
DISSERTATION

Adaptation Techniques in large-scale

Service-oriented Systems: Models,

Metrics, and Algorithms

ausgeführt zum Zwecke der Erlangung des akademischen Grades eines
Doktors der technischen Wissenschaften

unter der Leitung von

Univ.-Prof. Dr. Schahram Dustdar
Institut für Informationssysteme
Abteilung für Verteilte Systeme

Technische Universität Wien

eingereicht an der

Technischen Universität Wien
Fakultät für Informatik

von

Mag. rer. soc. oec. Christoph Dorn

c.dorn@infosys.tuwien.ac.at

Matrikelnummer: 9825872
Alserstraße 32/27

A-1090 Wien, Österreich

Wien, September 2009

Kurzfassung

In den letzten Jahren gehen Menschen vermehrt ihren gemeinsamen Interessen onli-
ne nach. Web-basierte Kollaborationsplattformen wie Facebook, Youtube oder Wikipedia
haben enormen Zulauf erhalten. Diese Portale erlauben Zusammenarbeit in bisher unge-
ahnten Dimensionen. Interessensgemeinschaften entstehen ad-hoc, wachsen auf tausende
Teilnehmer an und zerfallen schlussendlich wieder. Die zugrundeliegende Dynamik solcher
Kollaborationen ist weitgehend unvorhersehbar und führt zu kontinuierlich wechselnden
Systemanforderungen. Während Menschen sich an unterschiedliche Umstände vergleichs-
weise leicht anpassen können, passt sich Software von selbst, wenn überhaupt, nur einge-
schränkt an wechselnde Bedingungen an. Diese Dissertation behandelt das Problem wie
sich Software - speziell Web Services - an den Gesamtkontext und die Anforderungen von
Massenzusammenarbeit anpassen kann.

Wenn tausende oder mehr technische und menschliche Entitäten zusammenarbeiten,
kann kein einzelnes Element die Gesamtbedürfnisse erfassen. Infolgedessen erkennt nie-
mand Situationen, welche die Umgestaltung des Gesamtsystems erfordern würden. Ohne
entsprechende Anpassungstechniken läuft die Zusammenarbeit Gefahr ineffizient zu werden
oder gar frühzeitig auseinanderzubrechen.

Diese Dissertation präsentiert Techniken auf drei Ebenen. Den meisten Einfluss auf
erfolgreiche Zusammenarbeit haben Techniken, welche die Gesamtbedürfnisse feststellen
und darauf aufbauend die benötigten Services bereitstellen. Daran anschließend werden
Algorithmen beschrieben, welche es ermöglichen, dass die richtigen Services untereinander
kommunizieren. Drittens stellen Kontextverteilungsmechanismen sicher, dass die Services
die relevanten Kontextinformationen zur Adaption bekommen. Datenmodelle, Algorithmen
und Prototypen sind an Hand von Simulationen sowie Experimenten mit Echtdaten eines
web-basierten Diskussionsforums evaluiert.

Abstract

Over the past years, people enthusiastically took up web-based services such as Face-
book, Youtube, or Wikipedia to pursue joint interests. Large-scale collaborations emerge
in an ad-hoc fashion, have participants join in, and eventually dissolve again. Such dy-
namic collaboration changes result in constantly shifting system requirements. Humans
can adapt to some extent to changing conditions, while software remains mostly rigid.
Enabling system adaptation to meet these requirements is the main problem addressed in
this thesis.

In large-scale socio-technical networks, neither service nor human entities are able to
obtain a complete picture of the overall context, constraints, and requirements. Conse-
quently, no single entity perceives the need for reconfiguration. Without proper adaptation
techniques, collaborations yield poor performance and are prone to end prematurely.

In this thesis, we present a layered approach to adaptation techniques. Most im-
portantly, infrastructure adaptation ensures provisioning of the required services. Sub-
sequently, service adaptation techniques ensure interaction of the right services. Finally,
we present techniques for delivering the relevant context information. We evaluate these
contributions with a mixture of collaboration simulations and experiments on real-world
data from an online discussion forum.

Acknowledgements

First and foremost, I would like to thank my advisor Prof. Schahram Dustdar for the
great opportunity to carry out my thesis at the Distributed Systems Group. His continu-
ous mentoring and supervision taught me the important aspects of conducting research. I
greatfully value the freedom I had to explore multiple research directions.

I greatly appreciate the feedback of my second advisor, Prof. Harald Gall. His valuable
comments and suggestions helped me to improve this thesis.

I would like to express my thanks to my colleagues, especially Daniel Schall and Hong-
Linh Truong for exciting discussions on the various aspects of this work. Special thanks
go to Florian Skopik for providing the raw slashdot dataset.

I am in debt to my family and girlfriend for their understanding and limitless support
that enabled me to pursue my research interests to such extent.

Finally, I’m thankful for financial support from the EU FP6 project inContext (IST-
034718). It provided a unique opportunity to place my research in such an informative
project context.

Christoph Dorn
Vienna, Austria, September 9, 2009

For Karin

Contents

1 Introduction 1

1.1 Motivating Scenarios . 2

1.2 Preview of Results . 3

1.3 Structure . 4

2 Related Work 5

2.1 Context Models and Frameworks . 6

2.1.1 Context Provisioning in Mobile Environments 8

2.2 Context Selection and Ranking . 9

2.2.1 Ranking Functions . 9

2.3 Service Composition . 10

2.4 Autonomic Service Adaptation . 11

3 Problem Statement 16

3.1 Analysis of Related Work . 17

3.2 Relevance to Real-World Problems . 18

3.3 Approach . 19

3.3.1 Assumptions . 19

3.3.2 Adaptation Methodology . 19

3.4 Publications . 21

4 Ensemble Context Provisioning 23

4.1 Context Model . 23

4.1.1 Entity Model . 24

4.1.2 Activity Model . 25

4.1.3 Resource Model . 26

i

Contents ii

4.1.4 Action Model . 27

4.2 Context Capturing . 30

4.3 Context Ranking . 30

4.3.1 Distance Metrics . 32

4.3.1.1 Natural Distance Functions 32

4.3.1.2 Context-based Distance Functions 33

4.3.1.3 Interaction-based Distance Functions 36

4.3.2 Relevance Functions . 39

4.3.3 Utility Functions . 39

4.3.4 Ranking Algorithm . 40

4.3.5 Example Application of Context Ranking 41

4.4 Evaluation of Context-based and Interaction-based Distance metrics 44

4.4.1 Fundamental Differences . 44

4.4.2 Simulation-based evaluation . 46

4.4.2.1 Pearson’s Correlation Coefficient 49

4.4.3 Distance metrics applied to real-world data 50

4.4.3.1 Introduction to Slashdot 50

4.4.3.2 Slashdot Posting Aggregation 51

4.4.3.3 Analysis of Evolving Ranking Differences 55

4.4.3.4 Analysis of Aging Ranking Differences 58

4.4.3.5 Summary on Distance Metric Differences 59

4.5 Context Provisioning for Mobile Service Ensembles 60

4.5.1 Hierarchical Context Model . 61

4.5.2 Hierarchy-based Sharing . 65

4.5.3 Evaluation of hierarchical context sharing 66

5 Service Adaptation Mechanisms 70

5.1 Service Adaptation Approach . 70

5.1.1 Service Adaptation Scenario . 71

5.1.2 Service Adaptation Process . 72

5.2 Property Entropy Model . 73

5.3 Property Impact Evaluation Algorithm . 76

5.4 Service Ranking Algorithm . 79

5.4.1 Discussion of Computational Complexity 79

Contents iii

5.5 Evaluation of Service Adaptation . 80

5.5.1 Scenario . 81

5.5.2 Simulation Setup . 82

5.5.3 Measuring Scalability . 83

5.5.4 Measuring Adaptiveness . 84

5.5.5 Measuring Constraint Impact . 84

5.5.6 Experiment Discussion . 85

6 Service Infrastructure Adaptation Techniques 87

6.1 Infrastructure Adaptation Approach . 88

6.2 Adaptation Process . 88

6.2.1 Monitoring . 89

6.2.2 Analysis . 89

6.2.3 Planning . 91

6.2.4 Management . 92

6.3 Service Capabilities . 92

6.4 Ensemble Requirements . 93

6.5 Capability Matching . 97

6.5.1 Requirements Filtering . 97

6.5.2 Requirements Cluster Analysis . 99

6.5.2.1 Cluster Threshold Model 101

6.5.3 Introduction to Fuzzy C-Means Clustering 103

6.5.4 Biased Clustering Algorithm . 108

6.5.5 Cluster-specific ranking . 116

6.5.5.1 Measuring Clustering Benefit 117

6.6 Service Composition Recommendation . 118

6.6.1 A brief Introduction to Simulated Annealing 119

6.6.2 Simulated Annealing Energy Function 120

6.6.3 Simulated Annealing Neighborhood Function 122

6.7 Evaluation of Weighted Clustering Techniques 122

6.7.1 Mapping Slashdot to Constraints and Utility functions 123

6.7.2 Weighted Clustering Experiment Setup 124

6.7.3 Unbiased, Non-weighted Clustering Experiment Results 124

6.7.4 Biased, Non-weighted Clustering Experiment Results 124

Contents iv

6.7.5 Biased, Weighted Clustering Experiment Results 127

6.7.6 Discussion of Clustering Experiments 132

6.8 Evaluation of Service Recommendation . 132

6.8.1 Capability Assortativity . 132

6.8.2 Simulated Annealing Aggregation Experiments 134

6.8.2.1 Aggregation of unbiased, non-weighted clustering results . 135

6.8.2.2 Aggregation of biased, non-weighted clustering results . . 135

6.8.2.3 Aggregation of biased, weighted clustering results 135

6.8.3 Simulated Annealing Evaluation Summary 136

7 Design and Implementation 137

7.1 Architecture . 137

7.2 Ensemble Management Services . 138

7.2.1 Capability Management Service . 138

7.2.2 Activity Service . 139

7.2.3 Context Coupling Mechanisms . 141

7.3 Context Provisioning Services . 144

7.3.1 Context Sensing and Aggregation 144

7.3.2 Query and Update Store Service . 145

7.3.3 Context Retrieval . 147

7.3.4 Mobile Context Provisioning . 148

7.4 Adaptation Services . 149

7.4.1 Property Impact Evaluation . 149

7.4.2 Infrastructure Adaptation . 150

8 Conclusions 153

A XML Schemata 166

List of Figures

2.1 Autonomic element: an autonomic manager observing and controlling the
managed element. 12

2.2 Emergence: individual elements interact (black lines) with their peers purely
based on local information (dashed circles). These actions at the micro-level
result in desirable outcome on the macro-level. 14

3.1 Related Work: Ellipses depict context models; rectangles depict (service)
selection, respectively ranking techniques; documents represent composition
mechanisms; and trapeziums represent adaptation techniques. The central
diamond defines the research area of this thesis. 18

3.2 Approach . 20

4.1 Ensemble Entity model UML class diagram 25

4.2 Activity model UML class diagram . 26

4.3 Resource model UML class diagram . 28

4.4 Action model UML class diagram . 29

4.5 Hierarchy transformation and labeling process for distance dp = 2, dc = 1,
and ds = 2. Edges beginning at anonymous nodes with edge label 0 are
omitted. 33

4.6 4-partite labeled action graph for the action tuples T in Table 4.1. 36

4.7 Minimal subgraph for calculating distance between elements v1l and v2l via
element v3k. 37

4.8 Context ranking utility functions . 41

4.9 Activity Graph excerpt. 43

4.10 Interaction-based and context-based monopartite distance graph for evolv-
ing bipartite action graph. Line thickness in subfigures (c) to (h) represents
node similarity. 47

4.11 Degree distribution for 5000 activities (a) and 5000 persons (b) in a bipartite
graph. 48

v

List of Figures vi

4.12 Degree Distribution for complete posting set (a) and cleaned of anonymous
postings (b). Degree distribution for child activities from aggregated posting
hierarchy (c) and action distribution (d). All postings from stories in the
linux subdomain between Jan 1st, 2008 and July 1st, 2008. 54

4.13 Emergence of unique elements versus growth of actions: (a) all persons,
(b) all activities, (c) persons with degree > 14 in the overall graph, (d)
activities with degree > 14 in the overall graph. Cleaned 21390 postings
from 96 stories in the linux subdomain between Jan 1st, 2008 and July 1st,
2008. 56

4.14 Distance ranking differences for every 10 additional stories in the linux sub-
domain for (a) persons and (b) activities. 57

4.15 Ranking differences of top persons distances for limited aging (a), normal
aging(b), and normal aging(d) with reduced difference sampling interval (5).
Distance differences for normal aging for top and random activities, as well
as random persons (c). 59

4.16 Coordination scenario in a mobile ensemble. Service clients and communi-
cation services reside on mobile devices. The composite Coordination Web
service, the Calendar Web service, and the Context Web service are deployed
either distributed or centrally provided by the infrastructure. The numbered
lines represent the temporal information flow between nodes according to
the textual description. 62

4.17 Hierarchy definition and hierarchy instance UML class diagram. 64

5.1 Ensemble Adaptation framework. 71

5.2 Property checking, evaluation, and ranking. 73

5.3 Entropy limits (a), utility boundaries (b), and overall utility function (c) for
s = 15 . 75

5.4 Average benefit for service recommendation compared to trial-and-error se-
lection. Numbers display aggregation of 50 new services within a service
network growing from 50 to 10050 services. 84

5.5 Average benefit for each round following a property impact change. 85

5.6 Average benefit for service recommendation compared to trial-and-error ap-
proach for increasing constraints. Numbers display aggregated benefit of 50
consecutive measurements. 85

5.7 Average penalty measurements and ± standard deviation for scalability,
adaptivity, and constraints experiments; comparing recommended versus
trial-and-error selection. 86

6.1 Infrastructure adaptation process overview 89

6.2 Infrastructure adaptation process flow . 90

List of Figures vii

6.3 Capability meta model UML class diagram 94

6.4 Metrics triggering rules which in turn generate constraints on capabilities
(cap) with weight w. 96

6.5 Clustering threshold for different combinations of αs and δs with n = 2→ 20.103

6.6 FCM clustering result on data set (a) for two, three, and four clusters with
fuzzy factor ̟ = 3 (b) and ̟ = 1.2 (c)(d)(e). Same colors and same icons
represent mutual cluster membership. 106

6.7 Cluster entropy Hk for biased (a) and unbiased (b) clustering. 113

6.8 Compactness and separation for biased (a) and unbiased (b) clustering. . . 114

6.9 Cluster Jaccard similarity for Top 10 (a), Top 50 (b), and Top 100 (c) users
for unbiased, non-weighted constraints. 125

6.10 Cluster Jaccard similarity for Top 10 (a), Top 50 (b), and Top 100 (c) users
for biased, non-weighted constraints. 126

6.11 Cluster Jaccard similarity for Top 10 (a), Top 50 (b), and Top 100 (c) users
for biased, weighted constraints. 130

6.12 Intra-cluster and inter-cluster Capability Assortativity for biased, unweighted
clustering results of predicates Funny, Interesting, and Insightful for subdo-
mains Ask, Entertainment, and Mobile. 134

7.1 Service Ensemble Adaptation Architecture overview. 138

7.2 Capability Change model UML class diagram 140

7.3 Context Coupling Mechanism. 143

7.4 Context Provisioning Subsystem. 145

7.5 Mobile Context Provisioning subsystem. 149

7.6 Property Impact Evaluation Subsystem. 150

7.7 Infrastructure Adaptation Subsystem. 151

7.8 Ensemble Reconfiguration Recommendation model UML class diagram. . . 152

7.9 Ensemble configuration model UML class diagram 152

List of Tables

4.1 Distance calculation for two action sets of p1 and p2 applying Jaccard’s
distance function. 35

4.2 Global context significance for elements in Figure 4.6. 38

4.3 Intermediary and final ranking results: ranking values derive from the struc-
ture and elements of the activity in Figure 4.9. 44

4.4 Significance, absolute entropy, and relative entropy derived for the interaction-
based distance metric for graphs in Figure 4.10 (a) and (b). 45

4.5 Pearson’s coefficient (and standard deviation σ) for node rank differences
derived from interaction-based and context-based distance metrics. 50

4.6 Context hierarchy examples. 65

4.7 Subscriptions and Queries in the motivating scenario applying matching on
level (not exact values), as this is sufficient here. 67

4.8 Mobile context sharing protocol SOAP message size (excluding HTTP over-
head). The values for Notification and Query Response messages omit the
context payload. 67

4.9 Event count for level-based subscription mechanism (Nfy w/) and a hierarchy-
unaware subscription mechanism (Nfy w/o). Subscriptions are evenly spread
across levels (one at each level). Case (1) exhibits events occurring equally
likely at each level. In case (2), L5 events are five times more likely than L1
events. 68

4.10 Average context query results in bytes for Activity hierarchy, Reachability
hierarchy and DeviceStatus hierarchy. 69

5.1 Symbols applied in the entropy model (upper section) and evaluation algo-
rithm (lower section). 74

5.2 Runtime Complexity . 80

5.3 PDE, limits, and utility values for Location, Organization, and Capability
properties. 81

5.4 Property Impact Evaluation Results . 81

viii

List of Tables ix

5.5 Service network: weighted directed graph including ranking results for S15. 82

5.6 Example acceptance matrixM for four organization property valuesO1 . . .O4
exhibiting maximal constraints. 83

6.1 Symbols applied in requirements clustering. 99

6.2 Constraint ci to service sj capability match (Utility matrix U) including
unweighted, preliminary service rank r and constraint fulfillment degree fc.
In all four cases, constraints are equally important (wi = 1/6 ∀ i = 1→ 6). 100

6.3 Service utility entropy H(s), (maxH(s) = 1.792) and constraint utility en-
tropy H(c), (maxH(c) = 1.609) for unbiased utility values U 101

6.4 Arithmetic mean for service utility entropy H(s), and constraint utility en-
tropy H(c) for biased utility values Ub. 103

6.5 Symbols applied in Fuzzy C-Means clustering. 104

6.6 Constraints, weights, utility, and fulfillment for Case 5. For z = 2, µ(K1a)
and µ(K2a) display membership degree for clustering with ̟ = 1.2; µ(K1b)
and µ(K2b) with ̟ = 3. 109

6.7 Biased cluster algorithm configuration (zmax and ̟) and results for case 1
to 4. Bold numbers highlight the top cluster membership degree. 116

6.8 Clustered Ranking algorithm results for case 1 to 4 compared to unclustered
ranking results. 118

6.9 Symbols applied in Simulated Annealing. 121

6.10 Total Slashdot posting count and postings of minimum score 2 count from
the subdomains Ask, Entertainment, and Mobile between Jan 1st, 2008 and
July 1st, 2008, grouped by predicates. 123

6.11 Cluster membership and importance vector T for biased constraints from
subdomains Ask, Entertainment, and Mobile with predicates Funny, Insight-
ful, and Interesting. 126

6.12 Ranking differences of top 10, 50, and 100 users between each cluster and
the unclustered ranking order measured with Pearson’s correlation coeffi-
cient (ρ) and Jaccard similarity (J). Unweighted, biased constraints from
subdomains Ask, Entertainment, and Mobile with predicates Funny, Insight-
ful, and Interesting. 127

6.13 Top 10 ranked users for unclustered and clustered evaluation for biased,
unweighted constraints. Pos indicates the clustered element’s position in
the unclustered ranking. 128

6.14 Cluster membership and importance vector T for biased, weighted con-
straints from subdomains Ask, Entertainment, and Mobile with predicates
Funny, Insightful, and Interesting. 129

List of Tables x

6.15 Ranking differences of top 10, 50, and 100 users between each cluster and
the unclustered ranking order measured with Pearson’s correlation coeffi-
cient (ρ) and Jaccard similarity (J). Weighted, biased constraints from sub-
domains Ask, Entertainment, and Mobile with predicates Funny, Insightful,
and Interesting. 130

6.16 Top 10 ranked users for unclustered and clustered evaluation for biased,
weighted constraints. Pos indicates the clustered element’s position in the
unclustered ranking. 131

7.1 Interaction Event properties. 144

7.2 Query/Update object. 146

Chapter 1

Introduction

Over the past years we have observed a trend towards online collaboration. Web sites for
social networking (e.g., Facebook, LinkedIn), collaborative tagging (e.g., Digg, Del.ici.us),
content sharing (e.g., Youtube), or knowledge creation (e.g., Wikipedia) have attracted
millions of users. People increasingly utilize such tools to pursue joint interests and shared
goals.

The scientific community in particular comes to profit from a tight interweaving of
social networks and technological networks (Jones, Wuchty, and Uzzi 2008). Barabasi
(2005) highlights the tendency for research teams to grow in size. Guimera et al. (2005)
describe the impact of social network dynamics on team performance. Scientific teams
emerge in an ad-hoc fashion, gather the persons with the required expertise, conduct
research, and dissolve again. At the same time as Internet technology is fostering such
dynamic collaboration, recent efforts aim to turn research results and research tools equally
(re)usable and composable (Foster 2005,Hey and Trefethen 2005,Buetow 2005). Service-
oriented computing promises to bring the same flexibility to research collaboration as it
does in the domain of enterprise collaboration.

Service-oriented Computing (SOC) is a distributed programming paradigm. A service
exhibits a public interface that describes its functionality in a standardized fashion. Service
compositions provide the aggregated capabilities of multiple services. SOC supports loose-
coupling, thus enabling a service client to discover and rebind to another service exhibiting
the same interface. In this thesis, we refer to systems comprising collaborating people and
services as Service Ensembles.

The scientific community is one example where collaboration emerges in large-scale,
heterogeneous systems. Kleinberg (2008) notices the opportunity to observe the dynamics
and complexity of such systems that arise from the convergence of social and technical
networks in general. Several papers discuss the network topology of large-scale, complex
systems (McAuley et al. 2007,Gómez et al. 2008), and devise formalisms that simulate
the creation of these systems (Alava and Dorogovtsev 2005, Lieberman et al. 2005). In
contrast, system management is receiving notably little attention.

1

Chapter 1: Introduction 2

Due to scale, no single ensemble participant has a complete picture of the overall
service ensemble. Consequently, the lack of tools for system management causes poor per-
formance and slow reaction to a changing environment: promising collaborations dissolve
prematurely, helpful services remain unavailable as nobody becomes aware of the demand.
As a result, enabling adaptivity is a prime concern in service ensembles.

Context is a key factor to achieving adaptation in service ensembles. It describes ca-
pabilities, properties, and the environment of humans and services. To this end, context
also models the interaction between humans, humans and services, and between services.
This information gives rise to ensemble metrics. They describe high-level ensemble idiosyn-
crasies. Ensemble metrics provide important guidance to determine necessary adaptation
actions. Subsequent execution of adaptation actions, however, is non-trivial as service
ensembles inherently lack centralized control.

1.1 Motivating Scenarios

In service-oriented computing, we distinguish between client-driven or service-driven adap-
tation. In the first case, the client executes the appropriate adaptation strategies. A person
exchanges, for example, a simple document store service for a high-performance cloud stor-
age service. In the second case, a client merely invokes a service. A storage service provider
monitors, for example, resource consumption and adapts accordingly by raising its storage
capacity.

Both approaches exhibit considerable drawbacks as a result of limited, local informa-
tion. Clients need to keep track of ensemble-wide requirements, which is hard, if not
impossible, to achieve in a multi-organizational environment. Moreover, ensembles have
become too complex to be adapted by human administrators (Huebscher and Mccann
2008). Services, on the other hand, need detailed information about their clients’ goals.
Adaptation actions, however, depend not only on individual clients but have to consider
the clients interdependencies with other ensemble participants. The following scenarios
highlight this problem in three real-world settings.

Scenario 1 - Providing the right services

Suppose a project report leader delegates the writing of various chapters to individual
partners. The leader remains aware of these partners but has no means to observe any
further delegations and collaborations these partners trigger within their respective orga-
nizations. Each participant in this ensemble perceives only a little part of the overall set
of interactions.

Most participants will recognize the need for a document service, but none has the
required information about which capabilities such a service ideally should provide. On
the service side, a simple document store service remains unaware of the structure, purpose,
and involvement of participants, their document artifacts, and applied services. Lacking
such knowledge it cannot realize how to adapt, or even recognize that it might be entirely
inappropriate for the underlying situation.

Chapter 1: Introduction 3

Scenario 2 - Utilizing the right services

A storage service receives a new document and has to decide where to send a copy for
backup to. The service maintains a list of some available storage services—a subset of the
existing storage services in the ensemble. These available storage services differ in their
properties, for example location, capabilities, or owning organization.

The service client possesses no information on the policies and interactions that influ-
ence the distribution of data amongst the storage services. A single storage service, on
the other hand, cannot consult neighboring services as services with different properties
exhibit different interaction behavior.

Scenario 3 - Services doing the right thing

An ensemble participant utilizes a document search service to collect relevant documents
for his/her underlying activity. The service has little additional information about what
documents are relevant other than the keywords provided. It lacks knowledge on the
user’s interaction structure, the people s/he works with, the documents these collaborators
created without the user’s involvement, nor the context in which such documents where
stored. The user, on the other hand, would have to communicate with his/her peers to
obtain information on relevant documents. Additionally, in service ensembles that involve
vast amounts of documents, a single participant has difficulties tracking the context of each
document to reason about the relevance for the situation at hand.

1.2 Preview of Results

Our main contributions in this thesis are:

Infrastructure Adaptation Techniques include a model, algorithm, and framework to
track ensemble-centric requirements and propose suitable services reconfigurations.
A capability model describes service features and reconfiguration options. Ensemble
metrics describe changes in the ensemble configuration and trigger reevaluation of
requirements. We match service capabilities against requirements to identify the
most fitting service composition.

Service Adaptation Techniques consist of a metric model and algorithm that evalu-
ate the impact of service properties on service interactions. We introduce a service
ranking algorithm that exploits these interaction trends.

Context-awareness Techniques comprise a context model—describing the properties
and interactions between ensemble entities—and context distance metrics for estab-
lishing the most relevant context for ensemble participants to use in a given situation.

Chapter 1: Introduction 4

1.3 Structure

This thesis is structured as follows: Chapter 2 provides a review of related work. We
discuss the three main research streams: context-awareness, autonomic computing, and
service-oriented computing. Subsequently, Chapter 3 presents a concise problem statement,
outlines the novelty of this thesis, and discusses the chosen approach.

The subsequent chapters 4 to 6 cover the main contributions of this thesis. Each chap-
ter closes with a self-contained evaluation of the presented research results. Chapter 4
introduces the ensemble context model. We define context-based and interaction-based
distance metrics to describe similarity (i.e., relevance) between ensemble entities. We com-
pare the two metrics utilizing real-world data from an online discussion forum. Part of
this chapter provides additional concepts for sharing context in mobile ensembles. Chap-
ter 5 outlines the importance of ensemble metrics. We propose a new algorithm that
evaluates the impact of service properties on ensemble service interactions. The discovered
interaction characteristics are a central input for our novel service ranking algorithm. Sim-
ulation demonstrates performance, robustness, and scalability of our approach. Chapter 6
describes ensemble requirements tracking and subsequent adaptation. Our biased require-
ments clustering algorithm determines suitable service compositions. A tradeoff between
optimal requirements fulfillment and minimum composition costs applies the similarity
metrics discussed in Chapter 4. Experiments on data from the online discussion forum
confirm the benefit of our clustering and service aggregation framework.

Subsequently, Chapter 7 discusses implementation-specific details. We provide service
interfaces and technical mechanisms of ensemble management, context provisioning, and
ensemble adaptation. Finally, Chapter 8 concludes this thesis. We summarize our results
and provide a brief collection of open research ideas and questions.

Chapter 2

Related Work

In this chapter, we present the basic principles and building blocks which we utilize and
extend in this thesis. There is no research domain single-handedly addressing the chal-
lenges of adaptation in service ensembles. The three most influential research streams are
autonomic computing, context-awareness, and service-oriented computing (SOC).

Service ensembles contain both human and software elements. We, therefore, discuss
related work from multiple viewpoints. We, additionally, outline the missing links required
for realizing a unified adaptation approach, covering the software and human side. We
briefly explain the role of the central research streams before we discuss related work in
detail.

Context-awareness describes the ability of entities (human or software) to perceive the
relevant aspects of their working environment (Morse et al. 2000,Dourish 2004,Bal-
dauf et al. 2007). Instead of having the client (again, human or software) specify
all relevant information, context frameworks provide such information to enable the
entity to perform its function appropriately. The application domain and entity role
determines what the relevant context is. As context is fundamental to adaptation, it
becomes also a crucial factor in achieving autonomic adaptation (Salehie and Tahvil-
dari 2009).

Service-oriented Computing in the scope of this thesis characterizes the underlying
technical infrastructure. In a service ensemble all active entities are modeled and
represented as service providers and service clients. Schall et al. (2008) provide
models, mechanisms, and frameworks for unifying human and service interactions.
In service-oriented environments, adaptation comes primarily in three forms: intra-
service adaptation (service-driven actions), service selection (client-driven action),
and service replacement (infrastructure driven actions).

Autonomic Computing provides a new paradigm for reducing the complexity of soft-
ware systems. The central goal is reducing human control by turning software self-
aware. Two broad design principles aim for such autonomous behavior. Autonomic

5

Chapter 2: Related Work 6

systems implementing a feedback loop (Kephart and Chess 2003) require a global
view of the system to enforce optimal adaptation actions (Di Nitto et al. 2008).
Socially and biology-inspired systems exploit emerging phenomena (Babaoglu et al.
2006). The collective behavior of system elements yields global desirable goals purely
based on local information.

Context models describe the structure of relevant information for adaptation. We
analyze their comprehensiveness of covering the various ensemble adaptation requirements.
Context frameworks capture, reason on, and ultimately provide the actual context to
adaptive services. Subsequently, we outline current techniques that aim for service selection
and aggregation. Finally, we discuss related work on autonomous adaptation.

2.1 Context Models and Frameworks

The definition of context depends very much on its application area. Bazire and Brézillon
(2005) collected 150 definitions from various areas of research. The definition by Dey and
Abowd (2000) is widely adopted in the domain of computer science:

[. . .] any information that can be used to characterize the situation of
an entity. An entity is a person, place, or object that is considered relevant
to the interaction between a user and an application, including the user and
applications themselves.

We further extend our adapted definition in Dorn and Dustdar (2007) to highlight the
nature of service ensembles:

Context is any information that can be used to characterize the situation
of an entity. An entity is a person, place, object, or aggregation thereof that is
considered relevant to the interaction between a user and a service as well as
between services, including the user and services themselves.

The difference seems trivial, almost negligible, but has fundamental implications on the
modeling and provisioning of context. First, relevant context is not simply a set of indi-
vidual entities, but rather comprises an aggregation of multiple, heterogeneous elements
including their interaction characteristics. Second, context extends beyond the basic re-
lationship of human and service (i.e., [user],[has available],[service]). Context needs to
describe the dependencies between services and humans as well as in-between service alike.

A context model enabling adaptation in service ensembles requires three different views:

Chapter 2: Related Work 7

Entity-centric Context captures the situation of individual entities. Traditional models
describe human-centric context such as location, devices, presence information, time,
and action (de Freitas and da Graca 2005,Belotti, Decurtins, Grossniklaus, Norrie,
and Palinginis 2004,Gu, Pung, and Zhang 2005). Some models capture only parts
such as the COBRA-ONT (Chen, Finin, and Joshi 2003) ontology describing an
agent’s location and actions, Amundsen and Eliassen (2008) describing user and
devices, or Anagnostopoulos, Mpougiouris, and Hadjiefthymiades (2005) involving
only location. Ramparany et al. combine actions, devices, user preferences, and
weather conditions (Ramparany, Euzenat, Broens, Bottaro, and Poortinga 2006).
Yang et al. focus on user preferences specific to services such as cost, speed, QoS, and
mobility (Yang, Mahon, Williams, and Pfeifer 2006). They also consider proximity
of services to increase the performance of service compositions.

Other context models focus purely on service aspects. Maamar et al. introduce
context to describe available services instances, their execution status, and expected
termination of service execution instances (Maamar, Kouadri, and Yahyaoui 2004,
Maamar, Benslimane, Thiran, Ghedira, Dustdar, and Sattanathan 2007). Casati
et al. model service execution quality in the context of a specific process (Casati,
Castellanos, Dayal, and Shan 2004). Mrissa et al. suggest contextual annotation of
service interfaces to allow for correct interpretation and mediation (Mrissa, Ghedira,
Benslimane, Maamar, Rosenberg, and Dustdar 2007).

Most models contain the concept of an activity. However, the general notion of such
activities is usually limited to linking a user to an action (e.g., a user is walking,
reading, attending class) or a service to an action (Bardram 2005).

Activity-centric Context puts individual actions into a larger perspective. They de-
scribe the flow and dependencies of actions, thereby joining people, services, re-
sources, and artifacts in a temporal manner. Dustdar first introduced the concept of
activities in the domain of ad-hoc processes in Caramba (Dustdar 2004). Specifically,
he focuses on process awareness for enabling users to perceive their role in the context
of the overall activity flow.

Other work recognizes the importance of activity context for task-awareness (Moody,
Gruen, Muller, Tang, and Moran 2006), self adaptation (Garlan, Poladian, Schmerl,
and Sousa 2004,Sousa, Poladian, Garlan, and Schmerl 2005), or resource recommen-
dation (Ning, Gong, Decker, Chen, and O’sullivan 2007). These approaches, however,
miss out on the potential of interaction analysis. Relations between activities, re-
sources, and humans are configured during bootstrapping and remain unchanged
thereafter.

Ensemble-centric Context describes ensemble characteristics that emerge at a global
level. Modeling of such aspects has not received much attention. Related work
is spread across multiple niches. Research in the domain of collaborative working
environments covers context such as availability and distribution of members, orga-
nizational structure, or communication means. Vieira, Tedesco, and Salgado (2005)

Chapter 2: Related Work 8

include interaction and organization aspects in their context ontologies but include
activities only as simple tasks without embedding them in an underlying activity
flow.

Social network analysis investigates interaction characteristic of online communities.
Information that potentially serves as context (e.g., Bird, Gourley, Devanbu, Gertz,
and Swaminathan (2006) Valverde and Solé (2006)) is usually not available in near-
realtime, nor does it include aspects beyond human-to-human communication.

2.1.1 Context Provisioning in Mobile Environments

da Rocha and Endler (2006) have proposed context granularity as an important part of
distributed context-aware systems. Most research efforts on mobile context frameworks,
however, tend to focus on architectural aspects. Some of the following frameworks exhibit
some notion of context hierarchy, but none of these approaches explicitly enables granular
access to context information.

Biegel and Cahill (2004) present a framework for developing mobile, context-aware
applications. They introduce the concept of a context hierarchy. However, their hierarchy
has the notion of a task tree rather than structuring context information into various levels
of detail.

Web Service Context (WS-Context) (Little, Newcomer, and Pavlik 2004) is a specifica-
tion proposed by OASIS to describe the context of an activity—composed of several Web
services. WS-Context defines methods to pass context by value or just by reference. In the
latter case, the receiving service obtains the actual information from the context manager
service. Context information itself can be structured hierarchically as WS Context includes
an optional element, which refers to the parent context.

The service-oriented context-aware middleware (SOCAM) by Gu, Pung, and Zhang
(2004) provides push- and pull-mechanisms for retrieving context information. However,
such information is only gathered but not forwarded to other services and solely provided
to the applications build on top of SOCAM.

Costa, Pires, van Sinderen, and Filho (2004) designed a platform for mobile context-
aware applications. Context information is shared by subscribing to this platform using
the WASP Subscription Language (WSL).

The Solar middleware by Chen and Kotz (2002) provides a platform for context-aware
mobile applications consisting of one star and several planet nodes. Client applications
need not collect, aggregate or process context themselves but subscribe to context changes
at the central star.

Other subscription enabled context frameworks include work by Sørensen, Wu, Sivaha-
ran, Blair, Okanda, Friday, and Duran-Limon (2004) and Hinze, Malik, and Malik (2005).

A comprehensive survey on context-aware systems by Baldauf, Dustdar, and Rosenberg
(2007) provides additional in-depth details on architecture, context model, and context life-
cycle.

Chapter 2: Related Work 9

2.2 Context Selection and Ranking

In the scope of this thesis, we treat selection as a problem of choosing the best service
(or resource) given a set of metadata (i.e., any type of information about a service other
than the service interface description). In this process, ranking constitutes the penultimate
step, right before the final selection amongst the top rated elements. Particular to service
selection, we do not consider interface matching or mediation as part of this problem.

Extensive research efforts focus on service selection based on Quality-of-Service (QoS)
attributes (Yu and Lin 2005,Wang, Vitvar, Kerrigan, and Toma 2006,Rosenberg, Leitner,
Michlmayr, Celikovic, and Dustdar 2009). In pure SOA-environments, Vu, Hauswirth, and
Aberer (2005), Maximilien and Singh (2004), and Maximilien and Singh (2005) extend this
approach and include trust metrics. Skopik, Schall, and Dustdar (2009) introduce trust to
mixed service-oriented systems for selection of both humans and services.

In contrast to automatically derived metrics, tagging-based frameworks —e.g., Tai, De-
sai, and Mazzoleni (2006), Desai, Mazzoleni, and Tai (2007)—and recommendation-based
frameworks—e.g., Manikrao and Prabhakar (2005), Silva-Lepe, Subramanian, Rouvellou,
Mikalsen, Diament, and Iyengar (2008)—collect meta-data directly from service users.

Approaches in the middle between these two extremes concentrate on past invocations.
Birukou, Blanzieri, D’Andrea, Giorgini, and Kokash (2007) analyze similar requests, while
Casati, Castellanos, Dayal, and Shan (2004) observe the context of previous successful
processes to recommend suitable services.

Ning, Gong, Decker, Chen, and O’sullivan (2007) suggest a goal driven approach to
resource recommendation. Based on the person’s use of resources (i.e., the context), the
systems infers his/her current goal and suggests additional suitable resources.

The dynamic ranking approach by (Bottaro and Hall 2007) comprises contextual scopes,
filters, and scoring functions. Context itself is limited to information on services (e.g.,
service state, capabilities, QoS) and traditional context such as location.

2.2.1 Ranking Functions

Ranking criteria based on QoS or trust metrics describe aggregations of raw data associated
with individual elements (i.e., service, humans, resources). In contrast, service ensemble
context includes interaction data between humans and services. Ranking functions on
interaction data make heavy use of graph metrics.

A prominent example of a graph-based global importance metric is Google’s page
rank (Brin and Page 1998). A context-aware version (Haveliwala 2003) yields total ranks
by aggregating search-topic-specific ranks. Inspired by the page rank algorithm, Schall
(2009) applies interaction intensities and skills to rank humans in mixed service-oriented
environments.

Our approach differs in two important aspects. First, we do not apply global ranking.
Ranking of elements in our k-partite action graph happens from a particular perspective

Chapter 2: Related Work 10

(i.e., we rank elements as seen from one chosen element within the graph). Second, similar-
ity of two same-type elements (e.g., a person) is not merely restricted to direct interaction
between two elements. Similarity derives from their involvement in joint activities, use of
common resources, or modification of the same artifacts.

2.3 Service Composition

Service composition describes the process of combining multiple services to provide a par-
ticular functionality which none of the individual services can offer by itself. Service compo-
sition relies on service selection and ranking to determine the most suitable candidates for
aggregation. In a survey on Web service composition, Dustdar and Schreiner (2005) high-
light a number of composition concerns such as message coordination between composed
services, transaction properties, context-awareness, and execution monitoring.

The fundamental process underlying most composition approaches consists of mapping
abstract requirements (i.e., capabilities) onto concrete service instances. These abstract
requirements reside at various levels of granularity and need to be broken down into sub-
requirements before the ultimate mapping occurs. Most approaches exhibit the implicit
assumption that each requirement identifies one service type at the end of the mapping
process. Subsequently, services of each particular type get ranked according to QoS metrics,
policies, and context. The top scored services yield the composition.

Maamar et al. identify Web services, policies, and context as the key components
to Web service composition (Maamar, Benslimane, Thiran, Ghedira, Dustdar, and Sat-
tanathan 2007). They introduce a multi-level approach comprising component level (ser-
vice capabilities and interfaces), composite level (service discovery and aggregation), se-
mantic level (service interface heterogeneities), and resource level (service runtime environ-
ment). Each level is associated with a corresponding context type (Maamar, Kouadri, and
Yahyaoui 2004). Such context defines which and how policies control the transition between
levels. At the composite level, service chart diagrams and state chart diagrams (Maamar,
Benatallah, and Mansoor 2003) control how individual services are combined. These state
charts in combination with location and time context are also applied by Sheng, Benatallah,
Maamar, Dumas, and Ngu (2004) to achieve personalized service composition.

Mrissa et al. propose context-sensitive semantic description of service interfaces to allow
for mediation of data heterogeneities in BPEL processes (Mrissa, Ghedira, Benslimane,
Maamar, Rosenberg, and Dustdar 2007). Hull and Su (2005) provide an overview of tools
for composite Web services.

Baresi, Bianchini, Antonellis, Fugini, Pernici, and Plebani (2003) describe the context-
aware composition of communication services. They consider user location and QoS metrics
to assemble the best combination and configuration of services on fixed and mobile stations.
Compositions are modeled as generic micro flows, which are adapted to the execution
context during runtime.

Chapter 2: Related Work 11

In the project Daidalos, Yang, Mahon, Williams, and Pfeifer (2006) apply an ontology
to identify required services fulfilling a user’s task. User context and preferences are key
for adapting the composition as needed.

Quitadamo, Zambonelli, and Cabri (2007) demonstrate a knowledge-network-driven
approach to service selection and aggregation. They link semantic models to input and
output of services within the scope of an enzyme. Such enzymes represent data transition
between ontology concepts, rather than workflows. They aggregate when a single enzyme
cannot provide the necessary functionality.

Our work differs from traditional composition approaches in that we specifically focus on
providing suitable service agglomerations. Service requirements describe what capabilities
are required but not how the respective services should be composed.

The approaches introduced above consider only a subset of an ensemble context during
composition. Adaptation and selection criteria usually build upon QoS metrics or context
about the service execution environment. Involved user context comprises mostly location,
devices, and preferences. None of these efforts evaluate the complete setting of humans
and services in an ensemble.

2.4 Autonomic Service Adaptation

In recent years software management turned increasingly difficult as IT systems become
ever more complex. Systems do not only grow bigger in terms of lines of code. Their
interconnection and dependency on other systems, often subject to different authorities,
adds to the overall dilemma. In dynamic environments that yield changing requirements
and conditions, it becomes impossible to manually execute management tasks such as
(re)configuration, maintenance, optimization, protection, or recovery. In 2001, IBM intro-
duced the concept of Autonomic Computing (Horn 2001). The central idea to autonomic
computing is self-management of software components.

The initial four self-* properties are self-configuration, self-healing, self-optimization,
and self-protection (Kephart and Chess 2003). Self-configuration envisions components
to install, setup, and integrate themselves solely based on some high-level policies. Self-
healing seeks automatic discovery of internal, undesirable situations, and devises plans to
recover from them. Self-optimization monitors the system status and adjusts parameters
to increase performance when possible. Finally, self-protection aims for detection and
mitigation of external threats (White, Hanson, Whalley, Chess, and Kephart 2004).

The conceptual architecture for autonomic computing envisions an autonomic manager
observing and controlling a managed element (see Figure 2.1), thereby creating an auto-
nomic element (Kephart and Chess 2003, IBM 2005). The autonomic manager consists of
five key components: Monitoring, Analysis, Planning, and Execution, all of which apply a
common set of Knowledge (i.e., the MAPE-K cycle).

Chapter 2: Related Work 12

Monitoring obtains information about the managed element and its environment. Mon-
itoring forwards aggregated and cleaned data to the analysis component.

Analysis evaluates the current situation and determines if counteractions are required. If
adaptation is required, planning becomes involved.

Planning determines how to react to a given situation. It devises the concrete adaptation
measures.

Execution enforces the required adaptation steps. Actions apply to the managed elements
but also include notification of or escalation to supervising autonomous entities.

Knowledge maintains information on the autonomous element’s embedding in its greater
environment. It provides guidance for the other four elements in form of requirements,
rules, domain knowledge, and policies.

These five aspects are fundamental to any autonomous system—albeit some works
assign different names to these steps (Parashar and Hariri 2004,Dobson et al. 2006). They
form a feedback loop together with the managed element.��������� �	�	
��

������� ������
��	���� ��	�

�������
�
�	�	
�� ������

Figure 2.1: Autonomic element: an autonomic manager observing and controlling the
managed element.

The initial concept of autonomic elements interacting with each other to appropriately
self-adapt works well in environments that yield little interaction between autonomic ele-
ments and rather simple compositions of autonomic elements. In such environments the
main focus is adaptation of the managed element.

Chapter 2: Related Work 13

The Autonomic communications research domain addresses the challenges arising from
managing communication networks (Dobson, Denazis, Fernández, Gäıti, Gelenbe, Mas-
sacci, Nixon, Saffre, Schmidt, and Zambonelli 2006, Schmid, Sifalakis, and Hutchison
2006). Network infrastructures lack a single point of control, yield highly dynamic topol-
ogy changes, and address conflicting client requirements. We cannot directly apply the
autonomic feedback loop to achieve self-* properties.

Emergence-based adaptation describes a completely decentralized approach based on
collective interaction phenomena (Figure 2.2). Desirable behavior emerges from a group of
interacting elements. Each element follows a set of rules, none of which directly accounts for
the overall behavior. The relevant fundamental characteristics of emergence are according
to Wolf and Holvoet (2004):

Micro-Macro Effect: actions carried out by individual elements (micro-level) result in
a specific behavior at the macro-level of the system.

Radical Novelty: from a top-down view, the macro-level behavior cannot be explained
by decomposing the system into the individual elements. From a bottom-up view,
the rules determining the micro-level actions do not describe the macro-level result.
The overall behavior is only implicitly described at the micro-level. The individual
elements remain unaware of their global goal.

Interaction: behavior of individual elements must include interaction with other ele-
ments. Such interaction can be direct or indirect (i.e., an element observes and
reacts to the actions of another element).

Local View: in large-scale systems, individual elements cannot keep track of all other
elements. The view of the ’world’ is reduced to a subset of neighboring elements.
Subsequently, any behavioral rules must not require complete awareness.

Decentralized Control: emerging behavior arises without any form of central control.
Control mechanisms perceive only local information and enforce local actions.

Self-organizing, emergent systems are often based on multi-agent technology (Serugendo
et al. 2003,Babaoglu et al. 2004,Wolf and Holvoet 2005). As this thesis concentrates on
service ensembles, we analyze SOA-related autonomic research efforts with respect to sup-
ported context scope, adaptation architecture, and dynamic context relevance. In service
ensembles, autonomous adaptation must not restrict supported context to software system
elements. Context needs to describe the tight interdependencies between humans and ser-
vices. Furthermore, adaptation needs to consider the overall ensemble configuration—not
only the individual user context or service context. However, tracking of detailed context
information for large-scale ensembles is not feasible. Any adaptation architecture, conse-
quently, needs to remain decentralized to some degree. Finally, dynamic context relevance
describes the ability to continuously identify (and subsequently adapt to) the most signif-
icant impact factors in a system. To the best of our knowledge, current approaches fail in
at least one of these three concerns.

Chapter 2: Related Work 14

Figure 2.2: Emergence: individual elements interact (black lines) with their peers purely
based on local information (dashed circles). These actions at the micro-level result in
desirable outcome on the macro-level.

Current general-purpose autonomic techniques and toolkits such as Sterritt, Smyth,
and Bradley (2005), Bigus, Schlosnagle, Pilgrim, Mills, and Diao (2002), or IBM (2004)
primarily apply context about the software environment. These frameworks adhere to the
basic MAPE-K feedback loop, limiting the application of user context to properties such as
location or device. In Self-Configuring Socio-Technical Systems Bryl and Giorgini (2006)
describe a multi-agent system reacting to dynamic reconfiguration needs. They claim to
apply both local and global information. Unfortunately, they lack details on the extent of
global information or specific aggregation mechanisms to support scalability in large-scale
systems. Goal-driven adaptation of service compositions such as Greenwood and Rimassa
(2007) or Yu and Lin (2005) consider exclusively service context and require complete
control over the aggregation.

Following research efforts yield some form of decentralized control, but completely lack
user-centric context. Andreolini, Casolari, and Colajanni (2008) exploit load trends for
autonomic request forwarding between geographically distributed systems. Colman (2007)
proposes a hybrid approach to self-organization services through hierarchical structur-
ing of autonomic managers and services. The autonomic manager monitors and controls
all composed services, thereby severely limiting the size of manageable service composi-
tions. Jennings, van der Meer, Balasubramaniam, Botvich, Foghlu, Donnelly, and Strass-
ner (2007) discuss an architecture for autonomic management of communication networks.
They suggest applying the MAPE-K cycle to a complete set of entities, thus limiting the
architecture’s applicability to domains exhibiting a central set of goals.

Although autonomic computing is a well established paradigm for self-adaptiveness (Hariri,
Khargharia, Chen, Yang, Zhang, Parashar, and Liu 2006), most systems (Huebscher and
Mccann 2008) still apply a stable set of impact properties.

Chapter 2: Related Work 15

Saffre, Tateson, Halloy, Shackleton, and Deneubourg (2008) present an algorithm that
results in self-organizing behavior of services. Membership properties enable the algorithm
to achieve the desirable behavior using again only local context information. However, the
type and impact of context information is defined a-priori.

Dynamically identifying the most relevant factors for self-adaptation includes research
by Zhang and Figueiredo (2006). Their Bayesian network-based autonomic feature selec-
tion, however, focuses exclusively on service-internal measurements and thus neglects any
form of interaction metrics. Sterritt, Mulvenna, and Lawrynowicz (2004) make the case for
behavioral knowledge from which to compute metrics, but they remain at a general activity-
focused level, not considering other ensemble aspects. Marinescu, Morrison, Yu, Norvik,
and Siegel (2008) measure the importance of properties for system self-organization, but
focus on the impact of simulated gene diversity.

Chapter 3

Problem Statement

The principal research question is how to enable services to autonomously adapt to the
dynamic changes in service ensembles. A key problem is achieving adaptation based on
the overall ensemble requirements—not just adaptation based on the needs of individual
elements.

A Service Ensemble is composed of humans and services—the active ensemble entities.
Interaction in service ensembles includes people communicating with other people, people
utilizing services, service invoking other services.

Service ensembles are amalgamations of social and technical systems. An ensemble
cannot be regarded as a pure social system, as services have great impact on how people
interact. Services determine how people are able to coordinate, communicate, and carry
out their joint work. Neither can a service ensemble be regarded as a pure technical system.
The social structure yields great influence on required service capabilities. Groups that
exhibit great trust amongst members want to collaborate more freely and unstructured
than groups that follow a rigid organizational structure.

In an ensemble, each entity maintains connections to a neighboring subset of all entities
due to scale. It observes changes only in its vicinity. Emerging phenomena that arise from
the complete set of interactions cannot be observed by an individual at all. Thus, an entity
applies only limited, local information when deciding what actions to execute next.

Ensembles grow from entities belonging to multiple organizations. There exists no
central authority that controls growth and evolution of an ensemble. It emerges from the
common goals its participants share. Changes occur as people shift their interests, as
people leave the ensemble and new ones join in. Technical entities cause changes to equal
extent: new services arise, existing service evolve, and some services disappear. These
dynamic changes require constant adaptation to keep the ensemble working.

Interaction in service ensembles adheres to environmental constraints. At one point the
organizational structure determines best interaction partners. At other times, location is
most influential on communication patterns. The impact of the various aspects governing

16

Chapter 3: Problem Statement 17

entity behavior shifts continuously as ensembles dynamically evolve. The impact scope of
such aspects is often global. Individual entities find it non-trivial to recognize such trends
based on local information only.

In the scope of this thesis, adaptation refers to the reconfiguration of an entity in
order to adjust to changing environmental conditions. To this end, adaptable entities
include services, humans, and aggregations thereof. Adaptation actions include remodeling
a composition, selecting a different communication partner, or exhibiting different internal
behavior. The adaptation techniques in this thesis target primarily services. However,
they apply in a generic form to humans as well.

The main achievements necessary for enabling adaptation in service ensembles are:

• the ability to describe and detect overall ensemble requirements. Effective adaptation
relies on comparison of actual and desirable ensemble configuration on a global level.

• an infrastructure supporting adaptive services as services cannot trigger reconfigura-
tion, replacement, or deployment themselves.

• services exhibiting adaptive behavior to continuously react to changes in their local
environment.

• mechanisms providing the relevant context required for adaptation.

3.1 Analysis of Related Work

Adaptation techniques for service ensembles remain largely unexplored. In Figure 3.1,
we place related research domains in perspective to this thesis. On the Focus axis, we
distinguish between research focusing on either human and social aspects or on technical
aspects. On the Scope axis, we separate approaches that focus on local context information
only—thereby achieving local optimization only—and approaches that require complete
control and context to achieve global optimization.

Context models describe either social aspects such as personal preferences or focus on
service-centric aspects. Activity-centric context takes a central role in this thesis, but
is insufficient by itself for adaptation. Almost no model or metrics describe large-scale
ensemble context. Analysis of social networks provides insight into the interaction structure
of humans but addresses no technical concerns.

QoS-based and goal-driven selection techniques focus entirely on technical aspects.
Goal-driven approaches consider user preferences and context, but remain ignorant of
human interactions. Trust-based selection considers merely the interaction between in-
dividual elements. In contrast, global importance ranking requires complete interaction
information to identify important ensemble entities.

Chapter 3: Problem Statement 18

Activity-Centric

Context This

Thesis

Emergence-

based

Adaptation

QoS-based

Selection
Autonomic

Adaptation

Local Context

Local Optimization

Global Control/Complete Context

Global Optimization

S
o
c
ia
l

T
e
c
h
n
ic
a
l

Scope

Focus

Group-centric

Context

Goal-driven

SelectionService-centric

Context

Human-centric

Context

Social Network

Analysis

Trust-based

Selection

Global

Importance

Ranking

Autonomic

Adaptation

Service

Composition

Figure 3.1: Related Work: Ellipses depict context models; rectangles depict (service)
selection, respectively ranking techniques; documents represent composition mechanisms;
and trapeziums represent adaptation techniques. The central diamond defines the research
area of this thesis.

Research in service composition almost exclusively concentrates on the aggregation of
technical services. Although some user context is applied during service selection, social
interaction aspects yield no impact on the final composition.

Autonomic adaptation reside on both ends of the scope axis. Frameworks implementing
the MAPE-K cycle achieve local optimization when utilizing local context, but require
complete control (and context) to achieve global optimization. Emergence-based techniques
are well suited for large-scale systems. They exploit interaction between elements to achieve
overall desirable behavior based on local information only. Emergence based frameworks—
mostly agent based—require a central authority to a-priori configure the interaction rules.
This approach is not feasible in service ensembles without centralized control.

3.2 Relevance to Real-World Problems

Current large-scale collaborative environments remain mainly simple and unstructured.
Our mechanisms allow for more complex collaborations on a larger scale. Requirements
tracking on a global level promises to improve efficiency of large-scale ensembles. Indi-
vidual workers become increasingly aware of their overall ensemble requirements. Addi-
tional services for coordination, communication, and execution are deployed just-in-time

Chapter 3: Problem Statement 19

when needed. Adaptation techniques ensure the configuration of role-based resource access
strategies for ensembles exhibiting a growing number of involved organizations, while they
focus on asynchronous communication and work monitoring services for ensembles that
spread over multiple time-zones.

The adaptation techniques in this thesis apply to collaborative working environments
(CWE) in general. The introduction listed some motivating scenarios from the domain
of scientific collaboration. Potential application domains, however, also include Enterprise
Interoperability, where efficient interaction between small- and medium-sized companies
becomes ever more important.

3.3 Approach

3.3.1 Assumptions

The following assumptions are crucial in putting our approach into perspective. Humans
and services participate in multiple ensembles simultaneously. As we introduce models,
algorithms, and our framework, we focus only on one ensemble instance throughout this
thesis for sake of clarity. This includes entity interactions, context information, and entity
properties. Amongst these, context information plays a fundamental role for adaptation.
While we present corresponding models and raw data extraction techniques in this thesis,
we refer the reader interested in the actual context sensor logic to the inContext project
report D2.2 (Dorn, Polleres, and Yi 2008).

Replacability of services is a fundamental problem in service-oriented systems. Exist-
ing research work—e.g., Mrissa, Ghedira, Benslimane, Maamar, Rosenberg, and Dustdar
(2007)—provides viable approaches upon which we build without going into detail. Specif-
ically, we assume existing data mappings between incompatible services interfaces.

Other general aspects include security, reliability, integrity, and performance of services.
These cross-cutting concerns would easily fill a thesis on their own. Here they remain
out of scope. Finally, a graphical user interface and respective integration with services
remains unaddressed. The inContext collaboration web portal (inContext Consortium
2008) demonstrates a possible approach.

3.3.2 Adaptation Methodology

Service ensemble characteristics and respective challenges require addressing adaptation
on multiple levels. We achieve the highest impact by providing the most suitable services.
These services have to continuously adapt to provide their capabilities effectively. Subse-
quently, they need the relevant context information. Figure 3.2 outlines this approach.

Adaptive Infrastructure derives and analyzes ensemble requirements. Comparison of
current requirements and deployed service capabilities highlights potential adaptation

Chapter 3: Problem Statement 20

Context

Metrics

Adaptive Infrastructure

Adaptive Services

Context-aware

Services

F
re
q
u
e
n
c
y

Im
p
a
c
t

Ensemble Users Ensemble Services

M
onitor

A
na
ly
se Plan

E
xe
cu
te

Figure 3.2: Approach

actions. Along these lines, the infrastructure recommends service deployment, un-
deployment, replacement, and reconfiguration. Reconfiguration explicitly addresses
switching to a different adaptive behavior. At the infrastructure level, algorithms
only decide on the best adaptation strategy. The actual adaptive behavior is internal
to the implementing service.

Infrastructure-based adaptation targets long-term effects. Analysis of the overall
ensemble requires aggregation of entity interaction information. Scale and complexity
of service ensembles limit this process’ execution frequency.

We discuss architecture, components and implementation of an adaptive infrastruc-
ture framework in Chapter 6 and Chapter 7, respectively. Tracking of requirements
includes ensemble-specific metrics, which we introduce in Chapter 5.

Adaptive Services are implicitly aware about the ensemble’s requirements through their
capabilities and configuration. However, they lack an overall picture of all relevant
aspects. Neither can they trace these aspects. To execute their adaptation strategies,
they need to be context aware.

In Chapter 5, we provide a self-stabilizing algorithm to guide newcomers when joining
a service ensemble.

Context-aware Services know about the common context in which they are used and
apply the correct context information. Context use is very frequent, but a service’s
view remains limited to a neighboring set of ensemble entities. Subsequently, services
adapt for short-term effects with limited scope.

Chapter 3: Problem Statement 21

Chapter 4 presents a context model describing both human and service aspects in en-
sembles. Our relevance-based context sharing algorithm ensures services are working
with the right set of context information.

3.4 Publications

Parts of this thesis are published as journals, conference papers, workshop papers, and
technical reports. Specifically, we disseminated the following main contributions.

Context Model: We discussed core context aspects in service ensembles at the DMC
workshop (Dorn, Schall, Gombotz, and Dustdar 2007). These first design consid-
erations guided the implementation of the context model provided in the technical
report (Dorn, Polleres, and Yi 2007) (revised in (Dorn, Polleres, and Yi 2008)). At
the 37th EUROMICRO conference, we demonstrated the role of the core activity
model for self-adaptive collaboration services (Schall, Dorn, Dustdar, and Dadduzio
2008). Section 4.1 presents a detailed description and discussion of the individual
context model elements.

Addressing the needs of mobile ensembles, we explored the potential of hierarchical
context structures (Dorn, Schall, and Dustdar 2006). Section 4.5.1 specializes on
results of context modeling efforts for mobile environments.

Context Provisioning: The basic context ranking algorithm (introduced in Schall, Dorn,
Dustdar, and Dadduzio (2008)) utilized two ranking criteria. Detailed implementa-
tion details are given in the technical report (Casella, Dorn, Polleres, and Yi 2008).
In Section 4.3 we revisit the ranking algorithm and extend on criteria and distance
functions. For mobile environments, we additionally enable context sharing based on
hierarchies. Section 4.5.2 presents the mechanisms previously outlined in a special
edition of the Distributed and Parallel Databases journal (Dorn and Dustdar 2007).

Adaptation Mechanisms: We explored emergent metrics describing service ensembles
in (Dorn, Truong, and Dustdar 2008). This paper presented an early version of the
Property Distribution Entropy (PDE). More Activity-specific metrics in Dorn, Schall,
and Dustdar (2008) highlight the potential of dynamically choosing the relevant
aspects for service adaptation. Self-stabilizing algorithms based on a revised PDE
definition are discussed and evaluated in detail in Chapter 5. Our results will be
presented at ECOWS 2009 (Dorn, Schall, and Dustdar 2009b).

Adaptive Infrastructure: We described the infrastructure adaptation process including
capability model and gracefully degrading matching algorithm in a paper (Dorn,
Schall, and Dustdar 2009a) submitted to an international conference and are awaiting
notification.

Chapter 3: Problem Statement 22

Other publications related to this thesis but addressing different challenges are:
- Schall, Dorn, Truong, and Dustdar (2008) outlining general techniques for facilitating
integration of humans and services in ensembles.
- Schall, Gombotz, Dorn, and Dustdar (2007) presenting specific mechanisms to integrate
human and services in mobile environments.
- Reiff-Marganiec, Truong, Casella, Dorn, Dustdar, and Moretzki (2008) and Dorn, Dust-
dar, Giuliani, Gombotz, Ning, Perray, Schall, and Tilly (2007) describing the inContext
platform.
- Gombotz, Schall, Dorn, and Dustdar (2006) investigating interaction patterns for sharing
context.

Chapter 4

Ensemble Context Provisioning

Context describes the underlying conditions and circumstances of a service ensemble. To
support adaptation, we need to model the significant ensemble aspects, capture the corre-
sponding context information, and provide the subset of the overall context relevant for the
particular ensembles adaptation mechanisms. To this end we investigate in this chapter:

Ensemble Context Model detailing the context of humans, services, artifacts, re-
sources, their coordination aspects, and fine-grained interactions.

Raw Context Capturing Mechanism extracting the fundamental configuration changes
and interaction events that represent current constraints and conditions in a service
ensemble.

Context Ranking Techniques recommending the most significant context elements
based on interaction-centric distance metrics. Such metrics describe the context-
sensitive similarity between context entities (i.e., people, services, artifacts . . .).

Mobile Context Provisioning proposing a hierarchical context modeling and sharing
framework tailored to the device and network constraints in mobile service environ-
ments.

4.1 Context Model

In (Dorn, Schall, Gombotz, and Dustdar 2007), we outline the relevant aspects for modeling
the context of service ensembles. The five main aspects comprise Location, Organization,
Activity, Human (Interactions), and Resources. We discuss location related details in
Section 4.5.1 in the scope of context provisioning for mobile service ensembles.

The context model consists of a set of submodels describing semi-static configurations
and relationships (e.g., organizational structure, humans, services, activity hierarchies). In

23

Chapter 4: Ensemble Context Provisioning 24

addition, we model the highly dynamic actions captured in the service ensemble. Specif-
ically, the Action model captures actions exactly as they are carried out, providing an
event history. In contrast, the extended FOAF model, the Activity model, and the Re-
source model specify the semi-rigid ensemble configuration.

4.1.1 Entity Model

Services and humans are the active elements in service ensembles. Organizational and
informal structures affect the interaction between and composition of these elements. Thus,
we need to model both the background from which entities join an ensemble and the
ensemble structure itself.

We extend the FOAF (Friend-of-a-Friend) model which describes relations between
people on the web. The original concepts fit roughly into five categories listed on
http://xmlns.com/foaf/spec, namely FOAF Basics, Personal Info, Online Accounts and
Instant Messaging, Project and Groups, as well as Documents and Images. We reuse the
following core concepts from FOAF Basics :

Agent represents any active entity in an ensemble such as a Person, an Organization, or
a Group. An Agent can be member of a Group and exhibits a mbox (respectively
mbox sha1sum for privacy reasons) for identification purposes.

Person subclass of Agent represents any human being. In this thesis we describe a Per-
son by firstName, and family name only. These properties do not serve as unique
identifier; instead we apply the agent’s mbox property.

Organization subclass of Agent represents semi-stable aggregations of agents such as
organizations or societies.

Group subclass of Agent applicable for ad-hoc or informal collection of agents. In contrast
to an Organization a Group can contain multiple Agent, thereby creating a tree
hierarchy.

The original FOAF concepts insufficiently describe all active ensemble entities. We also
need to address the organizational aspects of services.

Service provides capabilities to a set of agents, belongs to an agent (the provider), and
refers to its representation as a resource in the Resource model.

Fundamentally, a service ensemble consists of a set of agents combining both humans and
services. Figure 4.1 visualizes the Ensemble Entity Model, including only the reused FOAF
concepts.

Chapter 4: Ensemble Context Provisioning 25

tService

tAgent
«attribute» mbox : string [0..1]
«attribute» mbox_sha1sum : string [0..1]
«attribute» gender : string [0..1]
«attribute» URI : anyURI

tOnlineAccount
«attribute» accountName : string [0..1]
«attribute» accountServiceHomepage : string [0..1]

holdsAccount
0..*

tPerson
knows : anyURI [0..*]
«attribute» firstName : string [0..1]
«attribute» family_name : string [0..1]

tGroup tOrganization

tService

member
0..*

ServiceResource
0..1

ProvidedBy
0..1

ServesTo
0..*

Figure 4.1: Ensemble Entity model UML class diagram

4.1.2 Activity Model

Ensembles combine services and humans to fulfill a specific purpose. Humans plan and
execute their actions depending on their current context. In doing so, they create and main-
tain an implicit, mental process—flexibly linking individual work steps. Loosely coupled
services, in contrast, lack overall awareness of the ensemble context. They remain igno-
rant of past service invocations, interdependent work steps, and relevant human actions.
As humans—rather than predefined processes—drive the interaction with other humans
and services, we need to provide a decentralized, decoupled means for tunneling context
between services.

The concept of activities goes beyond simply reflecting a mental work process. Context
tunneling based on activities facilitates coordination in ensembles where humans lack direct
communication. We present the underlying activity model here, giving details on the
tunneling process in Section 4.2.

An activity (Figure 4.2) specifies coordination properties as well as relationship of hu-
mans, services, artifacts, and resources. The activity context contains the overall structure
of activities, dependencies between activities, the temporal flow of (future) activities, and
history of activity changes. The central elements are the following: (Focusing on coordi-
native aspects here, we define details of humans, services, and resources in the remaining
models.)

Activity describes everything an agent has done, is doing, or will be doing in order to
fulfil a goal. An Activity has a name and description, is identified by a URI, and
provides details inspired by iCal RFC 24451. We predominately structure activities in

1http://www.ietf.org/rfc/rfc2445.txt

Chapter 4: Ensemble Context Provisioning 26

a hierarchical fashion. Subactivities describe refinements of their parent activity. The
relatesTo link enables arbitrary graph structures for managing views which deviate
from the main hierarchical structure.

InvolvementRole specifies the engagement of an agent in an activity. Basic role types
are Creator, Observer, Contributor, Responsible, and Supervisor. We can assign
multiple agents to a single activity, and a single agent to multiple activities.

Artifact is the subject of work being created or modified in an activity. An Artifact wraps
a Resource to highlight its special role in an activity. The same Resource can serve
as input in one activity and be manipulated as an Artifact in another activity.

Resource is any preexisting form of capability enabling an activity’s execution. The
activity models only links to a resource. The actual resource is defined in the separate
resource model (see below).

Location specifies the place for carrying out the work.

Requirement informs about required and optional skills and roles the agents need to
provide in order to successfully carry out the activity.

tActivity
ActivityURI : anyURI
Description : string [0..1]
Tags : string [0..*]
Start : dateTime [0..1]
End : dateTime [0..1]
Duration : duration [0..1]
Priority : integer [0..1]
ParentActivity : anyURI [0..1]
ChildActivities : anyURI [0..*]
RelatedActivities : anyURI [0..*]
LocationRefURI : anyURI [0..*]
ApplyResourceRefURIs : anyURI [0..*]
«attribute» Name : string [0..1]
«attribute» Progress : integer [0..1]

tArtifact
WrapsResourceURI : anyURI [0..1]
Name : string [0..1]
Description : string [0..1]
ResourceType : anyURI [0..*]

EditArtifacts
0..*

tMemberInvolvement
FoafAgentURI : anyURI
Role : tInvolvementRole [1..*]

MemberInvolvements
0..*

tRequirement
RoleRefURI : anyURI [0..1]
SkillRefURI : anyURI [0..1]
«attribute» Required : boolean [0..1] = false

Requirements
0..*

Figure 4.2: Activity model UML class diagram

4.1.3 Resource Model

In service ensembles, a resources is anything services and human apply or consume for
completing an activity. Some resources types create artifacts (i.e., resources themselves),

Chapter 4: Ensemble Context Provisioning 27

others manage artifacts, some manipulate artifacts. Resources represent tangible objects
such as personal devices, other are purely virtual and serve as container for other resources.

We broadly distinguish between spatial resources that represent a real world, physically
locatable entity, and virtual resources. Services connect these two types. Specifically we
model:

Resource must be identified by a URI. Human readable name, description, and tags
support additional, optional details. A reference to a WS Resource Catalog entry
provides details on the different means to access the resource. Sub classes include
Spatial Resource and Virtual resource. The location of a spatial resource exhibits
a textual, semantic description in addition to linking to the actual location details.
Virtual resources are provided by services.

Service is a virtual resource. It exhibits URLs to service endpoint(s) and WSDL docu-
ment(s). A service is deployed on one or multiple hosts. We distinguish between a
service in the Entity model as an active entity in the ensemble and a service in the
resource model as a passive element. Services in the entity model exhibit a reference
to their resource counterpart.

Document Resource is any form of message as experienced by a human. Multiple MIME
types describe the distinct ways of interpreting the underlying virtual resource.

Host is a subclass of spatial resource and has at least one IP address. It can maintain
multiple domains. A Mobile Device is a subclass of host and represents personal
devices such as smartphones.

CommunicationChannel describes supported communication means to contact an agent.
In distributed settings, humans need to interact via communication channels. Ser-
vices can directly interact. A communication channel, however, does not represent
the actual online account, neither a person’s availability. The CommProtocol specifies
further details on how to connect to the communication channel.

4.1.4 Action Model

Understanding the true, fine-grained interaction flows in service ensembles requires detailed
data. The managed information—defined in the models above—cannot accurately reflect a
service ensemble. With time, the documented configuration will no longer match the actual
situation. Additionally, activities are to coarse-grained to capture dynamic properties such
as workload on humans and services. Thus, we need to describe the actual work being
carried out. Along these lines, we introduce Actions (Figure 4.4) to describe the atomic
events caused by interacting ensemble entities. Coordination types and communication
types are inspired by the activity primitives introduced in (Dustdar 2004).

Chapter 4: Ensemble Context Provisioning 28

tResource
ResourceURI : anyURI
Description : string [0..1]
Tags : string [0..*]
«attribute» Name : string [0..1]
«attribute» WSRCURI : anyURI [0..1]

tSpatialResource tVirtualResource

tHost
IPaddress : string [1..*]
HostedDomain : string [0..*]
OpenPort : string [0..*]

tLocation
LocationURI : anyURI
Description : string [0..1]
Tags : string [0..*]
«attribute» Name : string

CurrentLocation
0..1

tMobileDevice
DeviceCategory : tDeviceCategory [0..*]

tCommunicationChannel
OnlineStatus : tOnlineStatus [0..1]

CommunicationChannel
0..*

tCommProtocol
Name : string [0..1]
«attribute» ProtocolURI : anyURI

Protocol
0..1

tService
ServiceEndpoint : string [0..*]
WSDLDocumentURL : string [0..*]

ProvidedBy
0..1

tDocumentResource
MimeType : string [0..*]

DeployedOn
0..*

Figure 4.3: Resource model UML class diagram

Action refers to exactly one Activity and lists the involved Agents, Artifacts, and Re-
sources participating in that Action. Specifically, we distinguish between the imme-
diate source (i.e., InvokedByServiceClient) and the actual originator (i.e., Execute-
dOnBehalfOfFoafAgent). Applying the timestamps for temporal ordering, we can
establish invocation traces across humans and services. Three sub classes specify
further details on coordination, communication, and execution.

CoordinationAction describes activity changes, delegations, and work notifications.

Chapter 4: Ensemble Context Provisioning 29

Changes include new, updated, and deleted activities. Delegation types consist of
Regular (single responsibility), Joint (combined responsibility), and Split (multiple
activity copies, each exhibiting a single responsibility). Delegation replies inform
about accepted or denied delegation requests. Work notifications announce an entity
starting or stopping work on an activity.

CommunicationAction identifies communicating entities, the applied service, and op-
tionally the type (RequestTodo, RequestConfirmation, RequestDiscussion, Request-
Comment, RequestInformation, or Unknown). The involved communication service
is responsible for capturing interaction duration and intensity.

ExecutionAction specifies the exact invoked service operation.

tAction
InvokedByServiceClient : anyURI [0..*]
ExecutedOnBehalfOfFoafAgent : anyURI [0..*]
AppliedResource : anyURI [0..*]
EditedArtifact : anyURI [0..*]
«attribute» ActionURI : anyURI
«attribute» DescribesActivityURI : anyURI
«attribute» Timestamp : dateTime

tCoordinationAction
ToFoafAgent : anyURI [0..*]

tCommunicationAction
NotificationType : tNotificationType [0..1]
ToFoafAgent : anyURI [1..*]

tExecutionAction
ServiceOperation : anyURI [0..*]
Description : string [0..1]

«choice»

tCoordinationType
ActivityChangeType : tActivityChangeType
DelegateType : tDelegateType
NotifyType : tNotifyType
DelegateResponseType : tDelegateResponseType

CoordinationType
1..1

Figure 4.4: Action model UML class diagram

We introduce these three action types to distinguish between different concerns of active
and passive entities. Coordination action focus on who is (supposed to) carry out the work,
changes of responsibility, and tracking of work execution. Communication actions enable
synchronization of human entities. This is either unidirectional (a service or human noti-
fying another human about a certain fact) or bidirectional (information exchange between
humans). Eventually communication actions result in coordination actions or execution
actions. Execution actions capture the particular services used for advancing the activity
progress. Here, we focus on what happens; which service/resource enables creation and
modification of which artifact. Thus, separation into action types enables distinguishing
between different activity types. Domain specific action intensities are another reason to
distinguish between the three types. In one application we might experience frequent co-
ordination actions, in another application we might encounter extensive execution actions.
Hence, we are able to factor in such differences during action analysis.

Chapter 4: Ensemble Context Provisioning 30

4.2 Context Capturing

The MAPE-K cycle for autonomic computing highlights the fundamental importance of
monitoring. Without continuous feedback, we cannot adapt to changing environmental
conditions. When we cannot directly measure these dynamic constraints, monitoring
amounts to observing the actions of active entities.

In ensembles, service interaction mining becomes the main source of context informa-
tion. The inContext platform (PCSA) (Reiff-Marganiec, Truong, Casella, Dorn, Dustdar,
and Moretzki 2008) provides services for managing resources (especially services and files),
tracking activities, providing human communication, establishing organizational struc-
tures, and storing context. Humans and services need to manage the semi-static infor-
mation on activities, organization, and resources themselves. Actions, however, require
automatic sensing.

The PSCA exhibits a logging interface that provides detailed information on all ser-
vice interactions. Specialized sensors further inspect request and response SOAP messages
to generate the appropriate action subclass. Activity services yield coordination actions,
communication services yield communication actions, and all other services result in exe-
cution actions. Listing 4.1 displays an example coordination action. Correlation of SOAP
messages, entities, and activities relies on additional SOAP header information. We pro-
vide more technical details on logging and the context tunneling SOAP header extension
in Chapter 7.

Other forms of context sensing provide details on location, face-to-face communication,
and non-service based actions. They remain, however, outside the scope of this thesis.
Focus of such research lies in the domains of context-aware computing (Schilit, Adams, and
Want 1994,Baldauf, Dustdar, and Rosenberg 2007), pervasive computing (Satyanarayanan
2001,Henricksen, Indulska, and Rakotonirainy 2001), and ubiquitous computing (Endres,
Butz, and MacWilliams 2005).

4.3 Context Ranking

Monitoring of service ensembles generates a considerable amount of raw context informa-
tion. Determining the set of relevant information for the situation at hand becomes a
fundamental problem in service adaptation. Consider an entity having to continuously
choose the most suitable storage service. It needs to known which service properties to
consider, and how to evaluate their utility.

In general, ranking of context candidates (e.g., locations, activities, services, resources)
consists of four steps. First, we need to identify suitable metrics for measuring the distance
between two candidates. Second, we have to determine the impact each of those distance
functions should have on the overall ranking result. Third, we need to determine for
each criteria the appropriate utility evaluation function for comparing multiple candidates.

Chapter 4: Ensemble Context Provisioning 31

1 <?xml version ="1.0 " encoding ="UTF -8"?>

2 <act:CoordinationAction

3 xmlns:act ="http: //www.in -context .eu/ns/action "

4 xmlns:xsi ="http: //www.w3.org /2001/ XMLSchema -instance "

5 ActionURI ="http: //www.in -context .eu/action / CoordAction32547"

6 DescribesActivityURI ="http: // www.in -context .eu/activity /ReportReview#2"

7 Timestamp ="2008 -11 -28 T12:00:00 ">

8 <act:InvokedByServiceClient >

9 http: //www.in-context .eu/resource / mobileclient_3

10 </ act:InvokedByServiceClient >

11 <act:ExecutedOnBehalfOfFoafAgent >

12 http: //www.in-context .eu/user/Bob

13 </ act:ExecutedOnBehalfOfFoafAgent >

14 <act:AppliedResource >

15 http: //www.in-context .eu/service /CoreActivityService

16 </ act:AppliedResource >

17 <act:EditedArtifact >

18 http: //www.in-context .eu/files/ InternalReport_v2.pdf

19 </ act:EditedArtifact >

20 <act:CoordinationType >

21 <act:DelegateType >DelegateJoint</act:DelegateType >

22 </ act:CoordinationType >

23 <act:ToFoafAgent >

24 http: //www.in-context .eu/user/Alice

25 </ act:ToFoafAgent>

26 <act:ToFoafAgent >

27 http: //www.in-context .eu/user/Carol

28 </ act:ToFoafAgent>

29 </act:CoordinationAction >

Listing 4.1: Example CoordinationAction: Bob delegating a joint document review to Alice
and Carol.

Chapter 4: Ensemble Context Provisioning 32

Finally, we compute utility values for each criteria and aggregate all individual scores
according to the criteria weights.

4.3.1 Distance Metrics

There are three basic alternatives for measuring the distance between two elements of the
same type. We briefly outline these categories before discussing them in detail.

Natural distance measurement applies explicitly given information. We utilize Euclidean,
chess board, or Manhattan distance for comparing locations. Activity and organiza-
tion hierarchies rely on edge weights to derive distance to parent, child, and sibling
elements. Temporal distance calculates the absolute difference of two timestamps.

Context based metrics consider the situation of two elements. For two activities we
compare the overlap of involved persons, invoked services, and utilized resources.
For two services we analyze the set overlap of activities, persons, artifacts, and re-
sources. Context-based distance measurement works on managed data (i.e., explicitly
configured activities and organizational structure) or captured action data.

Interaction based distance evaluation focuses on action volume and entity involvement.
We apply only action data for determining the distance. Specifically, we consider the
action distribution of individual elements. Services that are utilized in every activity,
for example, contribute no information for deriving the similarity of two activities.

Interaction based metrics yield the most expressive distance measurements. A newly estab-
lish ensemble, however, lacks the required actions. In the early stages, individual actions
extensively distort the interaction based computation; here context based metrics suit bet-
ter. Subsequently, we apply natural distance functions at the beginning, later switch to
context based functions, and finally utilize interaction based metrics.

4.3.1.1 Natural Distance Functions

Distance measurements for location and time are well understood. We will not discuss
these here. For Activity, Organization, and Role, we introduce a graph based distance
measurement. The Activity model and Entity model provide primitives to establish a tree
structure. For Roles, we define a domain-independent 3-level tree. The leaves represent
individual entities (services and persons). The second level aggregates entities exhibiting
the same roles, with the top most level (i.e., the root node) combining the various roles.
In this tree, comparable elements reside only in the leave nodes.

Let us define the distance between two elements in a hierarchy based on the relation
eij :

dist(i, j) =

dc if eij ∈ child(i, j)

dp if eij ∈ parent(i, j)

ds if eij ∈ sibling(i, j)

(4.1)

Chapter 4: Ensemble Context Provisioning 33

Hierarchies lack explicit links between siblings. We, therefore, apply a graph transfor-
mation and labeling algorithm. We interpret a hierarchy’s tree structure as an undirected,
unweighted graph H which we subsequently map onto a weighted, directed graph G(V, E).
We iterate through all child elements starting a the root vertex of the hierarchy. For each
vertex, we add an edge from the vertex to its parent with distance dp, and an inverse edge
carrying distance dc. We avoid creating links between all nodes of a set of siblings by in-
troducing an anonymous node anon. Edges from every sibling to this node carry distance
ds. The inverse edges from anon to each sibling exhibit distance 0. Figure 4.5 visualizes an
example transformation and labeling for an example activity graph with distance dp = 2,
dc = 1, and ds = 2.

A1

A13

A2 A3

A5A6A7

A8 A9A10

A11 A12

A1

A13

A2 A3

A5A6A7

A8 A9A10

A11 A12

2

2

2

2

2

2 2
2

2

2

2

1

1

1

1

1

1 1

11

1 1

2

2

2

2

2

2

2

2

Figure 4.5: Hierarchy transformation and labeling process for distance dp = 2, dc = 1, and
ds = 2. Edges beginning at anonymous nodes with edge label 0 are omitted.

The distance between two elements which are not directly connected, is the aggregated
distance when traversing the graph on the shortest path between the two elements. We
compute the shortest path using Dijkstra’s algorithm (see for example Cormen, Leiserson,
Rivest, and Stein (2001)).

4.3.1.2 Context-based Distance Functions

We define two types of context-based distance functions distinguished by the underlying
data structure. The first type applies to activity structures yet lacking a corresponding
set of actions. We focus on involved persons and services, applicable resources, and ma-
nipulated artifacts as defined in the activity model. Two activities are considered identical
when they exhibit the same set of referenced persons, services, resources, and artifacts.

Chapter 4: Ensemble Context Provisioning 34

Algorithm 1 Transformation and Labeling algorithm Λ(H, dc, dp, ds).

function BuildGraph(H, dc, dp, ds)
/* Initialize set of vertices and edges. */
V ← ∅
E ← ∅
r ← rootV ertex(T)
V ← r
for all v ∈ child(r) do

call AddNode(v,H, V, E, dc, dp, ds
end for

call ConnectSiblings(child(r), V, E, ds
G ← createDirectedGraph(V,E)
return G

end function

function AddNode(n,H, V, E, dc, dp, ds)
V ← n
/* Add child to parent link. */
E ← edge(n, parent(H, n), dp)
/* Add parent to child link. */
E ← edge(parent(H, n), n, dc)
for all v ∈ child(n) do

call AddNode(v,H, V, E, dc, dp, ds
end for

call ConnectSiblings(child(n), V, E, ds
end function

function ConnectSiblings(N, V,E, ds)
/* Only if there are siblings. */
if |N | > 1 then

/* Create anonymous sibling connector vertex. */
anon← vertex()
V ← anon
for all n ∈ N do

E ← edge(n, anon, dc)
E ← edge(anon, n, 0)

end for

end if

end function

Chapter 4: Ensemble Context Provisioning 35

Action 4-tuple set T Context 2-tuple set
p1

< a1, {p1, p2}, {r3}, {} > < {a1, ·}, {a1, r3}, {·, r3} >
< a1, {p1}, {r2, r3}, {o4} > < {a1, ·}, {a1, r2}, {a1, r3}, {a1, o4}, {·, r2}, {·, r3}, {·, o4},

{r2, o4}, {r3, o4} >
< a2, {p1}, {}, {o4} > < {a2, ·}, {a2, o4}, {·, o4} >

Joined < {a1, ·}, {a1, r3}, {·, r3}, {a1, r2}, {a1, o4}, {·, r2}, {·, o4},
{r2, o4}, {r3, o4}, {a2, ·}, {a2, o4} >

p2

< a1, {p1, p2}, {r3}, {} > < {a1, ·}, {a1, r3}, {·, r3} >
< a3, {p2, p3}, {r2}, {} > < {a3, ·}, {a3, p3}, {a3, r2}, {·, r2}, {p3, r2} >

Joined < {a1, ·}, {a1, r3}, {·, r3}, {a3, ·}, {a3, p3}, {a3, r2}, {·, r2},
{p3, r2} >
|p1 ∪ p2| = 15; |p1 ∩ p2| = 4

Jaccard Distance 0.73̇

Table 4.1: Distance calculation for two action sets of p1 and p2 applying Jaccard’s distance
function.

We limit the set overlap to activity references when comparing resources, service, persons,
and artifacts as they lack direct relations in the activity model. The Jaccard distance is
a commonly used set overlap function, defined as the difference between set union and set
intersection, divided by the set union:

Jδ =
|A ∪B| − |A ∩B|

|A ∪B|
(4.2)

where sets A and B contain the references to persons, services, references, and artifacts
when comparing two activities aA and aB. Jδ becomes 0 when the two sets contain the
same elements and yields 1 when the two sets are completely disjoint.

The second type applies action data. We interpret actions as a collection of 4-tuples
Taction < A,P,R,O > comprising activity, persons (including services), resources, and
artifacts. For each element v, there exist a corresponding set Taction(v) that contains
all actions involving v. Subsequently, we map each action 4-tuple into a set of 2-tuples
through permutation of each element in the categories A,P,R, and O with each other
element of different category. In both sets, we replace the compared elements i and j
with < · >. Subsequent joining of the 2-tuple sets ignores multiple instances of identical
2-tuples. The Jaccard formula on the aggregated 2-tuple sets provides the corresponding
distance measurement. Table 4.1 gives an example of this process. In the example, the
first tuples Taction of the persons pi, pj are identical as this was a joint action.

Chapter 4: Ensemble Context Provisioning 36

4.3.1.3 Interaction-based Distance Functions

Natural and context-based distance functions ignore the focus of individual elements. There
is no difference between the same action tuple occurring once or 100 times. Resources
applied in every activity have the same impact as services applied in specific activities
only. The goal of inter-action based distance functions is weighting an elements local
impact according to its global significance.

To this end, we introduce a 4-partite, labeled action graph AG△(V, E). A 4-partite
graph (a specialization of a k-partite graph) comprises four vertex categories (K). Each
vertex v maps to exactly one category k ∈ K. Edges are undirected and exist only between
nodes of different categories. An edge ek,l links vertices of category k and l, with k 6= l.

The 4-partite action graph represents the four categories found in an action tuple
Taction: activity, person, resource, and artifact. Edge labels provide the number of actions
containing the particular 2-tuple. The graph in Figure 4.6 is equivalent to the tuples in
Table 4.1. In contrast to the context-aware distance metric on actions, edges deriving from
joint actions (i.e., involving multiple elements of the same category) are counted once only.
We establish four 2-tuples from the action < a1, {p1, p2}, {}, {} > when comparing p1 and
p2. The 4-partite graph for the same action yields only two edges, each labeled 1. Repeated
actions increase the edge label. As p1 engages in two actions within scope of activity a1,
edge < a1, p2 > exhibits label 2.

p1

p2

p3

a1

a2

a3

r2

r3

o4

1

1

1

1

1

1

1

1

2

1

1

1

2

1

1

1

2

a

r

p

o

Person

Activity

Resource

Artifact1

Figure 4.6: 4-partite labeled action graph for the action tuples T in Table 4.1.

We measure the distance between two elements of the same category by analyzing
shared elements within neighboring categories. The distance, for example, between two
persons is based on actions involving joint activities, joint resources, and joint artifacts. In
general, the tighter two elements of category l are linked to identical elements of category
k (with k 6= l), the smaller the distance. We define distance on a minimal subgraph

Chapter 4: Ensemble Context Provisioning 37

(Figure 4.7) comprising the two elements for comparison (v1l, v2l), the connecting third
element (v3k), and two edges (e1k,l(v1, v3), e2k,l(v2, v3)) with corresponding edge labels
s1, s2.

s1, w1
v1L

v2L

v3K
s2, w2

Edge: e1LK(v1, v3)

Edge label: s1

Edge weight:

w2 = s2/(s1+s2)

Figure 4.7: Minimal subgraph for calculating distance between elements v1l and v2l via
element v3k.

We consider the amount of shared elements, the magnitude of involvement, and involve-
ment distribution. Two elements each linked with label 1 to the same three neighbors, yield
higher distance than two elements each linked with label 10 to only one shared neighbor.
Also, two elements linked with equally distributed labels (e.g., s1 = s2 = 6) are more sim-
ilar than elements with unequally distributed labels (e.g., s1 = 2, s2 = 10). For comparing
elements v1, v2, we compute the edge weight for each link to neighbor element v3. Edge
weights w1, w2 equal the corresponding, normalized edge labels such that w1 = s1/(s1 +s2)
and w2 = s2/(s1 + s2). The distinct difference between edge labels and edge weights is the
application scope. Edge weights exist only in the corresponding minimal subgraph. They
describe the action distribution from element v3 towards elements v1, v2. For any other
minimal subgraph containing one of the edges e1, e2, we need to recalculate the weights
w1 and w2.

We apply Shannon’s entropy definition (Shannon 1948) H(w) = −
∑

(w ∗ log(w)) on
edge weights w with

∑

w = 1 to describe the local focus of an element. We normalize the
entropy H(w) to the interval [0, 1] by dividing by log(2) 2. The focus of an element will be
minimal (i.e., maximal entropy H(w)/log(2) = 1) if actions are equally distributed. The
focus will be maximal (i.e., H(c) = 0) when one of the edge labels is 0. The local distance
between two elements v1, v2 via neighbor v3 is defined as:

distv3,k(v1, v2) =
s1 + s2

2
∗
H(w)

log(2)
(4.3)

Local edge weights and edge weight distribution are insufficient to sufficiently establish
the distance between two elements. We also consider the global significance of a neighbor-

2We divide by log(2) as there are two values aggregated by the entropy; i.e., the edge weights w1 and
w2.

Chapter 4: Ensemble Context Provisioning 38

sig a1 a2 a3 p1 p2 p3 r2 r3 o4

a n/a n/a n/a 0,42 0,37 0 0,37 0 0,37
p 0,42 0 0,37 n/a n/a n/a 0 0,42 0
r 0,08 0 0 0,08 0 0 n/a n/a 0
o - - - - - - - - n/a

Table 4.2: Global context significance for elements in Figure 4.6.

ing element in contributing to the distance measurement. For example, resource r2 exhibits
edges with identical labels to all persons. It should not be considered for comparing any
two persons as it does not add any information about the distance between elements in the
person category. To this end, the global context significance metric applies Shannon’s en-
tropy to describe the information content of an element’s edge labels for a specific category.
The significance of element vk for edges ek,l is defined as:

sigk(vl) = 1−
−
∑

i(wv,i,k ∗ log(wv,i,k))

log(|k|)
∀ k 6= l, |k| > 1 (4.4)

where wv,i,k is the normalized weight of the ith outgoing edge towards category k of ele-
ment v such that

∑

i wv,i,k = 1; |k| denotes the number of elements in category k. The
normalization yields a significance value in the interval [0, 1]. Significance is 0 when an ele-
ment exhibits no focus (i.e., high entropy) and equally links to all elements of a particular
category. Each element provides |K| − 1 = 3 global significance values; one for each neigh-
boring category. Table 4.2 lists the significance values for elements in Figure 4.6. There are
no results available for the artifact category as there occurs only one artifact. Resource r2
is suitable for comparing only activities, while resource r3 applies only to persons. Person
p3 and activity a2 yield no information for comparison at all.

The overall distance metric is the inverse sum of all weighted local distance measure-
ments for all neighboring categories:

dist(v1l, v2l) =

∑

K

∑

N(k,v1,v2)

sigk(n) ∗ distn,k(v1, v2)

−1

∀ k 6= l (4.5)

where n is a vertex from the neighborhood set N containing joint neighbors of v1, v2
for category k. The distance between two elements becomes infinity when they share no
neighbor or only neighbors with significance 0.

To compare non-connected elements (e.g., a2 and a3), we calculate multi-hop distance on
the intra-category distance measurements. Direct distance measurement within a category
yields an undirected, weighted, mono-partite graph. The distance in such a graph for
two elements (v1l, v2l) h hops apart aggregates the distance measures on the shortest
path including a penalty distance for every additional required hop. Suppose element A
collaborates closely with element B, and B collaborates closely with C, but A and C have

Chapter 4: Ensemble Context Provisioning 39

few actions in common. To establish the distance between A and C, we cannot just add the
distance AB and BC. Instead we increase the distance BC as defined by a penalty function.
The penalty function mimics the transitivity principle in trust propagation (Josang, Ismail,
and Boyd 2007,Artz and Gil 2007). For our purpose, a simple exponential penalty function
is sufficient. Consequently the penalty increases for growing hops. The penalized distance
for two consecutive nodes va and vb on the shortest path between source node (v1) and
target node (v2) is defined as:

distp(h, va, vb) = dist(va, vb) ∗ 22h−1 ∀ h > 0 (4.6)

where h is the hop count to va from the source node. Thus, the distance for the second
hop doubles, and quadruples for the third hop. The distance remains infinity for two
elements where each resides in one segment of a partitioned graph (i.e., the there exists no
connecting path of any hop count).

For distance between activity a2 and a3, we aggregate distance of a2 to a1 (dist = 1.0)
and the penalized distance of a1 to a3 (distp(1) = 1.355). The final distance yields 3.71.
For the remaining elements in Figure 4.6, we derive following distance measurements:
p1, p2 = 0.792; p2, p3 = 2.71; p1, p3 = 6.222 and r2, r3 = 4.08.

Metrics merely describe how to measure the distance between two values. Any pref-
erences of smaller over larger values (or vice versa) are expressed in the utility functions
introduced further below.

4.3.2 Relevance Functions

Relevance function determine the impact individual metrics should exercise upon final
aggregation. Each metric i comes with a corresponding weight ωri. We assign equal
importance to every metric with ωri = 1/max(i). As configuration of weights is very case
specific, we cannot give generally valid recommendations for the various metrics. For the
remainder of this chapter, we consider all metrics of equal importance.

4.3.3 Utility Functions

Utility functions express the decline of observed fitness as candidate values deviate from
the optimum value. In many cases, a continuous function across the full value space is in-
sufficient. The utility function templates in Figure 4.8 display exemplary linear restrictions
on value ranges. The horizontal axis shows the relevance metric values and the vertical
axis returns the corresponding utility values. Limits a to d list the required configuration
parameters. Services need to provide the configuration parameters, which can depend on
context themselves. We define following function templates:

HardLowerDecliningOver 4.8 (a), specifies the optimum value as a hard lower limit,
with higher values steadily decreasing.

Chapter 4: Ensemble Context Provisioning 40

HardUpperDecliningLower 4.8 (b), specifies benefit steadily rising until reaching an
optimum hard upper limit.

SoftLowerStableLimitedOver 4.8 (c) extends HardUpperDecliningLower with a range
of equally optimal metric values.

SoftUpperStableLimitedLower 4.8(d) extends HardLowerDecliningUpper with a range
of equally optimal metric values.

LimitedSoftLowerLimitedSoftUpper 4.8(e) defines an optimal value with (not nec-
essary equally) decreasing utility on both sides.

LimitedSoftLowerPlateauLimitedSoftUpper 4.8(f) extends LimitedSoftLowerLimit-
edSoftUpper with a range of equally optimal metric values. This function can emulate
all previous functions.

Setting a negative impact weight ωri reverses the respective utility function. For ex-
ample, HardLowerDecliningOver will treat values outside the limits a and b as rewarding,
with utility declining from limit b towards limit a.

4.3.4 Ranking Algorithm

Let us define the set of relevance metric functions R = {r1(ce), r2(ce), . . . , rn(ce)} that
are associated with each candidate element and ωr as the weight assigned to metric r
such that

∑

i=1,...,n |ωr| = 1. Utility functions U = {u1(r1(ce)), u2(r2(ce)), . . . , un(rn(ce))}
express the fitness of candidate element ce given the respective relevance metric r. The
score for a particular utility function, relevance metric, and candidate element is defined
as follows:

score(u, r, ce) =
max(u)− u(r(ce))

max(u)− min(u)
(4.7)

where max(u) returns the utility function maximum over all candidate elements; min(u)
returns the utility function minimum over all candidate elements; and u(r(ce)) provides the
utility function result for the candidate element ce by applying the corresponding relevance
metric r. We avoid negative metric weights ω because negative weights are either implicitly
considered by selecting the appropriate utility function or explicitly considered by inverting
the utility function.

The scoring function score(ce, u, r) scales all scores for a particular metric to the interval
[0, 1] such that the best candidate yields score 1 and the worst candidate yields score 0.

In the second step, we rank individual context elements according to the overall selected
set of metrics and weights. Our approach applies a simplified LSP method (see Dujmovic

Chapter 4: Ensemble Context Provisioning 41

1

0

Limit a Limit b

1

0

Limit a Limit b

1

0

Limit a Limit b Limit c

1

0

Limit a Limit b Limit c

1

0

Limit a Limit b Limit c

a) b)

c) d)

e) f)

Limit a Limit b Limit dLimit c

Figure 4.8: Context ranking utility functions

(2007) for a detailed overview). The global score of a candidate element is given as:

E(ce) =
n
∑

i=1

ωui
∗ score(ce, ui, ri) ∗ 100 (4.8)

The separate application of utility functions constitutes the distinct advantage over the
simplified LSP method. The LSP applies scoring directly on the candidate elements, thus
tightly coupling metric computation and utility evaluation.

4.3.5 Example Application of Context Ranking

In the example in Figure 4.9, we select the natural, hierarchy-based activity distance w(d)
and temporal distance w(t) for context elements. We apply the HardLowerDecliningOver

Chapter 4: Ensemble Context Provisioning 42

Algorithm 2 Ranking Algorithm RA(CE,R, {ω}).

function ComputeGlobalRank(CE,R, {ω})
Require:

∑

ω = 1
/* Set or ranked context elements */
E ← ∅
/* Aggregate individual weights */
for all ce ∈ CE do

rankc ← 0
for all r ∈ R do

rankc ← rankc + Util(ce, r) ∗ ωr
end for

E[ce]← rankc
end for

return sort(E)
end function

utility function for both metrics. Context elements yield maximum utility when linked
to the activity at hand, applicable shortly in the past or future. The parameters for
the utility functions are 0 and maximum tree distance, respectively, maximum temporal
distance. Thus, for both metrics we prefer lower values over higher values, i.e., closer
activities and shorter time difference indicate more relevant context elements. Adjusting
the weights determines the importance of one metric over the others. In this scenario, we
apply the same ranking weights w(d) = w(t) = 0.5 for every activity and context element
respectively. For the activity distance utility function, we set the edge weights as: parent
dp = 2, child dc = 1, and siblings ds = 2.

We have developed a Context Ranking Web service, which assists in searching for rele-
vant documents. In dynamic ensembles, manual a-priori configuration of relevant services
for every activity is infeasible. Instead, the relevance ranking algorithm determines at
run-time the most promising services — in the given example Storage Web Services.

We trigger the ranking service in scope of activity A8 on the 28th January. The activity
graph in Figure 4.9 displays context elements of type Storage Web Service (SWS). Activity
distance is given in the upper right corner. Past dates indicate last access of SWS, whereas
future dates indicate planned documents available as templates in a SWS. The hierarchy
structure and timestamp values are manually generated for this scenario to highlight the
effect of the context ranking process.

The context elements used in our ranking example are Resources of type SWS. Candi-
date SWS are those who are referenced within Action elements. In addition, we include
SWS that are scheduled for managing already existing document templates in future. As
both actions and activities contain a timestamp, the ranking algorithm (Alg. 2) is able to
rank these context elements. Table 4.3 presents the resulting activity-distance rank R(d),
temporal-distance rank R(t), and the aggregated rank R(M,AG).

Chapter 4: Ensemble Context Provisioning 43

A� ����� ���
01
�����

A6

��
A9

��
A8now
28/01/

2008

+0

A	
 �
1��� ���
01
�����

A

 �

6

A7

�� A
� ��

A1

��

A10

�
5

a:
���

06
�
01
� ����

b:
��� ����������

��� ���������� ��� ��������
��� ���

11
����

7

��� ����������
��� ��������

1.2.

4.

A11

�
1

A	� �

A5

�
9

���
05
�����������

11
�������

7

��� ��������
7

3. 5.

Figure 4.9: Activity Graph excerpt.

Context elements receiving high ranks in both time-distance metric and activity-
distance metric will also rank high the overall results (e.g., SWS in A12). A good po-
sition in a single ranking, however, does not guarantee final relevance, as this depends on
the distribution of the other context elements. For example, the SWS in A11 is ranked
9th place in the time-distance metric, respectively ex aequo 1st in the activity ranking,
ending up 2nd place in the overall ranking. In contrast, the SWS in A03 ranked 1st in
the time-distance metric, but ranked 10th in the activity-distance metric, winds up in the
middle on 7th place. The reason lies in the distribution of metric values. For a number
of values (i.e., timestamps) in close proximity (compared to the overall range) their intra
metric ranking scores become less significant and the other metrics (i.e., activity distance)
become dominant. When two context elements have almost equidistant timestamps from
the current activity (A8) we cannot decide which one is more relevant. Thus, the respec-
tive activity-distance measurements primarily influence the final rank. In the example,
the activity metric dominates over the timestamp metric for following context elements:
A10-b, A05, A07, A01 — all within a 0.04 R(t) range.

Chapter 4: Ensemble Context Provisioning 44

Act. d Date R(d) R(t) R(M,AG)
A12 1 22.01.08 (1) 1.00 (2) 0.96 (1) 98.24
A11 1 11.12.07 (1) 1.00 (9) 0.47 (2) 73.53
A07 4 27.02.08 (5) 0.63 (6) 0.68 (3) 65.37
A10-a 5 06.01.08 (7) 0.50 (3) 0.78 (4) 63.82
A06 2 23.03.08 (3) 0.88 (10) 0.39 (5) 63.16
A10-b 5 24.02.08 (7) 0.50 (4) 0.72 (6) 60.88
A03 8 24.01.08 (10) 0.13 (1) 0.99 (7) 55.66
A02 6 03.03.08 (9) 0.38 (8) 0.62 (8) 49.93
A13 3 05.04.08 (4) 0.75 (12) 0.24 (9) 49.26
A04 4 26.11.07 (5) 0.63 (11) 0.29 (10) 45.96
A01 8 27.02.08 (10) 0.13 (6) 0.68 (11) 40.37
A05 9 30.12.07 (12) 0.00 (5) 0.69 (12) 34.71

Table 4.3: Intermediary and final ranking results: ranking values derive from the structure
and elements of the activity in Figure 4.9.

4.4 Evaluation of Context-based and Interaction-

based Distance metrics

Context-based and interaction-based distance metrics consider different aspects of an action
network. Thus, we first discuss the fundamental difference based on a simple example
graph. We then analyze a simulated action network to describe the conditions for which
each of the two metrics yield most informative results. Ultimately, we apply the distance
metrics to a real world dataset and describe our findings.

4.4.1 Fundamental Differences

When comparing two entities, the context-based metric considers shared and individual
action links. Independent of the number of shared links, the distance between two entities
increases as the number of individual links grows. In contrast, the interaction-based metric
purely analyzes the distribution of actions across the set of shared links.

We limit our analysis to a bipartite graph comprising only persons and activities for
sake of clarity. The distance metric principles, however, apply to any k-partite graph.
Suppose the action network in Figure 4.10 (a). The example graph consists of three
persons involved in six activities. All the links carry equal weight 1 representing an initial
ensemble configuration. For this network configuration, Figure 4.10 provide the context-
based distance measurements for activities (c) and persons (f). Subfigures (d) and (g)
provide the respective interaction-based distance values.

The context-based distance metric yields measurements in the range [0, 1] while the
interaction-based metric yields values in the range [0,∞], Thus, we do not compare absolute

Chapter 4: Ensemble Context Provisioning 45

distance measurements but focus on the differences within each distance graph (c)-(h).

Observing the context-based activity distance values, we detect the shortest distance
d = 0 between nodes a1 <> a2, a5 <> a6, and a7 <> a8. These activity pairs feature a
complete overlap of adjacent person nodes. The next closest links occur between activities
that have one adjacent person in common, with exactly one of the nodes linking to a second
person (e.g., a1 and a5 connect via p1, with a1 also linking to p2.) The distance grows
when both nodes exhibit additional non-shared links (e.g., d(a1, a3) = 0.66 as besides the
shared person p1, a1 links to p2 and a3 links to p3.)

For the initial graph, the interaction-based distance metric yields less distinguished
differences. Distance is shortest between activity pairs d(a3, a4) = 1.5 and d(a1, a2) = 2.2,
with all other links yielding distance d = 4.4. The underlying reason is the interaction-
based metric’s ignorance of non-shared links when comparing two elements. Differences
nevertheless arise from the significance values of connecting elements. Table 4.4 lists the
global significance and entropy values for the elements of graph (a) and (b). Person p3 yields
higher global significance than p1 and p2 as she links to merely two out of eight activities,
while p1 and p2 exhibit involvement in five activities each. Consequently, activity a3 and
a4 are considered closer than a1 and a2, even the latter ones yield two common person
neighbors.

The person distance measurements in Figure 4.10 (f) and (g) provide similar results,
e.g., the distance between p1 and p2 is smaller than both edges connecting p3. In more
detail, we observe that the interaction-based metric better highlights the difference in
involvement (e.g., the distance between p1 and p2 is half that of p2 and p3). The context-
based metric considers p2’s involvement in other activities, thereby reducing the effect of
p1 and p2 having more common activities than p2 and p3.

P1 P2 P3 A1 A2 A3 A4 A5 A6 A7 A8
(a)
Significance 0.226 0.226 0.667 0.369 0.369 0.369 0.369 1 1 1 1
Abs. Entropy 1.609 1.609 0.693 0.693 0.693 0.693 0.693 0 0 0 0
Rel. Entropy 1 1 1 1 1 1 1 0 0 0 0
(b)
Significance 0.279 0.279 0.667 0.369 0.369 0.369 0.369 1 1 1 1
Abs. Entropy 1.499 1.499 0.693 0.693 0.693 0.693 0.693 0 0 0 0
Rel. Entropy 0.931 0.931 1 1 1 1 1 0 0 0 0

Table 4.4: Significance, absolute entropy, and relative entropy derived for the interaction-
based distance metric for graphs in Figure 4.10 (a) and (b).

We add additional actions to highlight further fundamental differences between context-
based and interaction-based distance metrics. The graph in Figure 4.10 (b) comprises the
same nodes as graph (a) but contains additional actions. Specifically, the three persons
tripled their involvement in activities a1, a2, a3, and a4, i.e., they exhibit a focus on certain
activities.

Chapter 4: Ensemble Context Provisioning 46

For the evolved graph, we need only recalculate interaction-based distance measure-
ments. The context-based values remain the same as long as we keep the number of nodes
and the set of edges the same. We utilize Figure 4.10 graph (c) and (e) to compare activity
distance, and (f) and (h) to compare person distance in the evolved graph. Observing
activity distance, we notice that the interaction-based metric now provides more details.
The distance in-between a1, a2 and a3, a4 decreases as well as the distance across these
four nodes.

With the introduction of additional actions, the global significance values change. Sub-
sequently, nodes that haven’t experienced additional actions yield different distance mea-
surements. Activities a5 and a6, for example, become closer as the global significance of
p1 increases from 0.226 to 0.279 (see Table 4.4 lower part).

With respect to person distance, we observe the same relative differences as found in
the original graph. However, the interaction-based metric allows to distinguish between
two set of nodes (e.g., the set [p1, p2, p3] in graph (a) and (b), but not necessarily limited
to identical nodes) exhibiting the same distribution of actions, but different involvement
magnitude. Thus, we establish that the three persons reside in greater proximity in graph
(b) than in graph (a).

To summarize the fundamental differences:

• As the name of the metrics already imply, context-based distance considers predom-
inately the number of non-shared elements, while interaction-based distance focuses
entirely on the involvement of common elements.

• Distances rapidly change when elements start to exhibit an unequal distribution of
actions. Context-based distance cannot detect elements focusing their actions on a
subset of their overall action involvement.

• Context-based distance assigns the same distance values to two sets of elements with
identical link structure. In such a configuration, interaction-based distance provides
lower distance for the set yielding the greater number of actions.

4.4.2 Simulation-based evaluation

We construct a simulated interaction network to analyze the distance differences for various
action distributions. The underlying graph comprises 5000 persons involved in 5000 activi-
ties. Similar to real-world complex networks (Albert, Jeong, and Barabási 1999,Albert and
Barabasi 2002), the graph exhibits node degrees following a power-law distribution. We
generate the link structure by modifying the original algorithm for monopartite graphs by
Barabasi and Albert (1999) to produce a bipartite graph. Figure 4.11 displays the degree
distribution for activities (a) and persons (b).

We apply the following general procedure to measure the relative differences in distance
values in two k-partite graphs AG1 and AG2 containing the same nodes but exhibiting
different edge weight characteristics.

Chapter 4: Ensemble Context Provisioning 47

p1 p3

p2

a2a1 a3 a4

a5 a6

a7 a8

11

1 1

11

1

1 1 1

11

p1 p3

p2

a2a1 a3 a4

a5 a6

a7 a8

33

3 3

11

3

3 3 3

11

p1

p3

p2

0.75

a2a1

a3

a4

a5

a6

a7

a8

0.833

0.833

p1

p3

p2

1.355

2.71

2.71

0.50.5

0.50.5

0.5

0.5

0.5 0.5

0.5 0.5

0.5

0.5

0

0

0

0.66 0.66

0.66

0.660.66

a2a1

a3

a4

a5

a6

a7

a8

4.44.4

4.44.4

4.4

4.4

4.4 4.4

4.4 4.4

4.4

4.4

2.2

4.4

4.4 4.4

1.5

4.44.4

p1

p3

p2

0.452

0.903

0.903

a2a1

a3

a4

a5

a6

a7

a8

2.22.2

2.22.2

2.2

2.2

2.2 2.2

2.2 2.2

2.2

3.6

0.6

3.6

1.2 1.2

0.5

1.21.2

(a) (b)

(c) (d) (e)

(f) (g) (h)

Figure 4.10: Interaction-based and context-based monopartite distance graph for evolving
bipartite action graph. Line thickness in subfigures (c) to (h) represents node similarity.

Chapter 4: Ensemble Context Provisioning 48

• For the two graphs, we calculate distance measurement for each node type (i.e., Ac-
tivity, Person ...) creating the respective monopartite distance graphs (Dk1,Dk2 ∀ k =
1 → K).

• For each node type k, we select a set of candidate nodes from one of the respective
distance graphs. For each of these candidates, we select a set of random nodes within
the distance graph, the candidate’s buddy set.

• For each candidate, we calculate the distance to each buddy and derive the ranking
in descending order. For every candidate, we generate the distance rank in each of
the two distance graphs (rk1, rk2).

• We apply Pearson’s Coefficient for every pair of rankings to measure the difference
in element positions. We average over all coefficients for each node type to determine
the type specific difference between the two graphs AG1 and AG2.

This procedure also applies to graphs with non overlapping node sets when following
two conditions hold. First, the set of ranked elements needs to be a node subset in both
graphs. Second, the set of ranked elements must be connected in both graphs (i.e., there
must exist a path between any two elements of the candidate set in each of the graphs).

10
0

10
1

10
2

10
3

10
0

10
1

10
2

10
3

10
4

exhibiting node degree x

N
um

be
r

of
 a

ct
iv

iti
es

(a)

10
0

10
1

10
2

10
3

10
0

10
1

10
2

10
3

10
4

exhibiting node degree x

N
um

be
r

of
 P

er
so

ns

(b)

Figure 4.11: Degree distribution for 5000 activities (a) and 5000 persons (b) in a bipartite
graph.

Chapter 4: Ensemble Context Provisioning 49

4.4.2.1 Pearson’s Correlation Coefficient

Pearson’s correlation coefficient ρ describes the similarity of two equal-length data sets
with (−1 ≤ ρ ≤ 1). Identical data sets yield 1 and inverse ordered data sets yield −1. 0
indicates no correlation. We apply the coefficient to describe the ranking difference between
the two distance metrics on the same graph, and also the ranking difference within one
particular distance metric as the underlying graph evolves.

Pearson’s correlation coefficient is defined as:

ρk =
m ∗ (

∑

rk1(i), rk2(i))− (
∑

rk1(i))(
∑

rk2(i))
√

m ∗ (
∑

rk1(i)2)− (
∑

rk1(i))2
√

m ∗ (
∑

rk2(i)2)− (
∑

rk2(i))2
(4.9)

with m the number of elements (here the buddy set’s size), rk1(i) the rank for node i of
type k in graph AG1, and rk2(i) is the rank for node i of type k in graph AG2.

For our simulated interaction network, we observe the ranking difference for interaction-
based distance metric caused by various action distributions. We further compare how these
distributions differ from applying the context-based distance metric. Keeping the number
of elements and underlying link structure the same, we need not compare context-based
distance metrics for the various action distributions. There will be no difference (ρ = 1).
The three applied action distributions are:

Even - every person engages in exactly one action for any of its neighboring activities.

Linear decreasing - every person p engages in x∗degree(p) actions. Each person exhibits
a focus on the neighboring activity with the highest involvement of other persons,
and linear decreasing focus on the remaining neighboring activities. Thus a particular
person engages in [(x ∗ degree(p) ∗ 0.5)− 1, . . . , 1] actions with its neighbors such
that the average action per neighbor becomes x.

Logarithmic decreasing - similar to linear decreasing, every person engages on average
in x actions per neighboring activity. The focus, however, decreases logarithmically.
The activity with the most involvement receives most actions. Any subsequent activ-
ity receives half the actions of the previous activity until the last neighboring activity
receives a single action.

We derive three bipartite graphs AGev, AGlin, and AGlog, that comprise the same
activity and person nodes connected via the same set of edges. The graphs merely differ
in the edge labels according to the three action distributions. In each of these graphs we
derive distance rankings for the same 40 random candidate elements, each exhibiting a
set of 40 random buddy elements. The upper part of Table 4.5 contains the Pearson’s
coefficients for rankings derived from interaction-based distance measurements. In the
lower part, we compare ranking differences of interaction-based, and context-based distance
measurements.

Chapter 4: Ensemble Context Provisioning 50

We notice a significant difference within interaction-based distance ranks for the various
action distributions. For persons we establish slightly more distinct differences than for
activities. There is hardly any correlation between context-based distances and the three
interaction-based distance calculations. This fact highlights the importance of selecting the
appropriate distance metric. Even in the case of a single action per link, when interaction-
based and context-based metric apply exactly the same set of information, there resulting
distance ranks yield hardly any correlation. This supports our suggestion to apply the
context-based distance metric in situations when no detailed action data is available, for
example, at the beginning of an ensemble.

Interaction vs Interaction even-linear linear-logarithmic logarithmic-even
Activity 0.51 (σ 0.20) 0.47 (σ 0.17) 0.35 (σ 0.17)
Person 0.40 (σ 0.24) 0.34 (σ 0.16) 0.26 (σ 0.18)
Context vs Interaction even linear logarithmic
Activity 0.13 (σ 0.19) 0.06 (σ 0.20) 0.00 (σ 0.20)
Person 0.07 (σ 0.19) 0.12 (σ 0.18) 0.27 (σ 0.18)

Table 4.5: Pearson’s coefficient (and standard deviation σ) for node rank differences derived
from interaction-based and context-based distance metrics.

4.4.3 Distance metrics applied to real-world data

We analyze the interaction characteristics of slashdot3 discussion threads. Specifically,
interaction-based and context-based distance metrics provide different ranking results when
comparing person and activity entities. Ultimately, our analysis outlines the distance
changes in dynamically growing ensembles.

First, we give a short introduction to Slashdot and motivate our choice for selecting this
data set as a representation of an ensemble. Subsequently, we present our mechanisms to
map the Slashdot data into our ensemble context model before providing the core analysis
part.

4.4.3.1 Introduction to Slashdot

Slashdot is a user driven news portal focusing on various aspects of information technology.
News fall into multiple categories (i.e., subdomains). For our purposes, we concentrate on
the subdomain linux. Users submit news pieces which editors decide to publish or not. A
published piece of news becomes a story which all users—anonymous or logged in—can
comment on. These comments create a posting hierarchy.

Slashdot’s moderation system is a distinguished feature. Each posting receives a score
between -1 and 5, where 5 denotes an outstanding contribution. Postings by anonymous

3http://slashdot.org/

Chapter 4: Ensemble Context Provisioning 51

users are automatically scored 0. Postings by authenticated users are scored 1 by default.
The editors and a changing set of selected users possess a limited number of moderation
points to raise or lower these initial posting scores. In addition, they can tag a posting
with a predicate such as Interesting, Insightful, Informative, Funny, etc. Users that receive
higher scores in their postings are more likely to become moderators than users with lower
scores. Predicates will not be used here but in the evaluation of Service Infrastructure
Adaptation mechanisms in Chapter 6. We include them here for sake of completeness.

Slashdot exhibits similar characteristics as large-scale service ensembles. Some entities
remain consistently active throughout all subdomains. Other entities join in an ad-hoc
manner, participate for a limited period, and then vanish again. Postings in Slashdot
resemble user actions in activities. Users are interested in providing their knowledge to
improve the quality and information content of a story (i.e., they fulfil a task.) They
rarely engaging in direct communication with other users (Gómez, Kaltenbrunner, and
López 2008, Skopik, Truong, and Dustdar 2009). We thus map user postings to actions,
and users to person elements in our context model. Extraction of an appropriate activity
structure requires additional steps outlined in the following subsection.

4.4.3.2 Slashdot Posting Aggregation

A Slashdot posting provides details on user, time of posting, a unique id, and a reference
to its parent posting. A set of postings from the same story establish an action hierarchy,
but no explicit mapping to an activity hierarchy. Treating each action as an individual
activity is straight forward, but will provide little information in the ultimate bi-partite
graph as every activity will then always link only two persons: the posting’s creator and
the posting parent’s creator.

We devised Algorithm 3 to aggregate a posting hierarchy. In the course of the algorithm
multiple actions are assigned to the scope of an activity. The story always becomes the
root activity (function Init). We also define an energy threshold e that defines when a
posting should trigger the creation of a new activity. The posting then becomes an action
both in the scope of the new activity and the parent activity.

Each posting exhibits energy based on its child postings and grand child posting (func-
tion CalculateEnergy). The basic energy level corresponds directly to the number of child
postings. This value is increased dependent on the distribution of grandchildren. To this
end, we count the number of grandchildren each child exhibits and derive the correspond-
ing entropy value. This entropy is then normalized to the interval [0, 1]. Posting structures
that feature equally distributed grandchildren yield maximum entropy and thus double
the basic energy level. Posting structures that exhibit no grand children, or only one child
with grandchildren yield minimum entropy and leave the basic energy level unchanged.
Examples for the former configuration include three children with each two grandchildren,
while an example for the latter configuration comprises three children with only one having
two children.

Chapter 4: Ensemble Context Provisioning 52

The current posting triggers a new activity when the posting specific energy combined
with the amount received from the parent posting exceeds the energy threshold. Otherwise,
the posting splits its energy equally across all its child postings. We have to propagate
energy from parents to children to avoid all postings being assigned to the root activity in
case no single posting reaches the energy threshold by itself.

The idea behind this energy-based aggregation mechanism is following. Multiple child
postings indicate different views (i.e., different activity aspects) on the posting at hand.
When these child postings exhibit themselves a set of (grand)children, we assume this views
to be of substantial significance. Hence, when there are sufficiently many children, respec-
tively sufficiently distributed grandchildren, we create a new activity. When a posting
exhibits children that create a narrow (and potentially deep) hierarchy tree, we consider
these postings belonging together and thus the observed posting remains in the scope of
the parent posting’s activity.

The energy threshold parameter controls the amount of activities created within a
story. Setting e = 0 results in every posting becoming an activity. Even this yields more
structural information than simply turning postings into activities (as outlined above).
Each posting would result in two actions: one belonging to the current activity, and one
associated with the parent activity. For the other extreme, e → ∞, all postings within a
story create actions belonging to a single activity.

We need to ensure that the aggregation algorithm preserved the posting characteristics
before we can continue to create and analyze the bipartite graph comprising persons and
activities. The posting-to-activity aggregation is not the only transformation of posting
hierarchies. A considerable amount of postings rise from anonymous users. We need to
filter these postings without breaking the overall hierarchy. Starting at the root posting,
we bridge every posting of an anonymous user, by rewiring the parent reference of all child
postings.

The underlying dataset comprises 3477 stories from 19 subdomains in the period of
January 1st 2008 until July 1st 2008. In these six months, the linux subdomain exhibits 96
stories. Figure 4.12 (a) prints the number of postings in the linux subdomain against their
child count (i.e., direct replies) before any filtering. In subfigure (b), anonymous posts are
removed. This step completely preserves the node degree characteristics.

Subfigures (c) and (d) describe the activity hierarchy based on aggregated cleaned
postings. We apply an aggregation energy value of e = 3 throughout our experiments in this
chapter. Observing subfigure (c), we note a shift to the left caused by aggregation. There
are significantly less activities than postings. The steepness of data distribution, however,
remains the same, thus preserving the degree characteristic. Finally, in subfigure (d),
aggregation caused a dampening. The number of activities exhibiting only few actions (i.e.,
postings) is greatly reduced. The energy threshold eliminates the possibility of activities
having no or only a few associated actions. The degree distribution for activities with 10 or
more actions yields the same steepness as for the original and cleaned postings. Ultimately,
we derive the bipartite graph from the set of actions as outlined in Section 4.3.

Chapter 4: Ensemble Context Provisioning 53

Algorithm 3 Aggregate Postings to Activities Algorithm AGG(story, e).

function Init(story, e)
/* Create a root activity for the story. */
a← newActivity(story)
/* Add the new activity to the set of activities. */
A← a
for all childPostings ∈ story do

call Aggregate(childPosting, 0, e, A, a)
end for

return A
end function

function Aggregate(posting, topEnergy, e, A, currentActivity)
currentEnergy ← CalculateEngery(posting, topEnergy)
if currentEnergy > e then

aNew ← newActivity(posting)
A← aNew
addAction(currentActivity, posting)
addAction(aNew, posting)
currentActivity ← aNew
currentEnergy ← 0

else

addAction(currentActivity, posting)
currentEngery ← currentEnergy/childCount(posting)

end if

for childPostings ∈ posting do

call Aggregate(childPosting, currentEnergy, e, A, posting)
end for

end function

function CalculateEnergy(posting, parentEnergy)
GC ←
for childPosting ∈ posting do

GC ← childCount(childPosting)
end for

entropy ← 0
if |GC| > 1 then

ent← calcEntropy(GC)
entropy ← ent/|GC|

end if

energy ← childCount(posting) ∗ (1 + entropy)
return energy ← energy + parentEnergy

end function

Chapter 4: Ensemble Context Provisioning 54

10
0

10
1

10
2

10
3

10
0

10
1

10
2

10
3

10
4

exhibiting # number of direct replies

N
um

be
r

of
 P

os
tin

gs

original

(a)

10
0

10
1

10
2

10
3

10
0

10
1

10
2

10
3

10
4

exhibiting x number of child activities

N
um

be
r

of
 a

ct
iv

iti
es

(c)

10
0

10
1

10
2

10
3

10
0

10
1

10
2

10
3

10
4

exhibiting # number of direct replies

N
um

be
r

of
 P

os
tin

gs

cleaned

(b)

10
0

10
1

10
2

10
3

10
0

10
1

10
2

10
3

10
4

exhibiting x numbers of child actions

N
um

be
r

of
 a

ct
iv

iti
es

(d)

Figure 4.12: Degree Distribution for complete posting set (a) and cleaned of anonymous
postings (b). Degree distribution for child activities from aggregated posting hierarchy (c)
and action distribution (d). All postings from stories in the linux subdomain between Jan
1st, 2008 and July 1st, 2008.

Chapter 4: Ensemble Context Provisioning 55

4.4.3.3 Analysis of Evolving Ranking Differences

We analyze the rank differences for interaction-based and context-based distance metrics
for a growing bipartite graph. Thereafter, we introduce an aging mechanism that removes
old actions from the bipartite graph. Our goal is to describe the effect of additional actions
entering the graph on the ranking order of activities and persons.

Slashdot data displays different characteristics of how persons and activities emerge for
the first time. Subfigures 4.13 (a) and (b) print the amount of unique persons, respectively
activities, against the number of actions (21390) in temporal order. For 7172 persons,
we note a slightly concave increase in new entities across the whole duration. The 1992
activities increase in a more linear manner. The difference becomes more obvious when we
limit the analysis to elements with degree 14 and higher. The emergence of the most active
users (subfigure (c)) happens rapidly: 75% of all regular users (267) submit a posting (i.e.,
action) within the first 20% of postings. For the top connected activities (269) (subfigure
(d)), we observe only a slight difference to the complete activity set. Activities, in contrast
to persons, remain connected just within a story. Once a story has received its last posting,
no more activities are added. Users, on the other hand, are free to submit in any other
upcoming story.

Similar to experiments on our simulated graph, we compare ranking differences of a set
of entities for two different action configurations (i.e., original and evolved graph). The
experiment runs identically for persons and activities, thus we outline the procedure only
for persons.

We select a subset of the overall persons from the bipartite graph within the linux
subdomain. This subset comprises of 267 persons with degree equal or higher than 14 and
is refered to as the top persons.

The initial bipartite graph consists of actions from the first 11 stories. The starter top
person set (147) denotes the persons that occur both in the top persons set and in the initial
graph. Thereof, we select random 20 persons—the candidates—from these set. For each
candidate, we assign additional 20 random persons—the buddy set—from the starter top
person set. For each candidate, the various distance measurements to its buddies provides
the first ranking.

For the remaining duration, we select batches of 10 stories, add the actions to the
bipartite graph and recalculate the distances. For two consecutive distance rankings, we
apply again the Jaccard coefficient to provide the changes in distance values caused by the
additional actions. We continue to add actions and recalculate ranks for all stories within
the linux subdomain.

Figure 4.14 (a) displays the average Jaccard coefficient for the 20 candidate persons
for interaction-based and context-based distance metrics. To compare the top persons to
the average person, we additionally selected 20 random members from the initial graph,
assigned 20 random members again from the overall initial graph, and likewise derived
distance rankings and their differences. Figure 4.14 (b) visualizes the same procedure for
activities.

Chapter 4: Ensemble Context Provisioning 56

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2

x 10
4

0

1000

2000

3000

4000

5000

6000

7000

8000

Person Growth (All) VS. Action Growth

(a)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2

x 10
4

0

50

100

150

200

250

300

 Person Growth (14+degree) VS. Action Growth

(c)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2

x 10
4

0

200

400

600

800

1000

1200

1400

1600

1800

2000

Activity Growth (All) VS. Action Growth

(b)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2

x 10
4

0

50

100

150

200

250

300

 Activity Growth (14+degree) VS. Action Growth

(d)

Figure 4.13: Emergence of unique elements versus growth of actions: (a) all persons,
(b) all activities, (c) persons with degree > 14 in the overall graph, (d) activities with
degree > 14 in the overall graph. Cleaned 21390 postings from 96 stories in the linux
subdomain between Jan 1st, 2008 and July 1st, 2008.

Chapter 4: Ensemble Context Provisioning 57

1 2 3 4 5 6 7 8 9
0.4

0.5

0.6

0.7

0.8

0.9

1

Person Random Context
Person Random Interaction
Person 14+Degree Context
Person 14+Degree Interaction

(a)

1 2 3 4 5 6 7 8 9
0.4

0.5

0.6

0.7

0.8

0.9

1

Activity Random Context
Activity Random Interaction
Activity 14+Degree Context
Activity 14+Degree Interaction

(b)

Figure 4.14: Distance ranking differences for every 10 additional stories in the linux sub-
domain for (a) persons and (b) activities.

In Figure 4.14 (a), we observe the interaction-based rankings providing larger differences
than context-based rankings for both top and random candidates. With exception to
interval 5, interaction-based metric for the top persons (×) outperforms the same metric
(+) for random candidates. Similarly, for context-based distance ranking differences, the
top candidates (△) yield larger differences than the random candidates (�). The top
candidates are more likely to engage in additional actions and, in addition, are linked to
other persons of high activity level. They are, thus, more prone to distance ranking changes
than a random person.

The final interval exhibits a rapid decrease for interaction-based differences (visible
as a sharp incline of the corresponding curves). This interval comprises only 5 additional
stories compared to the usual 10 and thus introduces fewer additional activities and persons.
Interaction-based differences are already close the the difference minimum (1), thus do not
decrease further.

For activities, ranking differences between intervals are smaller overall. For the overall
duration, the randomly chosen activity set outperforms the top activity candidates for
both metrics. The first 11 stories provide 191 activities, of which 22 exhibit overall degree
equal or greater than 14. As additional user involvement in an activity does not occur, any
source of distance changes are users engaging in new activities. Their actions, thus, have
less effect on the distance between the top activities than on random activities exhibiting
on average little user involvement. In addition, we observe a Pearson coefficient greater
than 0.9 for all activity sets from interval 6 onwards.

We notice an general decrease of ranking differences when comparing results of persons
and activities. As the graph accumulates actions throughout the period, additional actions
towards the end have less impact on the action distribution and entity connectivity than
early actions. Subsequently, we continue our analysis by introducing an aging mechanism.

Chapter 4: Ensemble Context Provisioning 58

4.4.3.4 Analysis of Aging Ranking Differences

In the previous experiment, actions remained in the bipartite graph for the complete du-
ration. With the introduction of aging, we remove actions after a certain amount of time.
The aging-aware analysis builds upon the basic growing graph experiment outlined in the
previous section. The selection of candidates and ranking difference calculation remains
the same. The activity building process requires us to view each complete story as a step
in time. Thus, we cannot consider the actual time provided with each posting.

The main controlling parameter in this aging-aware experiment is the aging interval.
It defines after which period of time an action is removed from the graph again. Reducing
the interval too much reduces the analysis to entities that occur in every story. Extending
the interval reduces the period where we can observe the effect of aging. We apply an
aging interval of 21 based on observations from our experiments. Thus, actions from the
first story drop from the graph as the 21st story is added.

Removing an action does not necessarily imply that two connected entities will loose
their common link. Instead, this process reduces the edge weight between these entities.
Eventually the weight becomes 0, when no emerging action reenforces the link. We provide
two alternatives for handling the removal of actions. The first method reduces the weight
of an edge to a minimum of 1. This preserves all links in the graph. Consequently, only the
interaction-based distance metric will yield different ranking results. The second method
actually removes the edge. The distance between a candidate and one of its buddies
becomes infinity when the the last path between them is removed. Multiple disconnected
buddies are equally distance from their candidate.

For the context-based metric, there is no difference between keeping a minimal
edgeweight and the non-aging procedure. We apply this technique to demonstrate the
sensitivity of the interaction-based metric to changes in entity focus. Figure 4.15 (a) com-
pares the two distance measurements for the top person candidates. Interaction-based
rankings (×) yield significantly larger differences for the aging-enabled experiment, than
for the non-aging experiment in Figure 4.13 (a). The context-based ranking differences
remain almost the same.

In subfigure (b), context-based and interaction-based distance metrics yield distinct
ranking differences as we remove edges once their weights drop to zero. Compared to
limited aging in subfigure (a), both metrics remain below or around 0.5 until the last aging
iteration. Within slashdot, actions hardly carry weights larger than 3 (i.e., hardly any
user posts three times within the same activity). Consequently, reduction of edge weights
mostly corresponds to removing the respective edge. This effect causes the context-based
metric to perform as good as the interaction-based metric.

We reduced the distance measurement sampling interval in subfigure (d) to 5, while
keeping the aging interval at 21. Ranking differences become smaller, as in each interval
only half of the stories provide additional actions. The characteristics of the difference
curves, however, remain. The minimal ranking similarities at interval 2 and 4 in subfigure
(b) correspond to the local minima in subfigure (d) at interval 4 and 8.

Chapter 4: Ensemble Context Provisioning 59

Aging-based analysis of distance differences is only sensible for entities, which we can
expect to engage in future actions. This is not the case for randomly selected persons and
activities in general. Figure 4.15 (c) demonstrates the steep raise in differences when the
aging process comes into effect at interval 2. Immediately thereafter a sharp decline in
differences and rapid convergence to 1 indicates the graph-wise separation of candidates
and their buddies.

1 2 3 4 5 6 7 8 9
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Person 14+Degree Context Aging
Person 14+Degree Interaction Aging

(a)

1 2 3 4 5 6 7 8 9
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Activity Random Context Aging
Activity Random Interaction Aging
Person Random Context Aging
Person Random Interaction Aging
Activity 14+Degree Context Aging
Activity 14+Degree Interaction Aging

(c)

1 2 3 4 5 6 7 8 9
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Person 14+Degree Interaction Aging
Person 14+Degree Context Aging

(b)

2 4 6 8 10 12 14 16 18
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Person 14+Degree Context Aging
Person 14+Degree Interaction Aging

(d)

Figure 4.15: Ranking differences of top persons distances for limited aging (a), normal
aging(b), and normal aging(d) with reduced difference sampling interval (5). Distance
differences for normal aging for top and random activities, as well as random persons (c).

4.4.3.5 Summary on Distance Metric Differences

Context-based and interaction-based distance metrics consider different aspects of the un-
derlying action data set. Context-based distance focuses on the ratio of joint and individual
neighbors of two entities in a k-partite graph. In contrast, interaction-based distance con-
siders only the magnitude of involvement with common neighbors.

We have analyzed the metrics under various conditions to outline their sensitivity to-
wards changes in the action structure. The context-based metric yields the same distance

Chapter 4: Ensemble Context Provisioning 60

measurements as long as the basic link structure remains the same. The interaction-based
metric yields different results for different weight distributions on top of the same link
structure.

In the case of k-partite graphs subject to aging, both metrics provide similarly changing
ranking differences when the majority of edge weights between two entities remains close
to 1.

4.5 Context Provisioning for Mobile Service En-

sembles

Mobile ensembles comprise static and mobile entities. Services and humans exhibit con-
text switching when involved in several contexts at the same time. These context changes
include work on different joint activities, relocation, shifting workload, and available hard-
ware. Coordination and synchronization between entities becomes ever more important.
To this end, we require additional modeling and context distribution effort. In this section
we motivate granular context modeling. We provide schemas for context hierarchies and
introduce a hybrid push/pull context provisioning mechanism. Eventually, we evaluate
the benefit of our granular approach compared to pure push or pure pull based provision
techniques.

Suppose following mobile service ensemble. Alice collaborates with Bob, Carol, and
Dave on a joint activity. They are employed at different companies working from their
office, on the move, and also from home. In such a heterogeneous environment services
reside on both mobile devices and static hosts.

At one point, Alice wishes to coordinate critical work with her colleges in a face-to-face
fashion. She delegates this task to a Coordination Web service. This composite service
possesses enough logic to coordinate persons, but requires further services for acquiring
calendar data, checking availability, executing a scheduling algorithm, and resolving arising
date conflicts. Figure 4.16 visualizes involved entities and steps of the following description.

1. Alice invokes the Coordination Web service stating the corresponding activity.

2. The scheduling service retrieves involved persons and services from the context ser-
vice, then contacts the shared Calendar Web service (2a) to retrieve the calendars
of all participating persons (including Alice). It also invokes the Context Web ser-
vice (2b) to check for the users’ current reachability. We assume the context service
has subscribed to all members respectively their devices for high-level availability
and device status context information. Currently, Dave’s laptop and PDA as well as
Carol’s smartphone are online, while Bob is unavailable for the moment.

3. Next, the service queries all available devices for their system load and capabilities
(3a) and finally invokes the Scheduling Algorithm Web service on Dave’s laptop (3b),
which is experiencing the least load.

Chapter 4: Ensemble Context Provisioning 61

4. In the meantime, the context service notifies (4a) the scheduling service that Bob
is available now and Alice has become offline. In addition, Carol changes from her
smartphone to her laptop, yet this information is not propagated as also the awareness
service has not subscribed at such level of granularity.

5. The Scheduling Algorithm Web service detects (5a) a conflict that requires human
intervention to be solved. As Alice is still offline, the cooridination service cannot
contact all necessary members. Hence, it subscribes (5b) to action information con-
cerning the whole team at a very coarse-grained level, as all members prefer to be
contacted when at work and not during their freetime.

6. The context service notifies (6b) the coordination service that all members are online
once Alice reports back. Thus using fine-grained reachability information directly
from all connected devices a Communication Web service on the best suited device
for each participant connects all involved persons to agree on the proposed date
or another date. As the Communication Web service accesses activity information
(task-related context information) it chooses the right means of communication: in
this case synchronous chat.

7. After the four have agreed on the meeting details, their calendar is updated and the
coordination service terminates.

This scenario highlights two ways of retrieving context information. The composite
coordination service subscribes and queries context information at different levels of gran-
ularity. On the one hand it requires change events (for which it receives notifications) and
on the other hand it accesses additional context facts once certain changes have occurred.
For providing context in such a dynamic, non-deterministic environment, pure pull or pure
push-based mechanisms yield extensive load on bandwidth and capacity constraint devices.

Combined granular structuring of context information with a hybrid sharing mechanism
greatly reduces the amount of information transferred between nodes. We benefit from
avoiding transferring unrelated context, or information on activities, devices, or persons at
a too detailed level.

4.5.1 Hierarchical Context Model

A hierarchy describes context elements as layered pieces of information. A granular repre-
sentation contains the most generic information at the highest level and the most detailed
information at the bottom. Depending on the specific problem domain, such a hierarchy
exhibits additional levels at the top and bottom. Each level contains one or more context
types. Thus, levels describe the granularity and position within a hierarchy, whereas types
describe the information structure.

The hierarchy metamodel distinguishes between hierarchy descriptions and hierarchy
instances. For service ensembles, we specify both parts as XML schema documents (see

Chapter 4: Ensemble Context Provisioning 62

Alice

Bob

Carol

Dave

1, 6b

2a, 7
5b, 6b

5b, 6b

3a
3a, 3b, 5a, 5b, 6b

3a

2b, 4a, 6a

Coordination WS

Calendar WS

Sched. Alg. WS

Communication WS

Context WS

Sched. Alg. WS

Communication WS

Sched. Alg. WS

Communication WS

WS Client

Communication WS

Sched. Alg. WS

Communication WS

Communication WS

Figure 4.16: Coordination scenario in a mobile ensemble. Service clients and communi-
cation services reside on mobile devices. The composite Coordination Web service, the
Calendar Web service, and the Context Web service are deployed either distributed or
centrally provided by the infrastructure. The numbered lines represent the temporal in-
formation flow between nodes according to the textual description.

Chapter 4: Ensemble Context Provisioning 63

Figure 4.17 for UML class diagrams). We extend the metamodel to describe specific context
types—thereby generating specific hierarchies. The generic hierarchy model comprises the
following elements:

HierarchyDef The containment element HierarchyDef exhibits identifier and version
property to enable adapting and evolving hierarchies. Name and a human read-
able description provide information on the general purpose. The maximum number
of levels determines if the hierarchy can dynamically grow. The Hierarchy definition
element refers to all defined levels.

Level Each hierarchy consists of a number of Level elements. Each level has an identi-
fier, name and human readable description. Links to the parent level establish the
hierarchical structure able to include additional levels later. Simple hierarchies con-
sists of levels containing one Type each. Several types on the same level are treated
as alternative context representations. This mechanism enables horizontal hierarchy
expansion.

Type specifies the representation of a context element at the corresponding level of gran-
ularity. A type links to its parent type to express a dependency relationship enforced
in a corresponding HierarchyInstance. This dependency relationship restricts use of
valid types on the same level. Suppose a hierarchy containing three types T1 . . . T3
on level L1 and three types T4 . . . L6 on level L2. If T4 defines a parent type link
to T3, any HierarchyInstance containing content of type T4 on level L2 must have
content of type T3 on L1. Usually the number of branches and thus the complexity
of the type tree will remain small.

HierarchyInstance contains the granular structure of a single context element—uniquely
identified by entity type and URI. For each level, exactly one Context element pro-
vides the granular representation of the context element.

Content provides metadata on context source, confidence, and extraction timestamp.
References to level and type facilitate validity checking against the hierarchy defini-
tion.

Table 4.6 lists different types of context hierarchies. Activity and Organization hierar-
chy consist of five levels. Identical context types apply to multiple levels as the level only
identifies the expected granularity of context information, while the type describes the
actual context data. The Activity model and entity model allow for unlimited hierarchies.
We limit the hierarchies to five levels for practical reasons. Hierarchies for DeviceStatus
and Reachability comprise four levels. Device Status provides increasing information about
hosted services. Reachability defines (general) availability on the upper levels and specific
device capabilities and communication channel details on the lower levels. Potential other
hierarchies include location (similar to postal addresses including floor and room level),
time, as well as temporal and spatial distance.

Chapter 4: Ensemble Context Provisioning 64

HierarchyDef
Name : string
Maxdepth : depthdef
Description : string
«attribute» id : string
«attribute» version : string

tLevel
Levelname : string
Leveldescription : string
«attribute» id : anyURI

Level
0..*

Parent
0..1

Child
0..*

tType
TypeDefURI : anyURI
«any, element» wildcard [0..*]
«attribute» id : anyURI
«attribute» parentType : anyURI

Type
1..*

HierarchyInstance
«attribute» id : string
«attribute» version : string
«attribute» entityType : anyURI

tContent
TypeRef : anyURI
LevelRef : anyURI
«any, element» wildcard [0..*]
«attribute» source : string
«attribute» timestamp : dateTime
«attribute» confidence : confdef

Content
0..*

Figure 4.17: Hierarchy definition and hierarchy instance UML class diagram.

It is neither sensible nor possible to describe all available context information in a
granular fashion. Only information subject to frequent changes should be structured this
way to allow for a fine-grained access and update mechanism. The further up in a hierarchy
an update occurs, the more significant it is.

Defining hierarchies that structure context of a single type such as location or time is
rather straightforward. This process becomes more complex, once concepts from different
domains are included that feature no natural ordering of granularity levels. Modeling
ensemble status including humans, services, roles, activities and resource distribution is
non-trivial. The context consumer decides whether, for example, information on collocated
entities or their activities describes more detailed information. This situation is resolved
by either defining an a-priori ordering of levels, or by dynamically arranging levels based
on context information.

Context hierarchies exhibit three major beneficial characteristics. First, granularity
enables fine-grained access mechanisms for bandwidth economical context provisioning.
We present a hybrid context sharing mechanism in the next section. Second, context
granularity allows resource constraint devices to focus on their manageable level of detail
and thus limit context processing and storage. Third, context hierarchies provide a means
to mitigate unreliable context information. In contrast to conventional context systems,
granular context provides multiple confidence values for every context element. We require
all confidence values to grow monotonically from the most fine-grained up to the most
coarse-grained level. This reflects the accuracy of a piece of context information and not

Chapter 4: Ensemble Context Provisioning 65

Activity type Organization type
L1 Environment [Work, Home] Organization Identifier
L2 Project Activity Section Identifier
L3 Activity Activity Department Identifier
L4 SubActivity Activity Group Identifier
L5 Execution Action Team Identifier

DeviceStatus type Reachability type
L1 AvailableServices ServiceInfo Connected [Yes, No]
L2 AbstractLoad [LOW,MED,HIGH] Status [Online status][Away

status]
L3 PercentageLoad [0,100] Device Device(s) details
L4 RunningServices ServiceInfo ChannelDetails ContactInfo(s)

Table 4.6: Context hierarchy examples.

the sensor supplying raw data. Confidence values at every level yields another advantage.
Context-aware applications need no longer consider the implicit confidence characteristics
of each sensor but can rely entirely on the value for each level.

4.5.2 Hierarchy-based Sharing

We introduce a hybrid, hierarchy-aware context sharing mechanism in this section. Imple-
mentation specific details on framework architecture and interface descriptions are provided
in Section 7.3.4.

Context provider and context requestor apply a combination of push and pull based
mechanisms for context transfer. Pure push-based techniques generate unnecessary traffic
when propagating context events at inconvenient time or at overly detailed granularity.
Pure pull-based techniques need to trade off network load and polling intervals. Context
events occur too irregular to efficiently poll at regular intervals. Thus, short intervals
yield context in a timely fashion but cause excessive network load independent of available
context events. We combine and enhance these mechanisms in two ways.

First, we enable subscribers to define event conditions. Context requestors specify hi-
erarchy, level of detail and context class independent of a-priori predefined topic trees.
Condition-based subscriptions are not new per se but lack the notion of information gran-
ularity.

Second, we couple context notifications with subsequent query requests. Local context
determines the relevance of incoming remote context information. Thus, client-side context
changes can require querying for additional—more detailed—context information from the
context provider. A viable strategy is subscribing to coarse-grained availability information
and subsequently retrieving fine-grained device status as required.

Our sharing mechanism builds on the usual three message types: Subscription, Query,
and Notification (serving also as Query response).

Chapter 4: Ensemble Context Provisioning 66

Subscriptions define the entity (or role), level, and type for which to receive notifications.
Optionally, it is possible to state a minimum confidence value, transition type (if an
entity has reached a certain state, or left it), notification type (whether to receive
an initial notification about the current state or just future events) and detail type
(which segment of a hierarchy: only values at the exact given level, above, below
or all). The meeting service’s subscription on the team members’ activity status is
given in Listing 4.2.

Queries contain the same details as subscriptions except for confidence value and notifi-
cation type.

Notifications contain context data of exactly one possible path through a particular
hierarchy tree. Each level contains only one type object. A notification comprises
of multiple type objects each stating their respective level and hierarchy. Each level
provides context metadata such as confidence, context source, and timestamp. High-
level context changes intrinsically include low-level context changes. Consequently, a
context event at a particular level triggers notifications for all subscriptions on that
level and below.

1 <Subscription xmlns:ns2 ="http: //ns1 /vimocos /sharing "

2 detailtype ="UPPERINCL "

3 notificationtype="ALL"

4 transitiontype="TO" xmlns="">

5 <ns2:entity >Alice </ns2:entity >

6 <ns2:hierarchyId >ns2 .activity .ActivityHierarchy </ ns2:hierarchyId>

7 <ns2:levelId >L3</ ns2:levelId >

8 <ns2:typeId >ns2.activity .Activity </ns2:typeId >

9 <ns2:minConfidence >50</ ns2:minConfidence >

10 </Subscription>

Listing 4.2: Example subscription statement: request notifications for any activity events
concerning Alice. L3 and UPPERINCL restrict the notifications to changes in the
top three levels of her activity hierarchy—expecting a minimum confidence of 50. Fol-
lowing namespaces substitutions apply: ns1 for www.vitalab.tuwien.ac.at and ns2 for
at.ac.tuwien.vitalab.vimocos.

4.5.3 Evaluation of hierarchical context sharing

We observe message sizes in a series of test runs to derive the average size for each message
type given in Table 4.8. We then analyze the benefit of hierarchy-based context sharing
by calculating the reduction of transferred context data for the following three aspects.

1. A hybrid approach of queries and subscriptions to context information reduces pro-
tocol overhead compared to pure push-based solutions.

Chapter 4: Ensemble Context Provisioning 67

Nr From To S/Q Hierarchy Level Type

0a Context Alice, Bob, Carol, Dave Sub Reachability L1 exact
0b Context All entities Sub DeviceStatus L1 exact
2b Coordination Alice, Bob, Carol, Dave Query Reachability L1 exact
3a Coordination DaveLaptop, Dave-

PDA, CarolSmart-
phone

Query DeviceStatus L3 lowerincl

5b Coordination Alice, Bob, Carol, Dave Sub Activity L3 upperincl
6b Coordination Alice, Bob, Carol, Dave Query Reachability L1 lowerincl

Table 4.7: Subscriptions and Queries in the motivating scenario applying matching on level
(not exact values), as this is sufficient here.

Message type Size (byte)

Subscription Request 1200
Subscription Response 810
Unsubscribe Request 690
Unsubscribe Response 690
Notification Envelope 900
Query Request 710
Query Response Envelope 400

Table 4.8: Mobile context sharing protocol SOAP message size (excluding HTTP over-
head). The values for Notification and Query Response messages omit the context payload.

2. Granularity-based subscriptions reduce the amount of overly detailed context notifi-
cations.

3. Selection of partial hierarchies reduces context transfer to the requested levels of
detail.

Our hybrid approach reduces the message overhead by substituting queries for short-
lived subscriptions. We compare query request and response overhead to a subscription
roundtrip (consisting of a subscribe request, response and one notification).

Based on the data from Table 4.8, the pull based approach outperforms short-lived
subscriptions by almost 3 to 1 (1100 bytes to 2910 bytes). These calculations do not
include context payload. The advantage of the pull mechanism is even higher if we consider
unsubscribe requests and responses. The scenario involves queries and subscriptions listed
in Table 4.7.

We compare level-based subscription and hierarchy-unaware subscription for two set-
tings (Table 4.9). For a five-level hierarchy we assume subscriptions to be evenly spread.
In case 1, events occur on all levels with equal likelihood. In case 2, fine-grained changes

Chapter 4: Ensemble Context Provisioning 68

Level Sub. Events Nfy w/ Nfy w/o Improvement
Case 1

L1 1 1 1 5
L2 1 1 2 5
L3 1 1 3 5
L4 1 1 4 5
L5 1 1 5 5
Total 15 25 40%

Case 2

L1 1 1 1 15
L2 1 2 3 15
L3 1 3 6 15
L4 1 4 10 15
L5 1 5 15 15
Total 35 75 53%

Table 4.9: Event count for level-based subscription mechanism (Nfy w/) and a hierarchy-
unaware subscription mechanism (Nfy w/o). Subscriptions are evenly spread across levels
(one at each level). Case (1) exhibits events occurring equally likely at each level. In case
(2), L5 events are five times more likely than L1 events.

happening more often that coarse-grained changes. In both cases, level-based subscription
significantly reduces the number of notifications, in case 1 by 40% and in case 2 by 53%.

Finally, we evaluate further message size reductions by means of transmitting partial
hierarchies. Table 4.10 lists the average context content size for events at each level for
three example hierarchies.

To obtain these data, we created random (within a certain scope of choice) hierarchy
data for four (respectively six) entities4. Then, queries at each level and data type were
issued and the response size collected. We then aggregated the value of each level from the
available entities and test runs. For queries and subscriptions in our scenario (as listed in
Table 4.7), we achieved an improvement of 29% up to 76% of payload reduction.

Notifications and query responses exhibit the same data structure. Thus, push and pull
based context retrieval benefits from applying partial hierarchies on context data.

In general, the right choice of subscriptions and queries as well as the required level
and return type greatly influence the amount of data transmitted and exhibits a lot of
potential for improvement beyond these results.

4The entities were: Alice, Bob, Carol, Dave as well as AlicePDA, BobLaptop, CarolLaptop, Carol-
Smartphone, DavePDA, and DaveLaptop, respectively.

Chapter 4: Ensemble Context Provisioning 69

full exact lowerincl upperincl

Activity
L1 3368 636 3368 636
L2 3368 783 2958 1193
L3 3368 675 2442 1642
L4 3368 1068 1953 2484
L5 3368 1111 1111 3368

Reachability
L1 2724 639 2724 639
L2 2724 615 2318 1026
L3 2724 831 1932 1624
L4 2724 1334 1334 2724

DeviceStatus
L1 2508 1043 2508 1043
L2 2508 674 1705 1477
L3 2508 692 1271 1929
L4 2508 818 818 2508

Table 4.10: Average context query results in bytes for Activity hierarchy, Reachability
hierarchy and DeviceStatus hierarchy.

Chapter 5

Service Adaptation Mechanisms

5.1 Service Adaptation Approach

Major challenges emerge from the unpredictable nature of interactions in service ensembles.
Changing requirements cause some system properties to gain importance while other prop-
erties lose significance. We define the impact of a property as the extent to which services
of one property value (e.g., location A) forward requests to services exhibiting a different
property value (e.g., location B). One fundamental problem is to continuously identify the
most important properties—location, organization, various service capabilities—for service
adaptation.

Traditional approaches to service management are no longer feasible as ensembles pro-
vide services for joint efforts involving a few participants up to a few thousand participants.
The emerging complexity no longer allows for manual tracing of requirements and execu-
tion of reconfigurations. Any approach to service self-adaptation needs to address following
key service ensemble characteristics:

• The service’s decision to pass on a request is context dependent (e.g., load, poli-
cies, neighboring services) and thus cannot be observed by looking at the service’s
capabilities alone.

• Services hide their internal state. Only a limited set of properties is publicly accessible
(e.g., owning organization, location, type, capabilities).

• The flow of service requests is non-deterministic; there are no predefined process
descriptions.

• A single service obtains merely a local view on all interactions. Due to scale, it
observes only service interactions with direct neighbors.

70

Chapter 5: Service Adaptation Mechanisms 71

We have discussed the two main design principles for autonomic adaptation in Sec-
tion 2.4 of related work. Systems implementing an explicit feedback loop (Kephart and
Chess 2003) work on a central set of goals thereby requiring a complete view of all man-
aged elements. Emergence-based systems exhibit no central control and yield self-adaptive
behavior arising from local interactions between elements (Wolf and Holvoet 2004). The
former approach lacks scalability and requires centralized control, but enables simple detec-
tion of adaptation needs. The latter approach exhibits the inverse properties. Individual
elements cannot perceive the requirements of the overall ensemble. Moreover, individual
elements have great difficulty detecting changes in relevant system properties.

We envision a framework combining these two design principles (Figure 5.1). Monitor-
ing captures service interactions and public service properties. The Analysis component
identifies promising properties for further Planning. Execution provides basic manage-
ment functions such as service service selection and ranking. The Knowledge part provides
ensemble context and ensemble configuration. The framework approximates the MAPE-
K cycle for autonomic elements (Kephart and Chess 2003). The lack of central control,
however, requires the individual services to trigger the final execution phase.��������� �	
���	 �������� �
�	��
�

������
 ��	���	�����	 ��������	��	
�	
���	 ���	���	

• ��� �! "#$�%&
• ��'&()*&+��&,$-� .� �/&��' •0&,/ -& 1$�2 �%

•0&*&-� .� $�3".�4 %5,$� .�
• 6,.7&,�! +(7$-� �/$*5$� .� •

+(7$-�89,&�3 "$*-5*$� .�
• ��'&()*& ".��&:�
• ��'&()*& ".�4 %5,$� .�

?

Figure 5.1: Ensemble Adaptation framework.

5.1.1 Service Adaptation Scenario

The following scenario motivates service self-configuration. Assume a storage service
provider participating in a global data service network. A research center becomes a
customer in the early phases of a data-intensive project. At the beginning, the need for
extensive storage space is low, retrieval requests origin at a single location, and updates

Chapter 5: Service Adaptation Mechanisms 72

occur frequently. Thus requests will mostly happen within the service provider’s service
network, locally concentrated.

The service interaction characteristics change once data intensive research results are
made available for a broader audience. Requests cross the storage provider’s boundaries,
access to data occurs from multiple locations, while updates decrease.

Suppose a new storage service is about to join the ensemble. It does not know the
clients it will serve. It is also unaware of the particular service interaction characteristics
when serving these clients. The new service, however, needs to learn of the most significant
impact factors to optimally select amongst the existing services for storing and querying
data in the ensemble (Figure 5.1 right most service). Services provide storage for multiple
clients, thus we need to establish the relevant set of existing services for each of these
contexts. For the remainder of this chapter, we discuss our approach and findings in the
scope of one client for sake of clarity.

5.1.2 Service Adaptation Process

For a freshly added service, the significant services are the ones most likely to accept
forwarded requests. To this end, we need to identify the factors that determine whether a
request is accepted or not. Our approach, thus, focuses on public service information and
observable service interactions. In the early stages of our scenario, services with versioning
capability are suitable receivers. In later stages, services at remote storage providers (i.e.,
different organizations) or different locations provide most benefit by distributing load.

Figure 5.2 visualizes the approach comprising the following steps: based on the distribu-
tion of property values across services, we derive candidate properties (1). These candidates
yield high potential impact on service interaction. For example, when all observed services
reside within a single data center, location yields no interaction impact. Similarly, the
service identifier property yields no impact neither, as every service exhibits a distinct ID.
Thus, neither location nor service identifier become candidates. Any changes in service
properties (including new/leaving services) trigger recalculation of candidate properties.
As long as requests traverse only services of one storage provider, Organization will not
become a candidate. Once the customer in our example enables access to data for 3rd
parties, requests from external services will occur. As multiple organization values emerge,
the organization property becomes a potential impact factor.

The subsequent detailed interaction analysis (2) considers only the properties with high-
est potential impact (e.g., versioning capability). Interaction analysis determines whether
services tend to interact with services exhibiting the same or different properties (3). In
the early stages of our scenario, services without versioning capability will forward requests
to services with versioning capability. These in turn, will forward only between their kind.

Impact magnitude influences the final ranking order of suitable services (4). The ver-
sioning capability will exhibit highest impact on the ranking result, when forwarding oc-
curs only from non-versioning to versioning services. Later in the scenario, we replace

Chapter 5: Service Adaptation Mechanisms 73

S3

...

...

S1

...

S4

...

S2

Sn

Prop P2-1 Prop P2-2

Prop P2-3

Prop P1: w=0.0

Prop P2: w=0.9

…

Prop Pk: w=0.1

ServiceId

Prop P1

Prop P2

...

Prop Pk

S1

P1-1

P2-1

…

Pk-3

S2

P1-1

P2-2

…

Pk-2

…

…

…

…

...

Sn

P1-1

P2-2

…

Pk-3

P2-1: t= 0.1

P2-2: t= 0.5

P2-3: t=-0.4

Rank Sn:

S1

S3

S2

S4 ...

3

1

4

2

Figure 5.2: Property checking, evaluation, and ranking.

the ranking criteria as capabilities become less significant, while spatial and organizational
properties emerge.

In (Dorn, Truong, and Dustdar 2008), we introduced specific human-centric ensemble
metrics measuring location, organization, coordination, interaction, and resource utiliza-
tion aspects. In the following sections, we concentrate on one especially versatile metric
and demonstrate its applicability for emerging service selection. Specifically, this metric
aims at determining the most relevant services to forward a request to. To this end, we
identify and analyze service properties (i.e., potential system impact factors) with the most
significant effect on service interactions.

5.2 Property Entropy Model

In large-scale service ensembles, service interaction analysis is a computationally intensive
task. Knowing which aspects will yield the most significant findings maximizes the effi-
ciency of the analysis process. The primary purpose of a suitable metric is thus to identify
those properties that potentially have a measurable impact on interactions. Such a metric
must work on properties consisting of any number of values, and enable comparison of
properties that differ in their amount of values. Example service properties include the or-

Chapter 5: Service Adaptation Mechanisms 74

ganization deploying the service, the service location, storage capacity, and request routing
capability (e.g., none, random neighbor, round-robin).

The following model and entropy metric calculates the distribution of properties across
services. Table 5.1 gives a summarized explanation of the symbols applied in the model
and impact algorithms.

The metric output for each property is in the interval [0, 1]. A metric value v towards 0
describes a trend of services sharing the same property values, while a metric value towards
1 denotes services exhibiting individual property values. Extreme cases include all services
having the same property value (v = 0) and each service having a distinct property value
(v = 1).

Symbol Meaning
S the set of services s ∈ S in a service ensemble C
P the set of public properties in the service ensemble C
P a particular public property P ∈ P comprising any number of property

values pi → pn ∈ P
F a function mapping each service s to one property value p for each

public property P
PDE(S, P) the property distribution entropy for particular property P and service

set S
PDElower|upper a function describing the minimum (maximum) PDE values for a given

number of property values p ∈ P
utilupper|lower a function describing the minimum (maximum) utility along the lower

(upper) PDE limits.
E set of interaction edges in the directed service interaction graph G
clusterP (i) set of services exhibiting the same property value pi ∈ P
trendP (i) interaction focus (internal or external) of a cluster associated to pi ∈ P
impP (i) interaction impact of a cluster associated to pi ∈ P
impP overall interaction impact of property P
z iteration count within the zero model analysis

Table 5.1: Symbols applied in the entropy model (upper section) and evaluation algorithm
(lower section).

In our model, a service ensemble C(S,P) is defined as a set of services S exhibiting a set
of public properties P. Each property P ∈ P consist of a set of non-overlapping property
values p1 . . . pn. In addition, for each property P there exists a mapping F(S 7→ P) such
that each service s ∈ S is assigned to exactly one value instance p ∈ P . For each property
P , we define the Property Distribution Entropy (PDE) as follows:

PDE(S, P) = 1−
n
∑

i=1

(

|pi|

2

)

∗

(

z

2

)−1

(5.1)

Chapter 5: Service Adaptation Mechanisms 75

0 5 10 15
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Property values (S=15)

P
D

E

Lower Entropy Limit
Upper Entropy Limit

(a)

0 5 10 15
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Property values (S=15)

U
til

ity

Lower Utility Function
Upper Utility Function

(b)

0.2

0.4

0.6

0.8

1

1
6

11 15

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

PDE

Property values

U
til

ity

15

PDE

Property values

(c)

Figure 5.3: Entropy limits (a), utility boundaries (b), and overall utility function (c) for
s = 15

where |pi| is the number of services mapped to property value pi ∈ P and z = |S| is the
total number of services in C.

For this entropy metric, there exists a lower and a upper limit given q = |P | and z = |S|.
Figure 5.3 (a) visualizes the lower and upper entropy limits for z = 15 and q = [1, 15].
The lower limit describes the most asymmetric distribution of q property values across all
services. For any q = [1, . . . , c] one large group of z − (q − 1) services will share the same
property value and q−1 services will exhibit individual property values. The lower entropy
limit PDElower is defined as:

PDElower(z) = 1−
q2 − (2z + 1)q + z2 + z

z2 − z
with 1 ≤ q ≤ z (5.2)

The upper entropy limit describes the most symmetric distribution of given property
values across all services theoretically possible. There exist q groups of z

q
services having

a distinct property value. The upper entropy limit PDEupper is defined as:

PDEupper(z) = 1−
(z − q)

q(z − 1)
with 1 ≤ q ≤ z (5.3)

The algorithm presented in the next section determines if the impact results in in-
teractions occurring predominantly between services exhibiting the same property values,

Chapter 5: Service Adaptation Mechanisms 76

between services of different property values, or between services without any distinct in-
teraction bias. First, we need to evaluates a property’s likelihood of having an impact on
interactions.

To this end, we introduce upper and lower entropy utility functions. These utility
functions describe the ratio of services that have a choice to communicate either with
services of the same property value or with services exhibiting different property values.
Only these services generate interactions that exhibit potential property impact (Bollobas
2001,Mcculloh, Lospinoso, and Carley 2007).

The lower entropy utility function utillower corresponds to the lower entropy limit
(PDElower). It reflects the fact, that q − 1 services can only communicate with services
exhibiting a different property value, and thus cannot be included in the impact calcula-
tion. Consequently, as individual property values become more common (i.e., entropy value
→ 1), the likelihood reaches 0. In contrast, as services increasingly share the same prop-
erty value (i.e., entropy value → 0) any interactions across properties must be considered
outliers and the likelihood similarly decreases towards 0.

utillower(z) = 0.5− | − 0.5−
1− q

z − 1
| 1 < z, 1 < q ≤ z (5.4)

The upper entropy utility function utilupper corresponds to the upper entropy limit
(PDEupper). It peaks where all entities are equally distributed across two property values
and decreases steadily as the number of distinct property values rise.

utilupper(z) =
z − q

2− q
∀0 < z, 2 < q ≤ z (5.5)

Figure 5.3 (b) visualizes the lower and upper entropy utility function for z = 15 and
q = [1, 15]. We aggregate upper and lower utility functions in the overall utility function
utiltotal defined as follows:

utiltotal(z, pde) =
(pde− PDElower)

PDEupper − PDElower
∗ utilupper

+
(PDEupper − pde)

PDEupper − PDElower
∗ utillower (5.6)

where utilupper returns the utility value for the upper entropy limit, and utillower returns the
utility value for the lower entropy limit. The total value combines the two utility values
proportional to the distance of the entropy value and the respective upper and lower
boundaries (PDEupper, PDElower). Figure 5.3 (c) visualizes the overall utility function
which provides a likelihood measurement in the interval [0, 1].

5.3 Property Impact Evaluation Algorithm

The PDE model provides the means to identify promising impact factors. In the subse-
quent step we need to evaluate whether these candidate properties have indeed an impact

Chapter 5: Service Adaptation Mechanisms 77

on service interactions. We define a positive impact of a property value on a group of
services when these services tend to communicate with each other (i.e., internal commu-
nication), rather than interacting with services exhibiting different property values. A
negative impact implies a tendency towards external communication.

We capture interactions between services applying logging mechanisms. The sum of
all logged service calls create an interaction network. We define this network as a di-
rected1 graph G(S,E) consisting of interaction edges E and services S ∈ C deployed in
the ensemble. We denote the set of services exhibiting the same property value a network
cluster.

For the impact evaluation process (Algorithm 4), we select properties with highest
utiltotal. For every cluster, the cRatio calculates the ratio of property internal to total
communication links. The natural link ratio nRatio of a cluster in an unbiased network
is |cluster| / |S|. To include the characteristics of the underlying interaction network,
we create a zero model by distributing all services randomly across clusters of the same
size. Multiple rounds of randomization yield a natural deviation of each cluster ratio from
the natural ratio. To enable comparison of clusters independent of their natural ratio
(nRatio) any deviation from nRatio is mapped to the interval [−1,+1], where a trendP (c)
of −1 indicates complete external orientation, and +1 complete internal orientation. This
orientation is defined as:

trendP (c) =

{

cRatioc−nRatioc

1−nRatioc
if cRatioc > nRatioc,

cRatioc−nRatioc

nRatioc
if cRatioc ≤ nRatioc

(5.7)

and the impact of cluster c for Property P is defined as:

impP (c) =

{

trendP (c) if |trendP (c)| ∗ utiltotal(P) > 2 ∗ devc

0 otherwise
(5.8)

where utiltotal(P) is the utility of property P and devc is the zero model deviation for the
cluster c. Taking twice devc and reducing further by utiltotal(P) ensures that also for low
likelihood values the deviation is sufficiently distinct.

A property p needs not necessarily consist of uniform cluster trends. Internally oriented,
externally oriented, and unbiased clusters can coexist. Aggregating all trends proportion-
ally to their corresponding cluster size yields the overall property importance factor:

impP =

∑n
i=1 |impP (i)| ∗ |clusterP (i)|

|S|
(5.9)

We continue to consider only properties with the highest impact impP for further
interaction analysis as outlined in the following section.

1The approach also applies to undirected graphs with the following adaptation: cluster internal links
need to be counted twice.

Chapter 5: Service Adaptation Mechanisms 78

Algorithm 4 Impact Evaluation Algorithm A(G(S,E), P).

function CalculateImpact(G(S,E), P)
Dev ← call AnalyzeZeroModel(P,G)
for all Clusters c ∈ P do

nRatio← |c|/|V |
cRatio← call CalcLinkRatio(c, G)
diff = |nRatio− cRatio|
if diff ∗ util(P) > 2 ∗Dev[c] then

if cRatio > nRatio then /* Trend towards internal communication. */
trend = diff/(1− nRatio)

else /* Trend towards external communication. */
trend = diff/nRatio ∗ −1

end if

setTrend(c, trend)
else

setTrend(c, 0)
end if

end for

end function

function AnalyzeZeroModel(p,G)
Dev[]← ∅
for i = 1 to z do

R← randomizeAcrossPartitions(G, clusterSizes(P))
for all Clusterr ∈ R do

nRatio = |r|/|V |
cRatio← call CalcLinkRatio(r, G)
diff = |nRatio− cRatio|
if cRatio > nRatio then

dev = diff/(1− nRatio)
else

dev = diff/nRatio
end if

Dev[r]← Dev[r] + dev
end for

end for

for i = 1 to |C| do

Dev[i]← Dev[i]/z
end for

return Dev[]
end function

function CalcLinkRatio(c, G)
intra = countLinksWithinCluster(c, G)
total = countLinksOfCluster(c, G)
edgeRatio = intra/total
return edgeRatio

end function

Chapter 5: Service Adaptation Mechanisms 79

5.4 Service Ranking Algorithm

The calculation and evaluation of property utility, impact, and impact trend is node in-
dependent. When a new service joins the ensemble, the ranking algorithm applies these
global metrics to generate a recommendation specific to the newcomer. For the properties
with highest impact, we select the cluster identified by the newcomer’s properties. For
each cluster, we derive its interaction affinity towards other clusters. The affinity function
affinity(G, c1, c2) describes the likelihood of a new request in c1 being forwarded to c2. The
special case c1 = c2 covers internal request delegation. The function is defined as:

affinity(G, c1, c2) =
|links(c1→ c2)|

|links(c1→ G)|
(5.10)

where links(c1 → c2) selects all links starting in cluster c1 and ending in cluster c2,
respectively ending anywhere in the network G including c1. In a directed graph, affinity
is not reciprocal, thus affinity(G, c1, c2) 6= affinity(G, c2, c1)∀c1 6= c2.

Our ranking algorithm builds on top of any existing selection mechanism that fulfils
following three conditions: (i) returned candidate services are potential communication
partners, (ii) services are ranked by their domain specific capability, (iii) services map to
ranking scores that reflect the relative match amongst all selected services. A mere list
representing the service’s rank is insufficient. In case of failing these conditions, our ranking
algorithm considers all candidates as equally suitable.

The basic idea is to apply cluster affinity values to update the candidate’s rank. Algo-
rithm 5 demonstrates the precise steps. For each candidate and all properties of significant
impact, as identified in the previous section, we select the newcomer’s cluster cnewcomer and
the candidate’s cluster ccandidate. We subsequently retrieve the affinity value of cnewcomer
towards ccandidate. Candidates in clusters with low affinity are penalized more than can-
didates in clusters of frequent request forwarding. Affinity values do not modify ranks to
their full extend but only proportional to the respective property impact impP (c). For
each candidate the sum of all weighted affinity values determines the extend to which the
ranking result is reduced or increased. Finally, the updated candidate list is sorted again.
The newcomer service can then select among the top ranked existing services for successful
request forwarding.

Recommending services from clusters that have received many requests in previous
rounds achieves desirable preferential attachment characteristics. Independent from the
number of services, the recommendation algorithm ensures its persisting applicability as
the service network grows.

5.4.1 Discussion of Computational Complexity

The computational complexity of our approach depends on following factors: the total
number of services S, the number of public properties P and their respective values p ∈ P ,

Chapter 5: Service Adaptation Mechanisms 80

Algorithm 5 Update Ranking Results A(new,R, PP).

function RankingResultUpdate(new,R, PP)
/* Modifies the ranking results based on property importance and affinity */
for all ResultEntry r ∈ R do

/* affw collects all effects on candidate rank */
affw = 0
for all Property P ∈ PP do

cnewcomer ← getCluster(P, new)
ccandidate ← getCluster(P, r)
affinity = calcAffinity(cnewcomer, ccandidate)
affw = affw + affinity ∗ impact(P)

end for

updateRank(r, getRank(r) ∗ affw)
end for

sort(R)
end function

the number of service interactions E, and the number of graph randomizations z. Table 5.2
lists the worst case runtime complexity for the various processing steps.

Step Complexity
Service to Property Mapping O(S ∗ P)
Entropy Calculation O(P ∗ p)
Interaction to Cluster Mapping O(E ∗ P)
Cluster Analysis O(P ∗ p2)
Zero Model Analysis O(E ∗ P ∗ z)

Table 5.2: Runtime Complexity

From this overview, the Cluster Analysis appears to inhibit scalability the most. How-
ever, by restrict analysis to properties with highest entropy value PDE, the maximum
value of observed property values p will grow slower than the number of total services.

5.5 Evaluation of Service Adaptation

This section demonstrates the effectiveness of our approach based on the motivating sce-
nario. This includes a step by step walk-through of metric computation and analysis of
multiple properties. The second part of this section focuses on simulation of a service
network.

Chapter 5: Service Adaptation Mechanisms 81

Property PDE PDElower PDEupper utiltotal
Loc 0.945 0.835 0.957 0.411
Org 0.802 0.396 0.808 0.826
Cap 0.626 0.275 0.718 0.772

Table 5.3: PDE, limits, and utility values for Location, Organization, and Capability
properties.

Property Total
Location L1 L2 L3 L4 L5 L6 L7 L8 L9
Impact 0 0 0 0 -1 0 0 0 0 0.07
Organization O1 O2 O3 O4
Impact 0 0 -0.95 0 0.20
Capability C1 C2 C3
Impact -0.86 -1 -0.92 0.92

Table 5.4: Property Impact Evaluation Results

5.5.1 Scenario

We observe a limited number of services in the ensemble network for sake of clarity. The
recommendation process observes three public properties: (i) Location (L1. . . L9), (ii) Or-
ganization (O1. . .O4), and (iii) Capability (C1. . . C3). Table 5.5 (upper part) outlines the
mapping of 14 existing services and one newcomer (S15) to the three properties. This con-
figuration yields the property distribution entropy metric (PDE), corresponding entropy
limits (PDEupper, PDElower), and respective utility in Table 5.3.

Analyzing the weighted interaction graph in Table 5.5 (lower part), we detect the impact
values depicted in Table 5.4. For Location and Organization, we derive impact only for L5,
respectively O3, in both cases a strong external trend. For Capability, the interaction graph
results in a strong external trend for all three property values (C1, C2, and C3). Hence,
for service S15 with properties (L9, O3, C1) and randomly chosen neighboring services
(S2, S4, S7, S9, S11, S12, S14), we arrive at the ranking results printed in the rightmost
column of Table 5.5.

Service S2 is ranked highest. As property Capability has the strongest impact on the
interaction network, we put most weight on affinity values amongst property values C1,
C2, and C3. In our scenario, services of type C1 tend to forward requests to service of
type C2, C2 to C3, and C3 back to C1. The ranking result thus recommends service S15
to forward requests primarily to S2 as S2 is the only neighbor of S15 exhibiting property
C2.

Chapter 5: Service Adaptation Mechanisms 82

Id S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14 S15

Loc L1 L2 L1 L2 L3 L4 L5 L6 L7 L8 L9 L4 L8 L9 L9
Org O1 O2 O3 O4 O1 O2 O3 O4 O1 O2 O3 O4 O1 O2 O3
Cap C1 C2 C3 C1 C2 C3 C1 C2 C3 C3 C3 C3 C3 C3 C1

S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 S11 S12 S13 S14 Rank

S1 0 0 0 0 35 0 0 0 0 0 0 0 0 0 -
S2 0 0 0 0 0 0 0 0 0 0 0 0 0 43 91.50
S3 33 0 0 6 0 0 0 0 0 0 0 1 0 0 -
S4 0 33 0 0 0 0 0 5 0 0 0 0 0 0 17.77
S5 0 0 0 0 0 0 0 0 0 26 0 0 8 0 -
S6 2 0 0 0 0 0 27 0 0 0 2 0 0 0 -
S7 0 0 0 3 16 1 0 0 1 3 0 0 0 0 3.05
S8 0 0 0 0 0 0 0 0 0 31 1 0 0 0 -
S9 3 0 0 0 0 0 29 0 0 0 0 0 0 0 15.37
S10 0 3 0 28 0 0 0 0 0 0 2 1 2 0 -
S11 0 0 1 32 2 0 0 0 0 0 0 1 0 0 4.95
S12 0 0 0 37 0 0 0 0 0 0 0 0 0 0 13.74
S13 47 0 0 0 0 0 0 0 0 0 0 0 0 0 -
S14 0 0 1 29 2 0 0 0 0 2 0 1 0 0 5.57

Table 5.5: Service network: weighted directed graph including ranking results for S15.

5.5.2 Simulation Setup

Simulation-based evaluation allows for analyzing our recommendation algorithm under
changing conditions with respect to property count, property impact, service network size,
and impact fluctuations. We focus only on the behavioral characteristics of our algorithm
and do not consider the costs of network monitoring. Chen et al. (Chen, Bindel, Song, and
Katz 2007) follow an algebra-based approach to efficient network monitoring.

The simulation environment consists of |S| = n services. Each service exhibits |P| =
m property values, corresponding to m distinct properties. Services have the capability
to forward a received request to another service from their service neighborhood h or
reject it. For each property, an acceptance matrix M simulates the impact of current
requirements on the service interaction structure. The matrix provides the likelihood of
any service with property value pi to accept a request from a service with property value
pj. As the simulation progresses, we adapt the importance weight of the various property
matrixes to reproduce the dynamic requirement changes. Table 5.6 provides a snapshot of
an acceptance matrix for property Organization comprising four property values. In this
example, request forwarding occurs in a circle.

In each simulation round, services receive r randomly assigned requests. Each service
then selects a member from its neighborhood to forward the request to. The receiving
service then chooses to accept or deny the request. In the former case, the request is
considered successfully completed. In the latter case, the sending service receives 1 penalty
point and has to find another service to forward the request to.

Chapter 5: Service Adaptation Mechanisms 83

from/to O1 O2 O3 O4
O1 0 1 0 0
O2 0 0 1 0
O3 0 0 0 1
O4 1 0 0 0

Table 5.6: Example acceptance matrixM for four organization property values O1 . . .O4
exhibiting maximal constraints.

Although services apply the acceptance matrix for incoming requests, they do not uti-
lize this information for outgoing requests. Instead, they engage the proposed ranking
algorithm. The algorithm then applies the analyzed public properties and service inter-
actions as described in the previous sections. To eliminate any effects of domain specific
ranking, the simulation assumes all services are equally able to process a request. We
calculate the benefit of our recommendation algorithm by comparing the penalty a new-
comer service receives when contacting neighbors by trial-and-error and when contacting
the recommended neighbors.

In all experiment iterations, we assign random requests to services each round to sim-
ulate service load fluctuations. To keep the overall network load constant, however, the
average number of assigned requests per service is fixed at r = 20.

5.5.3 Measuring Scalability

First, we demonstrate the scalability of our approach. We increase the number of services
(n), service neighborhood (h), and property values (pm). In each round, we measure for
each newly added service the penalty received in the process of successfully forwarding a
single request to a random neighbor, respectively a recommended neighbor.

The initial service network consists of n = 50 services, each having h = 24 random
neighbors. Four properties (P1 . . . P4) exhibiting |p| = 7, 5, 4, and 4 values respectively
exert impact via their acceptance matrixes. As we add a new service, we connect it
with random 20 + log(n)2 existing services. Additionally, we link random log(n) existing
services with the newcomer. For the four properties (P1 . . . P4), the simulation introduces
new property values at a growth rate of log(n).

Figure 5.4 prints the average benefit for every 50 consecutive benefit measurements over
multiple experiment runs. On average, the recommendation-based approach outperforms
the trial-and-error approach across scales. At the end of the scalability experiment, the
final service network comprises 10050 services, each linked to 105 neighbors on average.
Each of the four properties exhibit nine more values, bringing the number of choices to
|p| = 16, 15, 14, and 13 respectively. The recommendation algorithm yields similar good
results for this configuration as for the initial service network.

Chapter 5: Service Adaptation Mechanisms 84

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

1.4

1.6

1.8

2

2.2

2.4

2.6

Service Count

B
en

ef
it

of
 R

ec
om

m
en

da
tio

n
ov

er
 T

ria
l−

an
d−

E
rr

or
 S

el
ec

tio
n

Avg Benefit of 50 Measurements
 linear fit

Figure 5.4: Average benefit for service recommendation compared to trial-and-error selec-
tion. Numbers display aggregation of 50 new services within a service network growing
from 50 to 10050 services.

5.5.4 Measuring Adaptiveness

We have shown scalability for fixed impact of the four properties (P1 . . . P4). Here, we
demonstrate the adaptability of our approach. Along these lines, we dynamically change
the impact weights of the respective acceptance matrixes (M1 . . .M4) every 10 rounds
while measuring the quality of the recommendation result every round. The number of
services n = 50, their neighborhood size h = 24, and the property values (pm) remain con-
stant. As we keep the number of services fixed, we select in each round a random existing
service to measure the penalties for recommended and trial-and-error neighbor selection.

We analyze 30 experiment iterations, each comprising 100 impact changes. Figure 5.5
prints the benefit (and standard deviation) received for applying recommended selection
for each of the 10 rounds after the property impact change. We observe lower—but still
positive—benefit measurements for the first two rounds after a change. As the algorithm
self-adjusts, average benefit increases to 2.

5.5.5 Measuring Constraint Impact

The realizable benefit heavily depends on the constraints on the service network. When lack
of constraints result in high acceptance rates, any random neighbor will most likely be a
suitable selection. The ranking algorithm will provide considerable benefit once constraints
emerge and begin to increasingly restrict service interactions.

Chapter 5: Service Adaptation Mechanisms 85

In the third experiment, we start with four properties (each having 10 property values)
allowing interactions between any clusters (i.e., the corresponding acceptance matrixes are
filled with 1s). Every 10 rounds, we randomly select one particular property and increase
the constraints. As we continue to replace random 1s with 0s in the acceptance matrix, the
trial-and-error approach yields increasing penalties. We continue increasing the constraints
until every acceptance matrix M contains a single 1 on each row (e.g., Table 5.6). Thus,
for every property P , a service of any particular property value px ∈ P only accepts
requests from services exhibiting a single other property value py ∈ P (including x = y).
Throughout the experiment, property impact and service count remain fixed.

Figure 5.6 presents the average penalty difference over 10 iterations of n = 50 services
having on average h = 24 neighbors. Benefits start rising around round 1750. Around
3800, this growth levels off as the constraints can no longer be intensified.

0 1 2 3 4 5 6 7 8 9 10 11
0

0.5

1

1.5

2

2.5

3

Rounds after Constraints Update

B
en

ef
it

of
 R

ec
om

m
en

de
d

ov
er

 T
ria

l−
an

d−
E

rr
or

 S
el

ec
tio

n

Avg Benefit +/− Standarddeviation

Figure 5.5: Average benefit for each round
following a property impact change.

0 500 1000 1500 2000 2500 3000 3500 4000
−0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Constraint Increase

B
en

ef
it

of
 R

ec
om

m
en

de
d

ov
er

 T
ria

l−
an

d−
E

rr
or

 S
el

ec
tio

n

 Avg Benefit of 50 Measurements
 5th degree best fit

Figure 5.6: Average benefit for service rec-
ommendation compared to trial-and-error ap-
proach for increasing constraints. Numbers
display aggregated benefit of 50 consecutive
measurements.

5.5.6 Experiment Discussion

The simulation reflects the key challenges outlined in the introduction to reproduce the
constraints found in real world service networks. First, services provide only public in-
formation on their various static properties. Second, the decision process for selecting a
suitable receiving service relies purely on dynamic information. Third, services accept in-
coming requests based only on internal, non-observable information (i.e., defined by the

Chapter 5: Service Adaptation Mechanisms 86

acceptance matrix). Finally, no service obtains a complete view on service interactions.

Despite these challenges, our model and algorithms perform significantly better than
trial-and-error service selection. When comparing average, absolute penalty measurements
(Figure 5.7), the ranking algorithm results in 2.5 times lower penalties during the scalability
experiment, and 2.7 times lower penalties during the adaptivity experiment, respectively.
The third experiment displays 2.1 times lower penalties averaged over the final 1500 rounds.
For both scalability and adaptivity experiments, our algorithm requires on average slightly
more than a single forwarding retry (i.e., one rejected request). The trial-and-error ap-
proach, in contrast, results in approximately three retries. The constraint measurement
displays higher failure rates. Our recommendation algorithm requires less than 2.5 retries,
while trial-and-error selection causes 5 rejections.

At this stage, we cannot predict the algorithm’s performance in real world implemen-
tations. However, our simulations yield very promising results and demonstrate both
scalability and adaptiveness of our approach.

4

5

6

7

8

�� ���� � �
0

1

2

3

4

Scal.

Trial

Scal.

Rec.

Adapt.

Trial

Adapt.

Rec.

Constr.

Trial

Constr.

Rec.

� ��	�
�

Figure 5.7: Average penalty measurements and ± standard deviation for scalability, adap-
tivity, and constraints experiments; comparing recommended versus trial-and-error selec-
tion.

Chapter 6

Service Infrastructure Adaptation

Techniques

Infrastructure Adaptation Techniques target adaptation at the level of a complete en-
semble. Individual services apply context to adapt within the scope of their immediate
ensemble neighborhood. Services, however, cannot monitor the whole environment. They
remain unaware whether their functionality and corresponding adaptive behavior is still
appropriate, or whether another service is better suited. Consequently, we propose separa-
tion of concerns for adaptation techniques. Services focus on self-adjustment as required by
their configuration and purpose. The infrastructure assumes responsibility for monitoring
requirement fulfillment and selection of system-wide ensemble adaptation actions. In this
chapter, we introduce:

Adaptation Process introducing our infrastructure adaptation methodology based on
the MAPE-K cycle of autonomic computing.

Capability Model describing service metadata including configuration aspects.

Requirements Rules observe ensemble metrics and create appropriate capability con-
straints. These constraints are matched against currently deployed services to identify
service capability mismatches.

Requirements Clustering groups a set of requirements when service utility values indi-
cate that a composition of multiple services provides better requirements satisfaction
than a single service.

Simulated Annealing-based Composition achieves an optimal trade-off between min-
imal aggregation costs and maximal requirements fulfillment.

87

Chapter 6: Service Infrastructure Adaptation Techniques 88

6.1 Infrastructure Adaptation Approach

The infrastructure adaptation process (Figure 6.1) closely resembles the autonomic MAPE-
K cycle comprising monitoring, analysis, planning, and execution phases. Specifically,
we monitor service capability and ensemble events. Ensemble requirements tracking de-
tects if these events trigger execution of the current set of requirement rules. Subsequent
capability-requirement mismatch evaluation determines the need for infrastructure adap-
tation. Service utility calculation matches the set of available services against the set of
unsatisfied requirements. This process step considers not only single services. We also
apply clustering to detect service aggregation of higher overall utility. A tradeoff between
best matching services, respectively aggregations, and deployment costs provides a ranked
set of alterative adaptation configurations. Ultimately, management selects and executes
one of the available choices. We outline only the very fundamental adaptation steps in
Figure 6.1. The flow chart 6.2 in Section 6.2 contains additional information on involved
components and branching conditions. The adaptation process relies upon five building
blocks:

Ensemble Context events provide continuous information to update the ensemble con-
text. Ensemble metrics provide various aggregated views of the overall ensemble.
The ensemble context models have been discussed in Chapter 2.1.

Service Capabilities are metadata for effective service selection. Details include service
classification, usage constraints, and configuration alternatives.

Ensemble Requirements describe necessary and desirable service capabilities for a
given ensemble context.

Capability Matching evaluates currently deployed services against requirements for the
underlying context. Capability mismatches trigger the adaptation process to find
better suited services, respectively service aggregations.

Service Composition Recommendation trades off services best fulfilling required ca-
pabilities and costs for deployment, respectively aggregation. Previous service invo-
cations and service aggregations determine suitable service candidates.

In the following section, we discuss the overall adaptation process in detail before
providing a comprehensive description of these major building blocks.

6.2 Adaptation Process

This section outline role and place of the core building parts in the adaptation process.
In this chapter’s introduction, Figure 6.1 presented the general approach, here we go into
more detail and discuss the process visualized in Figure 6.2. Chapter 7 provides additional
implementation specific details.

Chapter 6: Service Infrastructure Adaptation Techniques 89�������������	
�������� ����	����
������ ��	���	
�����	 ���������	��	

�	���	 ���	���	
•� !"#$ %&'&(#)#*+%,&-.
• /-0 1() /" -*0 •�) $*#2- &-3%2-4#.5!&*#2-

• /-0 1() 6 75#! 1 -*0 8!&$9#-.
• 6 75#! 1 -*0:%&'&(#)#*+ ;&*$,/"&)5&*#2- • � !"#$ <*#)#*+ %&)$5)&*#2-

• %)50* !#-.
• � !"#$ =)* !-&*#" %21'&!#02-

• /-0 1() %2-* >*
• /-0 1() %2-4#.5!&*#2- 33&33! $2-4#. ! 12"

Figure 6.1: Infrastructure adaptation process overview

6.2.1 Monitoring

There are two types of events triggering the adaptation process. First, service capability
events inform the adaptation framework on services subject to capability changes. Fig-
ure 7.2 in the implementation chapter visualizes the Capability Change UML model. The
ProfileChange event lists the profiles that have changed, the individual affected compo-
nents, and gives details on the specific capabilities that are new, removed, or updated.
The RepositoryChange event provides references to new, removed, or changed profiles.
Subsequently, interested entities need to retrieve event details directly from the repository.

Second, ensemble events cause updates of the ensemble context. These events do not
triggering requirements tracking directly since not every event will trigger a change in the
ensemble metrics. Section 4.1 contains the details on the ensemble context model, while
Section 4.2 outlines the context capturing process. Ensemble metric events themselves
simply list the changed metric and provide the corresponding new value.

6.2.2 Analysis

The ensemble configuration comprises two main parts. First, the service configuration lists
currently provided services including their capability configuration and their requirement
match. The configuration also states the service’s requirement fulfillment degree (i.e., the
membership) to allow for fuzzy clustering. Second, the Ensemble Requirements consist of
requirement sets for the various service categories. In each category, a list of requirements

Chapter 6: Service Infrastructure Adaptation Techniques 90

Ensemble Metric

Update

Candidate

Comparison

Matching

Aggregations

Aggregation

Costs

(Distance

Graph)

Set of ranked

Service alternatives

Selection and

Reconfiguration

Configuration

Update
Requirements

Clustering+

Aggregation

Ensemble

Event

Service

Capability

Change

Ensemble Context

Ensemble

Requirements

Tracking

Capability Update

Ensemble Service

Configuration

Ensemble Context

Manager

Config

affected?

Yes

Requirements/

Capability Match

Evaluation

Mismatch >

threshold?

No

DONE

Yes

Service Utility

Calculation for

unfullfilled

Requirements

Cluster

requirements?

Yes No

Requirements Update

M
o
n
it
o
ri
n
g

A
n
a
ly
s
is

P
la
n
n
in
g

M
a
n
a
g
e
m
e
n
t

Figure 6.2: Infrastructure adaptation process flow

Chapter 6: Service Infrastructure Adaptation Techniques 91

identify capabilities and properties along with the parameters for the selected utility func-
tion. Figure 7.9 in the implementation chapter visualizes the ensemble configuration UML
class diagram.

Ensemble requirements tracking identifies those ensemble configurations that are af-
fected by service capability events and ensemble metric events. In the latter case, we merely
check if the changed ensemble metrics are decisive in any requirement (e.g., a threshold
has now been crossed). If so, we updates the requirements in the ensemble configuration
and proceed with matching of requirements to capabilities.

For capability changes, requirement tracking analyzes which ensemble configuration
includes the respective service. It subsequently determines if the current set of requirements
includes the changed properties or capabilities.

Optionally, we check ensemble configurations for services that provide the same capa-
bility, but have remained unchanged. We potentially replace the currently used service
with the changed service when the service exchange promises to yield better requirement
fulfillment.

In the next step, we rematch requirements and capabilities. In the case of changed
service capabilities, we compare existing requirements against updated capabilities. In
the case of changed ensemble metrics, we compare updated requirements against existing
service capabilities.

We summarize across all mismatch values to evaluate if alterations in the set of provided
services is justified. We trigger the components in the planning phase, when the mismatch
exceeds a given (domain specific) threshold. From the complete set of requirements, we
pass only those requirements to the next stage that are poorly fulfilled.

6.2.3 Planning

Planning is concerned with identifying the best available services for a given set of require-
ments. To this end, service utility calculation analyzes each service this is fulfilling at least
one requirement. Each service receives a utility score for each requirement.

For multiple requirements, the threshold model subsequently decides whether to in-
voke the clustering process. Clustering assigns each constraint to a cluster with varying
fuzzyness. Services are then ranked for each cluster. Simulated Annealing determines a
near-optimal aggregation taking into consideration aggregation costs. We focus purely on
service interaction distance as aggregation costs in the scope of this thesis. Ultimately, we
obtain multiple aggregation candidates.

In case of skipping clustering, we continue directly to ranking the services according to
their utility score. We recommend only those services (respectively service aggregations)
that provide a better requirement-capability match than the currently configured service(s).
When no service provides high enough utility, no service is recommended.

Chapter 6: Service Infrastructure Adaptation Techniques 92

6.2.4 Management

The final procedure of selecting and configuring the recommended services remains outside
the scope of this thesis. Potential approaches include automatic configuration such as the
the selection algorithm (Alg. 5) in Section 5.4.

6.3 Service Capabilities

Service capabilities describe behavior properties which cannot be directly derived from
the service’s WSDL document. Example properties include limitations on simultaneous
service use, supported resource access strategies, or reconfigurability. Capabilities usually
change when a service undergoes major modification. Adding a new operation or extending
service back-end resources provides new or better functionality. Services might also choose
to reduce capabilities to remain available in spite of high load. This graceful degrading
allows service clients to trade-off limited functionality and the cost of finding and invoking
an alternative fully functional service. In any case, service capabilities explicitly exclude
highly volatile information such as QoS parameters.

The service capability meta model shares some similarities with the Composite Capa-
bility/Preference Profiles (CC/PP) specification. The original purpose of CC/PP foresees
clients to transmit their capabilities in order to allow service providers to adapt deliv-
ered content accordingly. In contrast, our approach envisions services to describe their
capabilities to enable service clients to select the most suitable service.

The service capability model borrows the concepts of component and property but goes
beyond describing simple service characteristics. Selectable capabilities and supported
capability compositions are the main distinct differences to the CC/PP model. These
properties are key to reconfiguration and adaptation. The capability meta model comprises
the following elements:

Profile contains all capabilities of a single service. The WSDLlocation identifies the cor-
responding service instance. The ServiceCategory and CategoryFit describe how well
a service fits into a given ActionCategory or any additional domain-specific category.
A profile consists of one or more Components.

Component describes a certain function or non-functional aspect of a service. A notifi-
cation service, for example, will distinguish amongst publication related capabilities
and subscription related capabilities. The same mechanism separates operational
components from management components. Each component identifies the set of
WSDL operations for which the capabilities apply. Especially general purpose opera-
tions will appear in multiple components. A component specifies regular capabilities,
selectable capabilities, and supported configurations on the selectable capabilities.

Chapter 6: Service Infrastructure Adaptation Techniques 93

Capability comprises properties and optionally sub capabilities. Properties state the
actual capability details while sub capabilities enable further structuring. Each ca-
pability exhibits a fitness factor. This factor states how well the service supports
the particular capability. It ranks the service’s behavior in the overall list of services
exhibiting this capability. Any restrictions in applicability result in a lower fitness
value. This mechanism enables fine-grained service matching and replaceability. To
this end, services describe capabilities outside their core competency. They provide
existing operations and components for a different purpose. Although they will not
yield high fitness values, they become substitutes when specialized services are not
available. For example, communication services can serve as coordination services to
some extent for a limited time.

Property identifies and provides details such as maximum number of requests per minute.
The meta model defines five simple properties for integer, decimal, boolean, times-
tamp, and string values. FileSize is an example complex property comprising size
unit (e.g., kB, mB) and size value.

SelectableCapability describes capabilities that need selection and (optionally) config-
uration before they become available to the client. The list of alternative capabilities
consists of regular capabilities or again selectable capabilities. For each choice, the
Selectable Capability defines whether a selection is required and if there is a capability
selected by default.

Combination originates in the WS-Policy specification to model valid compositions of
policies. Here, a Combination defines valid combinations of selectable capabilities.
Note, the SelectableCapability element only defines the set of available choices. Se-
lection identifies a SelectableCapability (i.e., representing a set of capabilities) or a
single Capability. All contains a set of SelectableCapabilities, expressing any possible
capability combination. OneOf contains an exhaustive list of possible Combinations.
If no other restrictions are specified, NoneOf implies that all combinations are valid
except for the listed ones.

Transition describes valid reconfiguration paths. Specifically, a transition contains a min-
imum of one start configuration (i.e., Combination) and a minimum of one reachable
end configuration. A set of positive transitions explicitly lists allowed reconfigura-
tions. Negative transitions implicate all transitions are valid, except the listed ones.

6.4 Ensemble Requirements

Ensemble requirements depend on the current ensemble state and define a desirable ensem-
ble configuration. To this end, we apply event-driven rules. A requirement rule describes
metric conditions and subsequent constraints applied to a particular capability. Changes

Chapter 6: Service Infrastructure Adaptation Techniques 94

tProfile
WSDLlocation : anyURI
«attribute» ProfileId : anyURI

tComponent
WSDLoperationScope : anyURI [0..*]
«attribute» ComponentId : anyURI

Component
0..*

«choice»

tServiceCategory
ActionCategory : tActionCategory
AnyCategory : anyURI
«attribute» CategoryFit : t0to1

ServiceCategory
1..*

tCapability
CapabilityId : anyURI
«attribute» FitnessLevel : t0to1

Capability
0..*

tSelectableCapability
«attribute» RequiredSelection : boolean
«attribute» DefaultSelection : anyURI [0..1]

SelectableCapability
0..*

tCombination

SupportedConfigurations
0..1

tTransition
«attribute» isPositive : boolean

SupportedTransitions
0..*

SubCapability
0..*

tProperty
«attribute» PropertyId : anyURI

Property
0..*

tDefaultProperty pResourceSize
value : int
unit : tUnit

Alternative
1..*

«group, choice»

_Choice1
Selection : anyURI

_choice1
0..*

StartCombination
1..*

EndCombination
1..*

«choice»

tSimpleProperty
intValue : int [1..*]
boolValue : boolean [1..*]
decValue : decimal [1..*]
timestampValue : dateTime [1..*]
strValue : string [1..*]

value
1..1

All
1..1

OneOf
1..1

NoneOf
1..1

Figure 6.3: Capability meta model UML class diagram

in ensemble metrics fire corresponding rules which then define optimum service capabil-
ities (i.e., constraints). In the proceeding sections, we then compare deployed services
with calculated constraints and compose the best reconfiguration plan given the available
capabilities.

When designing rules, we have to consider a number of challenges. First, different
ensembles will exhibit different metrics. Thus, rules cannot rely on having all metrics
available. Second, ensembles have various goals which reflect in customized additional
rules and removal of nonessential rules. Rules must not rely on other rules being active
or available. Given the complexity and heterogeneity of requirements, tight coupling of
rules is not an option. Third, we need to provide the most fitting services regardless of
the requirement fulfillment level available services exhibit. When services lack the required
optimum capabilities, we need to find services that support the next highest requirements.
Consequently, rules need to enable smooth degradation of provided capabilities.

To this end, we design loosely coupled, weighted rules. Rules depend only on metrics,

Chapter 6: Service Infrastructure Adaptation Techniques 95

they do not reference any other rule. Fine-grained rules do not override coarse-grained
rules. Instead, they generate constraints of higher importance (i.e., constraints exhibiting
a higher weight). When two requirements (not necessarily from the same rule) constrain
the same capability, the more important one takes precedence. This mechanism is vital
to smooth degrading. When most significant constraint cannot be satisfied, the next most
important constraint becomes active. We mitigate any implicit dependency on the firing
of other rules by introducing default constraints. The default constraints describe basic
capabilities necessary for the service ensemble when no other rule generates more specific
constraints on the particular capabilities.

A requirement rule specifies following elements:

Rule Identifier enables requirement tracing. All constraints generated by the same rule
carry the same rule identifier.

Metric Conditions trigger the generation of constraints. Rules can aggregate any num-
ber of metrics, but must refrain from applying results generated by other rules.

Capability Identifier determines the capability.

Property Identifier determines the property within the capability.

Utility Function Type defines whether the utility function compares linear properties,
overlap of selectable capabilities, or extent of selectable capabilities.

Utility Function Identifier defines the candidate comparison function. Besides the lin-
ear utility functions introduced in Section 4.3, we provide set comparison functions
(see list below).

Utility Function Parameters for linear functions, the parameters provide the limits.
For set functions, the parameters list the required capability elements.

Weight describes the importance of constraints. More specific constraints yield higher
weights than general constraints. Constraints with weights equal to zero are ignored.
We rate default constraints at 0.1 and specialized constraints between 0.5 and 1.

Service Category identifies the type of service the constraint applies to.

We provide the following set of utility functions:

ExistsUtility checks for the availability of a required capability, or non-existance of an
undesired capability.

ChoiceUtilityHigh considers all services exhibiting the set of selectable capabilities, and
increases the score by additional selectable choices. Thus, services with high config-
urability yield better scores than services providing the basic, required set.

Chapter 6: Service Infrastructure Adaptation Techniques 96

C4 w=0.1, cap=3

C8 w=0.1, cap=4

C1 w=0.1, cap=1

Metric 3

Metric 2

Metric 1

Rule 1

C2 w=0.5, cap=2

C3 w=1.0, cap=3

C5 w=0.5, cap=4

Rule 2

Rule 3

Rule 4 C7 w=0.5, cap=1

C6 w=1.0, cap=4

C9 w=0.1, cap=5

C8 w=0.1, cap=4

C4 w=0.1, cap=3

Metric 4

Metric 5

C1 w=0.1, cap=1

C2 w=0.5, cap=2

C3 w=1.0, cap=3

C5 w=0.5, cap=4

C7 w=0.5, cap=1

C6 w=1.0, cap=4

C9 w=0.1, cap=5

Figure 6.4: Metrics triggering rules which in turn generate constraints on capabilities (cap)
with weight w.

ChoiceUtilityLow is the inverse of ChoiceUtilityHigh. Services that offer the required
set of capabilities and nothing else yield better utility.

SelectionUtilityOne selects any service that exhibits one of the given capabilities.
Matching more than one capability does not increase the rank.

SelectionUtilitySome extends SelectionUtilityOne. A higher overlap of given constraint
capability and provided service capabilities results in higher utility values.

SelectionUtilityAll requires all constraint capabilities to match the provided capabili-
ties. ChoiceUtilityHigh and ChoiceUtilityLow extend this function.

Consider following example rule—written in DROOLS (for more technical details see
Chapter 7). When the Ensemble Location Entropy value exceeds 0, the rule in Listing 6.1
generates a resource storage constraint. The constraint specifies that a service with resource
storage capability needs to support at least one folder for each location in the ensemble and
defines any service providing more than ten times the required amount as equally suitable.
Finally, the rule stores the constraint for the particular ensemble and service category.

We aggregated constraints on identical capabilities and then sort constraints in descend-
ing order of weight. Figure 6.4 visualizes the relations between metrics, rules, constraints,
and constraint aggregation.

Chapter 6: Service Infrastructure Adaptation Techniques 97

1 rule " ELE_above_Threshold"

2 dialect "java"

3 when

4 metrics : Metrics (metrics .ele > 0)

5 then

6 TSimpleDecimalConstraint r = RequirementsFactory.getConstraint(

7 "ELE_abovethreshold_check -basic ",

8 URIs.CAP_ResStorage ,

9 URIs. PROP_MaxFoldersPerAccount_ResStorage ,

10 ValueUtilitySoftLowerStableLimitedOver .UTILITY_TYPE ,

11 ValueUtilitySoftLowerStableLimitedOver .class.getSimpleName()

12 new double []{ metrics .getLocationMetric (). getClusters (),

13 metrics .getLocationMetric (). getClusters ()*10 ,

14 Double . MAX_VALUE },

15 0.5d

16);

17 rcc .addRequirement(metrics .getEnsembleURI(),

18 TActionCategory.EXECUTION , r);

19 end

Listing 6.1: Example DROOLS requirement rule generating a resource storage constraint
when the Ensemble Location Entropy (ELE) exceeds 0.

6.5 Capability Matching

6.5.1 Requirements Filtering

Loose coupling of requirements rules renders the rule engine unaware of multiple require-
ments constraining the same capability. Matching capabilities requires, therefore, prior
filtering of multiple—potentially conflicting—constraints on the same capability.

The Gracefully Degrading Matching Algorithm 6 determines which constraint comes
into operation. For sake of simplicity, suppose that each service profile consists of a single
component. Further, let us define the set of candidate components s ∈ S that we collect
from all available service profiles for a particular service category. We capture the con-
straints aggregated for identical capabilities in RL = {R1 . . . Rn} such that all constraints
c ∈ Ri concern capability i. Each constraint c provides the details as outlined in the
previous section.

We evaluate requirements in descending order of weight within each requirement list
R. If no capability fulfills the top requirement in R, we remove that requirement and
evaluates the next highest. Once we have identified a requirement that can be fulfilled
by at least one service, we drop all other less important constraints (i.e., those with lower
weight) on the same capability. Ultimately, each requirement list R ∈ RL contains only a
single requirement for each capability. The set of top requirements in RL become the set
of constraints in the subsequent requirements cluster analysis.

Chapter 6: Service Infrastructure Adaptation Techniques 98

Algorithm 6 Gracefully Degrading Matching Algorithm GDM(C,RL).

function MatchCandidates(C,RL)
/* Match candidate components against capability constraints. */
for all RninRL do

sortDescending(Rn)
end for

sortDecending(RL)
/* Lists of constraint and constraints within these lists are sorted descending. */
for all Rn ∈ RL do

for all c ∈ Rn do

maxUtiln ← 0
/* Collect all utility values in the utility matrix U */
U ← ∅
for all s ∈ S do

/* Calculate for each component the utility function as specified in the
constraint. */

utils = calcUtil(c, s)
U ← utils
if utils > maxUtiln then

(maxUtiln ← utils)
end if

end for

if maxUtiln ≤ 0 then

/* No component s could satisfy the constraint c. */
removeFromList(Rn, c)

else

/* At least one component s could satisfy the constraint c, thus neglect
lower weighted constraints on the same capability.*/

clearList(Rn)
addToList(Rn, c)
rankCandidates(U , SC)

end if

end for

end for

/* RL contains now only one constraint element in each list. */
return RL

end function

Chapter 6: Service Infrastructure Adaptation Techniques 99

Symbol Meaning
ci ∈ C constraint i belonging to set of constraints C.
n number of constraints n = |C|.
sj ∈ S service j belonging to set of services S.
m number of services m = |S|.
uij ∈ U service capability utility value for constraint i and service j.
rj ∈ R normalized preliminary rank rj for service sj with

∑

j rj = 1.

fi ∈ F normalized constraint fulfillment degree fi for constraint ci with
∑

i fi = 1.
wi ∈ W normalized constraint weight wi for constraint ci with

∑

iwi = 1.
τi ∈ T normalized importance factor, aggregating fi and wi with

∑

i τi = 1.
H(s) Service utility entropy calculated on utility values for service s across all

n constraints.
H(c) Constraint utility entropy calculated on utility values for constraint c

across all m services.
ts, tc Thresholds for H(s) and H(c).
δs, αs, δc, αc Configuration parameters for the threshold model calculating ts and tc.

Table 6.1: Symbols applied in requirements clustering.

6.5.2 Requirements Cluster Analysis

When we rank all services from a particular category, we implicitly assume they are able
to fulfill all top-weighted constraints. However, the more specialized the constraints be-
come, the less likely a single service exhibits all required capabilities to sufficient degree.
Two or more services often compensate for their individual shortcomings. We extend the
service matching and ranking approach to provide the optimum set of services matching
the required constraints.

Consider following simple scenario comprising six constraints c1 . . . c6 compared to the
capabilities of five services s1 . . . s5. Table 6.2 displays utility results for matching of each
constraint and capability. In the extreme Case 1 services s1 to s3 each match two constraints
completely (x = 100) and fail to match the remaining constraints (x = 0). Services s4 and
s5 exhibit mediocre, respectively bad matching results across all constraints. In Case 2,
all services match the constraints to some extent. Ranking the complete set of services
will not yield practical results in Case 1. Splitting the services into multiple groups, and
ranking them separately, will provide more useful service recommendations.

The following process discovers whether services belong to different categories, and
if so, defines service membership in these categories. In short, we introduce the service
utility entropy and constraint utility entropy to detect potential existence of clusters. Sub-
sequently we cluster related constraints and execute rankings for each cluster separately.
Ultimately, we recommend the top service(s) from each cluster.

The service utility entropy applies Shannon’s entropy definition (Shannon 1948) on the

Chapter 6: Service Infrastructure Adaptation Techniques 100

S1 S2 S3 S4 S5 fc S1 S2 S3 S4 S5 fc

1 2

C1 100 0 0 40 10 0.156 100 80 70 20 50 0.191
C2 100 0 0 60 10 0.177 80 20 80 30 50 0.155
C3 0 100 0 40 10 0.156 30 100 0 50 45 0.134
C4 0 100 0 60 10 0.177 80 20 30 50 45 0.134
C5 0 0 100 40 10 0.156 70 100 80 20 80 0.208
C6 0 0 100 60 10 0.177 80 20 50 70 80 0.179
rs 0.208 0.208 0.208 0.313 0.063 0.262 0.202 0.185 0.143 0.208

3 4

C1 80 80 90 5 10 0.342 80 10 30 0 10 0.168
C2 90 80 90 0 10 0.348 90 10 30 0 10 0.181
C3 30 20 30 0 10 0.116 30 80 10 0 10 0.168
C4 25 25 30 0 10 0.116 25 80 0 0 10 0.148
C5 5 10 0 0 10 0.032 5 20 90 0 10 0.161
C6 5 10 10 0 10 0.045 5 25 90 5 10 0.174
rs 0.303 0.290 0.323 0.007 0.077 0.303 0.290 0.323 0.007 0.077

Table 6.2: Constraint ci to service sj capability match (Utility matrix U) including un-
weighted, preliminary service rank r and constraint fulfillment degree fc. In all four cases,
constraints are equally important (wi = 1/6 ∀ i = 1→ 6).

results of the basic matching process. The service utility entropy H(s) is defined as:

H(s) = −
n
∑

i=1

u(s)i
∑

u(s)
∗ log(

u(s)i
∑

u(s)
) (6.1)

where u(s)i is the function for deriving the utility of service s for constraint i. Table 6.3 lists
the service rank entropy for our scenario. Maximum entropy for n constraints is log(n).

We introduce a threshold value t to decide when to engage in cluster analysis. We
assume existence of two or more clusters if the arithmetic mean of all service utility entropy
values drops below ts, with 0 ≤ ts ≤ log(n). Lower values of ts require more distinct
services. Extreme cases include ts = 0, where services need to match exactly one constraint
and none else, and ts = log(n) where services exhibiting only minor differences in their
utility values are considered belonging to different categories.

The entropy average is a necessary but not a sufficient measurement to determine
the presence of different categories. The metric highlights merely unequal distribution of
constraint satisfaction. It cannot distinguish in-between services matching the same or
different conditions. Case 3 and Case 4 in Table 6.2, for example, yield the same service
entropy value for the same service.

We approach this shortcoming by calculating the constraint utility entropy H(c). The
definition of H(c) is the same as for H(s) but calculating across constraints instead of
services. Constraint utility entropy values will be high when services exhibit high overlap

Chapter 6: Service Infrastructure Adaptation Techniques 101

H(s) s1 s2 s3 s4 s5

Case 1 0.693 0.693 0.693 1.792 1.748
Case 2 1.742 1.560 1.555 1.687 1.758
Case 3 1.399 1.471 1.373 0 1.792
Case 4 1.399 1.471 1.373 0 1.792

H(c) s1 s2 s3 s4 s5 s6

Case 1 0.803 0.846 0.803 0.846 0.803 0.846
Case 2 1.506 1.489 1.285 1.508 1.518 1.524
Case 3 1.289 1.215 1.311 1.322 1.055 1.352
Case 4 1.032 0.991 1.032 0.797 0.861 1.020

Table 6.3: Service utility entropy H(s), (maxH(s) = 1.792) and constraint utility entropy
H(c), (maxH(c) = 1.609) for unbiased utility values U .

of matching constraints (see Table 6.3 Case 2 and Case 3). Whereas H(c) will be low when
services yield little overlap of matching constraints (see Table 6.3 Case 1 and Case 4).

Analog to ts, we derive the arithmetic mean of H(c) and define a threshold tc, such that
0 ≤ tc ≤ log(m), with m the number of services. Similar to H(s), the arithmetic mean of
H(c) is required but not sufficient to determine the presence of multiple categories.

6.5.2.1 Cluster Threshold Model

We define a joint criteria on H(s) and H(c) to decide when to trigger cluster analysis.
We require the arithmetic mean of H(s) < ts and the arithmetic mean of H(c) < tc. The
combined condition requires both entropy measurements to remain below the corresponding
thresholds:

cluster if

∑m
i=1H(si)

m
< ts AND

∑n
j=1H(cj)

n
< tc (6.2)

The threshold model enables selection of appropriate entropy threshold values ts and
tc. It works with three parameters: n (m), δs (δc), and αs (αc). The number of util-
ity values included in calculating the entropy (n, respectively m) has significant impact
on the entropy value and thus also on any threshold. Suppose a service exhibiting util-
ity values [100, 100, 30, 30] yielding entropy 1.233. In this example, we consider such a
configuration as qualifying for cluster analysis and set the respective threshold to 0.9 of
maximum entropy (log(4) = 1.386). We then increase the constraint set to eight. We as-
sume the service exhibits the same distribution of matching and non-matching constraints,
i.e., [100, 100, 30, 30, 100, 100, 30, 30]. This yields an entropy of 1.926 and amounts to 0.93
of the maximum entropy (log(8)). The service would no longer qualify for cluster analysis.

The other factors, δ and α, specify the desired distribution of utility values that indicate
potential clusters. Specifically, δ determines how much higher the average of best rated
utility values need to be compared to the average of remaining values. To this end, α divides

Chapter 6: Service Infrastructure Adaptation Techniques 102

the set of values into top-rated and bottom rated. Both, α and δ are within interval [0, 1].
The threshold model mimics a prototype utility distribution. It assumes α% of elements
yielding maximum utility (x = 100), and the remaining 1− α% elements yielding δ utility
(x = 100 ∗ δ). The following function returns the threshold for any given n, α, and δ. The
calculation left of the + sign derives the entropy for the top n∗α elements, while the right
side calculates the entropy for the remaining n ∗ (1 − α) elements. The right most factor
normalizes the total entropy to the interval [0, 1]:

t = −

(

n ∗ α ∗
1

xsum
∗ log(

1

xsum
) + n ∗ (1− α) ∗

δ

xsum
∗ log(

δ

xsum
)

)

∗ log(n)−1 (6.3)

where xsum = n ∗α+ n ∗ (1−α) ∗ δ, the sum of all prototype utility values. An example:
n = 5, α = 0.2 and δ = 0.4 selects the single best element (20% of 5), assumes its
utility to be 100, and expects the average of the remaining utility values to equal 40. This
configuration equals to calculating the entropy for the utility set [100, 40, 40, 40, 40]. The
corresponding relative entropy value (here 0.94) becomes the threshold. The entropy for
a utility set with equal bottom average (ubottom = (1− α) ∗ 40) provides an upper bound.
Any other set having the same average bottom partition (e.g., [100, 50, 50, 30, 30]) yields
entropy values below the threshold.

Figure 6.5 displays various combinations for α and δ for n = 2 → 20. Configuration
of the threshold model focuses on selecting α and δ as n derives automatically from the
number of constraints. Parameter selection becomes a tradeoff between tolerating false
negatives—potentially missing less distinct categories—and accepting false positives.

Figure 6.5 highlights the trend of any threshold configuration approaching the maximum
entropy as n grows. It becomes increasingly hard to distinguish between a service set with
and one without potential categories. To mitigate this shortcoming, we penalize services
that match hardly any constraints as they distort the average of entropy values. We
also penalize little supported and less important constraints. This bias applies solely for
deriving the threshold values ts and tc. The clustering process utilizes the unbiased utility
matrix (U).

Specifically, we multiply the service utility table with the relative preliminary service
rank, constraint fulfillment degree and constraint weight. When calculating the entropy
values on the biased matrix Ub, barely matching services yield little impact on the entropy
average. Well matching services will exhibit high impact and raise the threshold for cluster
analysis. There is no need to search for clusters when there are sufficiently many well
matching services. In addition, more important constraints (i.e., high constraint weight
wc) will yield high impact. Constraints that are hardly supported (i.e., low fulfillment
degree fc) will exhibit little impact as they should not trigger cluster analysis. The biased
utility matrix Ub is defined as:

Ub = U ×R× T (6.4)

where vector R contains the normalized preliminary rank ri for each service si with
∑

i=1,...,n ri = 1; the importance vector T aggregates normalized constraint weights wj

Chapter 6: Service Infrastructure Adaptation Techniques 103

2 4 6 8 10 12 14 16 18 20

0.4

0.5

0.6

0.7

0.8

0.9

1

delta0.1 − alpha0.4
delta0.2 − alpha0.3
delta0.2 − alpha0.5
delta0.4 − alpha0.3
delta0.5 − alpha0.5

Figure 6.5: Clustering threshold for different combinations of αs and δs with n = 2→ 20.

Case 1 Case 2 Case 3 Case 4 α δ t
Meana(H(s)) 0.627 0.912 0.517 0.674 0.3 0.2 0.828
Meana(H(c)) 0.467 0.887 0.713 0.498 0.3 0.1 0.653

Table 6.4: Arithmetic mean for service utility entropy H(s), and constraint utility entropy
H(c) for biased utility values Ub.

(
∑

j=1,...,m |wj| = 1) and normalized constraint fulfillment degree fj with
∑

j=1,...,m fj = 1
such that:

τi =
fi ∗ wi

∑

n fj ∗ wj
(6.5)

Table 6.4 lists the arithmetic mean ofH(c) andH(s) for all four scenario cases, maximal
entropy values, and respective thresholds.

6.5.3 Introduction to Fuzzy C-Means Clustering

Clustering algorithms distribute data elements into a set of meaningful partitions. They
fall into two main categories: assigning each data element to exactly one particular cluster

Chapter 6: Service Infrastructure Adaptation Techniques 104

Symbol Meaning
xi=1...n ∈ X data elements to be clustered. Here, xi is the set of service utility values

u for constraint i.
d dimension of the data elements.
z number of clusters to distribute the data set across.
̟ fuzzy factor determining crisp or fuzzy cluster boundaries.
ε convergence limit.
maxIt maximum number of iterations when convergence is not achieved.
kj=1...z ∈ K clusters centers (i.e., centroid) of same dimension d as the data elements

X .
M membership table, with µij defining the membership degree for data ele-

ment i for cluster j.
‖ • ‖ distance function, measures distance between any two data elements, any

two clusters centers, or between any element and any cluster center.
vb(X), v(X) (biased) variance in the data elements.
cmpb, cmp (biased) cluster compactness measure.
sepb, sep (biased) cluster separation measure.
q(β) clustering quality function applying cmp and sep with preference param-

eter β, with 0 ≤ β ≤ 1 and 0 ≤ q ≤ 1.
uijk Final utility for service j respective to constraint i within cluster k.

Table 6.5: Symbols applied in Fuzzy C-Means clustering.

(hard clustering), or assigning data elements to multiple clusters (soft clustering). We focus
on the latter category of fuzzy clustering algorithms for grouping constraints according to
implicit service categories.

Fuzzy C-Means (FCM) (Bezdek 1981) associates each data element xi to every cluster
kj=1...z. The membership tableMij describes the degree of data element xi belonging to a
particular cluster kj, such that

∑

j=1...z µij = 1. Elements close to the cluster center yield
higher membership values for that particular cluster than elements farther away. Table 6.5
lists symbols and meaning involved in FCM clustering.

Consider an example data set comprising two-dimensional elements x1...13 displayed in
Figure 6.6 (a). The algorithm’s objective is minimizing the overall distance of elements to
the cluster centers. This within-class least squared-error function is defined as:

J̟ =
n
∑

i=1

z
∑

j=1

µ̟ij ∗ ‖xi, kj‖
2 (6.6)

where ̟ > 1 is the fuzzy factor 1 and ‖ • ‖ is a distance measurement between data
element x and the cluster center k. FCM iteratively recalculates cluster centers and mem-

1In clustering literature the fuzzy factor is denoted as m. We apply ̟ because in this thesis m represents
the number of services |S|.

Chapter 6: Service Infrastructure Adaptation Techniques 105

bership degree until the objective function converges |J t̟ − J
t−1
̟ | < ε (where ε denotes the

convergence limit) or until the maximum number of iterations maxIt is reached.

For our purpose, the distance function is the euclidian distance, defined as:

distance =

(

d
∑

i=1

|xi − yi|
2

)1/2

(6.7)

with d the dimensions of the data elements x and y (in our example d = 2).

The cluster center (i.e., the centroid) is the means of all elements weighted by their
membership degree. Elements further way—thus having lower membership degree—yield
lower impact on the center than closer elements. The centroid is defined as:

kj =

∑n
i=1 µ

̟
ij ∗ xi

∑n
i=1 µ

̟
ij

(6.8)

The membership of an element x belonging to a particular cluster k depends on the
ratio of distance between x and k and the distance from x to all centroids K:

µij =

(

z
∑

l=1

(
‖xi, kj‖

‖xi, kl‖
)2/(̟−1)

)−1

(6.9)

Specifically, FCM applies the fuzzy factor ̟ to define the crispness of membership
degree. In general, high values of ̟ implicate very fuzzy cluster boundaries whereas low
values result in clear cluster limits. For ̟ close to 1, FCM replicates the behavior of K-
Means clustering (Macqueen 1967). With ̟ = 2, distance measurements are normalized
linearly and for ̟ →∞, elements will belong to every cluster with equal degree. The basic
FCM process applies the steps in Algorithm 7 to determine cluster membership degree.

In Figure 6.6 we cluster elements into two, three, or four clusters (z = 2 . . . 4) for fuzzy
factor ̟ = 3 (b) and ̟ = 1.2 (c)(d)(e). In subfigure (b) the top pie chart comprises
the average membership of elements 1 . . . 4, the right, middle, and lower left pie charts
describe elements 5 . . . 8, 9 . . . 12, and 13, respectively. For each pie chart, the inner most
circle visualizes fuzzy membership to two clusters, while the middle and outer most circles
describe membership for three, respectively four, clusters. For̟ = 1.2, cluster membership
becomes binary as elements belong completely to one cluster. Subfigures (c), (d), and (e)
demonstrate how clusters break into smaller segments as we raise the value of z from 2 to
4.

FCM exhibits some idiosyncrasies. Changes in initial membership randomizations may
yield different clustering results. Consequently, we derive data for any figure or table from
multiple iterations of the fuzzy clustering process.

The overall quality of the clustering process depends on appropriately selecting the
configuration parameters (z,̟, ε,maxIt). The number of maximum maxIt iterations and

Chapter 6: Service Infrastructure Adaptation Techniques 106

0 10 20 30 40 50 60 70 80 90 100

0

10

20

30

40

50

60

70

80

90

100 1

2

3

4

56

78

9

1011

12

13

0 10 20 30 40 50 60 70 80 90 100

0

10

20

30

40

50

60

70

80

90

100 1

2

3

4

56

78

9

1011

12

13

(a) (b)

0 10 20 30 40 50 60 70 80 90100

0

20

40

60

80

100

0 10 20 30 40 50 60 70 80 90 100

0

20

40

60

80

100

0 10 20 30 40 50 60 70 80 90100

0

20

40

60

80

100

(c) (d) (e)

Figure 6.6: FCM clustering result on data set (a) for two, three, and four clusters with
fuzzy factor ̟ = 3 (b) and ̟ = 1.2 (c)(d)(e). Same colors and same icons represent
mutual cluster membership.

convergence limit ε define the termination condition for any given selection of z and̟. The
amount of data and available time restrict the applicable values but other considerations
are not necessary. (Liu, Li, and Li 2008) suggest ε = 0.001. The number of clusters that
optimally describe the data, and the optimal fuzzyness of the cluster boundaries are more
sensitive choices.

We can select the number of iterations arbitrarily high, respectively ε arbitrarily low; we
will not obtain sensible clustering results when choosing z inappropriately. When grouping
the elements in Figure 6.6 (a) into two clusters (b, innermost circle) or (c), we cannot detect
the difference between elements 1 . . . 4 and 5 . . . 8.

A rule of thumb (McBratney and De Gruijter 1992) recommends selecting maxz ≈ n1/2

with n the number of elements. A computationally more intensive approach calculates
the clustering quality for increasing number of clusters until reaching maximum quality.

Chapter 6: Service Infrastructure Adaptation Techniques 107

Algorithm 7 Basic Fuzzy C-Means Clustering Algorithm FCM(X, z,̟,maxIt, ε).

function PerformClustering(X, z,̟,maxIt, ε)
M← initRandomMembership(X, z)
lastJ ← 0
for round = 0; round < maxIt; round+ + do

K ← calculateClusterCenters(M, ̟)
updateClusterMembership(X,K,̟)
J = calculateObjectiveFct(X,K,̟)
if |J − lastJ | < ε then

break
else

lastJ ← J
end if

end for

returnM
end function

(He, Tan, Tan, and Sung 2003) propose a combination of cluster compactness and cluster
separation for crisp clustering as a viable overall quality measure. Compactness describes
how well the clusters explain the variance in the data. The variance v of a set of vectors
(here constraints) is defined as:

v(X) =

√

√

√

√

1

n

n
∑

i=1

‖xi, x̄‖2 (6.10)

where ‖xi, x̄‖ computes the distance of xi to the mean x̄ of all elements in X, with
x̄ = 1

n

∑

i xi. The less dispersed the elements, the smaller the variance. Next, we
compare the variance found in each cluster to the overall variance. We alter the definition
of compactness cmp to consider fuzzyness:

cmp =
1

z

z
∑

j=1

√

∑

i µij ∗ ‖xi, kj‖
2

∑

i µij
∗ v(X)−1 (6.11)

where
√

•
•

calculates the variance of elements weighted by their degree of membership in
cluster kj. Compactness yields 0 for one cluster. With increasing clusters, the compactness
eventually increases to 1 at which point each data element resides in a separate cluster.
We prefer higher compactness over lower compactness, but we need to avoid introducing
too many clusters. To this end, we reuse the cluster separation metric by (He, Tan, Tan,
and Sung 2003).

Cluster separation describes the heterogeneity between clusters. Clusters further apart
exhibit more distinct elements than clusters close together. Separation is the coefficient of

Chapter 6: Service Infrastructure Adaptation Techniques 108

total pairwise distance between cluster centers and maximum possible distance. Separation
reaches its maximum (sep = 1) when each cluster contains exactly one element. When one
cluster comprises all elements, separation is zero. Again, we include the membership table
M in the definition:

sep =

∑z−1
j=1

∑k
l=j+1 ‖kj, kl‖

2

∑n−1
i=1

∑n
p=i+1 ‖xi, xp‖

2
(6.12)

The sum of pairwise distance between all elements yields computational complexity O(n2).
However, the distance remains unchanged for all iterations of cluster counts z = 1 . . . n and
thus needs computation only once.

The combined metrics identify the maximum clustering quality. For one cluster, com-
pactness equals 1 and separation equals 0. For all elements in individual clusters, compact-
ness yields 0 and separation 1. The quality function q(β) identifies the number of clusters
that best describe the underlying distribution:

q(β) = 1− (β ∗ cmp+ (1− β) ∗ sep) (6.13)

where β defines a preference on compactness or separation. A β value below 0.5 assigns
more weight on distinct clusters (sep) than on (lower) intra-cluster variance (cmp), and
vice versa. The maximum quality value describes the best number of clusters k.

As outlined above, choosing ̟ too high yields inconclusive examples. Setting ̟ too
low results in FCM assigning elements equidistant to two cluster centers arbitrarily to
one of them. For increasingly low values, the quality metric yields the highest values for
additional clusters, one of them containing only 13.

This concludes the introduction to fuzzy c-means. We discuss constraint-specific auto-
matic selection of best values for ̟ and z in the following subsection.

6.5.4 Biased Clustering Algorithm

Numerous papers improve the fuzzy c-means algorithm to achieve robustness (Chintalapudi
and Kam 1998,Zhang and Leung 2004,Leski 2003). These techniques apply data distribu-
tion intrinsic metrics to identify and mitigate the effect of outliers and noise. We focus on
achieving optimum clusters where significant services and constraints should influence the
result more than insignificant services or constraints. The basic FCM algorithm considers
all data elements of equal importance; this is where we introduce our biased clustering
algorithm.

Let us interpret the example visualized in Figure 6.6 as two services matching 13 con-
straints. Service s1 matches well constraints c1 → c4 and s2 primarily matches constraints
c5→ c8. Constraints c9 → c13 are hardly supported by either s1 or s2.

A pure visual analysis of Figure 6.6 identifies two, three, or four clusters as sensible
constraint partitions. For selecting the best number of service categories, we need to focus
on clusters that contain (a) services which tend to fulfill complementary constraints well

Chapter 6: Service Infrastructure Adaptation Techniques 109

s1 s2 f H(c) wc µ(K1a) µ(K2a) µ(K1b) µ(K2b)

c1 60 100 0.115 0.662 0.12 1 0 0.857 0.125
c2 60 90 0.108 0.673 0.12 1 0 0.848 0.152
c3 70 100 0.122 0.677 0.12 1 0 0.870 0.130
c4 70 90 0.115 0.685 0.12 1 0 0.832 0.168
c5 100 60 0.115 0.662 0.12 0 1 0.125 0.875
c6 90 60 0.108 0.673 0.12 0 1 0.152 0.848
c7 100 70 0.122 0.677 0.12 0 1 0.130 0.870
c8 90 70 0.115 0.685 0.12 0 1 0.168 0.832
c9 5 5 0.007 0.693 0.008 0.501 0.499 0.500 0.500
c10 10 10 0.014 0.693 0.008 0.501 0.499 0.500 0.500
c11 5 10 0.011 0.637 0.008 0.536 0.464 0.503 0.497
c12 10 5 0.011 0.637 0.008 0.466 0.534 0.497 0.503
c13 25 25 0.036 0.693 0.008 0.501 0.499 0.500 0.500

r 0.5 0.5 wAvgH(c) 0.673 KS1 62.770 91.317 65.450 91.491
H(s) 2.122 2.122 wAvgH(s) 2.122 KS2 91.282 62.791 95.491 65.450

Table 6.6: Constraints, weights, utility, and fulfillment for Case 5. For z = 2, µ(K1a) and
µ(K2a) display membership degree for clustering with ̟ = 1.2; µ(K1b) and µ(K2b) with
̟ = 3.

and (b) services that tend to satisfy important constraints. On the one hand, we need
to avoid partitioning according to different levels of constraint significance. On the other
hand, we need to avoid clustering according to overall constraint fulfillment which results
in partitions of low, medium, and highly satisfied constraints.

First, we ensure that services determine the clustering result proportional to their
utility. To this end, we transform the utility values (X) before clustering to reflect the
preliminary service rank. We multiply each xij with the service rank rj and renormalize the
matrix such that services with average utility xi = x̄maintain their utility value (X ·R·|R|).
We thereby exploit the FCM’s sensitivity towards outliers. After the transformation better
ranked services exhibit higher utility values compared to lower ranked services and thus
yield more impact during the subsequent clustering process.

Second, we make sure that the cluster result comprises only the important and well
supported constraints. Specifically, we integrate constraint weights and fulfillment into
the clustering process. For the sake of argument, suppose the constraint weights wc in
Table 6.6 for the data underlying Figure 6.6.

The basic FCM algorithm is ignorant of constraints. For ̟ = 3, the quality mea-
sure recommends three clusters with significant crispness (max(µij) > 0.75 ∀ i = 1 . . . 12)
c1 . . . c4, c5 . . . c8, and c9 . . . c12, while putting c13 in the middle. For lower ̟ values, the
same partitioning persists with exception to c13 establishing a separate cluster. Consid-
ering constraint weight wc: c1 to c8 yield high significance, and the remaining constraints
yield low significance. In this case, a better result yields only two clusters c1 . . . c4 and
c5 . . . c8, without any preference for the the exact allocation of the less significant con-

Chapter 6: Service Infrastructure Adaptation Techniques 110

straints c9 . . . c13.

We adapt the clustering algorithm to drop the condition that
∑

µi = 1. We bias the
membership according to the importance vector T . After multiplying the membership
table M with the importance vector, less significant elements yield little impact when
calculating the cluster center. Subsequent evaluation of membership degree resets

∑

µi =
1, hence the need to bias the membership table in every iteration. The importance bias
also effects calculation of the mean vector x̄, variance v(X), total distance measurement,
and separation.

The biased vector centroid x̄b for importance vector T and fuzzy factor ̟ is defined as:

x̄b =
∑

i

xi ∗ τ
̟
i

∑

i τ
̟
i

(6.14)

The biased variance vb of a set of constraints and importance vector T is defined as:

vb(X) =

√

√

√

√

n
∑

i=1

(‖xi, x̄b‖2 ∗ τ 2
i) ∗

(

∑

i

τ 2
i

)−1

(6.15)

We update the function for calculating the total distance between constraints accordingly.
Distance between important constraints gains significance, while distance between less
important or mixed important elements has little effect on the overall distance.

distX =
n−1
∑

i=1

n
∑

j=i+1

‖xi, xj‖
2 ∗

τi + τj
2

(6.16)

For cluster separation, we have to adapt the distance measurement between clusters. For
each cluster we compute the importance of the contained elements and apply the same
biased distance function as introduced above.

sepb =

z−1
∑

j=1

z
∑

p=j+1

(

‖ki, kj‖
2 ∗

∑

i(τi ∗ µij) +
∑

i(τi ∗ µip)

2

)

∗ dist−1
X (6.17)

where
∑

i τi ∗ µij defines the importance of cluster j.

In the last step, we normalize the membership degree. Algorithm 8 elaborates the
differences to the basic FCM algorithm. The functions calculateClusterCenters, update-
ClusterMembership, and calculateObjectiveFct remain unchanged.

We observe two phenomena when applying the importance vector T . First, with in-
creasing z, clusters comprising the most significant elements rapidly split up into separate,
roughly equal clusters. Clusters of less important elements form rather late (i.e., for high
numbers of z, close to |X |) if ̟ is low and do not form at all for ̟ > 3.

Figure 6.7 compares cluster entropy Hk for biased (a) and unbiased (b) clustering, with
̟ = 2. Cluster entropy measures for each element the membership degree distribution

Chapter 6: Service Infrastructure Adaptation Techniques 111

Algorithm 8 Biased FCM Clustering Algorithm BFCM(X , z, ̟, ε,maxIt, T , β).

function PerformBiasedClustering(X , z, ̟, ε,maxIt, T , β)
M← initRandomMembership(X, z)
/* Bias membership according to importance. */
M←M∗ T
lastJ ← 0
maxDist← calculateTotalDistance(X , T)
for round = 0; round < maxIt; round+ + do

K ← calculateClusterCenters(z,̟)
updateClusterMembership(X , K,̟)
/* Recalculating the cluster membership resets

∑

µi = 1, → bias membership
again according to importance. */

M←M∗ T
J = calculateObjectiveFct(X , K,̟)
if |J − lastJ | < ε then

break
else

lastJ ← J
end if

end for

calculateQuality(X , T , K, β,M, maxDist,̟)
normalizeMembership(M)
return membership

end function

function calculateTotalDistance(X , T)
for i = 0; i < |X| − 1; i+ + do

for j = i+ 1; j < |X|; j + + do

total← total + calcDistance(xi, xj)
2 ∗ (τi + τj)/2

end for

end for

return total
end function

function normalizeMembership(M)
/* Recalculate membership such that

∑

µi = 1. */
for all constraint i ∈ C do

sumµ ← 0
for all cluster k ∈ K do

sumµ ← sumµ + µik
end for

for all cluster k ∈ K do

µik ← µik/sumµ

end for

end for

end function

Chapter 6: Service Infrastructure Adaptation Techniques 112

Algorithm 9 Continuing BFCM(X , K,̟, ε,maxIt, T).

function calculateQuality(X , T , K, β,M, maxDist,̟)
/* 1. Calculate compactness. */
cmp← 0; var ← 0; totalBias← 0; x̄b ← ∅
/* 1.1 Calculate biased center. */
for i = 0; i < |X|; i+ + do

bias← s̟i
for j = 0; j < dimensions(X); j + + do

x̄bj ← x̄bj + xij ∗ bias
end for

totalBias← totalBias + bias
end for

x̄bj ← x̄bj/totalBias; div ← 0
/* 1.2 Calculate biased maximum variance. */
for i = 0; i < |X|; i+ + do

var ← var + calcDistance(xi, x̄b)
2 ∗ τ 2

i

div ← div + τ 2
i

end for

var ← var1/2/div
/* 1.3 Calculate biased intra-cluster variance. */
dist← 0
for all cluster k ∈ K do

sumµ ← 0
for all constraint i ∈ C do

dist ← dist + calcDistance(i, k)2 ∗ µ2
ik /* We need not include importance

vector s as we have multiplied it with membership already before. */
sumµ ← sumµ + µ2

ik

end for

cmp← cmp + (dist/sumµ)
1/2/var

end for

/* 2. Calculate separation. */
sep← 0; clImp← ∅
/* 2.1 Calculate cluster importance. */
for all cluster k ∈ K do

for all constraint i ∈ C do

clImpk ← clImpk + µik
end for

end for

/* 2.2 Calculate inter-cluster distance. */
for i = 0; i < |K| − 1; i+ + do

for j = i+ 1; j < |K|; j + + do

clDist← clDist+ calcDistance(ki, kj)
2 ∗ (clImpi + clImpj)/2

end for

end for

sep← clDist/maxDist
return 1− (β ∗ cmp+ (1− β) ∗ sep)

end function

Chapter 6: Service Infrastructure Adaptation Techniques 113

2 4 6 8 10 12

2

4

6

8

10

12

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

(a)

2 4 6 8 10 12

2

4

6

8

10

12
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(b)

Figure 6.7: Cluster entropy Hk for biased (a) and unbiased (b) clustering.

across all available clusters. Low entropy value (dark colors) indicate focus on one or a
few clusters. Bright colors highlight elements that (equally) belong to many clusters. Each
column comprises the entropy values for a particular element. The top row contains the
entropy values for z = 1 clusters, down to the bottom row containing z = 13 clusters.

In the biased case, we notice how elements 1 . . . 8 break into smaller clusters before
populating individual clusters in row 8. The remaining elements equally belong to an
increasing number of cluster until after row 8 element 13 separates into a distinct cluster.
Interestingly, elements 9 . . . 12 never form a cluster themselves.

In the unbiased case, elements 9 . . . 12 exhibit a similar behavior as element 1 . . . 8 in
the unbiased case. Round 2 and 3 yield crisp cluster membership (generally low cluster
entropy values). After round 4, element 13 remains in a distinct cluster, the other elements
yield shifting membership. In contrast to the biased case, all elements eventually end up
in individual clusters.

Second, we notice an early, sharp decline in compactness opposed to a late, steep
increase in separation. Compactness is minimal when elements populate individual clusters.
As observed above, the most significant elements quickly scatter into separate groups. If
insignificant elements eventually occupy their own cluster, they barely reduce compactness.

The same effect determines the late, steep incline of cluster separation. Separation
is maximal when each cluster contains a single element. As long as clusters of significant
elements split into increasingly smaller clusters, the centroids remain close together, adding
little to separation. The distance between centroids grows once less significant elements
form individual clusters clearly separated from the existing cluster centers.

Figure 6.8 displays compactness and separation for ̟ = [1.5, 2, 3] with biased and
unbiased clustering side by side. We notice biased compactness reaching its minimum once
all important elements reside in separate clusters. Unbiased compactness drops similarly
fast at the beginning, but then phases out, reaching its minimum at z = n. Biased

Chapter 6: Service Infrastructure Adaptation Techniques 114

separation remains low until all important elements populate individual clusters, then
rising sharply. In contrast, the unbiased separation metric displays near-linear growth.

2 4 6 8 10 12
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

CMP m1.5
CMP m2
CMP m3
SEP m1.5
SEP m2
SEP m3

2 4 6 8 10 12
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

CMP m1.5
CMP m2
CMP m3
SEP m1.5
SEP m2
SEP m3

(a) (b)

Figure 6.8: Compactness and separation for biased (a) and unbiased (b) clustering.

We exploit the sharp incline in separation, respectively decline in compactness, for
selecting the maximum number of clusters z. Specifically, we derive the amount of elements
exhibiting a importance value higher than the average of τ minus φ (where φ is twice the
standard deviation σ divided by the number of constraints) such that:

zmax = |Ttop| τi ∈ Ttop ∀τi ≥ (τ̄ −
2 ∗ στ
n

) (6.18)

The design of φ ensures that for a large number of constraints, low-performing elements
are still detected.

We subsequently measure the quality q for each additional cluster for z = 2 → zmax.
And select the cluster count that yields the maximum increase in quality. We detail the
selection process in Algorithm 10.

Finally, we determine the fuzzy factor ̟. The entropy-based threshold values indicate
the existence of clusters. Hence, we restrict ̟ to the interval]1, 3]. For two data sets, the
one with lower weighted average service entropy Meana(H(s)) yields crisper clusters. The
ratio of service entropy to entropy threshold determines the exact value for ̟, specifically:

̟ = 1 + 2 ∗
Meana(H(s))

ts
+ γ (6.19)

where qs is the service entropy threshold, and γ ensures that ̟ > 1. We set γ to 0.0001.

Table 6.8 lists the clustering result for case 1 . . . 4. We included case 2 —failing to meet
the either threshold criteria— and case 3—exceeding the constraint entropy threshold tc—
for demonstration purpose. All constraint weights wc are 1/6.

Chapter 6: Service Infrastructure Adaptation Techniques 115

Algorithm 10 Best Cluster Quality Algorithm CQA(X , T ,R).

function selectBestMembership(X , T)
z ← calcMaxCluster(X , T)
̟ ← calcFuzzyFactor(X , T)
Xb ← X ∗R ∗ T
µbest ← ∅
qmax ← 0
for k = 1→ z do

/* For each round, initialize empty cluster centers K. */
K ← {k}
µ← call PerformBiasedClustering(Xb, K,̟, ε,maxIt, T , β)
q ← calcQuality(µ)
if q > qmax then

qmax ← q
µbest ← µ

end if

if q > qmax then

qmax ← q
end if

end for

return µbest
end function

Chapter 6: Service Infrastructure Adaptation Techniques 116

K1.1 K1.2 K1.3 K2.1 K2.2 K2.3 K3.1 K3.2 K4.1 K4.2 K3.3

C1 0.882 0.059 0.059 0.08 0.849 0.07 0.992 0.008 0.028 0.032 0.941

C2 0.931 0.035 0.035 0.032 0.019 0.949 0.993 0.007 0.019 0.022 0.959

C3 0.059 0.882 0.059 0.261 0.543 0.196 0.007 0.993 0.022 0.952 0.026
C4 0.035 0.931 0.035 0.318 0.312 0.37 0.005 0.995 0.031 0.932 0.037
C5 0.059 0.059 0.882 0.312 0.454 0.233 0.111 0.889 0.979 0.01 0.011
C6 0.035 0.035 0.931 0.922 0.032 0.046 0.087 0.913 0.984 0.008 0.008

̟ 2.516 3.0 2.250 2.629
zmax 3 3 2 4
Hk 0.335 0.592 0.092 0.18

µ̄ 0.3̇ 0.3̇ 0.3̇ 0.321 0.368 0.311 0.634 0.366 0.33 0.343 0.327

Table 6.7: Biased cluster algorithm configuration (zmax and ̟) and results for case 1 to 4.
Bold numbers highlight the top cluster membership degree.

As discussed above, the cluster entropy Hk describes how well constraints fit into their
clusters—the more focused on one cluster, the lower the entropy. Low Hk values for case
1,3, and 4 reflect the crisp membership degree. As indicated by the threshold, we do not
gain any insight from clustering Case 2. Clustering of constraints in case 3 demonstrates
nicely the role of the constraint entropy. The resulting two clusters separate the constraints
according to high and low constraint fulfillment degree.

6.5.5 Cluster-specific ranking

Before the clustering, we match a single list of constraints to a set of services, calculating
utility values. The clustering process then partitions the set of constraints into multiple
groups for individual ranking. In the subsequent ranking phase, we evaluate all services
within each cluster. We combine cluster weights w and membership degree µ, thus avoiding
defuzzyfication of the clustering result. A constraint belonging equally to two clusters will
thus influence the ranking result in both clusters to the same degree. The service utility
for a given constraint and cluster uijk is defined as:

uijk = xij ∗ wi ∗ µik (6.20)

where µik is the membership of constraint i in cluster k; for all constraints i ∈ C, all
services j ∈ S, and clusters k ∈ K.

We integrate the basic LSP ranking algorithm (Alg. 2) introduced in Section 4.3. For
each cluster, Algorithm 11 updates the constraint weights, calls the LSP algorithm, and
finally returns a ranked service list for each cluster.

Evaluation of ranked cluster results is twofold. First we compare ranked clusters results
to regular ranking results for case 1 to 4 in Table 6.8. Second, we compute the Pearson
product-momentum coefficient on ranks as a measure of correlation.

Chapter 6: Service Infrastructure Adaptation Techniques 117

Algorithm 11 Biased Ranking Algorithm BA(X , µ, w).

function PerformClusterspecificRanking(X , µ, w)
/* Initialize array of rank results. */
RR← ∅
for all Cluster k ∈ K do

/* Initialize biased constraint weights. */
biasedW ← ∅
for all Constraint i ∈ C do

biasedWi ← µik ∗ wi
end for

RR[k]← call LSPRankingAlgorithm(X , biasedW)
end for

return RR
end function

6.5.5.1 Measuring Clustering Benefit

We neglect composition costs and focus on comparing the benefit of selecting the top
services from each cluster to selecting the top service deriving from the regular ranking
process. The clustering benefit Jbest is defined as the sum of top ranked service utility
weighted according to the relative size of cluster k where µ̄k =

∑

i µik (listed in Table 6.6):

Jbest =
∑

k

(µ̄k ∗max(Rk)) (6.21)

where set Rk contains the ranked service utility values in cluster k. The ranking results in
Table 6.8 remain non-normalized to preserve the differences in utility values. Also, we do
not need normalization as all utility values derive from the same value range ([0, 100]).

In case 1, combining S1, S2, and S3 yields a 81.3% benefit increase over selecting S4.
Even a combination of S4 (the second best choice in any cluster) and any top rated service
provides a 29% raise. Clustering in case 2 exhibits only marginal benefits (+6%). Also,
service S1 is ranked best in cluster 1 and 3, placed second in cluster 2. We do not achieve
any benefit in case 3, where the ranking order in both clusters equals the order originating
from the regular ranking process. Case 4 exhibits benefit from clustering. Combination
of S1, S2, and S3 result in 97% better constraint support than selecting S3 alone. For the
2-tuples of these services we gain 57% (S1, S2), 57% (S1, S3), and 56% (S2, S3) in benefit.

We apply the Pearson’s coefficient—introduced in Chapter 4.2—to measure the differ-
ence in ranking positions. We expect clusters to exhibit a distinctly different service order.
We derive the overall difference between cluster and non-clustered ranks by aggregating
the weighted (applying µ̄k) Pearson’s correlation found between each set of cluster rankings
and the non-clustered ranking. We utilize the absolute rank positions for calculating the
Pearson coefficient ρ. Relative ranking result R1[50, 33.33, 33.33, 33.33, 10], for example,
becomes [1, 3, 3, 3, 5]. Table 6.8 includes cluster specific correlation and total correlation

Chapter 6: Service Infrastructure Adaptation Techniques 118

K1.1 K1.2 K1.3 R1 K4.1 K4.2 K4.3 R4

1 S1(90.64) S2(90.64) S3(90.64) S4(50.0) S3(86.46) S2(77.53) S1(82.42) S3(41.67)
2 S4(50.0) S4(50.0) S4(50.0) S1(33.33) S2(23.68) S1(28.87) S3(29.76) S1(39.17)
3 S5(10.0) S5(10.0) S5(10.0) S2(33.33) S5(10.0) S5(10.0) S2(12.36) S2(37.5)
4 S3(4.68) S3(4.68) S2(4.68) S3(33.33) S1(7.35) S3(6.54) S5(10.0) S5(10.0)
5 S2(4.68) S1(4.68) S1(4.68) S5(10.0) S4(2.39) S4(0.02) S4(0.02) S4(0.83)
ρ 0.224 0.224 0.238 0.229 0.7 0.3 0.9 0.628

K2.1 K2.2 K2.3 R2 K3.1 K3.2 R3

1 S1(73.15) S2(78.06) S1(81.14) S1(73.33) S3(81.98) S3(18.43) S3(41.67)
2 S5(59.86) S1(65.48) S2(63.29) S5(58.33) S1(77.5) S1(17.07) S1(39.17)
3 S4(52.89) S5(64.88) S3(53.97) S2(56.67) S2(73.39) S2(16.81) S2(37.5)
4 S3(44.74) S3(57.49) S5(50.25) S3(51.67) S5(10.0) S5(10.0) S5(10.0)
5 S2(32.84) S4(32.25) S4(32.72) S4(40.0) S4(2.26) S4(0.01) S4(0.83)
ρ 0.6 0.7 0.7 0.668 1 1 1

Table 6.8: Clustered Ranking algorithm results for case 1 to 4 compared to unclustered
ranking results.

values. As expected, examples with distinct clusters and high clustering benefit (case 1
and 4) exhibit lower correlation than case 2 and 3. We notice the small difference between
ρCase2 and ρCase4 when we correlate the overall ranking set. Correlation is unbiased and
differences (or lack thereof) at the bottom of the ranking list impact the result to the same
extent as differences at the top. Interested in changes amongst the best fitting service,
we limit the selection to the top two services. Subsequently correlation of S1 and S5 in
R2 yields ρ = 1, as in every of the three clusters, S1 is ranked higher than S5. The same
limitation on R4 yields ρ = −0.33, as S1 ranks higher than S3 in two out of three clusters.

6.6 Service Composition Recommendation

The clustering process offers a set of best suited services fulfilling the given requirements.
Together, the top services from each cluster provide the most qualified aggregation, but
not necessarily the cheapest. Selecting the top members ignores any form of aggregation
costs.

In this thesis, we focus only on one form of aggregation costs: service distance. Ser-
vices yielding close proximity have proven to function well in joint efforts. We, therefore,
consider services that have often been utilizes in a common context to be more suitable
for aggregation than services that were rarely used together. Specifically, we apply the
distance metrics introduced in Chapter 4. Ultimately, we need to find a tradeoff between
minimal aggregation costs (i.e., low overall service proximity) and high service utility.

The top cluster elements do not necessarily exhibit low service distance. We, there-
fore, require an algorithm to test other services aggregations for similarly high utility but
considerably lower distance.

Chapter 6: Service Infrastructure Adaptation Techniques 119

Brute-force testing of every possible combination yields unpractical for large sets of
services and clusters as the underlying problem is NP hard. Testing the top m services
of k clusters has O(mk) computational complexity. Our goal is to find a better solution
than the aggregation of the top element in each cluster, not necessarily the best possible
solution. For this purpose, we select Simulated Annealing (Kirkpatrick, Gelatt, and Vecchi
1983, Černý 1985), an optimization heuristic.

6.6.1 A brief Introduction to Simulated Annealing

Simulated Annealing (SA) is a heuristic for approximating a global optimum in complex
mathematical problems. It is well suited for problems with discrete search space such as
the order of cities in the traveling sales man problem.

Simulated annealing is an iterative process building on following basic components:

Candidate Solution contains the current best problem solution which is gradually im-
proved.

Solution Energy Function measures the quality of a given solution. SA aims to find a
solution with the lowest possible energy.

Neighborhood Function provides a new candidate solution based on the current solu-
tion. A good neighborhood function traverses the search space quickly, but produces
new solutions that yield similar energy level to the preceding solution.

Transition Function decides whether to accept a new solution or to stick with the cur-
rent one.

Cooling function gradually reduces the temperature. Large solution changes are less
likely for lower temperatures.

We briefly outline the iterative process in Algorithm 12 as provided in the JUNG
1.7.6 framework2. We omit some configuration parameters for sake of clarity. Transition
function and Cooling function are problem independent, thus introduced here. We discuss
neighborhood function and energy function in the subsequent subsections. For now, we
treat these as blackboxes.

Simulated annealing takes an initial solution (i.e., the top service from every cluster)
and derives the corresponding energy. Simulated Annealing continues to evaluated similar
solution as long as the temperature hasn’t reached zero and there are more available itera-
tions. A new solution is always accepted when it yields lower energy. Worse solutions are
accepted with probability pSA defined as:

pSA = e
−1∗δenergy

temp (6.22)

2http://jung.sourceforge.net/

Chapter 6: Service Infrastructure Adaptation Techniques 120

where δenergy is the energy difference between the current and new solution, temp is the
current annealing temperature, and e is Euler’s number 2.718 Transitions to solutions
with higher energy are possible as long as the temperature remains high, or the energy
difference is very small.

The freezing process depends on the cooling rate and current iteration state. As long as
the number of successful transitions is high (i.e., success close to tries) the system remains
in a search space region that still provides many solutions with lower energy. The function
for the temperature in the next iteration is defined as:

tempn = r
(limitaccept−

success
tries

)∗tries

cooling ∗ temp (6.23)

where tries, rcooling, and limitaccept are configuration parameters. For our experiments, we
apply tries = 100, rcooling = 0.99, and limitaccept = 0.97

Algorithm 12 Simulated Annealing Algorithm SA(maxIt, startTemp).

function Annealing(maxIt, startTemp)
A ← calcNewSolution(startTemp)
nrg ← calcEnergy(S)
temp← startTemp
iteration← 0
while temp > 0 AND iteration < maxIt do

success← 0
for tries do

/* Neighborhood function provides a new solution. */
newSolution← calcNewSolution(S, temp)
nrgnew ← calcEnergy(newSolution)
δenergy = nrg − nrgnew
if doTransition(δenergy, newSolution, temp) then

S ← newSolution
nrg ← nrgnew
success+ +

end if

end for

temp← calcTemperature(temp, success)
iteration + +

end while

return A
end function

6.6.2 Simulated Annealing Energy Function

The energy function provides the tradeoff between requirement fulfilment (i.e., total
weighted utility uagg) and service distance (i.e., average interaction-based distance be-

Chapter 6: Service Infrastructure Adaptation Techniques 121

Symbol Meaning
A Solution consisting of one selected service in each cluster.
pSA Transition probability to accept solutions with higher energy.
δenergy Energy difference between two solutions.
tempn New temperature given the current temperature temp, and configuration pa-

rameters rcooling, limitaccept, and tries.
xmax Maximum utility as provided by the top ranked service from each cluster.
distmax Upper limit for interaction distance between top ranked services.
nrg Energy of a given solution depending on xmax, distmax and solution specific

utility xagg(A) and distance distavg(A).
ϕ Preference parameter for trade-off between maximum utility or minimum dis-

tance.
tnh Neighborhood selection threshold.
pnh Neighborhood selection probability.

Table 6.9: Symbols applied in Simulated Annealing.

tween selected services distavg). A solution consists of a service from each clusters. The
total weighted utility uagg combines the service utility values u for a given cluster weighted
according to the clusters significance (sigcluster(k) =

∑

i µik ∗ wi). A cluster’s significance
raises with increasing membership of important constraints. The average distance distavg
is the sum of distance between any two services in the corresponding interaction-based
distance graph, divided by the cluster count.

First we need to scale uagg and distavg to the interval [0, 1] to combine them in a single
function. We obtain the maximum achievable weighted utility umax from selecting the top
service from every cluster. The maximum distance between service is unknown, but we
have an upper limit: the distance for the top services distmax. As no solution can yield
higher utility than the top services, any solution with higher distance than distmax can
safely be discarded. The subsequent energy function for solution A is defined as:

nrg = ϕ ∗
umax
uagg(A)

+ (1− ϕ) ∗
distavg(A)

distmax
(6.24)

where ϕ determines the preferences for achieving high overall quality, or rather low intra-
service distance. With ϕ approaching 1, the top service in every cluster creates the best
solution. Having ϕ approach 0, simulated annealing selects the same service for every
cluster, thereby reducing the overall distance to zero.

The combination of top services yields an energy value of 1. Any better combination
must exhibit lower energy by reducing the distance. Combinations that additionally come
with lower utility need to yield proportionally lower distance.

Chapter 6: Service Infrastructure Adaptation Techniques 122

6.6.3 Simulated Annealing Neighborhood Function

The neighborhood function generates a new solution given a current solution. The function
needs to be able to (a) traverse the search space in short time and (b) find neighboring
configuration with similar energy. The first requirement guarantees that the simulated
annealing algorithms is able to reach all states in a timely manner, thus potentially identi-
fying the optimum solution. The second requirement ensures the algorithm’s convergence.
A random solution is more likely to be worse (rather than better) than the current solution.
Jumping between high energy states maintains a high temperature level, thereby keeping
the system from cooling down and finding the desired areas of low energy.

Our neighborhood function addresses both concerns. We randomly select a cluster and
exchange the current element with another element with probability pnh. The neighborhood
probability depends on the service distance and is defined as:

pnh(s) =

{

1
m−1

if dist(snew, sold)norm ≤ tnh
1−ψ
m−1

otherwise with ψ = dist(snew ,sold)norm−tnh

1−tnh

(6.25)

where m is the number of services within each cluster, dist(s, scurrent)norm is the distance
between two services normalized to interval [0, 1] with the most distant service yielding
1 and the closest service yielding 0. The temperature ratio temp

2∗maxTemp
serves as threshold

tnh. The probability functions resembles utility function (d) in Figure 4.8 with limita = 0,
limitb = t, and limitc = 1.

Services that are in proximity of the current solution are more likely to be selected,
than services further away. Besides distance, also the current temperature affects this
probability. In the beginning, when temperature is still high, short distance and far distance
jumps equally likely. Later in the process, this probability decreases linearly with distance.

This function enables to quickly traverse the complete search space at the beginning.
Later, we still can reach every solution, but require more steps to do so. We assume
two services in proximity to yield similar distances to common neighbors. Thus, as we
increasingly select services that are close to their predecessor, the total distance will raise
on average less than randomly selecting services. Subsequently, two candidate solutions
will yield similar energy values. This avoids fruitless testing of solutions with high energy.

6.7 Evaluation of Weighted Clustering Techniques

We demonstrate the effect of weighted clustering on the Slashdot data set. Specifically, we
compare for different importance weight sets the resulting constraint distribution across
clusters. Our experiments also include an analysis of ranking differences between clustered
and non-clustered constraints.

First, we outline the mapping of Slashdot data onto requirements and utility values.
Subsequently, we present the general experiment procedure before we discuss our findings.

Chapter 6: Service Infrastructure Adaptation Techniques 123

6.7.1 Mapping Slashdot to Constraints and Utility functions

As briefly outlined in subsection 4.4.3.1, slashdot postings are subject to a moderation
system. Postings receive scores between −1 (low quality) and +5 (high quality). Postings
by known Slashdot members are rated 1 by default. Anonymous posts initially receive
score 0.

In addition, predicates enable classification of postings according to insightful, inter-
esting, informative, funny, etc. content (Table 6.10). As the classification process remains
optional, mostly valuable postings are scored. Notice the low count of negative postings
tagged with Troll, Offtopic, Flamebait, or Redundant in Table 6.10. Constructive postings
usually receive scores higher than 1. Most postings, however, remain without predicate at
all (75%).

Predicate Total Count Score ≥ 2
None 55484 156
Insightful 5494 5038
Interesting 3599 3264
Informative 3596 3294
Funny 3383 3056
Troll 678 1
Offtopic 501 0
Flamebait 461 0
Redundant 287 0
Total 73483 14809

Table 6.10: Total Slashdot posting count and postings of minimum score 2 count from the
subdomains Ask, Entertainment, and Mobile between Jan 1st, 2008 and July 1st, 2008,
grouped by predicates.

We treat slashdot users as entities in an ensemble similar to the evaluation in Section 4.4.
In our case, total scores (i.e., Score) and total posting counts (i.e., Count) serve as service
requirements. Specifically, we derive for a user the total posting count and the total score
summarized across these postings for a given subdomain and predicate. We prefer to keep
these two constraints separated, as relying on a single average user score favors users with
very few postings which were lucky to receive high ratings. In contrast, users contributing
regularly are unlikely to receive continuously high scores. We consider total scores to be
equally important to total postings throughout our experiments. Thus constraints weights
for pairs of these statistics (respective to predicates) are always identical.

Within each constraint, users with the highest total score (respectively total posting
count) receive a utility value of 100, with the worst users having utility 0. The general
question we can answer applying our weighted clustering approach to the Slashdot data set
is: Which clusters do arise from a given set of subdomains and predicates, and how much
do we benefit from selecting the best users from clusters compared to a regular ranking
process.

Chapter 6: Service Infrastructure Adaptation Techniques 124

6.7.2 Weighted Clustering Experiment Setup

We select a set of subdomains SD and identify all users who have submitted at least 5
postings in these subdomains that scored 2 or higher. Given a set of predicates P we arrive
at the constraints set C of size |P | ∗ |SD| ∗ 2. For each user, we derive the utility values
for all constraints.

We select three subdomains—Ask, Entertainment, and Mobile—and focus in particular
on the scores of funny, interesting, and insightful postings arriving at 12 constraints (i.e.,
Ask-Fun-Count, Ask-Fun-Score, Ask-Ins-Count, etc.). Across the three subdomains, we
select users having 5 or more postings rated 2+. We treat users below this initial threshold
as services exhibiting capabilities we are not interested in. As a side effect, reducing the
initial set of candidates (here 255 users) reduces the duration of the clustering process.

The clustering threshold model configuration with α = 0.3; δ = 0.4 for both constraint
entropy and service entropy yields thresholds of tc = 0.98 and ts = 0.96, respectively. Both,
constraint entropy and service entropy remain well below these limits (H(c) = 0.76;H(s) =
0.64) thus clustering takes place with fuzzy factor m = 1.826.

6.7.3 Unbiased, Non-weighted Clustering Experiment Results

First, we analyze unbiased clustering, where we ignore constraint weights and work with
the unbiased utility matrix X . The cluster quality metric identifies 12 clusters to optimally
describe the constraints. Specifically, the resulting cluster membership places Count and
Score constraints of every subdomain and predicate in the same cluster except for the statis-
tics describing Ask-Insightful, Entertainment-Funny and Entertainment-Interesting which
populate individual clusters. Cluster membership µ is larger than 0.9 for all constraints.

We calculate the pairwise Jaccard similarity between any two clusters for the top 10,
50, and 100 users. Figure 6.9 visualizes the resulting similarity matrix. Row 13 and col-
umn 13 contains the unclustered ranking set. We notice that even for the very small set
of top 10 users some clusters yield high similarity. Specifically cluster 3 and 5 share eight
users, cluster 4 and 10 share eight users, and cluster 6 and 11 have 9 users in common.
This overlap increases with 50 and 100 top users. Although all clusters yield significant
differences to the unclustered ranking, the clustering process has created three pairs of
clusters that should belong together. Incidentally, these pairs comprise of the above men-
tioned constraints, where Score and Count of the same subdomain and predicate end up
in different clusters (Ask-Insightful, Entertainment-Funny and Entertainment-Interesting).
Merging these pairs would not reduce the overall clustering benefit.

6.7.4 Biased, Non-weighted Clustering Experiment Results

Second, we cluster with equal constraint weights but biased utility matrix Xb. Constraints
that exhibit low service fulfillment yield less importance during clustering than well sup-
ported constraints. Table 6.11 provides the constraint membership in the resulting six

Chapter 6: Service Infrastructure Adaptation Techniques 125

2 4 6 8 10 12

2

4

6

8

10

12

0

0.2

0.4

0.6

0.8

1

2 4 6 8 10 12

2

4

6

8

10

12
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

2 4 6 8 10 12

2

4

6

8

10

12
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a) (b) (c)

Figure 6.9: Cluster Jaccard similarity for Top 10 (a), Top 50 (b), and Top 100 (c) users
for unbiased, non-weighted constraints.

clusters. Most constraints yield crisp cluster membership (µ > 0.9) with exception to En-
tertainment Funny, Entertainment Interesting, and Mobile Funny which do not strongly
belong to any cluster. The importance vector T is a good indicator on which constraints
are likely to yield crisp clusters. A low importance value by itself, however, is not suf-
ficient. The constraints Ask-Funny-Score (τ = 0.804) exhibits lower importance than
Entertainment-Funny-Count (τ = 0.836) but ends up clearly assigned to cluster 1. Here,
the close correlation of count and score values is decisive. The cluster weight aggregates
the constraint weights proportional to their membership in that particular cluster.

We ensure that clusters provide more fitting elements than the unclustered ranking
result by pairwise comparing the top-k elements with Pearson’s correlation coefficient (ρ)
and Jaccard similarity (J). Table 6.12 lists the ranking differences of the top 10, 50, and
100 users. The Jaccard similarity measures the set overlap of users regardless of their rank.
Pearson’s coefficient requires both sets to contain the same elements. We therefore take the
union of elements from both rankings (given in brackets in Table 6.12) and then compute
ρ.

Average Jaccard similarity increases with growing k, but remains still low for the top
100 users (of 255 in total). In other numbers, of the top-10 nonclustered users, only 30%
occur in both rankings. For the top-50 and top-100 users this percentage is marginally
higher: 33% and 35%, respectively.

The average Pearson’s coefficient stresses the ranking differences even more. We observe
a slight negative correlation for the top 10 users, no correlation in ranks for the top 50
users, and only a slight correlation for the top 100 users.

We compare also pairwise the six clusters to ensure that they constitute indeed distinct
collections of constraints. We print the Jaccard similarity between any combination of
clusters in Figure 6.10. The last row and column provides the overlap of the unclustered
ranking as also provided in Table 6.12. In constrast to the first experiment, all overlaps
between clusters remain low, even for the top 100 users. The highest similarity exists
between clusters rankings and non-cluster ranking.

Evidently, clustering promotes distinctively different candidates than unclustered rank-

Chapter 6: Service Infrastructure Adaptation Techniques 126

Constraint τ Cl 1 Cl 2 Cl 3 Cl 4 Cl 5 Cl 6

Ask-Fun-Count 0.864 0.959 0.005 0.011 0.012 0.008 0.006
Ask-Fun-Score 0.805 0.968 0.004 0.009 0.009 0.006 0.005
Ask-Ins-Count 1.394 0.019 0.01 0.023 0.025 0.914 0.01
Ask-Ins-Score 1.735 0.005 0.003 0.008 0.007 0.975 0.003
Ask-Int-Count 1.185 0.009 0.004 0.006 0.969 0.008 0.005
Ask-Int-Score 1.226 0.011 0.004 0.007 0.964 0.009 0.005
Ent-Fun-Count 0.836 0.24 0.12 0.176 0.158 0.104 0.202
Ent-Fun-Score 0.702 0.253 0.116 0.17 0.146 0.099 0.215
Ent-Ins-Count 1.035 0.01 0.004 0.965 0.007 0.01 0.004
Ent-Ins-Score 1.008 0.007 0.003 0.976 0.004 0.007 0.003
Ent-Int-Count 0.513 0.338 0.09 0.179 0.156 0.105 0.132
Ent-Int-Score 0.748 0.291 0.085 0.215 0.158 0.143 0.108
Mob-Fun-Count 0.563 0.197 0.136 0.123 0.112 0.087 0.346

Mob-Fun-Score 0.563 0.205 0.13 0.127 0.11 0.087 0.341

Mob-Ins-Count 1.459 0.003 0.98 0.003 0.003 0.003 0.007
Mob-Ins-Score 1.503 0.003 0.983 0.003 0.003 0.003 0.007
Mob-Int-Count 0.814 0.006 0.011 0.005 0.006 0.004 0.969

Mob-Int-Score 1.046 0.008 0.016 0.006 0.008 0.005 0.957

Cluster Weight 0.196 0.15 0.167 0.159 0.143 0.185

Table 6.11: Cluster membership and importance vector T for biased constraints from
subdomains Ask, Entertainment, and Mobile with predicates Funny, Insightful, and Inter-
esting.

1 2 3 4 5 6 7

1

2

3

4

5

6

7
0

0.2

0.4

0.6

0.8

1

1 2 3 4 5 6 7

1

2

3

4

5

6

7
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1 2 3 4 5 6 7

1

2

3

4

5

6

7 0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a) (b) (c)

Figure 6.10: Cluster Jaccard similarity for Top 10 (a), Top 50 (b), and Top 100 (c) users
for biased, non-weighted constraints.

ing. Table 6.13 provides a detailed view on the top 10 users of each cluster and the non-
clustered rank. For each cluster, the table lists user id, cluster specific score, and position
in the non-clustered set. Bold user ids highlight the top 10 elements from the non-clustered
set.

There happens to be an outstanding user (957197) being ranked first in cluster 1, 3,
4, and 5. However, the user resides on position 35 and 41 in cluster 1 and cluster 6,
respectively. Other elements in the non-clustered top 10 list, perform much worse. The

Chapter 6: Service Infrastructure Adaptation Techniques 127

Top 10 Top 50 Top 100
Cluster ρ J ρ J ρ J

Cl1 -0.379 (16) 0.25 0.016 (74) 0.351 0.105 (144) 0.389
Cl2 -0.596 (17) 0.176 -0.152 (81) 0.235 -0.011 (147) 0.361
Cl3 0.314 (15) 0.333 0.193 (71) 0.408 0.217 (139) 0.439
Cl4 -0.316 (17) 0.176 0.014 (75) 0.333 0.005 (143) 0.399
Cl5 0.065 (16) 0.25 0.031 (78) 0.282 0.119 (138) 0.449
Cl6 -0.368 (17) 0.176 -0.061 (71) 0.408 0.194 (138) 0.449

Avg -0.213 (16.3) 0.227 0.007 (75) 0.336 0.105 (141.5) 0.414

Table 6.12: Ranking differences of top 10, 50, and 100 users between each cluster and the
unclustered ranking order measured with Pearson’s correlation coefficient (ρ) and Jaccard
similarity (J). Unweighted, biased constraints from subdomains Ask, Entertainment, and
Mobile with predicates Funny, Insightful, and Interesting.

3rd user (595695) is on position 53 in cluster 1 and 38th in cluster 6. User 65584 is 155th
in cluster 4 and 137th in cluster 6. Non-clustered 7th place becomes 128th in cluster 2,
while 8th place ends up at position 142 in cluster 3. Every top 10 element, however, ranks
better in at least one particular cluster (e.g., User 22995 (7th) is ranked 4th in cluster 3).

We observe similar differences in the opposite direction. Well positioned clustered
users rank very low in the unclustered set. As listed in Table 6.13, user 963289, 3rd in
cluster 2, is otherwise ranked 76th. User 1304191, on 7th place in cluster 6, ends up at
position 199. Additional differences exist in the ordering of element. Positioned 6th in the
unclustered set, user 22995 ranks before position 5 and 2 in cluster 3. In cluster 2, initial
rank 8 outperforms rank 4 and 6. The analysis of ranking orders highlights considerable
differences between the intra cluster order and the unclustered ranking order. We, thus,
can conclude that clustering successfully promotes specialized users.

Next, we inspect the intra cluster utility values to measure the increase in benefit
compared to the unclustered utility values. Table 6.13 includes the biased average for
every position across all six clusters. Utility values in each cluster are weighted according
to the clusters contribution (see Table 6.12). There is a 23% benefit increase when selecting
the top users from every cluster compared to selecting the top unclustered user. The benefit
increase for the second position is 62%. Selecting an aggregation across the top 10 users
increases utility by 38% on average. This value neglects any sort of aggregation costs.
However, it neither includes the advantage of redundancy from having multiple elements.

6.7.5 Biased, Weighted Clustering Experiment Results

We introduce constraint weights to demonstrate the effect on the clustering result. In this
third experiment, we increase the importance of following four constraints: Entertainment-
Interesting-[Count|Score] (w = 0.08) and Mobile-Funny-[Count|Score] (w = 0.07). The
remaining constraints exhibit identical weights (w = 0.05) so the total weight equals 1 (see

Chapter 6: Service Infrastructure Adaptation Techniques 128

NonCl Cl 1 Cl 2 Cl 3
Id u Id u Pos Id u Pos Id u Pos

957197 60.73 957197 76.17 1 238306 73.25 27 957197 76.33 1
835522 39.33 817932 48.75 24 25149 71.67 31 655584 71.90 4
595695 35.67 21727 47.46 36 963289 67.37 76 166417 60.29 13
655584 34.59 722131 41.87 44 1207026 67.13 25 22995 54.86 7
513215 34.29 898314 41.63 12 641858 67.10 8 513215 48.72 5
135745 33.29 945258 36.94 41 655584 63.58 4 835522 46.20 2
22995 31.87 912633 36.48 10 717556 58.15 73 869638 42.56 15

641858 31.26 835522 36.32 2 135745 55.89 6 987471 42.02 22
597831 31.16 513215 35.82 5 820751 54.60 11 95088 39.56 23
912633 30.50 869638 32.82 15 132727 50.32 16 122034 39.27 48

All Cl Cl 4 Cl 5 Cl 6
Avg Id u Pos Id u Pos Id u Pos

74.57 957197 78.15 1 957197 84.09 1 132727 61.92 16
63.86 597831 70.05 9 595695 79.01 3 835522 49.20 2
53.50 1015143 47.14 14 74366 61.00 89 641858 42.19 8
49.40 12016 46.60 21 135745 57.82 6 680178 33.96 85
47.53 513215 45.27 5 762201 54.13 82 1015143 33.68 14
45.50 908688 44.62 100 655584 53.98 4 22995 33.46 7
43.22 627338 42.96 137 611928 51.75 17 1304191 32.47 199
42.29 898314 41.12 12 50515 51.65 74 238306 31.60 27
41.25 784150 39.78 72 121541 50.93 56 942385 31.46 37
39.71 611928 38.78 17 15695 50.64 149 965620 31.13 90

Table 6.13: Top 10 ranked users for unclustered and clustered evaluation for biased, un-
weighted constraints. Pos indicates the clustered element’s position in the unclustered
ranking.

Chapter 6: Service Infrastructure Adaptation Techniques 129

also Table 6.14).

Clustering with these weights yield one more cluster. Also cluster membership has
changed for some constraints. Both, Entertainment-Interesting and Mobile-Funny popu-
late now their own cluster exhibiting high crispness. On the other hand, Ask-Funny looses
its clear membership in a single cluster, now yielding fuzzy membership across all clus-
ters. Entertainment-Funny maintains its fuzzyness but shares its largest membership with
Mobile-Funny instead of Entertainment-Interesting.

The clustering process does not provide the same mapping of constraints to clusters for
subsequent reruns. We reordered the cluster membership matrix in Table 6.14 to provide
the best matching to the membership matrix of the previous experiment (Table 6.11).

Constraint w τ Cl 1 Cl 2 Cl 3 Cl 4 Cl 5 Cl 6 Cl 7

Ask-Fun-Count 0.05 0.822 0.253 0.07 0.169 0.186 0.117 0.092 0.114
Ask-Fun-Score 0.05 0.766 0.26 0.067 0.166 0.183 0.115 0.091 0.118
Ask-Ins-Count 0.05 1.325 0.019 0.011 0.024 0.027 0.901 0.01 0.009
Ask-Ins-Score 0.05 1.649 0.005 0.003 0.007 0.007 0.973 0.003 0.002
Ask-Int-Count 0.05 0.901 0.008 0.004 0.007 0.961 0.009 0.006 0.004
Ask-Int-Score 0.05 0.932 0.008 0.004 0.007 0.961 0.01 0.006 0.004
Ent-Fun-Count 0.05 0.795 0.167 0.099 0.143 0.134 0.087 0.155 0.215

Ent-Fun-Score 0.05 0.667 0.165 0.092 0.133 0.12 0.08 0.156 0.253

Ent-Ins-Count 0.05 0.984 0.008 0.004 0.967 0.006 0.008 0.004 0.004
Ent-Ins-Score 0.05 0.958 0.008 0.003 0.97 0.005 0.007 0.003 0.004
Ent-Int-Count 0.08 0.732 0.799 0.023 0.045 0.041 0.027 0.032 0.032
Ent-Int-Score 0.08 1.066 0.945 0.006 0.014 0.011 0.01 0.007 0.007
Mob-Fun-Count 0.07 0.91 0.002 0.002 0.002 0.002 0.001 0.004 0.987

Mob-Fun-Score 0.07 0.911 0.002 0.002 0.001 0.001 0.001 0.003 0.99

Mob-Ins-Count 0.05 1.387 0.003 0.976 0.003 0.003 0.003 0.008 0.004
Mob-Ins-Score 0.05 1.429 0.003 0.98 0.003 0.003 0.003 0.007 0.003
Mob-Int-Count 0.05 0.774 0.008 0.014 0.006 0.007 0.005 0.943 0.018
Mob-Int-Score 0.05 0.994 0.003 0.007 0.003 0.003 0.002 0.976 0.006

Cluster Weight 0.177 0.119 0.135 0.115 0.119 0.126 0.209

Table 6.14: Cluster membership and importance vector T for biased, weighted constraints
from subdomains Ask, Entertainment, and Mobile with predicates Funny, Insightful, and
Interesting.

Again, we pairwise compare the non-clustered ranking and each cluster for ranking
differences. We find low average Jaccard similarity increasing with growing k—similar
to the unweighted experiment. We notice even stronger ranking order differences when
comparing the average Pearson’s coefficients in Table 6.15 and Table 6.12. Both, Top 50
and Top 100 users show hardly any rank correlation with the non-clustered user set.

Cluster 7 emerges not only due to the changed weights. We evaluate the pairwise cluster
similarity to ensure that the underlying data justifies this additional cluster. Figure 6.11
provides the similarity matrix including the non-clustered set in the last row and column.

Chapter 6: Service Infrastructure Adaptation Techniques 130

Top 10 Top 50 Top 100
Cluster ρ J ρ J ρ J

Cl1 -0.104 (15) 0.333 0.218 (71) 0.408 0.275 (138) 0.449
Cl2 -0.635 (17) 0.176 -0.199 (83) 0.205 -0.062 (147) 0.361
Cl3 0.207 (15) 0.333 0.097 (72) 0.389 0.161 (142) 0.408
Cl4 -0.373 (17) 0.176 -0.043 (79) 0.266 -0.046 (150) 0.333
Cl5 0.000 (16) 0.25 -0.062 (78) 0.282 0.011 (146) 0.37
Cl6 -0.622 (18) 0.111 -0.164 (73) 0.37 0.099 (142) 0.408
Cl7 -0.385 (18) 0.111 -0.148 (76) 0.316 0.117 (136) 0.471

Avg -0.273 (16.6) 0.213 -0.043 (76) 0.319 0.079 (143) 0.400

Table 6.15: Ranking differences of top 10, 50, and 100 users between each cluster and the
unclustered ranking order measured with Pearson’s correlation coefficient (ρ) and Jaccard
similarity (J). Weighted, biased constraints from subdomains Ask, Entertainment, and
Mobile with predicates Funny, Insightful, and Interesting.

Cluster 7 remains distinctively different from the other clusters for the top 10, 50, and 100
users.

2 4 6 8

1

2

3

4

5

6

7

8
0

0.2

0.4

0.6

0.8

1

2 4 6 8

1

2

3

4

5

6

7

8
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

2 4 6 8

1

2

3

4

5

6

7

8 0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(a) (b) (c)

Figure 6.11: Cluster Jaccard similarity for Top 10 (a), Top 50 (b), and Top 100 (c) users
for biased, weighted constraints.

The additional cluster allows for further specialization compared to the previous ex-
periment. The benefit increase in the previous experiment is given in brackets. There is
a 47% (23%) benefit increase when selecting the top users from every cluster compared
to selecting the top unclustered user. The benefit increase for the second position is 14%
(62%). Most importantly, however, the set of top 10 users yield a utility increase by 51%
(38%) on average.

Table 6.16 lists the top 10 members in the seven clusters, their cluster specific utility
value, and their position in the unclustered ranking. In the top 10 unclustered elements
experience, new user 898314 (9th) replaces 597831 (formerly 9th). Across the seven clus-
ters, 13 new users arise (in italics in Table 6.16), whereas three former users drop out.
In total, the six clusters from the previous experiment exhibit 41 distinct users. With an
additional cluster, this experiment exhibits 51 distinct users.

Chapter 6: Service Infrastructure Adaptation Techniques 131

Clusters that display little membership differences to the previous experiment yield
mostly the same users in slightly different order. Cluster 5, for example, exhibits the same
top 10 users, of which the lower five lost (respectively gained) no more than three places.
Clusters 2, 3, and 4 experience a single new user, with clusters 1 and 6 containing two new
users each. Within cluster 1, focus shifted from Ask-Funny to Entertainment-Interesting
and in cluster 6 Mobile-Funny has no longer any impact as it now populates its own cluster
(7). Unsurprisingly, cluster 7 yields seven new users. Users 86149, 243267, 945888, 622222,
844560, 933028 reside on places between 27 and 105 in the non-clustered ranking.

The set of novel users in cluster 7 demonstrates the effectiveness of constraint weights.
Promoting previously low fulfilment constraints—such as Mobile-Funny—creates cluster
configurations that subsequently recommend users with the required capabilities.

NonCl Cl Cl 1 Cl 2 Cl 3
Id u Avg Id u Pos Id u Pos Id u Pos

957197 58.20 84.45 957197 84.36 1 238306 82.63 33 957197 84.52 1
835522 43.60 68.82 898314 83.74 9 25149 78.13 28 655584 76.72 5
22995 34.25 56.71 645701 55.65 62 963289 75.73 82 166417 64.44 16

595695 33.70 52.54 912633 48.70 8 1207026 74.30 23 22995 53.39 3
655584 33.11 50.94 817932 47.39 18 641858 73.15 10 513215 52.87 6
513215 31.96 47.92 679338 46.99 26 655584 70.19 5 869638 46.89 15
135745 31.39 45.68 22995 40.08 3 717556 65.71 84 987471 46.27 21
912633 30.54 44.31 595695 39.78 4 135745 61.69 7 33014 43.24 30
898314 29.69 43.17 132727 39.27 14 820751 59.61 11 122034 41.75 54
641858 29.47 41.34 25149 39.04 28 1280296 55.65 39 835522 41.47 2

Cl 4 Cl 5 Cl 6 Cl 7
Id u Pos Id u Pos Id u Pos Id u Pos

957197 85.00 1 957197 90.88 1 132727 77.45 14 835522 85.76 2
597831 71.23 13 595695 81.54 4 641858 47.92 10 86149 49.82 58

513215 48.00 6 74366 65.65 115 680178 44.68 99 243267 48.73 43
12016 46.36 25 135745 62.36 7 1304191 42.76 202 945888 46.57 40

1015143 44.97 12 762201 58.23 116 238306 41.66 33 22995 44.80 3
908688 42.58 124 121541 56.79 71 597831 39.51 13 622222 39.67 27
602015 42.19 24 655584 55.89 5 1294206 39.31 227 722131 38.58 38
784150 41.48 106 50515 55.44 92 913150 38.24 125 1015143 37.84 12
627338 40.93 156 15695 54.53 161 835522 36.59 2 844560 36.75 67

898314 37.81 9 611928 52.99 17 965620 36.55 74 933028 33.26 105

Table 6.16: Top 10 ranked users for unclustered and clustered evaluation for biased,
weighted constraints. Pos indicates the clustered element’s position in the unclustered
ranking.

Chapter 6: Service Infrastructure Adaptation Techniques 132

6.7.6 Discussion of Clustering Experiments

The three experiments have shown how constraint weights influence the clustering result.
Biased, non-weighted clustering highlights the constraints that are fulfilled by most users
(i.e., services in an ensemble). Subsequently, biased, weighted clustering successfully shifts
the focus onto the constraints considered more important. New, or changed, clusters emerge
only when the preferred constraints indeed meet a distinct difference in the underlying
capability data compared to the remaining constraints.

Regular clustering, as tested in the unbiased experiment, produced too many clusters.
However, both biased experiments exhibited very distinct clusters. Inter cluster Jaccard
similarity remained in the range of [0, 0.25], [0.02, 0.28], and [0.13, 0.42] for the top-10,
top-50, and top-100 users (out of 255), respectively. The corresponding similarity between
the unranked result and each cluster yielded slightly higher values.

Clustering also promotes users to the top elements in a cluster which are badly ranked
in the non-clustered set. The Pearson’s correlation coefficient emphasized the element
positioning difference between non-clustered and clustered ranking order for both biased
experiments. We observed a negative correlation for the top-10 users, no correlation for
the top-50 users, and hardly a correlation for the top-100 users. The average benefit
for selecting the top-10 users in every cluster amounts to a 38% to 51% utility increase
compared to the unclustered ranking result.

6.8 Evaluation of Service Recommendation

In this section, we finally combine the Slashdot-based distance graph from Section 4.4, and
the Slashdot user statistics from Section 6.7. Before we provide the aggregation results
for the experiments in Section 6.7, we discuss one fundamental factor determining Simu-
lated Annealing’s ability to provide better solutions than the set of top ranked elements:
Capability Assortativity.

6.8.1 Capability Assortativity

Simulated Annealing is most helpful when users in a common neighborhood yield substi-
tutable capabilities. Substitutable capabilities occur when closely connected users exhibit
similar capabilities, while maintaining only weak links to users of different capabilities.
The top users exhibit thus high intra-cluster connectivity, but low inter-cluster connec-
tivity. Under these circumstances, Simulated Annealing can find a good tradeoff between
shortest distance between clusters and selecting suitable elements.

On the other hand, when users yield complementary capabilities, the top elements from
the clusters will most likely provide one of the best solutions. When the top ranked users
maintain high inter-cluster connectivity, applying a heuristic such as Simulated Annealing
might not provide better results than brute force testing of the top few elements.

Chapter 6: Service Infrastructure Adaptation Techniques 133

The distance graph’s topology is one of the key factor determining a trend towards
complementary or substitutable capabilities. We measure this trend with the assortativity
metric.

Assortativity, in general, describes the degree characteristics of nodes. An assortative
graph contains nodes of high degree connecting to other nodes of similarly high degree,
while nodes of low degree have neighbors of equally low degree (Newman 2002,Newman
2003). Dissortativity describes the inverse effect with high degree nodes linking to low
degree nodes.

For our purpose, we apply the concept of assortativity on the neighborhood cluster
rank. Specifically, we define intra-cluster assortativity and inter-cluster assortativity. The
former describes if elements tend to connect to elements of similar rank position within
a cluster. The latter describes whether elements in one cluster tends to link to similar
ranked elements in other clusters, or if they rather attach to better ranked elements.

The capability assortativity considers only ranked elements. Thus other users in the
distance graph that do not show up in the ranking order (because the do not fulfill a single
requirement) are ignored. They would distort the result.

In addition, capability assortativity includes edge weights. Regular assortativity mea-
surements focus only on degree. Here, we apply the distance between elements to give
more weight to ranks of closer neighbors, than to more distance neighbors.

The intra-cluster capability assortativity for an element s in cluster k is defined as:

CAintra(s, k) =

[

h
∑

i

score(i, k) ∗
1

dist(s, i)

]

∗ h−1 (6.26)

where h is the number of neighbors of s that are also ranked, score(i, k) determines the
score of element i in cluster k, and dist(s, i) provides the distance between elements s and
i in the interaction-based distance graph.

The inter-cluster capability assortativity for an element s in cluster k is defined as:

CAinter(s, k) =

|K|
∑

j

h
∑

i

score(i, j) ∗
1

dist(s, i)

 ∗ (h ∗ |K|)−1 ∀ j 6= k (6.27)

where |K| is the number of available clusters.

In Figure 6.12 we print the user’s ranking score against the intra-cluster and inter-
cluster assortativity for each cluster. A negative slope indicates dissortativity, while a
positive slope indicates assortativity (Lee, Kim, and Jeong 2006). Highlighted with linear
best fit, we observe a distinct capability assortativity within each cluster, and distinct
capability dissortativity across clusters. The clusters correspond to the biased, unweighted
clustering experiment in the previous section (6.7) for predicates funny, interesting, and
insightful for the subdomains ask, entertainment, and mobile. Assortativity measurements

Chapter 6: Service Infrastructure Adaptation Techniques 134

for unbiased, unweighted and biased, weighted experiments yield similar trends for intra-
cluster and inter-cluster assortativity.

Intra-cluster assortativity indicates that the top users are well connected within their
cluster. Inter-cluster dissortativity highlights lower connectivity across the clusters’ top
users. Slashdot data thus yields closely connected users with substitutable capabilities.
Subsequently, Simulated Annealing offers considerable benefit in finding optimum aggre-
gations.

0 10 20 30 40 50 60 70 80
10

12

14

16

18

20

22

24

26

Avg weighted Neighbor Score Inter Cluster 1
 linear fit

0 10 20 30 40 50 60 70 80
0

5

10

15

20

25

30

35

Avg weighted Neighbor Score Intra Cluster 1
 linear fit

0 10 20 30 40 50 60 70 80
6

8

10

12

14

16

18

20

22

24

26

 Avg weighted Neighbor Score Inter Cluster 2
 linear fit

0 10 20 30 40 50 60 70 80
0

10

20

30

40

50

60

70

 Avg weighted Neighbor Score Intra Cluster 2
 linear fit

(a) (b) (c) (d)

0 10 20 30 40 50 60 70 80
10

12

14

16

18

20

22

24

 Avg weighted Neighbor Score Inter Cluster 3
 linear fit

0 10 20 30 40 50 60 70 80
0

5

10

15

20

25

30

35

40

Avg weighted Neighbor Score Intra Cluster 3
 linear fit

0 10 20 30 40 50 60 70 80
10

12

14

16

18

20

22

24

26

 Avg weighted Neighbor Score Inter Cluster 4
 linear fit

0 10 20 30 40 50 60 70 80
0

5

10

15

20

25

30

35

40

Avg weighted Neighbor Score Intra Cluster 4
 linear fit

(e) (f) (g) (h)

0 20 40 60 80 100
8

10

12

14

16

18

20

22

24

 Avg weighted Neighbor Score Inter Cluster 5
 linear fit

0 20 40 60 80 100
5

10

15

20

25

30

35

40

45

50

 Avg weighted Neighbor Score Intra Cluster 5
 linear

0 10 20 30 40 50 60 70
10

12

14

16

18

20

22

24

26

28

 Avg weighted Neighbor Score Inter Cluster 6
 linear fit

0 10 20 30 40 50 60 70
0

10

20

30

40

50

60

 Avg weighted Neighbor Score Intra Cluster 6
 linear fit

(i) (j) (k) (l)

Figure 6.12: Intra-cluster and inter-cluster Capability Assortativity for biased, unweighted
clustering results of predicates Funny, Interesting, and Insightful for subdomains Ask,
Entertainment, and Mobile.

6.8.2 Simulated Annealing Aggregation Experiments

We apply Simulated Annealing on the three experiments previously outlined in Section 6.7.
In all three cases, we utilize the same underlying interaction network. We extract the bipar-
tite graph as present in Section 4.4.3.1 utilizing an activity aggregation energy parameter
of 1, and including only users with a minimum of 5 postings.

The complete action graph contains the subdomains ask, entertainment, and mobile
and exhibits 2497 users. We require a complete graph comprising more users than are
contained in the cluster rankings to determine the correct user distance. We apply the

Chapter 6: Service Infrastructure Adaptation Techniques 135

interaction-based distance metric as we are interested in the focus of joint collaboration
between users rather than their general involvement in common activities.

6.8.2.1 Aggregation of unbiased, non-weighted clustering results

Selection of top elements across 12 clusters yields a maximum weighted utility xmax = 97.93
for a maximum distance distmax = 24.11. The set of top users comprises user 835522, 3x
957197, 898314, 2x 912633, 597831, 132727, 238306, 595695, and 655584.

The simulated annealing process reduces the average utility to 90.84 but lowers the
distance even more: dist = 20.65. The optimized set consists of the same members with
exception to user 820751 (position 38 with score 32.55) replacing 597831 (position 1 with
score 98.79) in cluster 7. The next best solution considered by the simulated annealing
process is already the set of top elements.

6.8.2.2 Aggregation of biased, non-weighted clustering results

Biased, non-weighted clustering created six clusters. The best achievable capability ag-
gregation consists of users 4x 957197, 238306, and 132727 yielding a utility benefit of
xmax = 74.57 with distance: distmax = 4.79.

Again, Simulated Annealing provides a better tradeoff between distance and utility.
The set of users 3x 957197 (Cl1:1, Cl3:1, Cl4:1), 135745 (Cl2:8), 655584 (Cl5:6), 835522
(Cl6:2) provides a slightly reduced utility (xagg = 65.31), as considerably reduced distance
(dist = 1.23). Cluster membership and ranking position are given in brackets.

Here, adding (and replacing) users provides a better tradeoff than aggregating with
fewer users. Simulated Annealing also identifies solutions with a less optimal tradeoff.
These solutions either exhibit lower distance (combined with lower utility), or exhibit
higher utility (with greater distance). Among the top 20 solutions, distance becomes as
little 0.48, then generating utility 56.6. For this experiment, no solution (except the top
cluster elements) provides better utility than the optimal tradeoff.

6.8.2.3 Aggregation of biased, weighted clustering results

The final clustering experiment highlighted seven clusters for biased, weighted constraints.
Best top cluster elements comprise the familiar users of the previous experiments: 132727,
4x 957197, 238306, and 835522. The corresponding aggregation yields utility xmax = 84.44
at a distance of distmax = 6.07.

The best tradeoff comprises user 957197 for clusters 1 to 6, and user 835522 for the
additional cluster 7. These two users yield an aggregated utility value of 72.84 at distance
0.34.

Sieving through the top 20 solutions, we find no aggregations with lower distance but
some with higher utility. These solutions include one aggregation instance additionally

Chapter 6: Service Infrastructure Adaptation Techniques 136

including user 135745 for cluster 2 at rank position 8. It thereby replaces user 957197
formerly in cluster 2 at position 35. This combination provides a weighted utility value
of 75.01 but comes with a distance of 0.65. Another combination, albeit with a worse
tradeoff, additionally adds users 595695 and 513215 in cluster 5 and 6, respectively. This
aggregation yields a utility of 73.92 at distance 1.76.

6.8.3 Simulated Annealing Evaluation Summary

Simulated Annealing provides benefit when services with similar capabilities are loosely
connected. We applied the assortativity analysis of he Slashdot data underlying the clus-
tering experiments. We found intra-cluster assortativity and inter-cluster dissortativity,
subsequently demonstrating the need for Simulated Annealing.

Simulated Annealing found aggregations that provided a better tradeoff between ca-
pability utility and distance than the top cluster elements for all of the three clustering
experiments. The optimal tradeoff found for the unbiased, non-weighted experiment ex-
hibited an energy value of 0.97, only a slight improvement over the top cluster elements
(which always yield energy 1). We achieved an SA energy value of 0.7 for the biased,
non-weighted experiment, and energy 0.62 for the third, biased and weighted clustering
process.

Chapter 7

Design and Implementation

7.1 Architecture

The Service Ensemble Adaptation Architecture encapsulates the main capabilities as Web
services. The architecture comprises core services for management, context provisioning,
and adaptation of ensemble entities (see Figure 7.1).

The Ensemble Management Services enable modeling and tracking of service capabili-
ties (Service Capability Mgmt), organization and structuring of activities (Activity Mgmt),
managing of human communication channels (Account Mgmt), and aggregating humans
and services according to organizations, teams, or groups (Group Mgmt). Logging com-
ponents capture all interactions between core management services and other ensemble
entities.

Context Provisioning Services consist of context sensors, context aggregation function-
ality, ranking capabilities, and context provisioning endpoints. Logging is the main source
of raw interaction data. Context Sensors analyze interactions and generate the appropri-
ate actions. Context Aggregation determines ensemble-centric metrics. Context Ranking
establishes the relevant set of context for a specific situation and client. Finally, Context
Provisioning supplies push and pull based context updates.

Adaptation Services react to context and ensemble changes. Property Interaction Im-
pact determines the significance of impact factors. Ensemble Service Recommender estab-
lishes on demand the set of most suitable services to forward a request to given the current
context and property impact. Infrastructure Reconfiguration Recommender continuously
tracks ensemble requirements and publishes optimal service changes.

In a service ensemble, it is natural to provide context and adaptation capabilities as
Web services. Exchangeability and composability are amongst the main reasons to apply
SOA principles also within the adaptation framework. Customized adaptation services
can provide recommendations tailored to the particular ensemble domain. We are able to
aggregate sensor services from different providers, thereby adding new context sources or

137

Chapter 7: Design and Implementation 138

increasing context accuracy. Third party services can utilize existing context and recom-
mendation services to address specialized adaptation requirements.

Activity

Management

Account

Management

Group

Management

Context RankingContext Aggregation

Service Capability

Management
Logging

Context Sensors

Adaptation Services

Ensemble Service

Recommender

Context Provisioning

Infrastructure Reconfiguration

Recommender

Ensemble

Service

Ensemble Actor

Service Ensemble Adaptation Architecture

Ensemble

Service

Ensemble Actor

Property

Interaction Impact

Context Provisioning Services

Ensemble Management Services

M
o
n
it
o
ri
n
g
,
A
n
a
ly
s
is
,
P
la
n
n
in
g

E
x
e
c
u
ti
o
n
 /
 M
a
n
a
g
e
m
e
n
t

Figure 7.1: Service Ensemble Adaptation Architecture overview.

7.2 Ensemble Management Services

7.2.1 Capability Management Service

The Capability Management Service provides operations for managing service profiles. Sec-
tion 6.3 discusses the structure of service profiles. Here we present the corresponding
operations and technical details. The service consists of three main components:

• Profile Registry: wraps the backend XML database storing the service capability
profiles. The native XML database eXist1 provides the necessary storage and retrieval
methods. Profile inserts are executed directly via REST PUT requests. Queries and
updates utilize XQuery and XUpdate statements embedded in REST PUT requests.

• Query Handler: transforms the supplied query parameters into an XQuery statement
and retrieves the fitting profiles from the Profile Registry. Service clients can only
provide the query identifier and required input parameters. Available queries extract

1http://exist.sourceforge.net/

Chapter 7: Design and Implementation 139

profiles based on capability identifier and allow refinement by additionally specifying
required property identifier, property values, or property value range.

• Change Handler: evaluates profile updates and publishes corresponding change events
(Figure 7.2). RepositoryChange events inform about highlevel changes, such as new,
changed, or removed profiles. The actual changes are described in the ProfileChange
event. Notifications are made available via Atom feed, JMS, and WS-Notification.
All three types contain the same event format.

The service operations include:

registerService adds a complete service profile to the Profile Registry.

unregisterService removes a complete service profile from the Profile Registry.

updateServiceCategories replaces the existing service category membership.

updateServiceProfile replaces a complete service profile.

updateServiceComponent replaces a complete component within a profile.

updateServiceCapability replaces a complete capability within a component.

queryCapabilities supplies one or more queries (containing query identifier and query
parameters). The operation returns a set of matching service profiles. The service
client can configure whether multiple queries within a single query request are treated
disjunctive or conjunctive.

7.2.2 Activity Service

The Activity Service manages data instances of the activity model (introduced in Sec-
tion 4.1). It supports structuring of ensemble activities (i.e., goals), and assignment of
roles, resources, artifacts; allows managing of deadlines and tracking of progress. The
service provides coordination primitives are inspired by (Dustdar 2004). The three major
components are:

• Coordination Handler: manages the structure of activities and handles Delegation
requests. A delegation remains in a user’s Inbox until s/he accepts or rejects the
delegation (using the respective RespondDelegation message). Users are also able to
notify about starting or stopping work on an activity.

• Activity Store: wraps the backend XML-enabled database. We utilize JDBC to con-
nect to the IBM DB2 database. The hybrid approach allows us to combine SQL and
XQuery statements. Activities create a hierarchy using URIs as references to parent

Chapter 7: Design and Implementation 140

tProfileChange
NewComponent : anyURI [0..*]
RemovedComponent : anyURI [0..*]
ChangedServiceCategories : anyURI [0..*]
«attribute» Source : anyURI

tComponentChange
NewCapability : anyURI [0..*]
RemovedCapability : anyURI [0..*]
«attribute» ComponentURI : anyURI

ChangedComponent
0..*

tCapabilityChange
NewProperty : anyURI [0..*]
RemovedProperty : anyURI [0..*]
«attribute» CapabilityURI : anyURI

ChangedCapability
0..*

tSelectableCapabilityChange
NewAlternative : anyURI [0..*]
RemovedAlternative : anyURI [0..*]
«attribute» CapabilityURI : anyURI

SelectableCapability
0..*

tPropertyChange
«any, element» wildcard
«attribute» PropertyURI : anyURI

ChangedProperty
0..*

tRepositoryChange
NewServiceProfile : anyURI [0..*]
ChangedServiceProfile : anyURI [0..*]
RemovedServiceProfile : anyURI [0..*]
«attribute» RepositoryURI : anyURI

Figure 7.2: Capability Change model UML class diagram

and child activities. Subsequently, each activity instance populates a separate row
in the database. SQL provides recursive iteration techniques to retrieve a complete
activity subtree (see Listing 7.1). We limit XML content in the database to the ac-
tual activity data. Additional metadata for managing historical and deleted activity
instances remain as regular SQL columns (e.g., Listing 7.1 line 5: ISDELETED or
line 6: ISNEWEST).

• Query Handler: accepts a reference to a query and the corresponding query input
encoded as XML. The Query Handler retrieves the query from the Query service (if
not already cached) and replaces the placeholders in the query with the parameters
from the query input. As context sensors and context clients make most use of
the Query service, we provide details and design rationale in the next subsection.
Three default queries enable retrieval of (i) all activities a user is involved in, (ii) all
activities within an activity subtree, and (iii) all activities delegated to but not yet
accepted by a particular user.

The Activity service supports following operations:

addActivities accepts multiple new activities at the same time. The client can provide
different Activity subclasses within the same request. The service creates activity
identifiers upon successful storage. Consequently, the set of new activities within
a request can refer only to stored activities, but cannot establish a tree structure
themselves. This has to be done using setDetails and addDetails operations.

setDetails manipulates all single-valued properties such as name, description, parent, or
start. The service overwrites all such properties, thus a clients need to provide also
properties that haven’t changed.

Chapter 7: Design and Implementation 141

addDetails affects only multi-valued properties such as tags, childActivities or member-
Involvements. The provided activity instance needs to include only the difference
(i.e., the added details). The service adds the provided properties to the set of exist-
ing properties. Duplicate entries are removed, thus any tag, child activity, or resource
occurs at maximum once.

removeDetails is the inverse operation to addDetails. The operation will remove all
multi-valued properties provided from the activity instance in the database.

deleteActivities marks the corresponding activities as deleted in the database, thus be-
coming inactive. An Activity having active child activities cannot be removed.

getActivities returns all activities identified by their URI.

queryActivities retrieves the referenced query and inserts the provided query param-
eters. Activities marked as deleted will not turn up in the result set unless the
query explicitly addresses deleted activities. The service supports only one query per
request.

delegateActivity requests to change the responsible member(s) of an activity. A del-
egation request consist of sender, receivers, activity identifier, and delegation type.
The delegation type determines if the receiver is just a normal Delegate replacing
the sender, or a DelegateSplit to clone the delegated activity for each receiver, or a
DelegateJoint to divide responsibility amongst multiple members.

respondDelegation indicates the acceptance or refusal to take over responsibility. For
accepted delegations, the service updates the activity by replacing the responsible
person. The formerly responsible person becomes an observer.

notifyWork informs involved members and services about an person starting or stopping
work.

7.2.3 Context Coupling Mechanisms

Ensemble services require context information to adapt to the user, activity, and overall
ensemble. A service client is unlikely to know which context the service provider requires.
It merely invokes the service which has to retrieve the required context by itself. As
service clients potentially assume multiple roles within an ensemble, retrieval of the relevant
context information becomes challenging.

Context coupling mechanisms provide a correlation of service invocations to client con-
text. The client context includes the context changes of previously invoked services. A
newly invoked service receives the context correlation information to adapt to the relevant
context. Figure 7.3 outlines this process. Correlation information consists of activity URI
and user URI. The basic coupling steps are:

Chapter 7: Design and Implementation 142

1 WITH RAL (URI , ACTIVITYXML) AS

2 (SELECT ROOT.URI , ROOT.ACTIVITYXML

3 FROM $SCHEMA .ACTIVITY ROOT

4 WHERE

5 ROOT.ISDELETED = 0

6 AND ROOT.ISNEWEST = 1

7 AND xmlexists (’declare default element namespace

8 "http :// www.in -context .eu/ns/activity ";

9 $c/tActivity [ParentActivity="$id "]’

10 passing ROOT. ACTIVITYXML as "c")

11 UNION ALL

12 SELECT CHILD.URI , CHILD .ACTIVITYXML

13 FROM RAL PARENT , $SCHEMA .ACTIVITY CHILD

14 WHERE

15 CHILD .ISDELETED = 0

16 AND CHILD.ISNEWEST = 1

17 AND xmlexists (’declare default element namespace

18 "http :// www.in -context .eu/ns/activity ";

19 $f/tActivity [ParentActivity=$d]’

20 passing CHILD .ACTIVITYXML as "f",

21 PARENT .URI as "d")

22)

23 SELECT URI , ACTIVITYXML FROM RAL

Listing 7.1: Recursive retrieval of sub activities within a activity hierarchy, starting at
activity URI ”$id”

Correlation Management consists of identifying the ensemble actor, and selecting the
desired activity. Composite services pass the correlation information they have ini-
tially received to their embedded service client.

Correlation Establishment occurs when the client-side context coupling handler adds
user and activity identifier to the SOAP header of the outgoing service invocation.
Listing 7.2 contains an example SOAP message with activity and user references in
the context coupling SOAP header extension.

Access Layer acts as transparent HTTP proxy, producing a copy of every SOAP request
and reply. Each copy is passed to the Logging Service.

Logging Service provides a subscription interface. Every subscriber receives a copy of
SOAP messages encapsulated in an interaction event (see Table 7.1). The next section
details how context sensors subsequently generate context information.

Correlation Extraction The service-side handler extracts the correlation information
from the inbound SOAP message. The service utilizes the references as entry points
for accessing the actual context via the Context Retrieval services.

Most of the ensemble management services are part of the Pervasive Collaboration
Service Architecture (PCSA) devised in the inContext project 2. We designed and im-
plemented the Activity Management Service and the Capability Management Service and

2http://www.in-context.eu

Chapter 7: Design and Implementation 143

Activity

Management WS

Ensemble Actor

Group

Management WS

Ensemble

Service Client

Ensemble

Service

Client-side Context

Coupling Handler
Service-side Context

Coupling Handler

Access

Layer
forward forward

Ensemble

Service

get User ID get Activity ID

set UserID +

ActivityID

set UserID +

ActivityID

add Context Correlation

To SOAP Header
extract Context Correlation

From SOAP Header

Logging WS

add SOAP Msg

Figure 7.3: Context Coupling Mechanism.

1 <?xml version ="1.0 " encoding ="UTF -8"?>

2 <soapenv:Envelope

3 xmlns:soapenv="http: // schemas .xmlsoap .org/soap/envelope /"

4 xmlns:xsd ="http: //www.w3.org /2001/ XMLSchema "

5 xmlns:xsi ="http: //www.w3.org /2001/ XMLSchema -instance ">

6 <soapenv:Header>

7 <ns1:activity_id

8 soapenv:actor="http: // schemas .xmlsoap .org/soap/actor/next"

9 soapenv:mustUnderstand ="0" xsi:type ="soapenc:string"

10 xmlns:ns1 ="incontext "

11 xmlns:soapenc="http: // schemas .xmlsoap .org/soap/encoding /">

12 http: //www .in -context .eu/ Activity /Activity #1624

13 </ ns1:activity_id>

14 <ns2:user_id

15 soapenv:actor="http: // schemas .xmlsoap .org/soap/actor/next"

16 soapenv:mustUnderstand ="0" xsi:type ="soapenc:string"

17 xmlns:ns2 ="incontext "

18 xmlns:soapenc="http: // schemas .xmlsoap .org/soap/encoding /">

19 http: //www .in -context .eu/User/User#7

20 </ ns2:user_id >

21 </ soapenv:Header>

22 <soapenv:Body>

23 <ns3:addDocument

24 soapenv:encodingStyle ="http: // schemas .xmlsoap .org/soap/encoding /"

25 xmlns:ns3 ="http: // localhost /Eadt/Tasks/DocService ">

26 <sessionId xsi:type ="xsd:string ">

27 f625c495bff00a09eaf91b08d7b12a6e

28 </sessionId >

29 <profile xsi:type =" xsd:string ">

30 </profile >

31 <url xsi:type ="xsd:string ">

32 http: // localhost:80/inContext2 /tmp_files_to_transfer /EC_link .txt

33 </url >

34 </ ns3:addDocument>

35 </ soapenv:Body>

36 </soapenv:Envelope >

Listing 7.2: Example SOAP message with context coupling header

Chapter 7: Design and Implementation 144

Property Description
clientIP the IP address of the service client
messageType request or response
messageCorrelationID for correlating request and response messages
serviceEndpoint the service endpoint address
sourceID the address of the Access Layer having intercepted the message
timestamp the time at invocation
userURI the invoking user on behalf of which a service client is acting
consumerID the service client, which is invoking the actual service operation
message a copy of the SOAP message

Table 7.1: Interaction Event properties.

participated in the development of the components enabling the context coupling process.
Specifically, project deliverables D5.2 (inContext Consortium 2007b) and D5.3 (inContext
Consortium 2007a) provide implementation details on the Account Management service,
Group Management service (aka. Team Service and Team Management Service), and
Access Layer. Deliverable D4.2v2 (Casella, Dorn, Polleres, and Yi 2008) provides more
information on the context coupling SOAP header, while D2.2v2 (Dorn, Polleres, and Yi
2008) discusses Logging service specific details.

7.3 Context Provisioning Services

The context provisioning process (Figure 7.4) commences with incoming SOAP logs at the
Logging Subscriber Web service, subsequently distributed to the various Context Sensors.
The sensors apply the Ensemble Management services to reason about the service invoca-
tions before submitting context updates. The Query and Update Store Service provides
the detailed structure of context updates and queries. Metric Definitions describes which
ensemble metrics the Ensemble Context Aggregation Service should calculate, and which
metrics are available for subscription at the Metric Change Publisher Service. The Inter-
action Graph Manager maintains distance measurements. The Context Ranking Service
selects the most relevant context data given a set of context correlation identifiers while
the Context Retrieval Service provides specific on-demand context information.

7.3.1 Context Sensing and Aggregation

The Logging Subscriber Service subscribes at the Logging Service. Upon receiving a new
interaction event, it extracts the service operation from the SOAP message before passing
the event to interested sensors. The main purpose of context sensors is transforming
the incoming raw SOAP message to raw action events. Where required, they access the
ensemble management services to obtain additional information. An email sensor, for

Chapter 7: Design and Implementation 145

Context Ranking WS

Ensemble Context

Aggregation WS

Logging

Subscriber WS

Context Sensor

Context Retrieval WS

Context Sensor

Ensemble Management

Services

R
a
w

A
c
ti

o
n

D
a
ta

E
n

s
e
m

b
le

M
e
tr

ic
s

get

Metric Change

Publisher WS

Metric Definitions

Interaction Graph

Manager

D
is

ta
n

c
e

G
ra

p
h

push

push

set

context change

set

define events

get

get

get

get
manage

manage manage

get

Query & Update

Store WS

get

...

Figure 7.4: Context Provisioning Subsystem.

example, listens for successful invocations of the Email service (part of the PCSA) and
resolves the receivers’ email addresses at the Account Management Service. Thus it is able
to create a communication action containing the involved user URIs.

A context sensors adds context data at the Ensemble Context Aggregation Service via
two context input interfaces:

addAction accepts a new action and corresponding sensing metadata describing time,
confidence, sensor id, etc. This operation captures the actions of all active elements
in the ensemble.

addContext accepts updates as managed by the Query and Update Store Service. A sen-
sor identifies the update statement, provides the corresponding input XML, and the
sensing metadata as for addAction. This operation is intended for capturing context
changes about elements in the ensemble such as location changes, or availability.

Internally, the ensemble context aggregation service stores the Raw Action Data but also
computes Ensemble metrics. The Metric Definitions configure which metric calculation
plug-ins exist and upon which update (identified by URI) they should be triggered. Similar
to context sensors, a plug-in accesses ensemble management services to reason about metric
changes.

The Interaction Graph Manager takes raw action data to generate the 4-partite action
graph. It provides both context-based and interaction-based distance for activities, active
entities (humans and services), resources, and artifacts.

7.3.2 Query and Update Store Service

The Query and Update Store Service manages authorized (context) queries and also context
update. The decision to keep queries/updates separated from the actual storage services

Chapter 7: Design and Implementation 146

Property Description
identifier the unique identifier for the query/update
humanReadableName a short name describing the query/update
humanReadableDescription a longer description on how the query is used and what it

does
inputXSD specifies the XML schema, which describes the format of

the required XML input
inputExampleXML a sample XML input to be supplied by the query/update

invoker
statement the query/update statement interpreted by the query/up-

date engine together with the XML input
resultXSD specifies the format of the returned XML result
outputExampleXML an example output

Table 7.2: Query/Update object.

(e.g., Activity Service, Ensemble Context Aggregation Service) enables a simple, static
service interface. Queries and Updates can be added and removed as required without
having to change the services interface description. Service clients need not know the
details of the query language which comes with following advantages:

1. Design and testing of queries is done by an expert familiar with the ensemble con-
text model. This reduces the number of inefficient, incorrect, privacy infringing, or
computationally complex queries.

2. Reuse of existing queries simplifies the process of writing new ones. Additionally,
a known set of input and output XML schemas facilitate the provisioning of query
input and processing of result data on the consumer side.

3. Service providers can validate the provided input XML.

4. Any changes to the context model can be evaluated against the necessary alterations
of update and query statements, thus simplifying change management.

5. Context sensors do not need to know the details of the update language.

Table 7.2 provides the query/update object properties. It contains all information required
during design-time to create queries/updates. During runtime the invoked service (e.g.,
Activity Service) retrieves only the statement part. The example query statement in
Listing 7.3 returns all activities that have an artifact of given artifact type and given
resource reference. The first passing input statement declares that the placeholder $type
in the query template is to be replaced with the value of the XPath statement executed
on the provided input XML.

Chapter 7: Design and Implementation 147

1 <?xml version ="1.0 " encoding ="UTF -8" standalone ="yes"?>

2 <TXQueryTemplate xmlns="http: //www.in-context .eu/ns/contextquery">

3 <QueryStmt >

4 SELECT $SCHEMA .ACTIVITY .ACTIVITYXML

5 FROM $SCHEMA .ACTIVITY

6 WHERE $SCHEMA .ACTIVITY .ISDELETED = 0

7 AND $SCHEMA .ACTIVITY .ISNEWEST = 1

8 AND xmlexists (’declare default element namespace

9 "http: //www .in -context .eu/ns/activity " ;;

10 $c/tActivity / EditArtifacts[WrapsResourceURI=& quot;$ref "

11 and ResourceType=& quot;$ type" ;]’

12 passing $SCHEMA .ACTIVITY . ACTIVITYXML as "c")

13 </QueryStmt >

14 <PassingInput

15 Placeholder ="$type"

16 InputXPathStatement ="/ ArtifactQuery[1]/ ResourceType/text ()"/>

17 <PassingInput

18 Placeholder ="$ref"

19 InputXPathStatement ="/ ArtifactQuery[1]/ ResourceRef /text()"/>

20 </TXQueryTemplate >

Listing 7.3: Example Query statement for retrieving activities that have an artifact of
given resource type and given resource reference

7.3.3 Context Retrieval

The Context Retrieval Service is the main source of on-demand context information. It
provides two operations:

getAction accepts a query URI and corresponding input XML. The result is a set of
actions.

getContext takes the same input parameters as getAction but returns an XML string as
defined by the output schema of the corresponding query object.

Clients should use the Context Ranking Service when multiple context information
instances (e.g., multiple Storage Services) occur in the ensemble. The context ranking
service determines the most relevant ones given the user and activity identifier. Specifically,
it provides following operations:

getRankedContext requires user and activity URI, a reference to a context query, the
corresponding XML input, the maximum number of top ranked context elements,
and whether to include the actions in which the desired entity was involved in. The
operations returns a list of context resources (each as defined by the query) and the
corresponding rank.

getRankedContextURIs accepts the same input parameters as getRankedContext, dif-
fering only in the format of the response message. This operation provides only the
URI of the context object, rather than the complete representation.

Chapter 7: Design and Implementation 148

The Metric Change Publisher Service offers a subscription endpoint for ensemble metric
updates. The example subscription in Listing 7.4 expects notifications when the Property
Distribution Entropy for location drops below 0.33 in ensemble Test1. The publisher
services utilizes WS-Notification for delivering the metric events.

1 <?xml version ="1.0 " encoding ="UTF -8" standalone ="yes"?>

2 <MetricSubscription xmlns="http: //www.in-context .eu/ns/contextquery">

3 <ThresholdType>

4 http: //www .in -context .eu/ns/EnsembleMetrics/ threshold_lowerbound

5 </ ThresholdType>

6 <EnsembleURI >

7 http: //www .vitalab .tuwien .ac.at/projects /taaf/Ensemble #Test1

8 </ EnsembleURI >

9 <MetricURI >

10 http: //www .in -context .eu/ns/EnsembleMetrics/PDE#Location

11 </MetricURI >

12 <Threshold >

13 0.33

14 </Threshold >

15 <NotificationEndpoint >

16 ... [WS -Addressing Endpoint Reference] ...

17 </ NotificationEndpoint >

18 </MetricSubscription >

Listing 7.4: Ensemble metric subscription example

7.3.4 Mobile Context Provisioning

The ensemble management service and other context provisioning service run on standard
server hardware. The mobil context provisioning components target mobile devices such
as PDAs, smartphones, and laptops. The OSGi 3 specification describes a JAVA based
container environment for devices with limited memory and processing power.

OSGi exhibits service-like properties. Components are deployed as bundles that are
dynamically updated, found, bound, and invoked. Knopflerfish4 is the OSGi implementa-
tion of our choice. It comes with Web service support, thereby exposing specific bundles
as Web services.

The mobile context provisioning subsystem (Figure 7.5) consists of several OSGi bun-
dles. The Context Event Publisher and Context Event Subscriber are exposed as Web
services. The former provides context events to interested remote clients. The latter sub-
scribes for context events at remote context provisioning subsystems. Multiple mobile
context provisioning subsystems thus form a peer-to-peer network.

Internally, the Event Manager takes context events from local Context Sensor Bundles
and updates the Mobile Context Store as well as the event publishing bundle. The event
manager also accepts incoming remote context events and merges them with the local
context database.

3Open Service Gateway Initiative: http://www.osgi.org
4http://www.knopflerfish.org/index.html

Chapter 7: Design and Implementation 149

The Subscription Manager triggers remote subscriptions when the local context store
does not contain the data requested by the local Context Query Bundle. This bundle serves
context to the remaining bundles within the local OSGi container.

Subscription Manager

M
o
b
il
e

C
o
n
te
x
t

S
to
re

get
subscribe Remote

Context Event

Publisher WS

Context Event

Subscriber WS

Context Sensor

Bundles

Context Query

Bundle

Event Manager

remote Context Events

manage

retrieve

local Context Events

local Context Events

Figure 7.5: Mobile Context Provisioning subsystem.

7.4 Adaptation Services

Adaptation services rely upon context change events, especially ensemble metric updates.
Figure 7.6 outlines the Property Impact Evaluation subsystem, and Figure 7.7 displays the
Infrastructure Adaptation subsystem.

7.4.1 Property Impact Evaluation

The Metric Change Subscriber observes property-specific metric updates. The Metric
Definitions specify which properties get monitored in the ensemble. The Property Impact
Potential component calculates the possible impact of the changed property distribution.
It subsequently configures the Property Impact Evaluation component with respect to the
properties it should focus its interaction analysis on. In regular intervals, the Property
Impact Evaluation component retrieves aggregated interaction data from the ensemble
context services. Subsequently, it stores the actual interaction impact in the Property
Impact Trends database.

When an ensemble service client invokes the Ensemble Service Recommender Service,
it accesses the database to establish the best ranking for the invoking client. The ensemble
management services provide the required data on the client’s and neighboring services’
property values. The Ensemble Service Recommender Service supports two operations:

Chapter 7: Design and Implementation 150

getRankedServices takes the identifiers of the invoking client and the set of services
that should be ranked. The identifiers enable extraction of the respective service
properties from the ensemble management services. Finally, the operation returns a
ranking score for each service.

getRankedPersons applies the same techniques as getRankedService but works with
interactions of and properties about human ensemble entities.

Property impact trends are also directly available via the Property Impact Provisioning
Service. It provides two operations:

getImpact accepts a property identifier and returns the corresponding impact matrix
listing the impact between any two property values.

getImpactForValue limits the returned impact result to a particular row in the impact
matrix (defined by property value identifier).

Metric Change

Subscriber

Ensemble Service

Recommender WS

Property

Impact Potential

Ensemble Context

Services

Property

Impact Evaluation

P
ro

p
e
rt

y

Im
p
a
c
t

T
re

n
d
s

Property Impact

Provisioning WS

get Interaction Data

getnotify

set

Metric

Definitions

define events

get

trigger

Ensemble Management

Services

get

define property identifiers and corresponding values

Figure 7.6: Property Impact Evaluation Subsystem.

7.4.2 Infrastructure Adaptation

Subscriptions to metric changes and capability changes provide the underlying data for
infrastructure adaptation. Based on these events, the Requirements Tracking component
applies the JBoss rule system (DROOLS 5) to generate requirements. Listing 6.1 con-
tains an example rule triggered upon changes in the location-centric property distribution
entropy (ensemble location entropy: ELE).

Requirements that remain unfulfilled by the current ensemble configuration trigger a
new instance of requirements matching. When requirements clustering provides sufficient

5http://www.jboss.org/drools/

Chapter 7: Design and Implementation 151

Capability Change

Subscriber

Metric Change

Subscriber

Simulated Annealing

Infrastructure Reconfiguration

Recommendation Publisher WS

Metric

Definitions

Requirements

Rule Files

Requirements Tracking
Requirements Matching

& Clustering

E
n
s
e
m
b
le

C
o
n
fi
g
u
ra
ti
o
n

Ensemble Context

Services

notify

get

get

trigger

trigger

agglomerate

define events

insert

Ensemble Configuration WS
get

Figure 7.7: Infrastructure Adaptation Subsystem.

benefit, Simulated Annealing retrieves the interaction network from the ensemble context
services. The Infrastructure Reconfiguration Recommendation Publisher Service provides
a subscription interface for reconfiguration events. These events (Figure 7.8) contain a
list of unfulfilled requirements (RequirementRef) and a set of recommended services, re-
spectively persons. For each service, the event specifies the requirement fulfillment score
(EntityMembership) in each cluster. For multi-cluster requirements, the event also includes
the top composition (Agglomerations) with the best trade-off between interaction distance
and joint requirements fulfillment (Tradeoff). For single-cluster results, all requirements
remain in the same cluster (Scope).

Details on all current requirements and service configurations remain in the Ensemble
Configuration database, accessible via the Ensemble Configuration Service. Figure 7.9
visualizes the ensemble configuration UML class diagram.

Chapter 7: Design and Implementation 152

tReconfigurationRecommendation
RequirementRef : anyURI [1..*]
«attribute» EnsembleURI : anyURI

tRequirementsFulfillment
«attribute» ClusterNr : int
«attribute» ClusterWeight : decimal [0..1]

Scope
1..*

tAgglomeration
«attribute» Energy : decimal

Tradeoff
0..*

tClusterMembership
RequirementURI : anyURI
ClusterMembership : double

Member
0..*

tEntityMembership
EntityURI : anyURI
ClusterNr : int
«attribute» Score : decimal [0..1]

Element
1..*

Figure 7.8: Ensemble Reconfiguration Recommendation model UML class diagram.

tEnsembleServiceConfig
«attribute» EnsembleURI : anyURI

tServiceConfig
UsedForRequirementsServiceCategory : tActionCategory
«attribute» ServiceProfileURI : anyURI
«attribute» ComponentURI : anyURI

ProvidedService
0..*

tCapabilityConfig
SelectableCapabilityType : anyURI
SelectedChoice : anyURI

CapabilityConfig
0..*

tRequirementMatch
RequirementsRef : anyURI
Match : t0to1
Membership : t0to1

RequirementsMatch
0..*

tEnsembleRequirements
«attribute» EnsembleURI : anyURI

tRequirementSet
RestrictedToServiceCategory : tActionCategory

RequirementsSet
0..*

tRequirement
CapabilityType : anyURI
Importance : tMinus1toPlus1
«attribute» RequirementURI : anyURI [0..1]
«attribute» UtilFctId : anyURI
«attribute» UtilFctTypeId : anyURI

Requirement
0..*

tCapabilityExistsRequirement
SelectionParameter : t0to1

tPropertyValueRequirement
«attribute» PropertyType : anyURI

tCapabilitySelectionRequirement
SelectionParameters : string [0..*]

tSimpleStringConstraint
SelectionParameters : string [1..*]

tSimpleTimestampConstraint
SelectionParameters : dateTime [1..*]

tSimpleIntConstraint
SelectionParameters : integer [1..*]

tSimpleBoolConstraint
SelectionParameters : boolean [1..*]

tSimpleDecimalConstraint
SelectionParameters : decimal [1..*]

Figure 7.9: Ensemble configuration model UML class diagram

Chapter 8

Conclusions

In this thesis we have investigated adaptation techniques for large-scale service ensembles.
We highlighted in the problem statement that adaptation has to address the requirements
of the overall ensemble, not merely the needs of individual humans or services. Our fun-
damental findings in this thesis are:

1. Ensemble adaptation combines suitable techniques at the level of service composition,
service selection, and service behavior.

2. Adaptation techniques at the infrastructure level apply ensemble metrics to determine
ensemble requirements. Matching requirements against deployed service capabilities
reveals the demand for adaptation.

3. Efficient and effective composition trades off requirements fulfillment and composition
costs. Composition costs derive from the interaction structure of ensemble entities.

4. Adaptation at the service selection level exploits service interaction patterns to de-
termine influential service properties. These service properties determine suitable
neighboring services to collaborate with.

5. Service behavior adaptation techniques rely on the most relevant context informa-
tion. Context ranking requires distance metrics that describe the similarity between
ensemble entities. These distance metrics must take into account the underlying
ensemble structure.

These ensemble adaptation principles have been applied to our main contributions:

1. We developed a framework for ensemble infrastructure adaptation. Ensemble metrics,
rules, requirements, and capabilities are the fundamental building blocks for the
adaptation process.

153

Chapter 8: Conclusions 154

2. Our biased fuzzy clustering algorithm groups requirements according to available
service capabilities. More important requirements and better suited services yield
more impact on the clustering result than less important requirements and less suited
services.

3. We applied Simulated Annealing to achieve a trade-off between maximal requirements
fulfillment and minimal composition costs. Experiments on real-world interaction and
rating data from an online discussion forum demonstrate the benefit of requirements
clustering and achieve a successful trade-off between fulfillment and costs.

4. The self-adjusting service recommendation algorithm analyzes the impact of service
properties on interaction patterns. Properties that correspond to significant trends
of service invocations enable service newcomers to communicate with the most suit-
able services. Experiments on a simulated service ensemble proof scalability and
adaptiveness.

5. The Property Distribution Entropy measures the property distribution across services
in the ensemble and highlights those of potential high impact.

6. Context distance metrics establish the relevant context for a given situation. We in-
troduced a context-centric distance metric, and an interaction-centric distance metric.
Experiments on real-world interaction data from an online discussion forum show that
the interaction-centric metric is more sensitive to changes than the context-centric
metric.

7. The context model describes persons, services, activities, artifacts, resources, and
their interactions in a service ensemble.

This work has investigated the first set of adaptation techniques. Many new research
questions arise from this thesis. Specifically, following research aspects provide interesting
future work:
- The current ensemble context model lacks the explicit notion of temporal flows. Although
actions and activities include timestamps and deadlines, the current algorithms do not
exploit the temporal order of events beyond the simple aging function applied by the
distance metric.
- The underlying models and algorithms analyze the interdependencies between directly
interacting ensemble elements. We expect interesting results from extending this analysis
to short chains of interacting ensemble entities.
- The service selection algorithm considers interaction data from all services as equally
important. We envision the integration of additional aspects such as reputation and local
policies.
- From an engineering point of view, interesting future work includes investigations on how
to realize autonomic, decentralized ensemble composition enactment. Such work could pick
up at the ensemble reconfiguration recommendations and advance the current framework.
This would provide novel protocols to coordinate the adaptation plans.

References

Alava, M. J. and S. N. Dorogovtsev (2005). Complex networks created by aggregation.
Physical Review E 71, 036107.

Albert, R. and A.-L. Barabasi (2002). Statistical mechanics of complex networks. Reviews
of Modern Physics 74, 47.

Albert, R., H. Jeong, and A.-L. Barabási (1999). The diameter of the world wide web.
CoRR cond-mat/9907038.

Amundsen, S. L. and F. Eliassen (2008). A resource and context model for mobile
middleware. Personal Ubiquitous Comput. 12 (2), 143–153.

Anagnostopoulos, C., P. Mpougiouris, and S. Hadjiefthymiades (2005). Prediction intel-
ligence in context-aware applications. In MEM ’05: Proceedings of the 6th interna-
tional conference on Mobile data management, New York, NY, USA, pp. 137–141.
ACM Press.

Andreolini, M., S. Casolari, and M. Colajanni (2008, Oct.). Autonomic request man-
agement algorithms for geographically distributed internet-based systems. In Self-
Adaptive and Self-Organizing Systems, 2008. SASO ’08. Second IEEE International
Conference on, pp. 171–180.

Artz, D. and Y. Gil (2007). A survey of trust in computer science and the semantic web.
Web Semant. 5 (2), 58–71.

Babaoglu, O., G. Canright, A. Deutsch, G. A. D. Caro, F. Ducatelle, L. M. Gambardella,
N. Ganguly, M. Jelasity, R. Montemanni, A. Montresor, and T. Urnes (2006). De-
sign patterns from biology for distributed computing. ACM Trans. Auton. Adapt.
Syst. 1 (1), 26–66.

Babaoglu, Ö., M. Jelasity, and A. Montresor (2004). Grassroots approach to self-
management in large-scale distributed systems. In UPP, pp. 286–296.

Baldauf, M., S. Dustdar, and F. Rosenberg (2007). A Survey on Context-Aware Systems.
International Journal of Ad Hoc and Ubiquitous Computing 2 (4), 263–277.

Barabasi, A. and R. Albert (1999). Emergence of scaling in random networks. Sci-
ence 286, 509–512.

155

REFERENCES 156

Barabasi, A.-L. (2005). SOCIOLOGY: Network Theory-the Emergence of the Creative
Enterprise. Science 308 (5722), 639–641.

Bardram, J. E. (2005, July). Activity-Based Computing: Support for Mobility and
Collaboration in Ubiquitous Computing. Personal and Ubiquitous Computing 9 (5),
312–322.

Baresi, L., D. Bianchini, V. D. Antonellis, M. G. Fugini, B. Pernici, and P. Plebani
(2003, September). Context-aware composition of e-services. In TES, pp. 28–41.

Bazire, M. and P. Brézillon (2005, July). Understanding context before using it. In Mod-
eling and Using Context: 5th International and Interdisciplinary Conference CON-
TEXT 2005, pp. 29–41.

Belotti, R., C. Decurtins, M. Grossniklaus, M. C. Norrie, and A. Palinginis (2004, June).
Modelling context for information environments. In Ubiquitous Mobile Information
and Collaboration Systems: Second CAiSE Workshop, UMICS 2004, pp. 43–56.

Bezdek, J. C. (1981). Pattern Recognition with Fuzzy Objective Function Algorithms.
Norwell, MA, USA: Kluwer Academic Publishers.

Biegel, G. and V. Cahill (2004, March). A framework for developing mobile, context-
aware applications. In Second IEEE Annual Conference on Pervasive Computing and
Communications, 2004. PerCom 2004, pp. 361–365.

Bigus, J. P., D. A. Schlosnagle, J. R. Pilgrim, W. N. Mills, and Y. Diao (2002). Able: A
toolkit for building multiagent autonomic systems. IBM Systems Journal 41 (3).

Bird, C., A. Gourley, P. Devanbu, M. Gertz, and A. Swaminathan (2006). Mining email
social networks. In MSR ’06: Proceedings of the 2006 international workshop on
Mining software repositories, New York, NY, USA, pp. 137–143. ACM Press.

Birukou, A., E. Blanzieri, V. D’Andrea, P. Giorgini, and N. Kokash (2007, Nov.-Dec.).
Improving web service discovery with usage data. Software, IEEE 24 (6), 47–54.

Bollobas, B. (2001). Random Graphs. Cambridge University Press.

Bottaro, A. and R. Hall (2007). Dynamic Contextual Service Ranking, Chapter Software
Composition, pp. 129–143. Lecture Notes in Computer Science. Springer.

Brin, S. and L. Page (1998). The anatomy of a large-scale hypertextual web search
engine. Computer Networks and ISDN Systems 30 (1-7), 107–117. Proceedings of the
Seventh International World Wide Web Conference.

Bryl, V. and P. Giorgini (2006). Self-configuring socio-technical systems: Redesign at
runtime. ITSSA 2 (1), 31–40.

Buetow, K. H. (2005). Cyberinfrastructure: Empowering a ”Third Way” in Biomedical
Research. Science 308 (5723), 821–824.

Casati, F., M. Castellanos, U. Dayal, and M.-C. Shan (2004). Probabilistic, context-
sensitive, and goal-oriented service selection. In ICSOC ’04: Proceedings of the 2nd

REFERENCES 157

international conference on Service oriented computing, New York, NY, USA, pp.
316–321. ACM.

Casella, G., C. Dorn, A. Polleres, and H. Yi (2008). Design and implementation of a
context tunnelling extension - version 2. Technical report, inContext Consortium.

Chen, G. and D. Kotz (2002, June). Solar: An open platform for context-aware mo-
bile applications. In First International Conference on Pervasive Computing (Short
Paper), pp. 41–47.

Chen, H., T. Finin, and A. Joshi (2003). An ontology for context-aware pervasive com-
puting environments. Special Issue on Ontologies for Distributed Systems, Knowledge
Engineering Review 18 (3), 197–207.

Chen, Y., D. Bindel, H. H. Song, and R. H. Katz (2007). Algebra-based scalable overlay
network monitoring: algorithms, evaluation, and applications. IEEE/ACM Trans.
Netw. 15 (5), 1084–1097.

Chintalapudi, K. and M. Kam (1998, May). A noise-resistant fuzzy c means algorithm
for clustering. Fuzzy Systems Proceedings, 1998. IEEE World Congress on Compu-
tational Intelligence., The 1998 IEEE International Conference on 2, 1458–1463.

Colman, A. (2007). Exogeneous management in autonomic service compositions. In
ICAS ’07: Proceedings of the Third International Conference on Autonomic and
Autonomous Systems, Washington, DC, USA, pp. 25. IEEE Computer Society.

Cormen, T. H., C. E. Leiserson, R. L. Rivest, and C. Stein (2001). Dijkstra’s algorithm.
In Introduction to Algorithms 2nd edition, Chapter 24. MIT Press.

Costa, P. D., L. F. Pires, M. van Sinderen, and J. P. Filho (2004, April). Towards a
service platform for mobile context-aware applications. In 1st International Workshop
on Ubiquitous Computing - IWUC 2004, pp. 48–61.

da Rocha, R. C. A. and M. Endler (2006). Context management in heterogeneous,
evolving ubiquitous environments. IEEE Distributed Systems Online 7 (4).

de Freitas and da Graca (2005). Toward a domain-independent semantic model for
context-aware computing. pp. 10 pp.+.

Desai, N., P. Mazzoleni, and S. Tai (2007, Feb.). Service communities: A structuring
mechanism for service-oriented business ecosystems. pp. 122–127.

Dey, A. and G. Abowd (2000, April). Towards a better understanding of context and
context-awareness. In Workshop on the What, Who, Where, When, and How of
Context-Awareness at CHI 2000.

Di Nitto, E., C. Ghezzi, A. Metzger, M. Papazoglou, and K. Pohl (2008). A jour-
ney to highly dynamic, self-adaptive service-based applications. Automated Software
Engg. 15 (3-4), 313–341.

Dobson, S., S. Denazis, A. Fernández, D. Gäıti, E. Gelenbe, F. Massacci, P. Nixon,
F. Saffre, N. Schmidt, and F. Zambonelli (2006). A survey of autonomic communi-
cations. ACM Trans. Auton. Adapt. Syst. 1 (2), 223–259.

REFERENCES 158

Dorn, C. and S. Dustdar (2007). Sharing hierarchical context for mobile web services.
Distributed and Parallel Databases 21, 85–111.

Dorn, C., S. Dustdar, G. Giuliani, R. Gombotz, K. Ning, S. Perray, D. Schall, and
M. Tilly (2007). Encyclopedia of E-Collaboration (Edited by Ned Kock), Chapter
Interaction and Context in Service-Oriented E-Collaboration Environments. Idea
Group Reference.

Dorn, C., A. Polleres, and H. Yi (2007). Design and proof-of-concept implementation of
the incontext context model version 1. Technical report, inContext Consortium.

Dorn, C., A. Polleres, and H. Yi (2008). Design and proof-of-concept implementation of
the incontext context model version 2. Technical report, inContext Consortium.

Dorn, C., D. Schall, and S. Dustdar (2006, October). Granular context in collaborative
mobile environments. In OTM Workshops 2006, LNCS 4278.

Dorn, C., D. Schall, and S. Dustdar (2008, October). Achieving team-awareness in sci-
entific grid environments. In 7th International Conference on Grid and Cooperative
Computing (GCC). IEEE Computer Society.

Dorn, C., D. Schall, and S. Dustdar (2009a). Context-aware adaptive service mashups.
Submitted to IEEE Asia-Pacific Services Computing Conference (APSCC).

Dorn, C., D. Schall, and S. Dustdar (2009b, November). A model and algorithm for
self-adaptation in service-oriented systems. In IEEE European Conference on Web
Services (ECOWS).

Dorn, C., D. Schall, R. Gombotz, and S. Dustdar (2007, June). A view-based analysis
of distributed and mobile teams. In 5th International Workshop on Distributed and
Mobile Collaboration (DMC 2007) at WETICE. IEEE Computer Society.

Dorn, C., H.-L. Truong, and S. Dustdar (2008, June). Measuring and analyzing emerg-
ing properties for autonomic collaboration service adaptation. In 5th International
Conference on Autonomic and Trusted Computing (ATC). Springer LNCS.

Dourish, P. (2004). What we talk about when we talk about context. Personal Ubiquitous
Computing 8 (1), 19–30.

Dujmovic, J. J. (2007). Continuous preference logic for system evaluation. In IEEE
Transactions on Fuzzy Systems, Volume 15, pp. 1082–1099. IEEE Computer Society.

Dustdar, S. (2004). ”Caramba Process-Aware Collaboration System Supporting Ad hoc
and Collaborative Processes in Virtual Teams”. Distributed Parallel Databases 15 (1),
45–66.

Dustdar, S. and W. Schreiner (2005). A survey on web services composition. Int. J. Web
Grid Serv. 1 (1), 1–30.

Endres, C., A. Butz, and A. MacWilliams (2005, Jan). A survey of software infrastruc-
tures and frameworks for ubiquitous computing. Mobile Information Systems 1 (1),
41–80.

REFERENCES 159

Foster, I. (2005, May). Service-oriented science. Science 208 (5723), 814–817.

Garlan, D., V. Poladian, B. R. Schmerl, and J. P. Sousa (2004). Task-based self-
adaptation. In WOSS, pp. 54–57.

Gombotz, R., D. Schall, C. Dorn, and S. Dustdar (2006, November). Relevance-based
context sharing through interaction patterns. In 2nd International Conference on
Collaborative Computing: Networking, Applications and Worksharing (Collaborate-
Com).

Gómez, V., A. Kaltenbrunner, and V. López (2008). Statistical analysis of the social
network and discussion threads in slashdot. In WWW ’08: Proceeding of the 17th
international conference on World Wide Web, New York, NY, USA, pp. 645–654.
ACM.

Greenwood, D. and G. Rimassa (2007). Autonomic goal-oriented business process man-
agement. In ICAS ’07: Proceedings of the Third International Conference on Auto-
nomic and Autonomous Systems, Washington, DC, USA, pp. 43. IEEE Computer
Society.

Gu, T., H. K. Pung, and D. Q. Zhang (2004, May). A middleware for building context-
aware mobile services. In 59th Vehicular Technology Conference, 2004. VTC 2004,
pp. 2656–2660.

Gu, T., H. K. Pung, and D. Q. Zhang (2005). A service-oriented middleware for building
context-aware services. J. Netw. Comput. Appl. 28 (1), 1–18.

Guimera, R., B. Uzzi, J. Spiro, and L. A. N. Amaral (2005). Team Assembly Mech-
anisms Determine Collaboration Network Structure and Team Performance. Sci-
ence 308 (5722), 697–702.

Hariri, S., B. Khargharia, H. Chen, J. Yang, Y. Zhang, M. Parashar, and H. Liu (2006).
The autonomic computing paradigm. Cluster Computing 9 (1), 5–17.

Haveliwala, T. (2003, July-Aug.). Topic-sensitive pagerank: a context-sensitive ranking
algorithm for web search. IEEE Transactions on Knowledge and Data Engineer-
ing 15 (4), 784–796.

He, J., A.-H. Tan, C.-L. Tan, and S.-Y. Sung (2003). On Quantitative Evaluation of
Clustering Systems. Kluwer Academic Publishers.

Henricksen, K., J. Indulska, and A. Rakotonirainy (2001). Infrastructure for pervasive
computing: Challenges. In Workshop on Pervasive Computing INFORMATIK 01,
Viena, pp. 214–222.

Hey, T. and A. E. Trefethen (2005, May). Cyberinfrastructure for e-science. Sci-
ence 308 (5723), 817–821.

Hinze, A., R. Malik, and P. Malik (2005, August). Towards a tip 3.0 service-oriented
architecture: Interaction design. Technical report, Department of Computer Science,
University of Waikato.

REFERENCES 160

Horn, P. (2001, October). Autonomic computing: Ibm’s perspective on the state of
information technology. Technical report, IBM Corporation.

Huebscher, M. C. and J. A. Mccann (2008, August). A survey of autonomic computing—
degrees, models, and applications. ACM Comput. Surv. 40 (3), 1–28.

Hull, R. and J. Su (2005). Tools for composite web services: a short overview. SIGMOD
Rec. 34 (2), 86–95.

IBM (2004). Autonomic computing toolkit: Developer’s guide. http://www-
128.ibm.com/developerworks/autonomic/books/fpy0mst.htm.

IBM (2005). An architectural blueprint for autonomic computing.

inContext Consortium (2007a). Design and implementation of the pcsa - intermediary
prototype. Technical report, inContext Consortium.

inContext Consortium (2007b). Software specification of the pcsa. Technical report,
inContext Consortium.

inContext Consortium (2008). Design and implementation of the pcsa - final prototype.
Technical report, inContext Consortium.

Jennings, B., S. van der Meer, S. Balasubramaniam, D. Botvich, M. Foghlu, W. Donnelly,
and J. Strassner (2007, October). Towards autonomic management of communica-
tions networks. Communications Magazine, IEEE 45 (10), 112–121.

Jones, B. F., S. Wuchty, and B. Uzzi (2008). Multi-University Research Teams: Shifting
Impact, Geography, and Stratification in Science. Science 322 (5905), 1259–1262.

Josang, A., R. Ismail, and C. Boyd (2007). A survey of trust and reputation systems for
online service provision. Decis. Support Syst. 43 (2), 618–644.

Kephart, J. O. and D. M. Chess (2003, January). The vision of autonomic computing.
Computer 36 (1), 41–50.

Kirkpatrick, S., C. D. Gelatt, and M. P. Vecchi (1983). Optimization by simulated
annealing. Science, Number 4598, 13 May 1983 220, 4598, 671–680.

Kleinberg, J. (2008). The convergence of social and technological networks. Commun.
ACM 51 (11), 66–72.

Lee, S. H., P.-J. Kim, and H. Jeong (2006, January). Statistical properties of sampled
networks. Physical Review E 73, 102–109.

Leski, J. (2003). Towards a robust fuzzy clustering. Fuzzy Sets Syst. 137 (2), 215–233.

Lieberman, E., C. Hauert, and M. A. Nowak (2005, January). Evolutionary dynamics
on graphs. Nature 433 (7023), 312–316.

Little, M., E. Newcomer, and G. Pavlik (2004, November). Web Service Context Speci-
fication (WS-Context). OASIS.

REFERENCES 161

Liu, N., J. Li, and N. Li (2008). A graph-segment-based unsupervised classification
for multispectral remote sensing images. WSEAS Trans. Info. Sci. and App. 5 (6),
929–938.

Maamar, Z., B. Benatallah, and W. Mansoor (2003, May). Service chart diagrams -
description & application.

Maamar, Z., D. Benslimane, P. Thiran, C. Ghedira, S. Dustdar, and S. Sattanathan
(2007). Towards a context-based multi-type policy approach for web services compo-
sition. Data Knowl. Eng. 62 (2), 327–351.

Maamar, Z., S. Kouadri, and H. Yahyaoui (2004). A web services composition approach
based on software agents and context. In SAC ’04: Proceedings of the 2004 ACM
symposium on Applied computing, New York, NY, USA, pp. 1619–1623. ACM Press.

Macqueen, J. B. (1967). Some methods of classification and analysis of multivariate ob-
servations. In Proceedings of the Fifth Berkeley Symposium on Mathematical Statis-
tics and Probability, pp. 281–297.

Manikrao, U. S. and T. V. Prabhakar (2005). Dynamic selection of web services with
recommendation system. In NWESP ’05: Proceedings of the International Confer-
ence on Next Generation Web Services Practices, Washington, DC, USA, pp. 117.
IEEE Computer Society.

Marinescu, D., J. Morrison, C. Yu, C. Norvik, and H. Siegel (2008, Oct.). A self-
organization model for complex computing and communication systems. In Self-
Adaptive and Self-Organizing Systems, 2008. SASO ’08. Second IEEE International
Conference on, pp. 149–158.

Maximilien, E. and M. Singh (2005, June). Self-adjusting trust and selection for web
services. pp. 385–386.

Maximilien, E. M. and M. P. Singh (2004). Toward autonomic web services trust and
selection. In ICSOC ’04: Proceedings of the 2nd international conference on Service
oriented computing, New York, NY, USA, pp. 212–221. ACM.

McAuley, J. J., L. da Fontoura Costa, and T. S. Caetano (2007). Rich-club phenomenon
across complex network hierarchies. Applied Physics Letters 91 (8), 084103.

McBratney, A. and J. De Gruijter (1992). A continuum approach to soil classification
by modified fuzzy k-means with extragrades. Journal of Soil Science 43, 159–175.

Mcculloh, I. A., J. Lospinoso, and K. Carley (2007). Social network probability me-
chanics. In MATH’07: Proceedings of the 12th WSEAS International Conference on
Applied Mathematics, Stevens Point, Wisconsin, USA, pp. 319–323. World Scientific
and Engineering Academy and Society (WSEAS).

Moody, P., D. Gruen, M. J. Muller, J. Tang, and T. P. Moran (2006). Business Activity
Patterns: A New Model for Collaborative Business Applications.

REFERENCES 162

Morse, D. R., S. Armstrong, and A. K. Dey (2000). The what, who, where, when, why
and how of context-awareness. In CHI ’00: CHI ’00 extended abstracts on Human
factors in computing systems, New York, NY, USA, pp. 371–371. ACM Press.

Mrissa, M., C. Ghedira, D. Benslimane, Z. Maamar, F. Rosenberg, and S. Dustdar
(2007). A context-based mediation approach to compose semantic web services. ACM
Trans. Internet Technol. 8 (1), 4.

Newman, M. E. J. (2002, Oct). Assortative mixing in networks. Phys. Rev. Lett. 89 (20),
208701.

Newman, M. E. J. (2003, Feb). Mixing patterns in networks. Phys. Rev. E 67 (2), 026126.

Ning, K., R. Gong, S. Decker, Y. Chen, and D. O’sullivan (23-26 July 2007). A context-
aware resource recommendation system for business collaboration. Int. Conf. on
E-Commerce Technology and the 4th IEEE Int. Conf. on Enterprise Computing
(CEC/EEE 2007)., 457–460.

Parashar, M. and S. Hariri (2004). Autonomic computing: An overview. In UPP, pp.
257–269.

Quitadamo, R., F. Zambonelli, and G. Cabri (2007, May). The service ecosystem: Dy-
namic self-aggregation of pervasive communication services. In Software Engineering
for Pervasive Computing Applications, Systems, and Environments, 2007. SEPCASE
’07. First International Workshop on, pp. 1–10.

Ramparany, F., J. Euzenat, T. H. F. Broens, A. Bottaro, and R. Poortinga (2006, April).
Context management and semantic modelling for ambient intelligence. Technical Re-
port TR-CTIT-06-52, Enschede.

Reiff-Marganiec, S., H.-L. Truong, G. Casella, C. Dorn, S. Dustdar, and S. Moretzki
(2008, December). The incontext pervasive collaboration services architecture. In
ServiceWave. Springer.

Rosenberg, F., P. Leitner, A. Michlmayr, P. Celikovic, and S. Dustdar (2009, 29 2009-
April 2). Towards composition as a service - a quality of service driven approach. pp.
1733–1740.

Saffre, F., R. Tateson, J. Halloy, M. Shackleton, and J. L. Deneubourg (2008). Ag-
gregation Dynamics in Overlay Networks and Their Implications for Self-Organized
Distributed Applications. The Computer Journal , bxn017.

Salehie, M. and L. Tahvildari (2009). Self-adaptive software: Landscape and research
challenges. ACM Trans. Auton. Adapt. Syst. 4 (2), 1–42.

Satyanarayanan, M. (2001, Aug). Pervasive computing: vision and challenges. Personal
Communications, IEEE 8 (4), 10–17.

Schall, D. (2009). Human Interactions in Mixed Systems - Architecture, Protocols, and
Algorithms. PhD Thesis in Computer Science, Information Systems Institute – Vi-
enna University of Technology (TU Wien), Distributed Systems Group, Argentinier-
strasse 8184-1, 1040 Wien, Austria.

REFERENCES 163

Schall, D., C. Dorn, S. Dustdar, and I. Dadduzio (2008, September). Viecar - enabling
self-adaptive collaboration services. In 34th EUROMICRO Conference on Software
Engineering and Advanced Applications (SEAA). IEEE Computer Society.

Schall, D., C. Dorn, H.-L. Truong, and S. Dustdar (2008, December). On supporting
the design of human-provided services in soa. In 4th International Workshop on
Engineering Service-Oriented Applications: Analysis and Design (WESOA’08), Co-
located with International Conference on Service Oriented Computing (ICSOC) 2008.
Springer.

Schall, D., R. Gombotz, C. Dorn, and S. Dustdar (2007, July). Human interactions in
dynamic environments through mobile web services. In International Conference on
Web Services (ICWS). IEEE Computer Society.

Schall, D., H.-L. Truong, and S. Dustdar (2008, May/June). Unifying human and soft-
ware services in web-scale collaborations. IEEE Internet Computing 12 (3), 62–68.

Schilit, B., N. Adams, and R. Want (1994, Dec.). Context-aware computing applications.
pp. 85–90.

Schmid, S., M. Sifalakis, and D. Hutchison (2006). Towards autonomic networks. In
Autonomic Networking, pp. 1–11.

Serugendo, G. D. M., N. Foukia, S. Hassas, A. Karageorgos, S. K. Mostéfaoui,
O. F. Rana, M. Ulieru, P. Valckenaers, and C. van Aart (2003). Self-organisation:
Paradigms and applications. In Engineering Self-Organising Systems, pp. 1–19.

Shannon, C. E. (1948). A mathematical theory of communication. Bell system technical
journal 27.

Sheng, Q. Z., B. Benatallah, Z. Maamar, M. Dumas, and A. H. H. Ngu (2004). Enabling
personalized composition and adaptive provisioning of web services. In CAiSE, pp.
322–337.

Silva-Lepe, I., R. Subramanian, I. Rouvellou, T. Mikalsen, J. Diament, and A. Iyen-
gar (2008). Soalive service catalog: A simplified approach to describing, discovering
and composing situational enterprise services. In ICSOC ’08: Proceedings of the 6th
International Conference on Service-Oriented Computing, Berlin, Heidelberg, pp.
422–437. Springer-Verlag.

Skopik, F., D. Schall, and S. Dustdar (2009, August). The cycle of trust in mixed service-
oriented systems.

Skopik, F., H.-L. Truong, and S. Dustdar (2009, June). Trust and reputation mining in
professional virtual communities. In 9th International Conference on Web Engineer-
ing (ICWE). Springer.

Sørensen, C.-F., M. Wu, T. Sivaharan, G. S. Blair, P. Okanda, A. Friday, and H. Duran-
Limon (2004, October). Context-aware middleware for applications in mobile ad
hoc environments. In ACM/IFIP/USENIX International Middleware conference 2nd

REFERENCES 164

Workshop on Middleware for Pervasive and Ad-Hoc Computing (online proceedings),
Toronto, Canada.

Sousa, J. P., V. Poladian, D. Garlan, and B. R. Schmerl (2005). Capitalizing on awareness
of user tasks for guiding self-adaptation. In CAiSE Workshops (2), pp. 83–96.

Sterritt, R., M. D. Mulvenna, and A. Lawrynowicz (2004). Dynamic and contextualised
behavioural knowledge in autonomic communications. In Proceedings of the 1st In-
terational Workshop on Autonomic Communication, WAC, pp. 217–228.

Sterritt, R., B. Smyth, and M. Bradley (2005). Pact: personal autonomic computing
tools. In EASe Workshop at ECBS 2005, pp. 519–527.

Tai, S., N. Desai, and P. Mazzoleni (2006, Nov.). Service communities: Applications and
middleware.

Valverde, S. and R. V. Solé (2006). Self-organization and hierarchy in open source social
networks. Technical report, DELIS – Dynamically Evolving, Large-Scale Information
Systems.

Černý, V. (1985, January). Thermodynamical approach to the traveling salesman prob-
lem: An efficient simulation algorithm. Journal of Optimization Theory and Appli-
cations 45 (1), 41–51.

Vieira, V., P. A. Tedesco, and A. C. Salgado (2005). Towards an ontology for con-
text representation in groupware. In Proceedings of the International Workshop on
Groupware, CRIWG, pp. 367–375.

Vu, L.-H., M. Hauswirth, and K. Aberer (2005). Qos-based service selection and ranking
with trust and reputation management. In OTM Conferences (1), pp. 466–483.

Wang, X., T. Vitvar, M. Kerrigan, and I. Toma (2006). A qos-aware selection model for
semantic web services. In ICSOC, pp. 390–401.

White, S. R., J. E. Hanson, I. Whalley, D. M. Chess, and J. O. Kephart (2004). An
architectural approach to autonomic computing. In ICAC ’04: Proceedings of the
First International Conference on Autonomic Computing, Washington, DC, USA,
pp. 2–9. IEEE Computer Society.

Wolf, T. D. and T. Holvoet (2004). Emergence versus self-organisation: Different con-
cepts but promising when combined. In Engineering Self-Organising Systems, pp.
1–15.

Wolf, T. D. and T. Holvoet (2005). Towards a methodology for engineering self-
organising emergent systems. In SOAS, pp. 18–34.

Yang, Y., F. Mahon, M. H. Williams, and T. Pfeifer (2006). Context-aware dynamic
personalised service re-composition in a pervasive service environment. In UIC, pp.
724–735.

Yu, T. and K.-J. Lin (2005, April). Adaptive algorithms for finding replacement services
in autonomic distributed business processes. In Autonomous Decentralized Systems,
2005. ISADS 2005. Proceedings, pp. 427–434.

REFERENCES 165

Zhang, J. and R. Figueiredo (2006, June). Autonomic feature selection for application
classification. In Autonomic Computing, 2006. ICAC ’06. IEEE International Con-
ference on, pp. 43–52.

Zhang, J.-S. and Y.-W. Leung (2004, April). Improved possibilistic c-means clustering
algorithms. Fuzzy Systems, IEEE Transactions on 12 (2), 209–217.

Appendix A

XML Schemata

166

Appendix A 167

1 <?xml version ="1.0 " encoding ="UTF -8"?>

2 <xs:schema xmlns:xs ="http: //www.w3.org /2001/ XMLSchema "

3 xmlns ="http: //www .in -context .eu/ns/activity "

4 targetNamespace="http: //www.in -context .eu/ns/activity " elementFormDefault="qualified "

5 version ="0.5">

6

7 <xs:element name="Activity " type="tActivity "/>

8 <xs:complexType name="tActivity ">

9 <xs:sequence >

10 <xs:element name="ActivityURI " type="xs:anyURI " nillable ="true"/>

11 <xs:element name="Description " type="xs:string " minOccurs ="0" maxOccurs ="1"/>

12 <xs:element name="Tags" type="xs:string " minOccurs ="0" maxOccurs ="unbounded "/>

13 <xs:element name="Start" type="xs:dateTime " minOccurs ="0" maxOccurs ="1"/>

14 <xs:element name="End" type="xs:dateTime " minOccurs ="0" maxOccurs ="1"/>

15 <xs:element name="Duration " type="xs:duration " minOccurs ="0" maxOccurs ="1"/>

16 <xs:element name="Priority " type="xs:integer " minOccurs ="0" maxOccurs ="1"/>

17 <xs:element name="ParentActivity" type="xs:anyURI " minOccurs ="0" maxOccurs ="1"/>

18 <xs:element name=" ChildActivities" type="xs:anyURI "

19 minOccurs ="0" maxOccurs ="unbounded "/>

20 <xs:element name=" RelatedActivities" type="xs:anyURI "

21 minOccurs ="0" maxOccurs ="unbounded "/>

22 <xs:element name="LocationRefURI" type="xs:anyURI "

23 minOccurs ="0" maxOccurs ="unbounded "/>

24 <xs:element name="EditArtifacts" type="tArtifact "

25 minOccurs ="0" maxOccurs ="unbounded "/>

26 <xs:element name=" ApplyResourceRefURIs" type="xs:anyURI "

27 minOccurs ="0" maxOccurs ="unbounded "/>

28 <xs:element name=" MemberInvolvements" type="tMemberInvolvement"

29 minOccurs ="0" maxOccurs ="unbounded "/>

30 <xs:element name="Requirements" type="tRequirement"

31 minOccurs ="0" maxOccurs ="unbounded "/>

32 </ xs:sequence >

33 <xs:attribute name="Name" type="xs:string " use ="optional "/>

34 <xs:attribute name="Progress " type="xs:integer " use="optional "/>

35 </xs:complexType>

36

37 <xs:complexType name="tRequirement">

38 <xs:sequence >

39 <xs:element name="RoleRefURI " type="xs:anyURI " minOccurs ="0" maxOccurs ="1"/>

40 <xs:element name="SkillRefURI " type="xs:anyURI " minOccurs ="0" maxOccurs ="1"/>

41 </ xs:sequence >

42 <xs:attribute name="Required " type="xs:boolean " default ="false"/>

43 </xs:complexType>

44

45 <xs:complexType name="tArtifact ">

46 <xs:sequence >

47 <xs:element name=" WrapsResourceURI" type="xs:anyURI " minOccurs ="0" maxOccurs ="1"/>

48 <xs:element name="Name" type="xs:string " minOccurs ="0" maxOccurs ="1"/>

49 <xs:element name="Description " type="xs:string " minOccurs ="0" maxOccurs ="1"/>

50 <xs:element name="ResourceType" type="xs:anyURI " minOccurs ="0" maxOccurs ="unbounded "/>

51 </ xs:sequence >

52 </xs:complexType>

53

54 <xs:complexType name="tMemberInvolvement">

55 <xs:sequence >

56 <xs:element name="FoafAgentURI" type="xs:anyURI " minOccurs ="1" maxOccurs ="1"/>

57 <xs:element name="Role" type=" tInvolvementRole" minOccurs ="1" maxOccurs ="unbounded "/>

58 </ xs:sequence >

59 </xs:complexType>

60

61 <xs:simpleType name=" tInvolvementRole">

62 <xs:restriction base="xs:string ">

63 <xs:enumeration value="Creator "/>

64 <xs:enumeration value="Observer "/>

65 <xs:enumeration value="Contributor "/>

66 <xs:enumeration value="Responsible "/>

67 <xs:enumeration value="Supervisor "/>

68 </ xs:restriction>

69 </xs:simpleType>

70 </xs:schema >

Listing A.1: Activity Model XML Schema

Appendix A 168

1 <?xml version ="1.0 " encoding ="UTF -8"?>

2 <xs:schema xmlns:xs ="http: //www.w3.org /2001/ XMLSchema "

3 xmlns ="http: //www .in -context .eu/ns/extFOAF "

4 xmlns:res ="http: //www.in -context .eu/ns/resource "

5 targetNamespace="http: //www.in -context .eu/ns/extFOAF "

6 elementFormDefault=" qualified " version ="0.1 ">

7 <xs:import namespace ="http: //www.in -context .eu/ns/resource "

8 schemaLocation="resourcemodel.xsd"/>

9

10 <xs:element name=" FoafAgent " type="tAgent "/>

11 <xs:complexType name="tAgent ">

12 <xs:sequence >

13 <xs:element name=" holdsAccount" type=" tOnlineAccount"

14 minOccurs ="0" maxOccurs ="unbounded "/>

15 </xs:sequence >

16 <xs:attribute name="mbox" type="xs:string " use="optional "/>

17 <xs:attribute name="mbox_sha1sum" type="xs:string " use ="optional "/>

18 <xs:attribute name="gender " type="xs:string " use ="optional "/>

19 <xs:attribute name="URI" type="xs:anyURI " use ="required "/>

20 </xs:complexType>

21

22 <xs:complexType name="tPerson ">

23 <xs:complexContent >

24 <xs:extension base="tAgent ">

25 <xs:sequence >

26 <xs:element name="knows" type="xs:anyURI "

27 minOccurs ="0" maxOccurs ="unbounded "/>

28 </xs:sequence >

29 <xs:attribute name="firstName " type="xs:string " use ="optional "/>

30 <xs:attribute name="family_name " type="xs:string " use="optional "/>

31 </xs:extension>

32 </ xs:complexContent >

33 </xs:complexType>

34

35 <xs:complexType name="tGroup ">

36 <xs:complexContent >

37 <xs:extension base="tAgent ">

38 <xs:sequence >

39 <xs:element name="member " type="tAgent "

40 minOccurs ="0" maxOccurs ="unbounded "/>

41 </xs:sequence >

42 </xs:extension>

43 </ xs:complexContent >

44 </xs:complexType>

45

46 <xs:complexType name="tOrganization">

47 <xs:complexContent >

48 <xs:extension base="tAgent ">

49 <xs:sequence />

50 </xs:extension>

51 </ xs:complexContent >

52 </xs:complexType>

53

54 <xs:complexType name="tService ">

55 <xs:complexContent >

56 <xs:extension base="tAgent ">

57 <xs:sequence >

58 <xs:element name="ProvidedBy " type="tAgent " minOccurs ="0" maxOccurs ="1"/>

59 <xs:element name="ServesTo " type="tAgent "

60 minOccurs ="0" maxOccurs ="unbounded "/>

61 <xs:element name="ServiceResource" type="res:tService"

62 minOccurs ="0" maxOccurs ="1"/>

63 </xs:sequence >

64 </xs:extension>

65 </ xs:complexContent >

66 </xs:complexType>

67

68 <xs:complexType name="tOnlineAccount">

69 <xs:attribute name="accountName " type="xs:string " use="optional "/>

70 <xs:attribute name="accountServiceHomepage " type="xs:string " use="optional "/>

71 </xs:complexType>

72 </xs:schema >

Listing A.2: Entity Model XML Schema

Appendix A 169

1 <?xml version ="1.0 " encoding ="UTF -8"?>

2 <xs:schema xmlns:xs ="http: //www.w3.org /2001/ XMLSchema "

3 xmlns="http: //www.in-context .eu/ns/action "

4 targetNamespace="http: // www.in -context .eu/ns/action "

5 elementFormDefault="qualified "

6 version ="0.4 ">

7

8 <xs:element name="Action " type="tAction "/>

9 <xs:complexType name="tAction ">

10 <xs:sequence >

11 <xs:element name=" InvokedByServiceClient " type=" xs:anyURI "

12 minOccurs ="0" maxOccurs ="unbounded "/>

13 <xs:element name=" ExecutedOnBehalfOfFoafAgent " type="xs:anyURI "

14 minOccurs ="0" maxOccurs ="unbounded "/>

15 <xs:element name=" AppliedResource" type="xs:anyURI "

16 minOccurs ="0" maxOccurs ="unbounded "/>

17 <xs:element name="EditedArtifact" type="xs:anyURI "

18 minOccurs ="0" maxOccurs ="unbounded "/>

19 </ xs:sequence >

20 <xs:attribute name=" ActionURI " type="xs:anyURI " use="required "/>

21 <xs:attribute name=" DescribesActivityURI " type="xs:anyURI " use=" required "/>

22 <xs:attribute name=" Timestamp " type="xs:dateTime " use="required "/>

23 </xs:complexType>

24

25 <xs:element name=" CoordinationAction" type=" tCoordinationAction"/>

26 <xs:complexType name="tCoordinationAction ">

27 <xs:complexContent >

28 <xs:extension base="tAction ">

29 <xs:sequence >

30 <xs:element name="CoordinationType" type=" tCoordinationType"

31 minOccurs ="1" maxOccurs ="1"/>

32 <xs:element name="ToFoafAgent " type="xs:anyURI "

33 minOccurs ="0" maxOccurs ="unbounded "/>

34 </xs:sequence >

35 </xs:extension>

36 </ xs:complexContent >

37 </xs:complexType>

38

39 <xs:element name=" CommunicationAction" type="tCommunicationAction "/>

40 <xs:complexType name="tCommunicationAction ">

41 <xs:complexContent >

42 <xs:extension base="tAction ">

43 <xs:sequence >

44 <xs:element name="NotificationType" type=" tNotificationType"

45 minOccurs ="0" maxOccurs ="1"/>

46 <xs:element name="ToFoafAgent " type="xs:anyURI "

47 minOccurs ="1" maxOccurs ="unbounded "/>

48 </xs:sequence >

49 </xs:extension>

50 </ xs:complexContent >

51 </xs:complexType>

52

53 <xs:element name=" ExecutionAction" type=" tExecutionAction"/>

54 <xs:complexType name="tExecutionAction">

55 <xs:complexContent >

56 <xs:extension base="tAction ">

57 <xs:sequence >

58 <xs:element name="ServiceOperation" type="xs:anyURI "

59 minOccurs ="0" maxOccurs ="unbounded "/>

60 <xs:element name="Description " type="xs:string "

61 minOccurs ="0" maxOccurs ="1"/>

62 </xs:sequence >

63 </xs:extension>

64 </ xs:complexContent >

65 </xs:complexType>

Listing A.3: Action Model XML Schema Part 1

Appendix A 170

1 <xs:complexType name="tCoordinationType">

2 <xs:choice >

3 <xs:element name="ActivityChangeType" type="tActivityChangeType "

4 minOccurs ="1" maxOccurs ="1"/>

5 <xs:element name="DelegateType" type="tDelegateType"

6 minOccurs ="1" maxOccurs ="1"/>

7 <xs:element name="NotifyType " type="tNotifyType "

8 minOccurs ="1" maxOccurs ="1"/>

9 <xs:element name="DelegateResponseType " type=" tDelegateResponseType "

10 minOccurs ="1" maxOccurs ="1"/>

11 </xs:choice >

12 </xs:complexType>

13

14 <xs:simpleType name=" tActivityChangeType">

15 <xs:restriction base="xs:string ">

16 <xs:enumeration value="Created "/>

17 <xs:enumeration value="UpdatedData "/>

18 <xs:enumeration value="AddedData "/>

19 <xs:enumeration value="RemovedData "/>

20 <xs:enumeration value="DeletedActivity"/>

21 </ xs:restriction>

22 </xs:simpleType>

23

24 <xs:simpleType name=" tDelegateType">

25 <xs:restriction base="xs:string ">

26 <xs:enumeration value="Delegate "/>

27 <xs:enumeration value="DelegateJoint"/>

28 <xs:enumeration value="DelegateSplit"/>

29 </ xs:restriction>

30 </xs:simpleType>

31

32 <xs:simpleType name=" tNotifyType ">

33 <xs:restriction base="xs:string ">

34 <xs:enumeration value="NotifyBegin "/>

35 <xs:enumeration value="NotifyEnd "/>

36 </ xs:restriction>

37 </xs:simpleType>

38

39 <xs:simpleType name=" tDelegateResponseType ">

40 <xs:restriction base="xs:string ">

41 <xs:enumeration value="Deny"/>

42 <xs:enumeration value="Accept "/>

43 </ xs:restriction>

44 </xs:simpleType>

45

46 <xs:simpleType name=" tNotificationType">

47 <xs:restriction base="xs:string ">

48 <xs:enumeration value="Unknown "/>

49 <xs:enumeration value="RequestTodo "/>

50 <xs:enumeration value="RequestConfirmation "/>

51 <xs:enumeration value="RequestDiscussion"/>

52 <xs:enumeration value="RequestComment"/>

53 <xs:enumeration value="RequestInformation"/>

54 </ xs:restriction>

55 </xs:simpleType>

56 </xs:schema >

Listing A.4: Action Model XML Schema Part 2

Appendix A 171

1 <?xml version ="1.0 " encoding ="UTF -8"?>

2 <xs:schema xmlns:xs ="http: //www.w3.org /2001/ XMLSchema "

3 xmlns="http: //www.in -context .eu/ns/resource "

4 xmlns:loc ="http: //www.in-context .eu/ns/location "

5 targetNamespace="http: //www .in -context .eu/ns/resource " elementFormDefault="qualified "

6 version ="0.12">

7 <xs:import namespace ="http: //www.in -context .eu/ns/location " schemaLocation=" locationmodel.xsd"/>

8

9 <xs:element name="Resource " type="tResource "/>

10 <xs:complexType name="tResource ">

11 <xs:sequence minOccurs ="1">

12 <xs:element name=" ResourceURI " type="xs:anyURI " nillable ="true"/>

13 <xs:element name=" Description " type="xs:string " minOccurs ="0" maxOccurs ="1"/>

14 <xs:element name="Tags" type="xs:string " minOccurs ="0" maxOccurs ="unbounded "/>

15 </xs:sequence >

16 <xs:attribute name="Name" type="xs:string " use="optional "/>

17 <xs:attribute name="WSRCURI " type="xs:anyURI " use="optional "/>

18 </xs:complexType>

19

20 <xs:element name=" SpatialResource" type=" tSpatialResource"/>

21 <xs:complexType name="tSpatialResource">

22 <xs:complexContent >

23 <xs:extension base="tResource ">

24 <xs:sequence >

25 <xs:element name="CurrentLocation" type="loc:tLocation"

26 minOccurs ="0" maxOccurs ="1"/>

27 </xs:sequence >

28 </xs:extension>

29 </ xs:complexContent >

30 </xs:complexType>

31

32 <xs:element name="Host" type="tHost "/>

33 <xs:complexType name="tHost ">

34 <xs:complexContent >

35 <xs:extension base="tSpatialResource">

36 <xs:sequence >

37 <xs:element name="IPaddress " type="xs:string "

38 minOccurs ="1" maxOccurs ="unbounded "/>

39 <xs:element name="HostedDomain" type="xs:string "

40 minOccurs ="0" maxOccurs ="unbounded "/>

41 <xs:element name="OpenPort " type="xs:string "

42 minOccurs ="0" maxOccurs ="unbounded "/>

43 </xs:sequence >

44 </xs:extension>

45 </ xs:complexContent >

46 </xs:complexType>

47

48 <xs:element name=" MobileDevice" type=" tMobileDevice"/>

49 <xs:complexType name="tMobileDevice">

50 <xs:complexContent >

51 <xs:extension base="tHost ">

52 <xs:sequence >

53 <xs:element name="CommunicationChannel " type=" tCommunicationChannel "

54 minOccurs ="0" maxOccurs ="unbounded "/>

55 <xs:element name="DeviceCategory" type=" tDeviceCategory"

56 minOccurs ="0" maxOccurs ="unbounded "/>

57 </xs:sequence >

58 </xs:extension>

59 </ xs:complexContent >

60 </xs:complexType>

Listing A.5: Resource Model XML Schema Part 1

Appendix A 172

1 <xs:simpleType name=" tDeviceCategory">

2 <xs:restriction base="xs:string ">

3 <xs:enumeration value="Laptop "/>

4 <xs:enumeration value="Smartphone "/>

5 <xs:enumeration value="PDA"/>

6 <xs:enumeration value="MobilePhone "/>

7 <xs:enumeration value="Walkytalky "/>

8 <xs:enumeration value="GPSNavigator"/>

9 <xs:enumeration value="Walkytalky "/>

10 <xs:enumeration value="Other "/>

11 </ xs:restriction>

12 </xs:simpleType>

13

14 <xs:element name=" VirtualResource" type=" tVirtualResource"/>

15 <xs:complexType name="tVirtualResource">

16 <xs:complexContent >

17 <xs:extension base="tResource ">

18 <xs:sequence >

19 <xs:element name="ProvidedBy " type="tService " minOccurs ="0" maxOccurs ="1"/>

20 </xs:sequence >

21 </xs:extension>

22 </ xs:complexContent >

23 </xs:complexType>

24

25 <xs:element name="Service " type=" tService "/>

26 <xs:complexType name="tService ">

27 <xs:complexContent >

28 <xs:extension base="tVirtualResource">

29 <xs:sequence >

30 <xs:element name="ServiceEndpoint" type="xs:string "

31 minOccurs ="0" maxOccurs ="unbounded "/>

32 <xs:element name="WSDLDocumentURL" type="xs:string "

33 minOccurs ="0" maxOccurs ="unbounded "/>

34 <xs:element name="DeployedOn " type="tHost"

35 minOccurs ="0" maxOccurs ="unbounded "/>

36 </xs:sequence >

37 </xs:extension>

38 </ xs:complexContent >

39 </xs:complexType>

40

41 <xs:element name=" CommunicationChannel " type="tCommunicationChannel "/>

42 <xs:complexType name="tCommunicationChannel ">

43 <xs:complexContent >

44 <xs:extension base="tVirtualResource">

45 <xs:sequence >

46 <xs:element name="Protocol " type=" tCommProtocol"

47 minOccurs ="0" maxOccurs ="1"/>

48 <xs:element name="OnlineStatus" type="tOnlineStatus"

49 minOccurs ="0" maxOccurs ="1"/>

50 </xs:sequence >

51 </xs:extension>

52 </ xs:complexContent >

53 </xs:complexType>

54

55 <xs:complexType name="tCommProtocol">

56 <xs:sequence >

57 <xs:element name="Name" type="xs:string "

58 minOccurs ="0" maxOccurs ="1"/>

59 </ xs:sequence >

60 <xs:attribute name=" ProtocolURI " type="xs:anyURI " use="required "/>

61 </xs:complexType>

Listing A.6: Resource Model XML Schema Part 2

Appendix A 173

1 <xs:simpleType name=" tOnlineStatus">

2 <xs:restriction base="xs:string ">

3 <xs:enumeration value="ONLINE "/>

4 <xs:enumeration value="OFFLINE "/>

5 <xs:enumeration value="UNKNOWN "/>

6 <xs:enumeration value="BUSY"/>

7 <xs:enumeration value="AWAY"/>

8 </ xs:restriction>

9 </xs:simpleType>

10

11 <xs:element name=" DocumentResource" type="tDocumentResource"/>

12 <xs:complexType name="tDocumentResource">

13 <xs:complexContent >

14 <xs:extension base="tVirtualResource">

15 <xs:sequence >

16 <xs:element name="MimeType " type="xs:string "

17 minOccurs ="0" maxOccurs ="unbounded "/>

18 </xs:sequence >

19 </xs:extension>

20 </ xs:complexContent >

21 </xs:complexType>

22 </xs:schema >

Listing A.7: Resource Model XML Schema Part 3

Appendix A 174

1 <?xml version ="1.0 " encoding ="UTF -8"?>

2 <schema xmlns="http: //www.w3.org /2001/ XMLSchema "

3 targetNamespace="http: //xml.vitalab .tuwien .ac.at/ns/taaf/ CapabilitiesMetaModel "

4 xmlns:tns ="http: //xml.vitalab .tuwien .ac.at/ns/taaf/ CapabilitiesMetaModel "

5 elementFormDefault=" qualified "

6 version ="0.1">

7

8 <element name="Profile " type=" tns:tProfile"/>

9 <complexType name="tProfile ">

10 <sequence >

11 <element name=" WSDLlocation" type="anyURI " minOccurs ="1" maxOccurs ="1"/>

12 <element name=" Component " type=" tns:tComponent"

13 minOccurs ="0" maxOccurs ="unbounded "/>

14 <element name=" ServiceCategory" type=" tns:tServiceCategory"

15 minOccurs ="1" maxOccurs ="unbounded "/>

16 </sequence >

17 <attribute name="ProfileId " type="anyURI " use ="required "/>

18 </complexType >

19

20 <complexType name="tServiceCategory">

21 <choice >

22 <element name="ActionCategory" type="tns:tActionCategory" minOccurs ="1" maxOccurs ="1"/>

23 <element name="AnyCategory " type="anyURI " minOccurs ="1" maxOccurs ="1"/>

24 </choice >

25 <attribute name=" CategoryFit " type="tns:t0to1 " use="required "/>

26 </complexType >

27

28 <complexType name="tComponent ">

29 <sequence >

30 <element name="Capability " type=" tns:tCapability"

31 minOccurs ="0" maxOccurs ="unbounded "/>

32 <element name=" SelectableCapability" type="tns:tSelectableCapability "

33 minOccurs ="0" maxOccurs ="unbounded "/>

34 <element name=" SupportedConfigurations " type="tns:tCombination"

35 minOccurs ="0" maxOccurs ="1"/>

36 <element name=" SupportedTransitions" type="tns:tTransition"

37 minOccurs ="0" maxOccurs ="unbounded "/>

38 <element name=" WSDLoperationScope" type="anyURI " minOccurs ="0"

39 maxOccurs ="unbounded "/>

40 </sequence >

41 <attribute name=" ComponentId " type="anyURI " use="required "/>

42 </complexType >

43

44 <complexType name="tCapability ">

45 <sequence >

46 <element name="CapabilityId" type="anyURI " minOccurs ="1" maxOccurs ="1"/>

47 <element name="Property " type="tns:tProperty"

48 minOccurs ="0" maxOccurs ="unbounded "/>

49 <element name="SubCapability" type=" tns:tCapability"

50 minOccurs ="0" maxOccurs ="unbounded "/>

51 </sequence >

52 <attribute name=" FitnessLevel" type="tns:t0to1 " use="required "/>

53 </complexType >

54

55 <complexType name="tProperty ">

56 <sequence ></sequence >

57 <attribute name=" PropertyId " type="anyURI " use ="required "/>

58 </complexType >

59

60 <element name=" DefaultProperty" type=" tns:tDefaultProperty"/>

61 <complexType name="tDefaultProperty">

62 <complexContent>

63 <extension base="tns:tProperty">

64 <sequence >

65 <element name="value " type=" tns:tSimpleProperty"

66 minOccurs ="1" maxOccurs ="1"/>

67 </sequence >

68 </extension >

69 </ complexContent>

70 </complexType >

Listing A.8: Capability Model XML Schema Part 1

Appendix A 175

1 <complexType name="tSimpleProperty">

2 <choice >

3 <element name="intValue " type="int "

4 maxOccurs ="unbounded " minOccurs ="1"/>

5 <element name="boolValue " type="boolean "

6 maxOccurs ="unbounded " minOccurs ="1"/>

7 <element name="decValue " type="decimal "

8 maxOccurs ="unbounded " minOccurs ="1"/>

9 <element name="timestampValue" type="dateTime "

10 maxOccurs ="unbounded " minOccurs ="1"/>

11 <element name="strValue " type="string "

12 maxOccurs ="unbounded " minOccurs ="1"/>

13 </choice >

14 </complexType >

15

16 <complexType name="pResourceSize">

17 <complexContent>

18 <extension base="tns:tProperty">

19 <sequence >

20 <element name="value " type="int "

21 maxOccurs ="1" minOccurs ="1"/>

22 <element name="unit" type="tns:tUnit "

23 maxOccurs ="1" minOccurs ="1"/>

24 </sequence >

25 </extension >

26 </ complexContent>

27 </complexType >

28

29 <complexType name="tSelectableCapability ">

30 <complexContent>

31 <extension base="tns:tCapability">

32 <sequence >

33 <element name="Alternative " type=" tns:tCapability"

34 minOccurs ="1" maxOccurs ="unbounded "/>

35 </sequence >

36 <attribute name=" RequiredSelection" type="boolean " use=" required "/>

37 <attribute name=" DefaultSelection" type="anyURI " use="optional "/>

38 </extension >

39 </ complexContent>

40 </complexType >

41

42 <complexType name="tCombination">

43 <sequence >

44 <choice minOccurs ="0" maxOccurs ="unbounded ">

45 <!-- the given strategy or strategy set -->

46 <element name=" Selection " type="anyURI " />

47 <!-- select any combination of entries from the given strategy SETs! -->

48 <element name="All" type=" tns:tCombination" />

49 <!-- select any entry from the given combinations of strategies -->

50 <element name="OneOf" type="tns:tCombination" />

51 <!-- may not select any entry from the given combinations of strategies ->

52 <element name="NoneOf " type=" tns:tCombination" />

53 </choice >

54 </sequence >

55 </complexType >

56

57 <complexType name="tTransition ">

58 <sequence >

59 <element name=" StartCombination" type="tns:tCombination"

60 minOccurs ="1" maxOccurs ="unbounded "/>

61 <element name=" EndCombination" type="tns:tCombination"

62 minOccurs ="1" maxOccurs ="unbounded "/>

63 </sequence >

64 <attribute name="isPositive " type="boolean " use="required " />

65 </complexType >

Listing A.9: Capability Model XML Schema Part 2

Appendix A 176

1 <simpleType name="tUnit">

2 <restriction base="string ">

3 <enumeration value="Byte"/>

4 <enumeration value="kB"/>

5 <enumeration value="mB"/>

6 <enumeration value="gB"/>

7 <enumeration value="tB"/>

8 </ restriction >

9 </simpleType >

10

11 <simpleType name=" tActionCategory">

12 <restriction base="string ">

13 <enumeration value="Communication"/>

14 <enumeration value="Coordination"/>

15 <enumeration value="Execution "/>

16 </ restriction >

17 </simpleType >

18

19 <simpleType name="t0to1">

20 <restriction base="decimal ">

21 <minInclusive value ="0"/>

22 <maxInclusive value ="1"/>

23 </ restriction >

24 </simpleType >

25 </schema >

Listing A.10: Capability Model XML Schema Part 3

Appendix A 177

1 <?xml version ="1.0 " encoding ="UTF -8"?>

2 <schema xmlns="http: //www.w3.org /2001/ XMLSchema "

3 targetNamespace="http: //xml.vitalab .tuwien .ac.at/ns/taaf/ CapabilityChangeEvents "

4 xmlns:tns ="http: //xml.vitalab .tuwien .ac.at/ns/taaf/ CapabilityChangeEvents "

5 elementFormDefault=" qualified ">

6

7 <element name=" ServiceCapabilityChange " type="tns:tProfileChange"/>

8 <complexType name="tProfileChange">

9 <sequence >

10 <element name="NewComponent" type="anyURI " minOccurs ="0" maxOccurs ="unbounded "/>

11 <element name=" ChangedComponent" type=" tns:tComponentChange"

12 minOccurs ="0" maxOccurs ="unbounded "/>

13 <element name=" RemovedComponent" type="anyURI "

14 minOccurs ="0" maxOccurs ="unbounded "/>

15 <element name=" ChangedServiceCategories " type="anyURI "

16 minOccurs ="0" maxOccurs ="unbounded "/>

17 </sequence >

18 <attribute name="Source " type="anyURI " use="required "/>

19 </complexType >

20

21 <complexType name="tComponentChange">

22 <sequence >

23 <element name="NewCapability" type="anyURI " minOccurs ="0" maxOccurs ="unbounded "/>

24 <element name=" ChangedCapability" type="tns:tCapabilityChange "

25 minOccurs ="0" maxOccurs ="unbounded "/>

26 <element name=" RemovedCapability" type="anyURI "

27 minOccurs ="0" maxOccurs ="unbounded "/>

28 <element name=" SelectableCapability" type="tns:tSelectableCapabilityChange "

29 minOccurs ="0" maxOccurs ="unbounded "/>

30 </sequence >

31 <attribute name=" ComponentURI" type="anyURI " use="required "/>

32 </complexType >

33

34 <complexType name="tCapabilityChange">

35 <sequence >

36 <element name="NewProperty " type="anyURI " minOccurs ="0" maxOccurs ="unbounded "/>

37 <element name="ChangedProperty" type="tns:tPropertyChange "

38 minOccurs ="0" maxOccurs ="unbounded "/>

39 <element name="RemovedProperty" type="anyURI " minOccurs ="0" maxOccurs ="unbounded "/>

40 </sequence >

41 <attribute name=" CapabilityURI" type="anyURI " use ="required "/>

42 </complexType >

43

44 <complexType name="tSelectableCapabilityChange ">

45 <sequence >

46 <element name="NewAlternative" type="anyURI " minOccurs ="0" maxOccurs ="unbounded "/>

47 <element name=" RemovedAlternative" type="anyURI "

48 minOccurs ="0" maxOccurs ="unbounded "/>

49 </sequence >

50 <attribute name=" CapabilityURI" type="anyURI " use ="required "/>

51 </complexType >

52

53 <complexType name="tPropertyChange">

54 <sequence >

55 <any namespace ="## other" processContents="lax " />

56 </sequence >

57 <attribute name=" PropertyURI " type="anyURI " use="required "/>

58 </complexType >

59

60 <element name=" ServiceCapabilityRepositoryChange " type=" tns:tRepositoryChange "/>

61 <complexType name="tRepositoryChange">

62 <sequence >

63 <element name=" NewServiceProfile" type="anyURI "

64 minOccurs ="0" maxOccurs ="unbounded "/>

65 <element name=" ChangedServiceProfile " type="anyURI "

66 minOccurs ="0" maxOccurs ="unbounded "/>

67 <element name=" RemovedServiceProfile " type="anyURI "

68 minOccurs ="0" maxOccurs ="unbounded "/>

69 </sequence >

70 <attribute name=" RepositoryURI" type="anyURI " use ="required "/>

71 </complexType >

72 </schema >

Listing A.11: Capability Change Event Model XML Schema

Appendix A 178

1 <?xml version ="1.0 " encoding ="UTF -8"?>

2 <schema xmlns="http: //www.w3.org /2001/ XMLSchema "

3 targetNamespace="http: //xml.vitalab .tuwien .ac.at/ns/taaf/ EnsembleServiceConfig "

4 xmlns:tns ="http: //xml.vitalab .tuwien .ac.at/ns/taaf/ EnsembleServiceConfig "

5 xmlns:cmm ="http: //xml.vitalab .tuwien .ac.at/ns/taaf/ CapabilitiesMetaModel "

6 elementFormDefault=" qualified ">

7

8 <import

9 namespace ="http: //xml.vitalab .tuwien .ac.at/ns/taaf/ CapabilitiesMetaModel "

10 schemaLocation=" CapabilitiesMetaModel .xsd"/>

11

12 <element name=" EnsembleServiceConfig " type=" tns:tEnsembleServiceConfig "></element >

13 <complexType name="tEnsembleServiceConfig ">

14 <sequence >

15 <element name="ProvidedService" type="tns:tServiceConfig"

16 minOccurs ="0" maxOccurs ="unbounded "/>

17 </sequence >

18 <attribute name=" EnsembleURI " type="anyURI " use="required "/>

19 </complexType >

20

21 <complexType name="tServiceConfig">

22 <sequence >

23 <element name=" CapabilityConfig" type=" tns:tCapabilityConfig "

24 minOccurs ="0" maxOccurs ="unbounded "/>

25 <element name=" RequirementsMatch" type="tns:tRequirementMatch "

26 minOccurs ="0" maxOccurs ="unbounded "/>

27 <element name=" UsedForRequirementsServiceCategory " type=" cmm:tActionCategory"

28 minOccurs ="1" maxOccurs ="1"/>

29 </sequence >

30 <attribute name=" ServiceProfileURI" type="anyURI " use="required "/>

31 <attribute name=" ComponentURI" type="anyURI " use="required "/>

32 </complexType >

33

34 <complexType name="tCapabilityConfig">

35 <sequence >

36 <element name=" SelectableCapabilityType " type="anyURI "

37 minOccurs ="1" maxOccurs ="1"/>

38 <element name="SelectedChoice" type="anyURI "

39 minOccurs ="1" maxOccurs ="1"/>

40 </sequence >

41 </complexType >

42

43 <complexType name="tRequirementMatch">

44 <sequence >

45 <element name="RequirementsRef" type="anyURI " minOccurs ="1" maxOccurs ="1"/>

46 <element name="Match" type="tns:t0to1 " minOccurs ="1" maxOccurs ="1"/>

47 <element name="Membership " type="tns:t0to1 " minOccurs ="1" maxOccurs ="1"/>

48 </sequence >

49 </complexType >

50

51 <element name=" EnsembleRequirements " type="tns:tEnsembleRequirements "/>

52 <complexType name="tEnsembleRequirements ">

53 <sequence >

54 <element name="RequirementsSet" type="tns:tRequirementSet "

55 minOccurs ="0" maxOccurs ="unbounded "/>

56 </sequence >

57 <attribute name=" EnsembleURI " type="anyURI " use="required "/>

58 </complexType >

59

60 <complexType name="tRequirementSet">

61 <sequence >

62 <element name=" RestrictedToServiceCategory " type=" cmm:tActionCategory"

63 minOccurs ="1" maxOccurs ="1"/>

64 <element name="Requirement " type="tns:tRequirement"

65 minOccurs ="0" maxOccurs ="unbounded "/>

66 </sequence >

67 </complexType >

Listing A.12: Ensemble Service Config Model XML Schema Part 1

Appendix A 179

1 <complexType name="tRequirement">

2 <sequence >

3 <element name="CapabilityType" type="anyURI " minOccurs ="1" maxOccurs ="1"/>

4 <element name="Importance " type=" tns:tMinus1toPlus1" minOccurs ="1" maxOccurs ="1"/>

5 </sequence >

6 <attribute name=" RequirementURI" type="anyURI "/>

7 <attribute name=" UtilFctId " type="anyURI " use="required "/>

8 <attribute name=" UtilFctTypeId" type="anyURI " use ="required "/>

9 </complexType >

10

11 <complexType name="tCapabilityExistsRequirement ">

12 <complexContent>

13 <extension base="tns:tRequirement">

14 <sequence >

15 <element name="SelectionParameter" type="tns:t0to1 "/>

16 </sequence >

17 </extension >

18 </ complexContent>

19 </complexType >

20

21 <complexType name="tPropertyValueRequirement ">

22 <complexContent>

23 <extension base="tns:tRequirement">

24 <attribute name="PropertyType" type="anyURI " use="required "/>

25 </extension >

26 </ complexContent>

27 </complexType >

28

29 <complexType name="tCapabilitySelectionRequirement ">

30 <complexContent>

31 <extension base="tns:tRequirement">

32 <sequence >

33 <element name="SelectionParameters " type="string "

34 minOccurs ="0" maxOccurs ="unbounded "/>

35 </sequence >

36 </extension >

37 </ complexContent>

38 </complexType >

39

40 <complexType name="tSimpleStringConstraint ">

41 <complexContent>

42 <extension base="tns:tPropertyValueRequirement ">

43 <sequence >

44 <element name="SelectionParameters " type="string "

45 maxOccurs ="unbounded " minOccurs ="1"/>

46 </sequence >

47 </extension >

48 </ complexContent>

49 </complexType >

50

51 <complexType name="tSimpleTimestampConstraint ">

52 <complexContent>

53 <extension base="tns:tPropertyValueRequirement ">

54 <sequence >

55 <element name="SelectionParameters " type="dateTime "

56 maxOccurs ="unbounded " minOccurs ="1"/>

57 </sequence >

58 </extension >

59 </ complexContent>

60 </complexType >

Listing A.13: Ensemble Service Config Model XML Schema Part 2

Appendix A 180

1 <complexType name="tSimpleIntConstraint ">

2 <complexContent>

3 <extension base="tns:tPropertyValueRequirement ">

4 <sequence >

5 <element name="SelectionParameters " type="integer "

6 maxOccurs ="unbounded " minOccurs ="1"/>

7 </sequence >

8 </extension >

9 </ complexContent>

10 </complexType >

11

12 <complexType name="tSimpleBoolConstraint ">

13 <complexContent>

14 <extension base="tns:tPropertyValueRequirement ">

15 <sequence >

16 <element name="SelectionParameters " type="boolean "

17 maxOccurs ="unbounded " minOccurs ="1"/>

18 </sequence >

19 </extension >

20 </ complexContent>

21 </complexType >

22

23 <complexType name="tSimpleDecimalConstraint ">

24 <complexContent>

25 <extension base="tns:tPropertyValueRequirement ">

26 <sequence >

27 <element name="SelectionParameters " type="decimal "

28 maxOccurs ="unbounded " minOccurs ="1"/>

29 </sequence >

30 </extension >

31 </ complexContent>

32 </complexType >

33

34

35 <complexType name="tFileSizeConstraint ">

36 <complexContent>

37 <extension base="tns:tPropertyValueRequirement ">

38 <sequence >

39 <element name="SelectionParameters " type=" cmm:pResourceSize"

40 maxOccurs ="unbounded " minOccurs ="0"/>

41 </sequence >

42 </extension >

43 </ complexContent>

44 </complexType >

45

46 <simpleType name=" tMinus1toPlus1">

47 <restriction base="decimal ">

48 <minInclusive value =" -1"/>

49 <maxInclusive value ="1"/>

50 </ restriction >

51 </simpleType >

52

53 <simpleType name="t0to1">

54 <restriction base="decimal ">

55 <minInclusive value ="0"/>

56 <maxInclusive value ="1"/>

57 </ restriction >

58 </simpleType >

59 </schema >

Listing A.14: Ensemble Service Config Model XML Schema Part 3

