Billing Renewal process.

�e Billing Renewal process is triggered by a noti�cation from the internal provisioning system

when the customer’s payment is due. �en, the process checks if the customer’s payment can be

automatically transferred or must be manually performed by the customer. In case of an automatic

payment, the customer’s payment is charged via credit bureau services provided by a �nancial

business partner. Subsequently, the customer contract is extended and a postal invoice will be send

to the customer’s billing address. If the payment must be done manually, the process will send

a �rst payment request to the customer. Within one month, either the payment is cleared or the

second payment request will be sent. When the second request is sent, a temporary suspension of

the domain, hosting, customer support and services, and customer contract is also conducted.�e

6.2. Scenario-driven evaluation 117

Platform &
Technology
Layer

SOA
Layer

Process-driven SOA
Layer

Jboss AS RoR CRM

Customer

Billing Renewal
Process

WSDL WSDL WSDL

Sales Provisioning CRM

In-house services

Credit
Bureau Postal

WSDLWSDL

Third-party services

(a) (b)

Figure 6.5: Existing artifacts of the Billing Renewal process: (a) Overview of the billing renewal system; and,

(b)�e Billing Renewal process development artifacts: BPEL, WSDL, and Java code

last payment reminding will follow the second one unless the payment arrives within two months.

A�er three trials, if no payment is received, the customer’s contract will be terminated, all support

and services are stopped, the corresponding domains are unregistered, and the hosting account and

space are freed.�e process informs a failed billing to the customer and ends.

6.2.2.1 Understanding the current business status and challenges

�e company wants to make the Billing Renewal process �exible and adaptable to a changing

business situation, for instance, adding a new service to the existing product bundle or replacing

an existing product with a newer one. Changes in business logic should be made in real time

without requiring further development e�ort of the process. In order to satisfy these requirements,

a business analyst �rstly identi�es requirements and analyzing these requirements from a business

perspective.�en, he has to analyze the existing “as-is” Billing Renewal process. He might also want

to communicate with key stakeholders to help identify gaps and areas for improvements. Based on

the feedback from stakeholders, he de�nes necessary changes to adapt to the new requirements. In

the technical landscape, the IT experts must ensure a proper translation of those requirements to

process implementations.

�e biggest challenge that the stakeholders confronted with is that the “as-is” process description

contains too much technical details such that the business analysts hardly analyze and manipulate as

well as to communicate with the other stakeholders. Moreover, the stakeholders have to go across

numerous dependencies between various tangled concerns, some of which are even not suitable for

their expertise and skills, in order to thoroughly understand and manipulate certain excerpts of the

process description.�e staekholders needs a way to diagram the current Billing Renewal process,

118 6.2. Scenario-driven evaluation

so that they can easily identify gaps and areas for business process improvement and optimization.

Aswe discussed in Section 4.6, existing approaches provide limited support for extracting appropriate

representations of business processes from process code, and mostly consider one process concern –

the control structure. In the subsequent sections, we illustrate our view-based reverse engineering

approach to support stakeholders on recovering view models from existing process implementation,

say, BPEL and WSDL. �ese view models then can be used by the stakeholders for analyzing

the business logic of the process, communicating with other stakeholders, and manipulating the

process models to adapt to new business requirements. Changes made in the process views then

can be propagated into lower level of abstractions or re-generated process code using the forward

engineering demonstrated in the green�eld scenario.

6.2.2.2 Recovering high-level representations

<bp:process name="Billing">
<bp:sequence>
<bp:receive name="ReceiveExpiryNotification" ... />
<bp:flow>

<bp:sequence>
<bp:assign name="DataMap1" .../>
<bp:invoke name="ComputePayment"/>

</bp:sequence>
<bp:sequence>

<bp:assign name="DataMap2" .../>
<bp:invoke name="RetrieveCustomerProfile" .../>

</bp:sequence>
<bp:sequence>

<bp:assign name="DataMap3" .../>
<bp:invoke name="CheckPaymentType"... />

</bp:sequence>
</bp:flow>
<bp:assign name="InitializeStatusVariable" ... />
<bp:if name="AutomaticPayment">

<bp:condition>...</bp:condition>
<bp:sequence name="AutomaticTransfer">
<bp:assign name="DataMap4" .../>
<bp:invoke name="ChargePayment".../>
<bp:assign name="AssignPaymentStatus".../>

</bp:sequence>
</bp:if>

<bp:if name="PostProcessing">
<bp:condition>...</bp:condition>
<bp:flow name="Extending">

<bp:sequence>
<bp:assign name="DataMap17".../>
<bp:invoke name="ExtendDomain".../>

</bp:sequence>
<bp:sequence>
<bp:assign name="DataMap18".../>
<bp:invoke name="ExtendHostingAccount".../>

</bp:sequence>
<bp:sequence>
<bp:assign name="DataMap19" .../>
<bp:invoke name="ExtendSupportAndService".../>

</bp:sequence>
<bp:sequence>
<bp:assign name="DataMap20".../>
<bp:invoke name="ExtendContract".../>

</bp:sequence>
<bp:sequence>
<bp:assign name="DataMap21"... />
<bp:invoke name="SendInvoice" .../>

</bp:sequence>
</bp:flow>

</bp:if>
</bp:sequence>

</bp:process>

(to be continued...)

b) The extracted BillingRenewal FlowView a) Billing Renewal process code in BPEL

Figure 6.6: A FlowView extracted from the Billing Renewal BPEL code

Using the view-based reverse engineering approach described in Chapter 4, the core business

functionality of the Billing Renewal process is extracted and presented to the stakeholders in terms

of a FlowView (see Figure 6.6b) by using the FlowView interpreter (cf. Section 4.4.1). Note that

the resulting FlowView contains a “plain” business logic (i.e., an orchestration of process tasks) to

6.2. Scenario-driven evaluation 119

achieve the business goal of the Billing Renewal process.�e Billing Renewal process description in

BPEL (see Figure 6.6a) are intentionally simpli�ed to only show the elements that the FlowView

interpreter examined. �e other elements which are omitted also do not appear in the extracted

FlowView. In other words, the resulting FlowView o�ers an abstract, high-level perspective of the

Billing Renewal process that the stakeholders, especially the business experts, can better understand,

analyze, and manipulate to adapt to new business requirements or changes.

Besides the FlowView which represents the orchestration logic of the Billing Renewal process,

stakeholders can also recover other high-level representations for modeling data, communications,

human interactions, etc., using the view-based interpreters provided by VbMF (cf. Section 4.4.1).

�ese views can be used integrated to provide the stakeholders a richer view or a more thorough

view of the Billing Renewal process according to their speci�c interests and expertise.

6.2.2.3 Recovering low-level representations

So far the abstract, high-level representations of the Billing Renewal process such as FlowView,

CollaborationView, and InformationView are recovered from existing process implementations,

i.e., the BPEL and WSDL descriptions. �e existing BPEL and WSDL descriptions also embody

low-level, technical representations of the processes.�erefore, VbMf can also extract technology-

speci�c representations from process implementation in the same manner. Figure 6.7 depicts the

recovering of a BpelCollaborationView and BpelInformationView using the view-based reverse

engineering approach. As a high-level view and its low-level counterpart are recovered from the

Billing Renewal process implementation by using the same approach, the consistency between

high-level and low-level representations of a certain concern is ensured (cf. Section 4.4.2).

6.2.2.4 View manipulation and code re-generation

<workflow>

<!-- Define properties for the Billing Renewal process views -->

<property name="BASEDIR" value="evaluation/at/eweb/billing/vb" />

<property name="core" value="${BASEDIR}/billing.core" />

<property name="flow" value="${BASEDIR}/billing.flow" />

<property name="information" value="${BASEDIR}/billing.bpelinformation" />

<property name="collaboration" value="${HBASEDIR}/billing.bpelcollaboration" />

<property name="event" value="${BASEDIR}/billing.bpelevent" />

<property name="output" value="output/billing" />

<!-- Call the VbMF predefined workflow to generate BPEL/WSDL code -->

<component file="framework/workflow/wsbpel.oaw" inheritAll="true"/>

</workflow>

Listing 6.2: A work�ow for generating BPEL/WSDL code from the Billing Renewal process views

120 6.2. Scenario-driven evaluation

<bp:process name="Billing">
<!-- Irrelevant details and namespaces are omitted -->
<bp:partnerLinks>
<bp:partnerLink name="BillingRenewal"

partnerLinkType="BillingRenewal"
myRole="BillingRenewal" />

<bp:partnerLink name="CRM" partnerLinkType="CRM"
partnerRole="CRM" />

</bp:partnerLinks>
<bp:sequence>
<bp:receive name="ReceiveExpiryNotification"

operation="initiate"
partnerLink="BillingRenewal"
createInstance="yes"
portType="BillingRenewal"
variable="expiryNotificationInput" />

<bp:flow>
<bp:sequence>
<bp:assign name="DataMap1"../>

<bp:invoke name="ComputePayment"
operation="computePayment"
partnerLink="CRM"
inputVariable="computePaymentInput"
outputVariable="computePaymentOutput"
portType="CRM" />

</bp:sequence>

<definitions>
<!-- Irrelevant details and namespaces are omitted -->
<portType name="BillingRenewal">

<operation name="initiate">
<input message="ExpiryNotification" />

</operation>
</portType>

<plnk:partnerLinkType name="BillingRenewal">
<plnk:role name="BillingRenewal" portType="BillingRenewal" />

</plnk:partnerLinkType>
<plnk:partnerLinkType name="CRM">

<plnk:role name="CRM" portType="CRM" />
</plnk:partnerLinkType>
<plnk:partnerLinkType name="Postal">

<plnk:role name="Postal" portType="postal:Postal" />
</plnk:partnerLinkType>
<plnk:partnerLinkType name="Provision">

<plnk:role name="Provision" portType="Provision" />
</plnk:partnerLinkType>

</definitions>

billing.wsdl

billing.bpel

Properties of the Interaction
„ReceiveExpiryNotification“

(a) Extracting a BpelCollaborationView from the Billing Renewal code

<bp:flow>
<!-- Irrelevant details and namespaces are omitted -->
<bp:sequence>
<bp:assign name="DataMap1">

<bp:copy>
<bp:from>
$expiryNotificationInput.request/ws:contractID

</bp:from>
<bp:to>

$computePaymentInput.request/crm:requestInfo/crm:contractID
</bp:to>
</bp:copy>

</bp:assign>
<bp:invoke name="ComputePayment".../>

</bp:sequence>
<bp:sequence>
<bp:assign name="DataMap2">

<bp:copy>
<bp:from>

$expiryNotificationInput.request/ws:contractID
</bp:from>
<bp:to>

$profileInput.request/crm:requestInfo/crm:contractID
</bp:to>

</bp:copy>
</bp:assign>
<bp:invoke name="RetrieveCustomerProfile".../>

</bp:sequence>
<bp:sequence>

<bp:assign name="DataMap3">
<bp:copy>
<bp:from>

$expiryNotificationInput.request/ws:contractID
</bp:from>
<bp:to>

$checkPaymentTypeInput.request/crm:requestInfo/crm:contractID
</bp:to>

</bp:copy>
</bp:assign>
<bp:invoke name="CheckPaymentType".../>

(b) Extracting a BpelInformationView from the Billing Renewal code

Figure 6.7: Extracting low-level representations of the Billing Renewal process

6.2. Scenario-driven evaluation 121

In the previous steps, the view-based reverse engineering approach is used to recover views of

the Billing Renewal process which are more relevant for stakeholders, from existing process code.

However, to make this usable in practice, changes on the views should lead to corresponding changes

on process code. �e propagation of change is performed using VbMF code generators. �e

developers create a work�ow, shown in Listing 6.2, which is similar to that of the CRM Ful�llment

process mentioned above. In this way, any change in the process views can be automatically re�ected

in the process implementation.

6.2.3 Scenario 3 – Reuse

Most of companies opt for using or adapting existing development artifacts at every opportunity

to do a new project. Reusability is the degree of using the existing so�ware artifacts instead of

developing new ones.�e bene�t of reusing artifacts is that companies can increase productivity,

reduce IT cost, shorten time-to-market, and spend less time for testing and debugging. In Section 4.6,

we argued that the reusability of process descriptions is hardly achievable because of the divergence

of process modeling and development languages, and is mostly done by using the “ copy-and-paste”
approach. We suggested a better way for enhancing the reusability in process development that

is to map process descriptions into VbMF view models and then use VbMF to develop processes

(cf. Section 4.6). We demonstrate how VbMF support a better reusability of process development

artifacts through a use case Order Handling process.

6.2.3.1 Understanding the current business status and requirements

In this scenario, we illustrate how VbMF can support stakehodlers in reusing existing views to

develop an Order Handling process.�e Order Handling process is based upon the purchase order

handling system in which Internet customers can order the company’s products via the Web site.

Figure 6.8) depicts the core functionality of the Order Handling process in terms of a BPMNdiagram.

O
rd

er
 P

ro
ce

ss
in

g

Customer

Verify
Payment

Card valid
&&

product
available?

Receive
Order

Compute
Price

Deliver
Product

Charge
Payment

Cancel
Order

No

Notify
Customer

YesCheck
ProductAvailability

Purchase
Order

Send
Invoice

Invoice

Figure 6.8: Overview of the Order Handling process

122 6.2. Scenario-driven evaluation

�e Order Handling process starts when an Internet customer submits a purchase order. �e

payment account provided by the customer will be checked with regard to its completeness and

correctness. In parallel, the company also checks whether the ordered product is on stock. If either

the customer’s payment account is invalid or the product is out of stock, the process will notify the

customer and ends. Otherwise, the process continues to handle the customer’s purchase order. On

the one hand, the total price for the ordered product, which includes the product’s price and the

shipment’s price, is computed, and the customer’s account is accordingly charged. On the other

hand, a shipment service is contacted for delivering the ordered product to the customer’s address.

When the charging and the shipment have been performed successfully, a postal invoice is sent and

the process ends.

�e company wants to reuse existing artifacts to develop the Order Handling process rather than

starting from scratch. �e business experts, a�er analyzing the business requirements, identify

the functionality required by the Order Handling process and start designing the Order Handling

FlowView. �e IT experts, maybe together with the business experts, align the Order Handling

process’s functionality with the previously developed artifacts and services. In the end, they identi�ed

a number of fragments of process models and services with similar functionality exist across the

enterprise. For instance, the Order Handling process contains a task that charges customer payment

by invoking the services provided by the credit bureau partner which is similar to the ChargePayment
task of the Billing Renewal process (cf. Scenario 2). �erefore, this task should be reused in the

Order Handling process rather than being developed again.

6.2.3.2 Using VbMF to enhance the reusability of development artifacts

Figure 6.9 depicts an example that demonstrates how stakeholders reuse the existing ChargePayment
in the Order Handling process modeling. For the sake of readability, the scenario is presented

in terms of UML Object Diagrams
116
. On the right-hand side, we show the CollaborationView

and BpelCollaborationView of the Billing Renewal process where the ChargePayment activity
is de�ned at high-level and low-level of abstract, respectively. In the Billing Renewal Collabo-

rationView, ChargePayment:Interaction – an instance of the Interaction class – has relationships

with three other objects: CreditBureau:Partner, CreditBureau:Interface, and charge:Operation.�e

ChargePayment:Interaction object is re�ned in the Billing Renewal BpelCollaborationView by the

ChargePayment:Invoke object – an instance of the Invoke class. �e ChargePayment:Invoke
object has two more associations with the chargePaymentInput:VariableReference and

chargePaymentOutput:VariableReference objects.

In order to reuse theChargePayment activity of the Billing Renewal process, the stakeholders perform
two steps:

1. Create a corresponding ChargePayment:AtomicTask in the Order Handling FlowView as

shown in the right-hand side of Figure 6.9.

6.2. Scenario-driven evaluation 123

BillingRenewal : BpelCollaborationView

BillingRenewal : CollaborationView

OrderHandling :FlowView

name=“ChargePayment“

ChargePayment :
AtomicTask

name=“ChargePayment“
inVariable=“chargePaymentInput“
outVariable=“chargePaymentOutput“
interface=“CreditBureau“
operation=“charge“
partner=“CreditBureau“

ChargePayment : Invoke

name=“CreditBureau“

CreditBureau : Interface

name=“charge“

charge : Operation

name=“CreditBureau“

CreditBureau : Partner

name=“CreditBureau“

CreditBureau : Role
role

partner

interaction

role

name=“chargePaymentInput“

chargePaymentInput :
VariableRefenrence

name=“ChargePayment“
interface=“CreditBureau“
operation=“charge“
partner=“CreditBureau“
type=“INOUT“

ChargePayment :
Interaction

name=“chargePaymentOutput“

chargePaymentOutput :
VariableRefenrence

inVar

outVar

partner

operation

name=“charge“

charge : Operation name=“request“

request : Channel

name=“response“

response : Channel

I1

I2

I3 I4

Billing Renewal :
BpelInformationView

name=“ComputePrice“

ComputePrice :
AtomicTask

Figure 6.9: Illustration of the reusability: Reusing by referencing the Charge Payment element of the Billing

Renewal Process in the Order Handling process development

2. Perform one of the following tasks:

(a) Explicitly de�ne either an integration point I1 between the ChargePayment:AtomicTask
and the ChargePayment:Interaction or I2 between the ChargePayment:AtomicTask and
the ChargePayment:Invoke.

(b) Explicitly specify the CollaborationView and BpelCollaborationView of the Billing Re-

newal process are input views of the Order Handling process. As VbMF supports view

integration by name-based matching (cf. Section 3.5), the aforementioned integration

points can be implicitly resolved by VbMF tooling, for instance, the code generators.

A question might be raised at this point, that is “how’s about the relationships between
either the ChargePayment:Interaction or ChargePayment:Invoke and other views of the
Billing Renewal process?”. For instance, the ChargePayment:Invoke has assciations with

chargePaymentInput:VariableReference and chargePaymentOutput:VariableReference objects

which are instances of the VariableReference class. In the Billing Renewal process, the actual

de�nitions of these objects belong to the BpelInformationView. �erefore, these objects are

part of the integration points I3 and I4, respectively, between the BpelCollaborationView and

124 6.2. Scenario-driven evaluation

BpelInformationView of the Billing Renewal process. In this situation, the stakeholders can choose

one of two possible approaches:

1. Reuse the existing integration points between the BpelCollaborationView and BpelInforma-

tionView of the Billing Renewal process:�e stakeholders can gain more bene�t of reusability

but they have to analyze the subsequent dependencies of the reused objects in the BpelInfor-

mationView. In addition, these subsequent dependencies also require extra e�ort to maintain

view synchronization when making any change in the reused views.

2. Create new objects in the Order Handling BpelInformationView and re-de�ne I3 and I4 to
reference to those objects rather than reusing the existing integration points. Although no

bene�t of reusability gained, there is also no binding to the Billing Renewal BpelInformation-

View. �at is, no extra e�ort is needed for understanding the subsequent dependencies or

maintaining view synchronization.

In summary, the separation of concerns principle realized in VbMF has isolated tangled process

concerns by di�erent domain of interests – (semi-)formalized views. �e concept of integration

point enables the �exibility of partially or totally reusing existing artifacts to develop new processes.

As we explained during the development of the Order Handling process, each element of a certain

process view is a potential reusable artifact.�is way, VbMF enables the stakeholders to gain more

reuse of existing process development artifacts.

6.2.4 Scenario 4 – Traceability

During the course of modeling and developing business processes in the previous scenarios, the

view-based, model-driven traceability approach (VbTrace) described in Chapter 5 is utilized to

(semi-)automatically establish and maintain the trace dependencies in both forward and reverse

engineering toolchain. Section 5.3 explained in detail how VbTrace supported stakeholders in

establishing and maintaining trace dependencies in various phases of modeling and developing

the CRM Ful�llment process (cf. Scenario 1). We summarize the involvement of VbTrace in the

process-driven SOA development life cycle:

Forward engineering �e development life cycle starts with designing processes, for instance, by

using BPMN or VbMF high-level views and ends with implementing and deploying processes,

for instance, by using BPEL/WSDL. Scenario 1 described in Section 5.3.2.1 is applied for

the traceability between process designs and VbMF high-level views. �en, Scenario 2 (cf.

Section 5.3.2.2) is for the traceability between process views. Finally, the traceability between

process views and generated code and con�gurations is established by applying Scenario 3 (cf.

Section 5.3.2.3).

Reverse engineering �e development life cycle goes on the other way around. �at is, existing

process artifacts, for instance, process designs and code, are interpreted to extract high-level

6.2. Scenario-driven evaluation 125

and low-level process views. For the mapping of process artifacts into VbMF views, Scenario

1 (cf. Section 5.3.2.1) and 3 (cf. Section 5.3.2.3) are used in the beginning. During the reverse

engineering, the integration points, i.e., the relationships between views, can be deducted

from the relationships between corresponding elements of existing process artifacts. As a

result, the traceability between process views can be established.

Technology-specific Layer

Business
experts

IT experts

Abstract Layer

View-based Modeling Framework

1

View-based, model-driven
Traceability

2

3

Deployment
configuration

4

Process
implementation

Figure 6.10: Using VbMF to quickly adapt to business requirement changes

6.2.5 Scenario 5 – Maintainability

Faced with business and regulatory turbulence, companies need to respond to change, opportunities

and threats more rapidly than ever before. Companies that have a more agile and dynamic IT that

can respond quickly to new regulations, customer trends, business opportunities, requirements, and

threats will have a competitive advantage.�us, the process models should enable a quicker reaction

on business changes in the IT by quickly manipulating process models to develop new capabilities.

Changes in process models should be made in real time without requiring further development

e�ort of the process.

In the subsequent sections, we explain two strategies that stakeholders can utilize in order to adapt

to a certain change requirement at either business level or IT level, respectively. Nonetheless,

the stakeholders can adequately combine these strategies in any order to deal with the change

requirements at both levels at the same time. Figure 6.10 depicts the steps the stakeholders can

126 6.2. Scenario-driven evaluation

perform in VbMF to deal with changes at business level.�ese steps are compared to the industry-

driven approach in Table 6.2.

Phase BPMN-BPEL/WSDL approach VbMF approach

Process design
changing

Business experts analyze the process design

in terms of BPMN diagrams in order to

identify the functionality that should be

changed in order to adapt to new require-

ments, and then, manipulate the process

design. �is is likely a di�cult task be-

cause the process design o�en comprises

numerous tangled concerns as shown in

Figure 6.2.

�e business experts analyze the “as-is” pro-

cesses through the VbMF process views in

the abstract layer. As we explained above,

the process views in the abstract layer pro-

vide concepts that the business experts are fa-

miliar with. �us, the business experts can

quickly identify the functionality that should

be changed in order to adapt to new require-

ments.

Implementation
changing

IT experts, sometimes together with busi-

ness experts, propagate the changes made

in the BPMN diagram into executable pro-

cess descriptions in BPEL/WSDL.�is task

is tedious and error-prone because there is

no explicit link between the process design

and implementation.

�e impact of changes made by the business

experts can be determined through the trace

dependencies established and maintained by

VbTrace (cf. Scenario 4). Based on these

trace dependencies, the IT experts can ac-

cordingly modify the low-level, technology-

speci�c views to re�ect the high-level changes.

Deployment Deployment con�gurations might also be,

mostly manually, adjusted by IT experts

in order to properly redeploy the modi�ed

process in a BPEL process engine.

Deployment con�gurations are automatically

generated.�e process then can be deployed

in a BPEL process engine.

Table 6.2: Comparison of VbMF and the industry-driven approach for process adaptation

Not only changes at business level but also those in technology �elds have forced companies to

rethink the way to respond to changes. Sooner or later, it’s likely that companies will be confronted

with a challenge of implementing new technology in the so�ware and systems. A recent survey

reported by Gartner predicts that “more than 50% of users will be dissatis�ed with the slow rate of IT
change in their enterprises by 2013, up from 30% in 2008” 72. As our approach exploited the model-

driven development paradigm – a realization of the separation of abstraction levels principle, the
technology-speci�c views are separated from the high-level counterparts. As a result, technological

changes mostly a�ect the low-level, technology-speci�c layer of VbMF.

In Figure 6.11, we demonstrate a scenario in which the stakeholders, particularly the IT experts,

deal with technological changes.�e IT experts might have to modify the existing low-level view

models or create new ones to represent the new technologies. In addition, the transformation

templates can also be adjusted or newly created for generating process implementation and/or

deployment con�guration in new technologies. For instance, the �rst implementation of VbMF

aimed at supporting BPEL version 1.1
67
. Later on, the BPEL version 2.0 is approved. We have to

6.2. Scenario-driven evaluation 127

Technology-specific Layer

IT experts

View-based Modeling Framework

1

Deployment
configuration

Process
implementation

Code Generator

2

Figure 6.11: Using VbMF to adapt to technological changes

support stakeholders in quickly migrating to the new BPEL 2.0 standard. Figure 6.12 depicts the

modi�cation of the existing transformation templates in order to generate process implementation

in the new standard.

(a) An excerpt of templates for generating BPEL 1.1 (b) An excerpt of templates for generating BPEL 2.0

Figure 6.12: Adjusting transformation templates for generating process code in new technology

6.2.6 Summary

�e distinct characteristics of our view-based, model-driven approach for process-driven SOA

development illustrated in the course of the aforementioned scenarios, such as separation of concerns,

separation of abstraction levels, code generation support, adaptability, extensibility, reusability,

traceability, and maintainability, are summarized in Table 6.3.

128 6.3. Quantitative analysis

Sep. of
concerns

Sep. of
abst. levels

Code
generation

Adaptability Extensibility Reusability Traceability Maintainability

Scenario 1 4 4 4 4 4

Scenario 2 4 4 4 4

Scenario 3 4 4 4

Scenario 4 4 4 4

Scenario 5 4 4 4 4 4

Table 6.3: Summary of the scenario-driven evaluation

6.3 Quantitative analysis

So�ware metrics have been proposed and used for some time
29,45,54,145

. Essentially, so�ware metrics

deals with the measurement of the so�ware product and the process by which it is developed
105
.

In the context of our work, we mostly concentrate on the product metrics rather than the process
metrics 105.�e product metrics are measures of the modeling and development artifacts, for instance,

process views, process design and implementation, deployment con�gurations, etc., at any stage

of overall development time. In this section, we present a qualitative analysis of important quality

properties that support for assessment of our view-based, model-driven approach for process-driven

SOA development, including the metrics of complexity, reusability, and separation of concerns.

6.3.1 Complexity

�ere are a number of metrics attempting to quantify the complexity of so�ware
23,29,45,105

, e.g.

number of lines of code
45
, McCabe complexity metric

98
, Chidamber-Kemerer metrics

29
, and so

on. �e most widely-used metric is Line of Code (LOC). LOC is typically used to measure the

complexity of a so�ware product by counting the number of lines, except blank lines and comments,

in the source code*.�is way, LOC can o�er an estimation of the amount of e�ort for developing

a so�ware product or programming productivity. Lange pointed out the challenges in de�ning

model size metrics that inherent to UML in particular and the MDD paradigm in general
85
. He

also suggested an approach for measuring model size based on the four dimensions of Fenton and

P�eeger
45
.�e complexity used in this section is a variant of Lange’s model size metrics

85
extended

to support speci�c concepts of process-driven SOA development and theMDDparadigm. According

to Fenton and P�eeger
45
, Lange’s metric is of cognitive complexity that rather re�ects the perception

and understanding of a certain model from a modeler’s point of view.

De�nition 6.1 (Absolute size metric). �e absolute size of a model is the number of the model’s
elements.

Table 6.4 summarizes the complexity of the use cases investigated throughout our work, which are

the Billing Renewal Process (BRP), CRM Ful�llment Process (CFP), Order Handling Process (OHP),

*
Hence, LOC is somehow replaced by KNCSS – thousands of lines of non-commented source statements

6.3. Quantitative analysis 129

Use case Process design (BPMN) VbMF(Hi) VbMF(Lo) I(x, y) Process impl. (BPEL/WSDL)

Flow Coll. Data FV CV IV BCV BIV Ihi gh I l ow Flow Coll. Data

BRP 104 29 51 81 63 85 132 492 48 117 81 109 510

CFP 42 23 43 49 74 78 131 535 31 88 49 132 549

OHP 29 38 22 29 36 44 65 285 17 46 29 62 292

TBP 30 17 23 33 33 43 56 261 17 40 33 56 266

Table 6.4:�e complexity of process descriptions and VbMF views

and Travel Booking Process (TBP). For each process, we measure the absolute size metric of basic

concerns, including the control �ow, collaboration, and data handling, of the process design (i.e.,

BPMN diagrams) and process implementations (i.e., BPEL/WSDL descriptions). Note that these

concerns of process design and implementation are not naturally separated but rather scatted and

tangled. For the sake of comparison, we measure the absolute size metric of the process design and

implementation with respect to the corresponding concepts of the process concerns provided by

our view-based approach. �ese absolute sizes are then compared to those of VbMF high-level

and low-level process views, such as the FlowView, CollaborationView (CV), InformationView (IV),

BpelCollaborationView (BCV), and BpelInformationView (BIV), of each use case. For the sake of

readability and comparison purpose, we group the elements into corresponding process concerns

which are �ow, collaboration, and information concerns. I(x, y) denotes the number of integration

points between process views inwhich Ihigh is the amount of integration points between the FlowView

and other high-level process views, such as the CollaborationView and InformationView, and Ilow
is the amount of integration points between the FlowView and other low-level views, such as the

BpelCollaborationView and BpelInformationView. Note that the number of integration points

between VbMF views are considered as the cost of the separation of concerns principle realized in

VbMF. �e size complexity metrics are concerned with di�erent quality properties of so�ware and

system. In general, the higher the size complexity, the harder it is to analyze and understand the

system
45,141

. For instance, the absolute size metric measures the model complexity in terms of the

number of model elements.�e greater the number of amodel’s elements and relationships, themore

di�cult for the stakeholders to understand the model.�e more model elements and relationships,

the harder the stakeholders can identify the elements that must be changed in the course of evolution

tasks or understand relevant functionalities during the course of reuse tasks
141
. Figure 6.13 visualizes

the comparisons of the complexity of process designs, implementations, and VbMF process views

with respect to the basic concerns: the control-�ow, collaboration, and information concern.

�e results show that the complexity of each of VbMF high-level views is lower than that of the

process design and the complexity of each of VbMF low-level views is lower than that of the process

implementation. �ose results prove that our approach has reduced the complexity of process

descriptions by the notion of (semi-)formalized views. We also measure a high-level representation

of process by using an integration of VbMF abstract views and a low-level representation of process

by using an integration of VbMF technology-speci�c views.�e numbers say that the complexity of

130 6.3. Quantitative analysis

0

200

400

600

800

Flow Collaboration Information Integration Point

(a) Billing Renewal Process

0

200

400

600

800

Flow Collaboration Information Integration Point

(b) CRM Ful�llment Process

0

200

400

Flow Collaboration Information Integration Point

(c)Order Handling Process

0

200

400

Flow Collaboration Information Integration Point

(d) Travel Booking Process

Figure 6.13: Comparison of the complexity of processes and VbMF views

the high-level representation is comparable to that of process design while the complexity of the

low-level representation is comparable to that of the process implementation. Because we use view

integration mechanisms for combining views, the overhead of integration points occurs in both

aforementioned integrated representations.

6.3.2 Reusability

�e IEEE Standard Glossary of So�ware Engineering Terminology
68
de�nes reusability as:

De�nition 6.2 (Reusability). �e degree to which a so�ware module or other work product can be
used in more than one computer program or so�ware system.

In the context of an MDD paradigm, we re�ne this de�nition as the degree to which a model can be
used in more than one so�ware or system. As such, the reusability of a model can be measured by the
amount of reusable model elements and the model itself which can be used in more than one so�ware
or system without any changes or with small adaptations.

6.3. Quantitative analysis 131

We illustrated in Scenario 3 (cf. Section 6.2.3) that each element of VbMF process views, except the

Core Model and the FlowView, can be a potentially reusable artifact. Reusing a Core Model of a

process is likely unreasonable because this model mostly contains process-speci�c meta-data, such

as meta-information of the process itself, of services required or provided by the process, and of

the views that model the process. A FlowView purely contains a control �ow or a fragment of a

control �ow that de�nes the business logic, i.e., the execution order of process tasks, in order to

achieve a particular business goal. Note that detailed descriptions of process tasks, for instance,

invoking a service, transforming data objects, are not included in the FlowView but others such

as (Bpel)CollaborationView and (Bpel)InformationView.�erefore, reusing an existing FlowView

to develop a new process is possible but ine�cient. Nonetheless, a FlowView can be reused as the

documentation of an “as-is” process that can be referenced, or even used as a skeleton, for developing
new processes. For this reason, we do not measure the reusability of the Core Models and FlowViews

of the use cases.

�e reusability of VbMF in process-driven SOA development is denoted by how VbMF views of a

process can be potentially reused to develop other processes. We measure the reusability of VbMF

views in each use case by analyzing and estimating the amount of potentially reusable elements (ER)

of each views. RR denotes e�ective ratio of reuse, i.e., RR = ER/E, where E is the total number

of model elements of the corresponding view. We present this metric of VbMF process views in

Table 6.5. Figure 6.14 visualizes the degree of “reuse” and “not reused” of VbMF views for each use

case.

Use case
CV IV BCV BIV

ER E RR(%) ER E RR(%) ER E RR(%) ER E RR(%)

BRP 49 63 77.78 59 85 69.41 63 132 47.73 407 494 82.39

CRM 60 74 81.08 63 78 80.77 74 131 56.49 448 537 83.43

OHP 29 36 80.56 36 44 81.82 36 65 55.38 238 286 83.22

TBP 27 33 81.82 33 43 76.74 33 56 58.93 219 260 84.23

Average 80.31 77.19 54.63 83.32

Table 6.5: Measures of the reusability of process models in VbMF

�e ratio of reuse also re�ects the tendency of integration of VbMF views.�at is, AtomicTasks of
the FlowView are integrated with the corresponding elements of the CollaborationView and Infor-

mationView such as Interaction and Data Handling, or elements of the BpelCollaborationView and

BpelInformationView, such as Receive, Reply, Invoke, and Assign. In addition, a number of elements

of the (Bpel)CollaborationView have references to corresponding elements of (Bpel)InformationView

whilst none of the (Bpel)InformationView’s element depends on other views’ elements. As a result, the

ratio of reuse of the (Bpel)InformationView is much higher than that of the (Bpel)InformationView.

�e ratios of reuse of high-level views are higher than that of low-level ones because the abstract

concepts are more reusable than the technology-speci�c counterparts.�e average degrees of reuse

132 6.3. Quantitative analysis

0.0%

25.0%

50.0%

75.0%

100.0%

CV IV
BCV

BIVReused Not reused

(a) Billing Renewal Process

0.0%

25.0%

50.0%

75.0%

100.0%

CV IV
BCV

BIVReused Not reused

(b) CRM Ful�llment Process

0.0%

25.0%

50.0%

75.0%

100.0%

CV IV
BCV

BIVReused Not reused

(c)Order Handling Process

0.0%

25.0%

50.0%

75.0%

100.0%

CV IV
BCV

BIVReused Not reused

(d) Travel Booking Process

Figure 6.14:�e potential ratio of reuse of process views

over four use cases are very promising: 80.31% for the CollaborationView (CV), 77.19% for the

InformationView (IV), 54.63% for the BpelCollaborationView (BCV), and 83.32% for the BpelInfor-

mationView (BIV).

6.3.3 Separation of concerns

Separation of concerns is a well-established principle in so�ware engineering in which so�ware or

system is separated into distinct features in order to minimize the overlap in functionality
35,53,152

. A

concern is any piece of interest or focus in a so�ware or system. Concerns are realized in so�ware

development using various abstractions provided by languages, methods, and tools. For instance,

aspect-oriented so�ware development (AOSD) paradigm introduces the notion of aspects as a

new abstraction and o�ers a new methodology for populating aspects and related components

(classes, methods, etc.). Sant’Ana et al.
141

propose a number of metrics for assessing the separation

of concerns in aspect-oriented so�ware development
78
such as Concern Di�usion over Components

(CDC), Concern Di�usion over Operations (CDO), and Concern Di�usion over LOC (CDLOC).

6.3. Quantitative analysis 133

Ho�man and Eugster exploit the notion of explicit joint points (EJPs) to reduce obliviousness and

report an empirical analysis onmodularity and obliviousness
60
. Sant’Anna et al. note that themetrics

CDC, CDO and CDLOC represent the degree to which a single concern maps to so�ware elements.
A lower value of these metrics will make so�ware engineers easier to understand and maintain

so�ware designs
141
. Moreover, the separation of concerns is also a predictor of understandability,

maintainability, reusability because localized, isolated concerns are better understood, manipulated,

and reused than scattered, tangled ones
141
.

�e notion of views exploited in our approach is a realization of the separation of concerns principle.

�e biggest di�erence between our approach and AOSD approaches, as explained in Section 3.8, is

the level of abstraction considered in each approach. Most of AOSD approaches for process-driven

SOA development and other �elds focus at a low level of abstraction, e.g., code level. Nonetheless,

we share a common conceptual foundation – the separation of concerns principle.�us, we use a

variant of these metrics extended to support concepts of process-driven SOAs and MDD.

De�nition 6.3 (Process-driven Concern Di�usion – PCD). PCD of a process concern is a metric that
counts the number of elements of other concerns which are either tangled in that concern or directly
referenced by elements of that concern.

Use case
Flow Collaboration Information

Process VbMF Reduce (%) Process VbMF Reduce (%) Process VbMF Reduce (%)

BRP 411 48 88.32 409 117 71.39 195 69 64.62

CFP 398 31 92.21 407 88 78.38 176 57 67.61

OHP 212 17 91.98 221 46 79.19 93 29 68.82

TBP 175 17 90.29 186 40 78.49 85 23 72.94

Table 6.6: Measures of process-driven concern di�usion

Process-driven Concern Di�usion (PCD) metric of a concern estimates the degree that a certain

process concern scattered and tangled with the others. �e higher PCD metric of a concern, the

more di�cult it is for the stakeholders to understand and manipulate the concern. Table 6.6 gives

the results for the PCD metric of the process descriptions and VbMF views in the aforementioned

use cases. We measure the PCD metric of the process descriptions represented in BPEL and WSDL

with respect to di�erent process concerns such as the control-�ow, collaboration, and information.

Figure 6.15 visualizes the comparison of PDCmetric of process descriptions and VbMF view models

for each use case.

A process description o�en comprises numerous tangled process concerns. VbMF, by contrast,

enables the stakeholders to deal with the process through separate view models and integration

points. For instance, a process control-�ow is described by a BPEL description that o�en includes

many other concerns such as service interactions, data processing, transactions, and so on. As

a result, the di�usion of the control-�ow concern of the process description is higher than that

134 6.3. Quantitative analysis

0

150

300

450

Flow
Collaboration

Information

Without view-based With view-based

(a) Billing Renewal Process

0

150

300

450

Flow
Collaboration

Information

Without view-based With view-based

(b) CRM Ful�llment Process

0

150

300

Flow
Collaboration

Information

Without view-based With view-based

(c)Order Handling Process

0

150

300

Flow
Collaboration

Information

Without view-based With view-based

(d) Travel Booking Process

Figure 6.15: Comparison of the Process-driven Concern Di�usion metric (lower is better)

of the VbMF FlowView. �e results show that the separation of concerns principle exploited in

our view-based, model-driven approach has signi�cantly reduced the scatter and tanglement of

process concerns. Note that the control �ow is the central notion of process-driven SOAs which

speci�es the core business logic of processes.�us, it is more important that we achieved a signi�cant

decrement of the di�usion of the control-�ow approximately 88.32%–92.21%, which denotes a better
understandability and maintainability of the core functionality of processes. For other concerns, our

approach is also shown to signi�cantly reduce concern di�usions approximately 71.39%–79.19% for

the collaboration concern, and 64.62%–72.94% for the information concern (see Table 6.6), and

therefore, improve the understandability, reusability, and maintainability of business processes.

Chapter 7

Conclusion

“ It is good to have an end to journey toward; but it is the journey
that matters, in the end. ”—Ursula K. Le Guin

In this chapter, we summarize the work reported in this dissertation by revisiting the research

problems presented in Chapter1 and consolidating the key contributions achieved. �e extent to

which contributions address the research problems is reviewed and discussed. Finally, we present

our visions about future research directions.

7.1 Contribution summary

�e initial goal in conducting this work was to investigate two major issues that have not been solved

yet in existing approaches for process-driven SOAs. First, the process descriptions consist of various
tangled concerns, such as the control �ow, data handling, service invocations, transactions, event

handling, etc. As the number of services and processes involving in a business process increase,

the complexity of developing and maintaining the process is quickly multiplied.�is complexity

inheres in di�erent phases of process development ranging from design/modeling to implementation,

deployment, and maintenance. Second, there exists a huge divergence of process modeling and

development languages due to the di�erence of language syntaxes and semantics, the di�erence

of granularity at di�erent abstraction levels, and the lack of explicit links between high-level, e.g.,

process designs) and low-level representations, e.g., process implementations.

In this dissertation, we presented a view-based, model-driven approach for process-driven SOAs for

addressing aforementioned challenges. In general, the novelty of our approach is twofold. Firstly, we
exploit the notion of views – a realization of the separation of concerns principle – to separate process

descriptions into di�erent (semi-)formalized representations.�is way, we can aid the stakeholders

mastering the horizontal dimension, i.e., dealing with the complexity of di�erent process concerns.

Secondly, we utilize theMDDparadigm – a realization of the separation of abstraction levels principle

– to align process views into di�erent abstraction levels including a high-level, platform-neutral layer

and a low-level, technology-speci�c counterpart. �is way, our approach provides stakeholders

136 7.1. Contribution summary

the ability of working with suitable levels of abstractions according to their speci�c expertise and

interests. Moreover, the artifacts developed by di�erent stakeholders can be brought together by

view integration mechanisms to form a richer view or a more thorough view of processes. On other

words, our approach supports the stakeholders in mastering the vertical dimension, i.e., bridging
the gap between abstraction levels. In the subsequent sections, we discuss particular aspects of our

contributions.

Quality properties

AdaptabilitySeparation of Concerns
(notion of views)

Separation of Abstraction Levels
(MDD paradigm)

View-based
Reverse Engineering

View-based, Model-driven
Traceability

View-based, Model-driven
Forward Engineering

Concepts

Automation

Interoperability

Modularity

Maintainability

Reusability

Understandability

Traceability

Methods, techniques

Extensibility

Figure 7.1: Summarization of our key contributions

7.1.1 Methodology

�ough this dissertation work, we contribute a new so�ware development methodology in which the

principle of separation of concerns and the principle of separation of abstraction levels are combined

to shape a modeling and development framework for process-driven SOAs.�e important outcomes

of this combination are the various (semi-)formalized views tailoring di�erent perspectives of

process models and di�erent abstraction levels for accommodating the di�erence of expertise,

knowledge, and interests of the stakeholders involving in process development. �e resulting

framework, including a number of tools and techniques such as view integration, view extension,

view-based reverse engineering, and view-based traceability, supports stakeholders in modeling

and developing so�ware and systems, in terms of business processes, in an agile, extensible, and

�exible manner in both top-down and bottom-up approaches. Our approach have been realized and

instantiated via di�erent scenarios that investigates a number of industrial use cases. A qualitative

analysis conducted in these use cases proves that our approach achieves many pragmatic and

promising results.

7.1. Contribution summary 137

7.1.2 Quality properties of process-driven SOA development

In the existing approaches to process-driven SOA development, the tanglement of concerns and

the divergence of process modeling and development languages impair many important quality

properties of business process development. Our view-based, model-driven approach aims at

addressing these challenges in order to reconcile these quality properties, which are:

• Adaptability: Appropriate representations of process models adapted to particular stakehold-

ers’ interests and expertise can be achieved by choosing relevant abstraction levels and/or

integrating relevant views to produce a richer or a more thorough view of processes.

• Automation: Our approach enhances the automation of process development at di�erent

points: generating executable code from process views, extracting high-level and low-level

representations from existing process descriptions, and (semi)-automatically establishing and

maintaining the trace dependencies between development artifacts.

• Extensibility: Our approach can be expanded to represent additional process concerns by

adding a New-Concern-View model that might inherit basic concepts of the Core model

or existing views and provide new concepts for capturing the new concern. We call these

horizontal extensions, i.e., extensions along the horizontal dimension (cf. Section 3.5). On the

other hand, the vertical dimension can also be extended. An existing view at a certain level of

abstraction can be re�ned down to a lower level by using the view extension mechanism (cf.

Section 3.5).�us, we call these vertical extensions.

• Interoperability:�e huge divergence of process modeling languages deteriorates the inter-

operability of di�erent process representations in these languages. We potentially reconcile

the interoperability by supporting the mapping of di�erent process descriptions into VbMF

using the reverse engineering approach and maintaining the trace dependencies occurring

during the mapping.

• Maintainability: So�ware maintenance is the modi�cation of so�ware in order to correct

faults, to improve some qualities, or to adapt to a new requirement.�e key factors that might

a�ect so�ware maintenance are: high complexity, limited understanding, and limited support

for traceability and impact analysis. Our approach helps overcoming these factors by using

separate (semi-)formalized views to reduce complexity and concern di�usions, using adequate

levels of abstraction and tailored or integrated views to enhance understanding, and using

traceability approach to support traceability and change impact analysis.

• Modularity: �e separation of concerns principle exploited in our approach, as explained

in Chapter 3 and qualitatively proved in Chapter 6, enhances the modularity of process

descriptions, and therefore, reduces the complexity and the di�usion of process concerns.

138 7.2. Future work

• Reusability: In our approach process descriptions are separated into di�erent views repre-

senting distinct process concerns. �e integration of views are performed via name-based

matching.�erefore, stakeholders can better reuse existing VbMF elements or views by explic-

itly establishing relevant integration points rather than the tedious, error-prone “copy-paste”

method.

• Traceability: Dependency relationships between artifacts are crucial in so�ware development

because they strongly support artifact tracing, change impact analysis, evolution management,

and other activities. Our view-based, model-driven traceability approach supports stakehold-

ers in (semi-)automatically establishing and maintaining di�erent kinds of trace dependencies

at di�erent granularity acquired during the process development life cycle. As a result, our

traceability approach plays the role of an intermediate bridge that o�ers stakeholders the

ability of leveraging the traceability meta-data for tracing artifacts, analyzing the impact of a

certain change in process models, or managing the evolution of the process development.

• Understandability: Understanding the functionality of products, for instance, so�ware or
systems, is essentially prerequisite to the subsequent steps such as product development,

maintenance and evolution.�us, the understandability of a product a�ects some other quality

properties, such as the reusability and maintainability, of that product.�e understandability,

in turns, is in�uenced by other properties such as the complexity, adaptability, and traceability.

As we explained so far, our approach has provided appropriate supports for stakeholders to

tackle the root of these causal relationships, i.e., to reduce the complexity, and enhance the

adaptability and traceability of process-driven SOAs.

7.2 Future work

So far our view-based, model-driven approach has producedmany encouraging results in addressing

the major issues in process-driven SOA development. Besides, there are some interesting ideas raised

during the course of our research but have not exploited further in the scope of this dissertation for

some reasons.

7.2.1 Enhancing view integration mechanisms

In order to support the stakeholders in achieving a richer or a more thorough view from the existing

ones, we proposed the view integration mechanism. In VbMF, view integration mechanism is

realized by using a name-based matching algorithm (see Section 3.5).�is algorithm is based on an

assumption that the modelers shall use the same name for di�erent occurrences of a concept or an

artifact. For instance, if there is a process task appearing in the FlowView under the name of Receive
Customer Order, then its occurrence, or in other words, its de�nition, in the CollaborationView

7.2. Future work 139

should be accordingly named Receive Customer Order such that they can be properly integrated.

Although the algorithm is simple, it is e�ectively used at the view level (or model level) because

from a modeler’s point of view in reality, it makes sense, and is reasonable, to assign the same name

to the modeling entities that pose or share the same functionality and semantics. Nevertheless,

improving the view integration mechanism toward further exploiting class hierarchical structures or

ontology-based structures along with the existing algorithm will help stakeholders gaining more

preciseness and �exibility. For instance, utilizing an ontology-based approach can raise the view

integration to the conceptual level in which views can be integrated based on the similarity of

concepts or relevant relationships between concepts.

7.2.2 Integration with model-driven repositories

For better modeling, developing, reusing, and maintaining business processes using our approach, a

model repository is also important. Amodel repository is a single point of access where development

artifacts can be stored, retrieved, managed, and shared among di�erent projects and stakeholders

easily and e�ciently. �ere are a number of existing e�orts both in research and industry for

so�ware development repositories such as revision control systems
71,153

. �ese approaches can

support stakeholders in storing, sharing, and tracking changes, and controlling over changes to

so�ware source code. Unfortunately, they are not model-aware.�is is, the �rst-class element in

these approaches is merely a source document. In the context of the MDD paradigm, a model is the

�rst-class citizen. Amodel contains a number of elements along with the relationships between those

elements such as generalize, depend, use, etc. One or many models can be persisted in particular

serialization format. For instance, a UML model
116

can be serialized to a �le in XMI format
119
.

�e exiting revision control systems merely treat the XMI serialization of that UML model as a

normal document rather than a UML model.�us, a repository should support storing, retrieving,

versioning, and sharing models and relevant meta information of models. In some recent works,

we observed that this direction has gained many attentions in both research and industry. France

et al. proposed a repository for MDD (ReMoDD) that will contain artifacts that support research

and education in model-driven development (MDD)
50
.�e NetBeans Metadata Repository is an

industry e�ort which supports storing and sharing models based on MOF
117

and utilizes XMI
119

as the common interchange format. Oliveira et al.
111

introduced a version control system, namely,

Odyssey-VCS, that deals with the complex models used by UML-based CASE tools. Odyssey-VCS

also enables the con�guration of both the unit of versioning and unit of comparison for each

speci�c project, respecting the di�erent needs of the diverse development scenarios
111
. Recently,

Holmes et al. propose a promising approach, Model-Aware Service Environment (MORSE), that

supports managing MDD projects and identifying and re�ecting on models, model elements and

their relationships
63
. In our prototype, we utilized a simple model repository in Eclipse Modeling

Framework
38
. Better integration our framework with model-driven repositories mentioned above is

140 7.2. Future work

a signi�cant step towards a collaborative model-driven development environment.

7.2.3 Tool support

Due to the limitation of resources, we have just developed a prototypical view-based modeling

framework to illustrate our approach rather than implementing a full-�edged development tooling.

Nonetheless, our implementation is based on Eclipse – a decent and popular integrated so�ware

development environment. Our concepts have been realized on top of the Eclipse Modeling Frame-

work
38
– a MOF-compliant modeling framework and code generation facility for building tools

and other applications – and openArchitectureWare
122

– one of the leading open source tools for

model-driven so�ware development. As a result, our view-based modeling framework supports

current (de facto) standards that support so�ware modeling and interoperability of models and

tools, such as MOF/EMOF
117

and XMI
119
. Nonetheless, there are still many rooms for improvement,

for instance, enhancing tool support for view integration mechanisms, traceability, repository in-

tegration, and a friendly, uni�ed user-interface providing adequate workbench for process-driven

SOA development stakeholders. �ese tool supports enable stakeholders fully employed the key

concepts and contributions of our approach.

Bibliography

[1] ActiveEndpoints. ActiveBPEL Engine. http://www.activevos.com/community-open-source.

php, 2008. (accessed 2007/01/02).

[2] N. Aizenbud-Reshef, B. T. Nolan, J. Rubin, and Y. Shaham-Gafni. Model traceability. IBM
System Journal: Model-Driven So�ware Development, 45(3), 2006.

[3] M. Aleksy, T. Hildenbrand, C. Obergfell, and M. Schwind. A Pragmatic Approach to Trace-

ability in Model-Driven Development. In PRIMIUM, 2008.

[4] I. Alexander. SemiAutomatic Tracing of Requirement Versions to Use Cases - Experience

and Challenges. In TEFSE’03: 2nd International Workshop on Traceability in Emerging Forms
of So�ware Engineering, 2003.

[5] G. Alonso, F. Casati, H. Kuno, and V. Machiraju. Web Services: Concepts, Architectures and
Applications. Springer, 2004.

[6] P. Antonini, G. Canfora, and A. Cimitile. Reengineering Legacy Systems to Meet Quality

Requirements: An Experience Report. In ICSM ’94: Proceedings of the International Conference
on So�wareMaintenance, pages 146–153, Washington, DC, USA, 1994. IEEE Computer Society.

[7] G. Antoniol, G. Canfora, G. Casazza, A. D. Lucia, and E. Merlo. Recovering Traceability Links

between Code and Documentation. IEEE Trans. So�w. Eng., 28(10):970–983, 2002.

[8] G. Antoniol, G. Canfora, A. de Lucia, and G. Casazza. Information Retrieval Models for

Recovering Traceability Links between Code and Documentation. In ICSM ’00: Proceedings
of the International Conference on So�ware Maintenance (ICSM’00), page 40, Washington,

DC, USA, 2000. IEEE Computer Society.

[9] Apache. Apache ODE (Orchestration Director Engine). http://ode.apache.org, 2008. (ac-

cessed 2007/02/01).

[10] B. Axenath, E. Kindler, and V. Rubin. An Open and Formalism Independent Meta-Model

for Business Processes. In Proc. of the Workshop on Business Process Reference Models, pages
45–59, 2005.

http://www.activevos.com/community-open-source.php
http://www.activevos.com/community-open-source.php
http://ode.apache.org

142 BIBLIOGRAPHY

[11] B. Axenath, E. Kindler, and V. Rubin. AMFIBIA: A Meta-Model for the Integration of

Business Process Modelling Aspects. International Journal of Business Process Integration and
Management, 2(2):120–131, 2007.

[12] H. Bär, M. Bauer, O. Ciupke, S. Demeyer, S. Ducasse, M. Lanza, R. Marinescu, R. Nebbe,

O. Nierstrasz, M. Przybilski, T. Richner, M. Rieger, C. Riva, A.-M. Sassen, B. Schulz, P. Steyaert,

S. Tichelaar, and J. Weisbrod. �e FAMOOS Object-Oriented Reengineering Handbook. SCG
FAMOOS, Oct. 1999.

[13] M. Beisiegel, H. Blohm, D. Booz, M. Edwards, O. Hurley, S. Ielceanu, A. Miller, A. Karmarkar,

A. Malhotra, J. Marino, M. Nally, E. Newcomer, S. Patil, G. Pavlik, M. Raepple, M. Rowley,

K. Tam, S. Vorthmann, P. Walker, and L. Waterman. SCA Service Component Architecture

Assembly Model Speci�cation V1.00. http://www.osoa.org/download/attachments/35/SCA_

AssemblyModel_V100.pdf?version=1, Mar. 2007.

[14] T. J. Biggersta�. Design Recovery for Maintenance and Reuse. IEEE Computer, 22(7):36–49,
1989.

[15] K. Blinco, T. Grisby, A. Laird, O. O‘Neill, V. Srikanth, and C. Smythe. Adoption of service

oriented architecture (SOA) for enterprise systems in education: Recommended practices.

Technical report, IMS Global Learning Consortium, May 2009.

[16] BMPI. Business Process Modeling Language. http://www.bpmi.org/downloads/BPML1.0.zip,

Nov. 2002. (accessed 2007/02/08).

[17] R. Bobrik, M. Reichert, and T. Bauer. View-Based Process Visualization. In BPM, volume

4714/2007, pages 88–95. Springer, 2007.

[18] L. Bondé, P. Boulet, and J.-L. Dekeyser. Traceability and Interoperability at Di�erent Levels of
Abstraction in Model-Driven Engineering, pages 263–273. Applications of Speci�cation and

Design Languages for SoCs. Springer Netherlands, 2006.

[19] T. L. Booth. Sequential Machines and Automata�eory. John Wiley & Sons, Inc., New York,

Jan. 1967.

[20] A. Brown. An Introduction to Model Driven Architecture - Part I: MDA and today’s systems.

http://www.ibm.com/developerworks/rational/library/3100.html, Feb. 17 2004. (accessed

2009/02/17).

[21] CA Wily. Techweb SOA study results. http://www.ca.com/files/SupportingPieces/

cmp-global-survey_196383.pdf, Dec. 2009.

[22] C. Cappelli, J. C. S. P. Leite, T. Batista, and L. Silva. An aspect-oriented approach to business

process modeling. In EA ’09: Proceedings of the 15th workshop on Early aspects, pages 7–12,
New York, NY, USA, 2009. ACM.

http://www.osoa.org/download/attachments/35/SCA_AssemblyModel_V100.pdf?version=1
http://www.osoa.org/download/attachments/35/SCA_AssemblyModel_V100.pdf?version=1
http://www.bpmi.org/downloads/BPML1.0.zip
http://www.ibm.com/developerworks/rational/library/3100.html
http://www.ca.com/files/SupportingPieces/cmp-global-survey_196383.pdf
http://www.ca.com/files/SupportingPieces/cmp-global-survey_196383.pdf

BIBLIOGRAPHY 143

[23] J. Cardoso, J. Mendling, G. Neumann, and H. A. Reijers. A discourse on complexity of process

models. In Business Process ManagementWorkshops, BPM 2006 International Workshops, BPD,
BPI, ENEI, GPWW, DPM, semantics4ws, Vienna, Austria, September 4-7, 2006, Proceedings,
pages 117–128, 2006.

[24] A. Char� and M. Mezini. Aspect-Oriented Web Service Composition with AO4BPEL. In

Proc. of the 2nd European Conference on Web Services (ECOWS), volume 3250 of LNCS, pages
168–182. Springer, Sept. 2004.

[25] A. Char� and M. Mezini. An aspect-based process container for BPEL. In AOMD ’05: Proc.
of the 1st workshop on Aspect oriented middleware development, New York, NY, USA, 2005.

ACM Press.

[26] A. Char� and M. Mezini. AO4BPEL: An Aspect-oriented Extension to BPEL. World Wide
Web, 10(3):309–344, 2007.

[27] A. Char�, B. Schmeling, A. Heizenreder, andM.Mezini. Reliable, Secure, and TransactedWeb

Service Compositions with AO4BPEL. In ECOWS ’06: Proceedings of the European Conference
on Web Services, pages 23–34, Washington, DC, USA, 2006. IEEE Computer Society.

[28] I. Chebbi, S. Dustdar, and S. Tata. �e view-based approach to dynamic inter-organizational

work�ow cooperation. Data Knowl. Eng., 56(2):139–173, 2006.

[29] S. R. Chidamber and C. F. Kemerer. A metrics suite for object oriented design. IEEE Trans.
So�w. Eng., 20(6):476–493, 1994.

[30] E. J. Chikofsky and J. H. I. Cross. Reverse Engineering and Design Recovery: A Taxonomy.

IEEE So�ware, 7(1):13–17, 1990.

[31] D. K. W. Chiu, S. C. Cheung, S. Till, K. Karlapalem, Q. Li, and E. Kafeza. Work�ow View

Driven Cross-Organizational Interoperability in a Web Service Environment. Inf. Tech. and
Management, 5(3-4):221–250, 2004.

[32] P. Clements, F. Bachmann, L. Bass, D. Garlan, J. Ivers, R. Little, R. Nord, and J. Sta�ord.

Documenting So�ware Architectures: Views and Beyond. Addison-Wesley Professional, New

York, NY, USA, Sept. 2002.

[33] P. Constantopoulos, M. Jarke, J. Mylopoulos, and Y. Vassiliou. �e so�ware information base:

a server for reuse. �e VLDB Journal, 4(1):1–43, 1995.

[34] R. Davis. Business Process Modelling with ARIS: a Practical Guide. Springer-Verlag New York,

Inc., New York, NY, USA, 2001.

[35] E. W. Dijkstra. EWD 447: On the role of scienti�c thought. Selected Writings on Computing:
A Personal Perspective, pages 60–66, 1982.

144 BIBLIOGRAPHY

[36] D. Drusinsky. Modelling and veri�cation using UML Statecharts. Elservier, Apr. 2006.

[37] S. Dustdar and B. J. Krämer. Introduction to special issue on service oriented computing

(SOC). ACM Trans. Web, 2(2):1–2, 2008.

[38] Eclipse. Eclipse Modeling Framework. http://www.eclipse.org/emf, 2004. (accessed

2007/02/01).

[39] Eclipse. Eclipse BPMNModeler. http://www.eclipse.org/bpmn, 2006. (accessed 2008/02/01).

[40] A. Egyed. A Scenario-Driven Approach to Trace Dependency Analysis. IEEE Trans. So�w.
Eng., 29(2):116–132, 2003.

[41] T. Erl. Service-Oriented Architecture: Concepts, Technology and Design. Prentice Hall, 2005.

[42] EU Framework 7 STREP. Compliance-driven Models, Languages, and Architectures for

Services (COMPAS). http://www.compas-ict.eu, 2008.

[43] M. Evenson and B. Schreder. SemBiz Deliverable: D4.1 Use Case De�nition and Functional

Requirements Analysis. http://sembiz.org/attach/D4.1.pdf, Aug. 2007.

[44] R. Farahbod, U. Glässer, and M. Vajihollahi. Speci�cation and Validation of the Business

Process Execution Language for Web Services. In Abstract State Machines, pages 78–94, 2004.

[45] N. Fenton and S. L. P�eeger. So�ware metrics (2nd ed.): a rigorous and practical approach.
PWS Publishing Co., Boston, MA, USA, 1997.

[46] D. F. Ferraiolo, J. F. Barkley, and D. R. Kuhn. A role-based access control model and reference

implementation within a corporate intranet. ACM Trans. Inf. Syst. Secur., 2(1):34–64, 1999.

[47] R. T. Fielding. Architectural styles and the design of network-based so�ware architectures. PhD
thesis, University of California, Irvine, 2000.

[48] R. E. Filman, T. Elrad, S. Clarke, and M. Aksit. Aspect-Oriented So�ware Development.
Addison-Wesley Professional, Oct. 2004.

[49] FIT Project. Semantic Business Process Management for Flexible Dynamic Value Chains

(SemBiz). http://sembiz.org, 2006.

[50] R. B. France, J. M. Bieman, and B. H. C. Cheng. Repository for model driven development (re-

moDD). InMoDELS Workshops, Lecture Notes in Computer Science, pages 311–317. Springer,

2006.

[51] D. Frankel. Model Driven Architecture: Applying MDA to Enterprise Computing. John Wiley

& Sons, Inc., New York, NY, USA, 2002.

http://www.eclipse.org/emf
http://www.eclipse.org/bpmn
http://www.compas-ict.eu
http://sembiz.org/attach/D4.1.pdf
http://sembiz.org

BIBLIOGRAPHY 145

[52] I. Galvão and A. Goknil. Survey of Traceability Approaches in Model-Driven Engineering.

In EDOC, pages 313–326, 2007.

[53] C. Ghezzi, M. Jazayeri, and D. Mandrioli. Fundamentals of So�ware Engineering. Prentice
Hall, 1991.

[54] P. Goodman. �e Practical Implementation of So�ware Metrics. McGraw-Hill, Inc., New York,

NY, USA, 1993.

[55] O. Gotel and A. Finkelstein. Contribution structures [Requirements artifacts]. In Proceedings
of 1995 IEEE International Symposium on Requirements Engineering (RE’95), pages 100–107,
1995.

[56] F. Gottschalk,W.M. P. van der Aalst, M.H. Jansen-Vullers, andH.M.W.Verbeek. Protos2CPN:

using colored Petri nets for con�guring and testing business processes. STTT, 10(1):95–110,
2008.

[57] J. Green�eld, K. Short, S. Cook, and S. Kent. So�ware Factories: Assembling Applications with
Patterns, Frameworks, Models & Tools. J. Wiley and Sons Ltd., 2004.

[58] J. H. Hayes, A. Dekhtyar, and J. Osborne. Improving requirements tracing via information

retrieval. In Requirements Engineering Conference, 2003. Proceedings. 11th IEEE International,
pages 138–147, Sept. 2003.

[59] C. Hentrich and U. Zdun. Patterns for Process-Oriented Integration in Service-Oriented Ar-

chitectures. In Proc. of 11th European Conference on Pattern Languages of Programs (EuroPLoP
2006), pages 1–45, Irsee, Germany, July 2006.

[60] K. Ho�man and P. Eugster. Towards reusable components with aspects: an empirical study

on modularity and obliviousness. In ICSE ’08: Proceedings of the 30th international conference
on So�ware engineering, pages 91–100, New York, NY, USA, 2008. ACM.

[61] C. Hofmeister, R. Nord, and D. Soni. Applied So�ware Architecture. Addison-Wesley Profes-

sional, 1999.

[62] T. Holmes, H. Tran, U. Zdun, and S. Dustdar. Modeling Human Aspects of Business Processes

- A View-Based, Model-Driven Approach. In I. Schieferdecker and A. Hartman, editors, 4th
European Conference on Model Driven Architecture Foundations and Applications (ECMDA-
FA) 2008, volume 5095 of LNCS, pages 246–261. Springer, 2008.

[63] T. Holmes, U. Zdun, and S. Dustdar. MORSE: A Model-Aware Service Environment. In

Proceedings of the 4th IEEE Asia-Paci�c Services Computing Conference (APSCC), page 0, Dec.
2009.

146 BIBLIOGRAPHY

[64] IBM. Travel Booking Process. http://publib.boulder.ibm.com/bpcsamp/scenarios/

travelBooking.html, 2006. (accessed 2008/01/05).

[65] IBM. WebSphere Process Server. http://www-01.ibm.com/software/integration/wps, 2008.

(accessed 2008/02/01).

[66] IBM. WebSphere© MQWork�ow FlowMark© De�nition Language (FDL). http://www-01.

ibm.com/software/integration/wps, 2008. (accessed 2008/02/01).

[67] IBM, BEA Systems, Microso�, SAP AG, and Siebel Systems. Business Process Execution Lan-

guage forWeb Services. ftp://www6.software.ibm.com/software/developer/library/ws-bpel.

pdf, May 2003. (accessed 2007/02/01).

[68] IEEE. IEEE Standard Glossary of So�ware Engineering Terminology. IEEE Std 610.12-1990,
Dec. 1990. (accessed on 2007/06/08).

[69] IEEE. IEEE Std 1471-2000 IEEE Recommended Practice for Architectural Descrip-

tion of So�ware-Intensive Systems. http://standards.ieee.org/reading/ieee/std_public/

description/se/1471-2000_desc.html, 2007.

[70] IETF. RPC 1831: Remote Procedure Call Protocol Speci�cation Version 2. http://tools.ietf.

org/html/rfc1831, Aug. 1995. (accessed 2007/03/12).

[71] C. Inc. Subversion (SVN). http://subversion.tigris.org, Oct. 2000.

[72] G. Inc. Universal enterprise-wide deployment strategies may be counterproductive. http:

//www.gartner.com/it/page.jsp?id=717008, July 2008.

[73] Intalio. Intalio Server. http://www.intalio.com/products/server, 2008. (accessed

2008/02/01).

[74] ISO/IEC. ISO/IEC 10746-3 Open Distributed Processing – Reference Model: Ar-

chitecture. http://standards.iso.org/ittf/PubliclyAvailableStandards/s020697_ISO_IEC_

10746-3_1996(E).zip, Sept. 1996. (accessed 2008/02/22).

[75] JBoss. jBPM Process De�nition Language (jPDL). http://jboss.org/jbossjbpm/jpdl. (ac-

cessed 2008/02/01).

[76] Jean-Jacques Dubray. WSPER - an abstract SOA framework. http://www.wsper.org, 2007.

(accessed 2009/01/02).

[77] R. Kazman and S. J. Carriere. View Extraction and View Fusion in Architectural Understand-

ing. In ICSR ’98: Proc. of the 5th Int. Conference on So�ware Reuse, page 290, Washington,

DC, USA, 1998. IEEE Computer Society.

[78] G. Kiczales. Aspect-Oriented Programming. ACM Comput. Surv., 28(4es):154, 1996.

http://publib.boulder.ibm.com/bpcsamp/scenarios/travelBooking.html
http://publib.boulder.ibm.com/bpcsamp/scenarios/travelBooking.html
http://www-01.ibm.com/software/integration/wps
http://www-01.ibm.com/software/integration/wps
http://www-01.ibm.com/software/integration/wps
ftp://www6.software.ibm.com/software/developer/library/ws-bpel.pdf
ftp://www6.software.ibm.com/software/developer/library/ws-bpel.pdf
http://standards.ieee.org/reading/ieee/std_public/description/se/1471-2000_desc.html
http://standards.ieee.org/reading/ieee/std_public/description/se/1471-2000_desc.html
http://tools.ietf.org/html/rfc1831
http://tools.ietf.org/html/rfc1831
http://subversion.tigris.org
http://www.gartner.com/it/page.jsp?id=717008
http://www.gartner.com/it/page.jsp?id=717008
http://www.intalio.com/products/server
http://standards.iso.org/ittf/PubliclyAvailableStandards/s020697_ISO_IEC_10746-3_1996(E).zip
http://standards.iso.org/ittf/PubliclyAvailableStandards/s020697_ISO_IEC_10746-3_1996(E).zip
http://jboss.org/jbossjbpm/jpdl
http://www.wsper.org

BIBLIOGRAPHY 147

[79] B. Kiepuszewski, A. H. M. ter Hofstede, and W. M. P. van der Aalst. Fundamentals of control

�ow in work�ows. Acta Informatica, 39(3):143–209, 2003.

[80] E. Kindler. On the Semantics of EPCs: A Framework for Resolving the Vicious Circle. In

Business Process Management, pages 82–97, 2004.

[81] A. Kozlenkov and A. Zisman. Are their Design Speci�cations Consistent with our Require-

ments? In RE ’02: Proceedings of the 10th Anniversary IEEE Joint International Conference
on Requirements Engineering, pages 145–156, Washington, DC, USA, 2002. IEEE Computer

Society.

[82] P. Kruchten. �e 4+1 View Model of Architecture. IEEE So�w., 12(6):42–50, 1995.

[83] P. Kruchten. �e Rational Uni�ed Process: An Introduction (3rd Edition). Addison-Wesley

Professional, Dec. 2003.

[84] I. Kurtev, J. Bézivin, F. Jouault, and P. Valduriez. Model-based DSL frameworks. In OOPSLA
’06: Companion to the 21st ACMSIGPLAN symposium onObject-oriented programming systems,
languages, and applications, pages 602–616, New York, NY, USA, 2006. ACM.

[85] C. F. J. Lange. Model size matters. InModels in So�ware Engineering, Workshops and Symposia
at MoDELS 2006, Genoa, Italy, October 1-6, 2006, Reports and Revised Selected Papers, Lecture
Notes in Computer Science, pages 211–216. Springer, 2006.

[86] P. Letelier. A Framework for Requirements Traceability in UML-based Projects. In Proc. of 1st
International Workshop on Traceability in Emerging Forms of So�ware Engineering - 17th IEEE
International Conference on Automated So�ware Engineering, pages 32–41, 2002.

[87] M. Lindvall and K. Sandahl. Practical implications of traceability. So�w. Pract. Exper.,
26(10):1161–1180, 1996.

[88] B. List and B. Korherr. A UML 2 Pro�le for Business Process Modelling. In 1st Int. Workshop
on Best Practices of UML (BP-UML’05), Austria, 2005, 2005.

[89] A. D. Lucia, F. Fasano, R. Oliveto, and G. Tortora. Recovering traceability links in so�ware

artifact management systems using information retrieval methods. ACM Trans. So�w. Eng.
Methodol., 16(4):13, 2007.

[90] A. D. Lucia, R. Oliveto, and G. Tortora. Adams re-trace: traceability link recovery via latent

semantic indexing. In ICSE ’08: Proceedings of the 30th international conference on So�ware
engineering, pages 839–842, New York, NY, USA, 2008. ACM.

[91] S. Ma, L. Zhang, and J. He. Towards Formalization and Veri�cation of Uni�ed Business

Process Model Based on Pi Calculus. In SERA ’08: Proceedings of the 2008 Sixth International

148 BIBLIOGRAPHY

Conference on So�ware Engineering Research, Management and Applications, pages 93–101,
Washington, DC, USA, 2008. IEEE Computer Society.

[92] P. Mader, O. Gotel, and I. Philippow. Rule-Based Maintenance of Post-Requirements Trace-

ability Relations. In International Requirements Engineering, 2008. RE ’08. 16th IEEE, pages
23–32, Sept. 2008.

[93] P. Mäder, I. Philippow, and M. Riebisch. A Traceability Link Model for the Uni�ed Process.

In SNPD (3), pages 700–705, 2007.

[94] J. I. Maletic, E. V. Munson, A. Marcus, and T. N. Nguyen. Using a Hypertext Model for Trace-

ability Link Conformance Analysis. In TEFSE’03: 2nd International Workshop on Traceability
in Emerging Forms of So�ware Engineering, 2003.

[95] A. Marcus and J. I. Maletic. Recovering documentation-to-source-code traceability links

using latent semantic indexing. In ICSE ’03: Proceedings of the 25th International Conference
on So�ware Engineering, pages 125–135, Washington, DC, USA, 2003. IEEE Computer Society.

[96] R. J.Mayer, C. P.Menzel, M. K. Painter, P. S. deWitte, T. Blinn, and B. Perakath. IntegratedDEF-

inition for Process Description Capture Method Report. http://www.idef.com/pdf/Idef3_fn.

pdf, Sept. 1995. (accessed 2008/02/01).

[97] C. Mayr, U. Zdun, and S. Dustdar. Model-Driven Integration andManagement of Data Access

Objects in Process-Driven SOAs. In ServiceWave, pages 62–73, 2008.

[98] T. J. McCabe. A complexity measure. IEEE Trans. So�ware Eng., 2(4):308–320, 1976.

[99] S. J. Mellor, A. N. Clark, and T. Futagami. Guest editors’ introduction: Model-driven develop-

ment. IEEE So�ware, 20(5):14–18, 2003.

[100] J. Mendling and M. Hafner. From Inter-organizational Work�ows to Process Execution:

Generating BPEL fromWS-CDL. In OTMWorkshops, pages 506–515, 2005.

[101] J. Mendling, K. B. Lassen, and U. Zdun. Transformation Strategies between Block-Oriented

and Graph-Oriented Process Modelling Languages. Technical Report JM-200510 -10, WU

Vienna, 2005.

[102] J. Mendling and C. Simon. Business Process Design by View Integration. In Business Process
Management Workshops, volume 4103 of LNCS, pages 55–64. Springer, 2006.

[103] J. Mendling and J. Ziemann. Transformation of BPEL Processes to EPCs. In Proc. of the 4th
GI Workshop on Event-Driven Process Chains (EPK 2005), volume 167, pages 41–53, Dec. 2005.

[104] Microso�. Windows Communication Foundation (WCF). http://msdn.microsoft.com/

en-us/netframework/aa663324.aspx, 2008. (accessed 2008/03/06).

http://www.idef.com/pdf/Idef3_fn.pdf
http://www.idef.com/pdf/Idef3_fn.pdf
http://msdn.microsoft.com/en-us/netframework/aa663324.aspx
http://msdn.microsoft.com/en-us/netframework/aa663324.aspx

BIBLIOGRAPHY 149

[105] E. E. Mills. So�ware metrics. http://www.sei.cmu.edu/reports/88cm012.pdf, Dec. 1998.

[106] R. Milner, J. Parrow, and D. Walker. A Calculus of Mobile Processes Pt.1. Information and
Computation, 100:1–40, Sept. 1992.

[107] L. Naslavsky, H. Ziv, and D. J. Richardson. Towards traceability of model-based testing

artifacts. In A-MOST ’07: 3rd International Workshop on Advances in Model-based Testing,
pages 105–114, New York, NY, USA, 2007. ACM.

[108] OASIS. Universal Description, Discovery and Integration(UDDI) 3.02. http://uddi.org/

pubs/uddi-v3.0.2-20041019.pdf, Oct. 2004. (accessed 2006/04/20).

[109] OASIS. Business Process Execution Language (WSBPEL) 2.0. http://docs.oasis-open.org/

wsbpel/2.0/OS/wsbpel-v2.0-OS.pdf, May 2007.

[110] J. Oldevik and T. Neple. Traceability in Model to Text Transformations. In 2nd ECMDA
Traceability Workshop (ECMDA-TW), pages 17–26, June 2006.

[111] H. Oliveira, L. Murta, and C. Werner. Odyssey-VCS: a �exible version control system for

UML model elements. In SCM ’05: Proceedings of the 12th international workshop on So�ware
con�guration management, pages 1–16, New York, NY, USA, 2005. ACM.

[112] OMG. UML 1.4 Speci�cation - UML Pro�le for Business Modeling. http://www.omg.org/

docs/formal/01-09-75.pdf, Sept. 2001. (accessed 2008/02/05).

[113] OMG. Model-Driven Architecture. http://www.omg.org/mda, 2003. (accessed 2006/03/02).

[114] OMG. Common Object Request Broker Architecture (CORBA). http://www.omg.org/docs/

formal/04-03-12.pdf, Mar. 2004.

[115] OMG. Second revised submission to the MOF Model to Text Transformation RFP. 2005,

Object Management Group. http://www.omg.org/cgi-bin/apps/doc?ad/05-11-03.pdf, 2005.

[116] OMG. Uni�ed Modelling Language (UML) 2.0. http://www.omg.org/spec/UML/2.0, July 2005.

[117] OMG. Meta Object Facility (MOF ™) 2.0. http://www.omg.org/spec/MOF/2.0/HTML, Jan. 2006.

[118] OMG. Object Constraint Language(OCL) 2.0. http://www.omg.org/spec/OCL/2.0, May 2006.

[119] OMG. XMLMetadata Interchange (XMI) 2.1.1. http://www.omg.org/technology/documents/

formal/xmi.htm, Dec. 2007.

[120] OMG. Business Process De�nition Metamodel 1.0. http://www.omg.org/spec/BPDM/1.0, Nov.

2008. (accessed 2009/01/03).

[121] OMG. Business Process Modeling Notation (BPMN) 1.1. http://www.omg.org/spec/BPMN/1.1,

Jan. 2008.

http://www.sei.cmu.edu/reports/88cm012.pdf
http://uddi.org/pubs/uddi-v3.0.2-20041019.pdf
http://uddi.org/pubs/uddi-v3.0.2-20041019.pdf
http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.pdf
http://docs.oasis-open.org/wsbpel/2.0/OS/wsbpel-v2.0-OS.pdf
http://www.omg.org/docs/formal/01-09-75.pdf
http://www.omg.org/docs/formal/01-09-75.pdf
http://www.omg.org/mda
http://www.omg.org/docs/formal/04-03-12.pdf
http://www.omg.org/docs/formal/04-03-12.pdf
http://www.omg.org/cgi-bin/apps/doc?ad/05-11-03.pdf
http://www.omg.org/spec/UML/2.0
http://www.omg.org/spec/MOF/2.0/HTML
http://www.omg.org/spec/OCL/2.0
http://www.omg.org/technology/documents/formal/xmi.htm
http://www.omg.org/technology/documents/formal/xmi.htm
http://www.omg.org/spec/BPDM/1.0
http://www.omg.org/spec/BPMN/1.1

150 BIBLIOGRAPHY

[122] openArchitectureWare. A modular MDA/MDD generator framework. http://www.

openarchitectureware.org, Aug. 2002. (accessed 2007/04/09).

[123] Oracle. Oracle Process Manager. http://www.oracle.com/technology/products/ias/bpel,

2004. (accessed 2009/02/01).

[124] Orchestra. Nova Orchestra. http://orchestra.ow2.org, 2008. (accessed 2009/02/01).

[125] C. Ouyang, M. Dumas, A. H. M. ter Hofstede, and W. M. P. van der Aalst. From BPMN

Process Models to BPEL Web Services. In IEEE International Conference on Web Services,
pages 285–292, 2006.

[126] M. Papazoglou. Web Services:Principles and Technology. Prentice Hall, 2007.

[127] M. P. Papazoglou, P. Traverso, S. Dustdar, and F. Leymann. Service-oriented computing: a

research roadmap. Int. J. Cooperative Inf. Syst., 17(2):223–255, 2008.

[128] C. Pautasso, O. Zimmermann, and F. Leymann. Restful web services vs. “big” web services:

making the right architectural decision. InWWW ’08: Proceeding of the 17th international
conference on World Wide Web, pages 805–814, New York, NY, USA, 2008. ACM.

[129] K. Pohl. PRO-ART: Enabling Requirements Pre-Traceability. In ICRE, pages 76–85, 1996.

[130] F. Puhlmann. Soundness Veri�cation of Business Processes Speci�ed in the Pi-Calculus. In

OTM Conferences (1), pages 6–23, 2007.

[131] G. S. Raj, B. P. G., K. Babo, and R. Palkovic. Implementing Service-Oriented Architec-

tures (SOA) with the Java EE 5 SDK. http://java.sun.com/developer/technicalArticles/

WebServices/soa3/ImplementingSOA.pdf, May 2006. (accessed 2007/03/06).

[132] B. Ramesh and V. Dhar. Supporting Systems Development by Capturing Deliberations During

Requirements Engineering. IEEE Trans. So�w. Eng., 18(6):498–510, 1992.

[133] B. Ramesh and M. Jarke. Toward Reference Models for Requirements Traceability. IEEE
Trans. So�w. Eng., 27(1):58–93, 2001.

[134] J. Recker and J. Mendling. On the Translation between BPMN and BPEL: Conceptual Mis-

match between ProcessModeling Languages. In Eleventh Int.Workshop on ExploringModeling
Methods in Systems Analysis and Design (EMMSAD’06), pages 521–532, June 2006.

[135] M. Reko�. On reverse engineering. IEEE Transactions on Systems, Man and Cybernetics,
15(2):244–252, 1985.

[136] Research and Markets. Services oriented architecture (SOA) infrastructure market shares,

strategies, and forecasts, 2006 to 2012. http://www.researchandmarkets.com/reportinfo.asp?

report_id=344145, July 2006.

http://www.openarchitectureware.org
http://www.openarchitectureware.org
http://www.oracle.com/technology/products/ias/bpel
http://orchestra.ow2.org
http://java.sun.com/developer/technicalArticles/WebServices/soa3/ImplementingSOA.pdf
http://java.sun.com/developer/technicalArticles/WebServices/soa3/ImplementingSOA.pdf
http://www.researchandmarkets.com/reportinfo.asp?report_id=344145
http://www.researchandmarkets.com/reportinfo.asp?report_id=344145

BIBLIOGRAPHY 151

[137] Research and Markets. Services oriented architecture (SOA) infrastructure market shares,

strategies, and forecasts, 2006 to 2012. http://www.researchandmarkets.com/reportinfo.asp?

report_id=471334, May 2007.

[138] Research and Markets. Services oriented architecture (SOA) infrastructure market shares,

strategies, and forecasts, 2007 to 2013. http://www.researchandmarkets.com/reportinfo.asp?

report_id=604023, Apr. 2008.

[139] Research and Markets. Worldwide SOA component services market shares, strategy, and fore-

casts, 2009 to 2015. http://www.researchandmarkets.com/reportinfo.asp?report_id=838370,

Apr. 2009.

[140] K. Salimifard andM.Wright. Modelling and Performance Analysis of Work�owManagement

Systems Using Timed Hierarchical Coloured Petri Nets. In ICEIS, pages 843–846, 2002.

[141] C. Sant’Anna, A. Garcia, C. Chavez, C. Lucena, and A. v. von Staa. On the reuse and mainte-

nance of aspect-oriented so�ware: An assessment framework. In Proceedings XVII Brazilian
Symposium on So�ware Engineering, 2003.

[142] A.-W. Scheer. ARIS - Business Process Modeling. Springer, 2000.

[143] B. A. Schmit and S. Dustdar. Model-driven Development of Web Service Transactions.

International Journal Enterprise Modelling and Information Systems Architectures, 1(1):46–55,
Oct. 2005.

[144] K. A. Schulz andM. E. Orlowska. Facilitating cross-organisational work�ows with a work�ow

view approach. Data Knowl. Eng., 51(1):109–147, 2004.

[145] M. Shepperd, editor. So�ware engineering metrics I: measures and validations. McGraw-Hill,

Inc., New York, NY, USA, 1993.

[146] P. Sinogas, A. Vasconcelos, A. Caetano, J. Neves, R. Mendes, and J. Tribolet. Business processes

extensions to UML pro�le for business modeling. In In proceedings of the 3rd International
Conference on Enterprise Information Systems (ICEIS 2001), Setubal, pages 673–678, 2001.

[147] D. Skogan, R. Grønmo, and I. Solheim. Web service Composition in UML. In Enterprise
Distributed Object Computing Conference, 2004, pages 47–57, 2004.

[148] G. Spanoudakis and A. Zisman. So�ware Traceability: A Roadmap, volume 3, pages 395–428.

World Scienti�c Publishing, Handbook of So�ware Engineering and Knowledge Engineering:

Recent Advances edition, 2005.

[149] G. Spanoudakis, A. Zisman, E. Prez-Miana, and P. Krause. Rule-based generation of require-

ments traceability relations. Journal of Systems and So�ware, 72(2):105–127, 2004.

http://www.researchandmarkets.com/reportinfo.asp?report_id=471334
http://www.researchandmarkets.com/reportinfo.asp?report_id=471334
http://www.researchandmarkets.com/reportinfo.asp?report_id=604023
http://www.researchandmarkets.com/reportinfo.asp?report_id=604023
http://www.researchandmarkets.com/reportinfo.asp?report_id=838370

152 BIBLIOGRAPHY

[150] T. Stahl and M. Völter. Model-Driven So�ware Development: Technology, Engineering, Man-
agement. Wiley, 2006.

[151] Sun Microsystems. Java Platform Enterprise Edition. http://java.sun.com/javaee, 2008.

[152] P. Tarr, H.Ossher,W.Harrison, and S.M. Sutton,Jr. N degrees of separation: multi-dimensional

separation of concerns. In ICSE ’99: Proceedings of the 21st International Conference on So�ware
Engineering, pages 107–119, New York, NY, USA, May 1999. ACM.

[153] T. C. Team. Concurrent versions system (CVS). http://www.nongnu.org/cvs, Nov. 1990.

[154] H. Tran, T. Holmes, U. Zdun, and S. Dustdar. Modeling Process-Driven SOAs – a View-Based
Approach, chapter 2. Information Science Reference, Handbook of Research on Business

Process Modeling edition, Apr. 2009.

[155] H. Tran, U. Zdun, and S. Dustdar. View-based and Model-driven Approach for Reducing

the Development Complexity in Process-Driven SOA. In Intl. Conf. on Business Process and
Services Computing (BPSC), volume 116 of LNI, pages 105–124. GI, 2007.

[156] H. Tran, U. Zdun, and S. Dustdar. View-based Integration of Process-driven SOAModels At

Various Abstraction Levels. In R.-D. Kutsche and N. Milanovic, Editors, Proceedings of First
International Workshop on Model-Based So�ware and Data Integration MBSDI 2008, pages
55–66. Springer, Apr. 2008.

[157] H. Tran, U. Zdun, and S. Dustdar. View-Based Reverse Engineering Approach for Enhancing

Model Interoperability and Reusability in Process-Driven SOAs. In H. Mei, editor, 10th Intl.
Conf. on So�ware Reuse, ICSR 2008, volume 5030 of LNCS, pages 233–244. Springer, 2008.

[158] H. Tran, U. Zdun, and S.Dustdar. VbTrace: UsingView-based andModel-drivenDevelopment

to Support Traceability in Process-driven SOAs. Journal on So�ware & Systems Modeling –
Special Issue on Traceability in Model-Driven Engineering, 2009. (forthcomming).

[159] W. van der Aalst, M. Beisiegel, K. van Hee, D. König, and C. Stahl. A SOA-based Architecture

Framework. In�e Role of Business Processes in Service Oriented Architectures, number 06291

in Dagstuhl Seminar Proc., 2006.

[160] W. van der Aalst, J. Desel, and A. Oberweis, editors. Business Process Management: Models,
Techniques, and Empirical Studies - Lecture Notes in Computer Science, volume 1806. Springer-

Verlag, 2000.

[161] W. van der Aalst, M. Dumas, A. H. M. ter Hofstede, and P. Wohed. Pattern Based Analysis of

BPMN (andWSCI). Technical report, FIT-TR-2002-04, Queensland University of Technology,

Brisbane, 2002.

http://java.sun.com/javaee
http://www.nongnu.org/cvs

BIBLIOGRAPHY 153

[162] W. van der Aalst, A. H. M. ter Hofstede, B. Kiepuszewski, and A. P. Barros. Work�ow Patterns.

Distributed and Parallel Databases, 14(1):5–51, 2003.

[163] W. M. P. van der Aalst, M. Dumas, and A. H. M. ter Hofstede. Web Service Composition

Languages: Old Wine in New Bottles? In Proceedings 29th EUROMICRO Conference, Track
on So�ware Process and Product Improvement, pages 298–307, 2003.

[164] W. M. P. van der Aalst and A. H. M. ter Hofstede. YAWL: yet another work�ow language. Inf.
Syst., 30(4):245–275, 2005.

[165] W. M. P. van der Aalst and K. van Hee. Work�ow Management. Models, Methods, and Systems.
MIT Press, Cambridge, MA, 2002.

[166] A. van Deursen, P. Klint, and J. Visser. Domain-Speci�c Languages: An Annotated Bibliogra-

phy. http://homepages.cwi.nl/~arie/papers/dslbib, Mar. 1998. (accessed 2009/02/18).

[167] A. von Knethen, B. Paech, F. Kiedaisch, and F. Houdek. Systematic requirements recycling

through abstraction and traceability. In Requirements Engineering, 2002. Proceedings. IEEE
Joint International Conference on, pages 273–281, 2002.

[168] W3C. XML Path Language (XPath) 1.0. http://www.w3.org/TR/xpath, Nov. 1999. (accessed

2008/02/01).

[169] W3C. Simple Object Access Protocol (SOAP) 1.1 . http://www.w3.org/TR/2000/

NOTE-SOAP-20000508, May 2000. (accessed 2006/02/20).

[170] W3C. Web Services Description Language 1.1, Mar. 2001.

[171] W3C. Web Services Architecture. http://www.w3.org/TR/ws-arch, Feb. 2004. (accessed

2008/07/12).

[172] W3C. Web Services Glossary. http://www.w3.org/TR/ws-gloss, Feb. 2004. (accessed

2009/02/20).

[173] W3C. Web Services Choreography Description Language (WS-CDL). http://www.w3.org/

TR/ws-cdl-10, Nov. 2005. (accessed 2007/03/05).

[174] W3C. SOAPVersion 1.2 Part 0: Primer (Second Edition). http://www.w3.org/TR/soap12-part0,

Apr. 2007. (accessed 2008/06/11).

[175] W3C. Web Services Description Language 2.0. http://www.w3.org/TR/wsdl20, June 2007.

(accessed 2008/09/11).

[176] W3C. Web Services Policy 1.5 - Framework. http://www.w3.org/TR/ws-policy, Sept. 2007.

(accessed 2009/02/01).

http://homepages.cwi.nl/~arie/papers/dslbib
http://www.w3.org/TR/xpath
http://www.w3.org/TR/2000/NOTE-SOAP-20000508
http://www.w3.org/TR/2000/NOTE-SOAP-20000508
http://www.w3.org/TR/ws-arch
http://www.w3.org/TR/ws-gloss
http://www.w3.org/TR/ws-cdl-10
http://www.w3.org/TR/ws-cdl-10
http://www.w3.org/TR/soap12-part0
http://www.w3.org/TR/wsdl20
http://www.w3.org/TR/ws-policy

154 BIBLIOGRAPHY

[177] W3C. XML Schema De�nition Language (XSD) 1.1 Part 1: Structures. http://www.w3.org/TR/

xmlschema11-1, Apr. 2009.

[178] S. Walderhaug, E. Stav, U. Johansen, and G. K. Olsen. Traceability Model-Driven So�ware
Development, pages 133–160. Designing So�ware-Intensive Systems - Methods and Principles.

Information Science Reference, 2008.

[179] L. A. Walton. So�ware Design For Reliability and Reuse. http://www.spatial.maine.edu/

~lisa.walton/dsl.html, 1996. (accessed 2007/02/18).

[180] S. Weerawarana, F. Curbera, F. Leymann, T. Storey, and D. F. Ferguson. Web Services Platform
Architecture: SOAP, WSDL, WS-Policy, WS-Addressing, WS-BPEL, WS-Reliable Messaging
and More. Prentice Hall PTR, Upper Saddle River, NJ, USA, 2005.

[181] WfMC. XML Process De�nition Language (XPDL). http://www.wfmc.org/standards/XPDL.

htm, Apr. 2005. (accessed 2008/02/01).

[182] S. A.White. Using BPMN toModel a BPELProcess. http://www.bpmn.org/Documents/Mapping%

20BPMN%20to%20BPEL%20Example.pdf, Apr. 2005.

[183] D. S. Wile and J. C. Ramming. Guest Editorial: Introduction to the Special Section “Domain-

Spec�c Languages (DSL)”. IEEE Trans. So�ware Eng., 25(3):289–290, 1999.

[184] U. Zdun. Patterns of Tracing So�ware Structures and Dependencies. In Proc. of 8th European
Conference on Pattern Languages of Programs (EuroPLoP 2003), pages 581–616, Irsee, Germany,

June 2003.

[185] U. Zdun. Concepts for Model-Driven Design and Evolution of Domain-Speci�c Languages.

In International Workshop on So�ware Factories - OOPSLA 2005. So�ware Factories, 2005.

[186] U. Zdun and S. Dustdar. Model-Driven Integration of Process-Driven SOA Models. In-
ternational Journal of Business Process Integration and Management (IJBPIM), 2(2):109–119,
2007.

[187] U. Zdun, H. Tran, T. Holmes, E. Oberortner, E. Mulo, and S. Dustdar. Compliance in Service-

oriented Architectures: A Model-driven and View-based Approach. Information Systems
Journal, 2009. (submitted).

[188] J. Ziemann and J. Mendling. EPC-Based Modelling of BPEL Processes: a Pragmatic Transfor-

mation Approach. In Proc. of the 7th Int. Conference “Modern Information Technology in the
Innovation Processes of the Industrial Enterprises” (MITIP 2005), 2005.

[189] A. Zisman and A. Kozlenkov. Managing Inconsistencies in UML Speci�cations. In Proceedings
of the ACIS Fourth International Conference on So�ware Engineering, Arti�cial Intelligence, Net-
working and Parallel/Distributed Computing (SNPD’03), October 16-18, 2003, Lübeck, Germany,
pages 128–138. ACIS, 2003.

http://www.w3.org/TR/xmlschema11-1
http://www.w3.org/TR/xmlschema11-1
http://www.spatial.maine.edu/~lisa.walton/dsl.html
http://www.spatial.maine.edu/~lisa.walton/dsl.html
http://www.wfmc.org/standards/XPDL.htm
http://www.wfmc.org/standards/XPDL.htm
http://www.bpmn.org/Documents/Mapping%20BPMN%20to%20BPEL%20Example.pdf
http://www.bpmn.org/Documents/Mapping%20BPMN%20to%20BPEL%20Example.pdf

BIBLIOGRAPHY 155

[190] A. Zisman, G. Spanoudakis, E. Pérez-Miñana, and P. Krause. Tracing So�ware Requirements

Artifacts. In Proceedings of the International Conference on So�ware Engineering Research and
Practice, SERP ’03, June 23 - 26, 2003, Las Vegas, Nevada, USA, pages 448–455. CSREA Press,

2003.

[191] Y. Zou andM. Hung. An Approach for ExtractingWork�ows from E-Commerce Applications.

In ICPC ’06: Proc. of the 14th IEEE Int. Conf. on Program Comprehension (ICPC’06), pages
127–136, Washington, DC, USA, 2006. IEEE Computer Society.

[192] M. zur Muehlen. Work�ow-based Process Controlling: Foundation, Design, and Application of
Work�ow-driven Process Information Systems. Logos Verlag, Berlin, Germany, 2004.

[193] M. zurMuehlen and J. Recker. HowMuch Language Is Enough?�eoretical and Practical Use

of the Business Process Modeling Notation. In CAiSE ’08: Proceedings of the 20th international
conference on Advanced Information Systems Engineering, pages 465–479, Berlin, Heidelberg,
June 2008. Springer-Verlag.

Index

A
Architectural view

introduction, 33

view, see view

C
Contribution

adaptability, 137

automation, 137

extensibility, 137

interoperability, 137

methodology, 136

modularity, 137

reusability, 138

traceability, 138

understandability, 138

E
Evaluation

quatitative analysis, 128

complexity, 128

reusability, 130

separation of concerns, 132

scenario-driven, 109

green �eld, 109

legacy, 116

maintainability, 125

reuse, 121

traceability, 124

F
Future work

model-driven repositories, 139

tool support, 140

view integration, 138

M
Methodology, 14

Model-driven development, 10

domain-speci�c language, 32

introduction, 30

OMGMDA, 31

transformation, 32

P
Process-driven SOA

concept, 7

development life cycle, 21

formal foundation, 20

introduction, 20

language, 8, 21

BPEL, 25

BPMN, 24

process engine, 30

stakeholder, 21

Q
Quality property

adaptability, 8, 11, 78

complexity, 11

interoperability, 9, 12, 79

reusability, 9, 12, 80

traceability, 9, 12

S
Separation of abstraction levels

concept, 10

Model-driven paradigm, 32

Separation of concerns, 10

view, see view
Service-oriented architecture, 7

introduction, 17

process-driven SOA, 7

realization, 18

REST, 19

Web service, 18

Service-oriented computing, 17

158 INDEX

Stakeholder

business experts, 22

IT experts, 22

T
Toolchain

forward engineering, 13, 23

reverse engineering, 13, 23

U
Use case

Billing Renewal process, 116

CRM Ful�llment process, 110

Order Handling process, 121

Travel Booking process, 25

V
View

concept, 10, 34

View-based modeling framework, 35–65

architecture, 39

code generation, 54

CollaborationView, 43

component, 35, 38

FlowView, 41

HumanView, 47

InformationView, 45

tool support, 57

TransactionView, 48

view extension, 50

view integration, 53

View-based reverse engineering, 66–81

general approach, 68

high level, 69

low level, 75

tool support, 76

View-based, model-driven traceability, 82–108

architecture, 90

motivation, 82

overview, 86

process design to view, 96

static semantics, 90

tool support, 94

toolchain, 91

trace model, 87

view to process implementation, 99

view to view, 98

	Contents
	List of Figures
	List of Tables
	Introduction
	Problem statement
	Scientific contributions
	Research methodology
	Dissertation structure

	State of the Art
	Introduction
	Service-oriented architectures
	Process-driven, service-oriented architectures
	Model-driven development
	Architectural views

	View-based, Model-driven Approach for Process-driven SOAs
	Fundamental concepts
	View-based Modeling Framework
	Formalization of basic process concerns
	Formalizations of additional process concerns
	View manipulation mechanisms
	Code generation
	Tool support
	Discussion
	Summary

	View-based Reverse Engineering
	Introduction
	The view-based reverse engineering approach
	General approach for view extraction
	View-based reverse engineering approach for process-driven SOAs
	Tool support
	Discussion
	Summary

	View-based, Model-driven Traceability
	Introduction
	View-based, model-driven traceability framework
	Tool support and case study
	Discussion
	Conclusion

	Evaluation
	Introduction
	Scenario-driven evaluation
	Quantitative analysis

	Conclusion
	Contribution summary
	Future work

	Bibliography
	Index

