
Autonomous Orchestration of
Computing Continuum Systems

through Active Inference

DISSERTATION

zur Erlangung des akademischen Grades

Doktor der Technischen Wissenschaften

eingereicht von

Dipl.-Ing. Boris Sedlak, B.Sc.
Matrikelnummer 01529846

an der Fakultät für Informatik

der Technischen Universität Wien

Betreuung: Univ.Prof. Dr. Schahram Dustdar

Diese Dissertation haben begutachtet:

Massimo Mecella Juan M. Murillo Rodríguez

Wien, 25. April 2025
Boris Sedlak

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

Autonomous Orchestration of
Computing Continuum Systems

through Active Inference

DISSERTATION

submitted in partial fulfillment of the requirements for the degree of

Doktor der Technischen Wissenschaften

by

Dipl.-Ing. Boris Sedlak, B.Sc.
Registration Number 01529846

to the Faculty of Informatics

at the TU Wien

Advisor: Univ.Prof. Dr. Schahram Dustdar

The dissertation has been reviewed by:

Massimo Mecella Juan M. Murillo Rodríguez

Vienna, April 25, 2025
Boris Sedlak

Technische Universität Wien
A-1040 Wien Karlsplatz 13 Tel. +43-1-58801-0 www.tuwien.at

Erklärung zur Verfassung der
Arbeit

Dipl.-Ing. Boris Sedlak, B.Sc.

Hiermit erkläre ich, dass ich diese Arbeit selbständig verfasst habe, dass ich die verwen-
deten Quellen und Hilfsmittel vollständig angegeben habe und dass ich die Stellen der
Arbeit – einschließlich Tabellen, Karten und Abbildungen –, die anderen Werken oder
dem Internet im Wortlaut oder dem Sinn nach entnommen sind, auf jeden Fall unter
Angabe der Quelle als Entlehnung kenntlich gemacht habe.
Ich erkläre weiters, dass ich mich generativer KI-Tools lediglich als Hilfsmittel bedient
habe und in der vorliegenden Arbeit mein gestalterischer Einfluss überwiegt. Im Anhang
„Übersicht verwendeter Hilfsmittel“ habe ich alle generativen KI-Tools gelistet, die
verwendet wurden, und angegeben, wo und wie sie verwendet wurden. Für Textpassagen,
die ohne substantielle Änderungen übernommen wurden, haben ich jeweils die von
mir formulierten Eingaben (Prompts) und die verwendete IT- Anwendung mit ihrem
Produktnamen und Versionsnummer/Datum angegeben.

Wien, 25. April 2025
Boris Sedlak

v

Acknowledgements

To begin with, I had a wonderful time during my PhD, thanks to all the colleagues
and friends that I made during this intense but incredibly productive period of my life.
Although I had not originally planned to do a PhD, it was my former master thesis
advisor, Ilir Murturi, who noticed that it might suit me, and my supervisor, Schahram
Dustdar, who gave me the opportunity to pursue a PhD in this incredible group. Over the
course of my PhD, I felt Schahram’s confidence in my work grow, and how this inspired
me to dig deeper, but also to gain a broader understanding, which eventually led to this
thesis. At this point, I would also like to thank Uwe Zdun and Horst Eidenberger for
their encouraging words during my Proficiency Evaluation, as well as Massimo Mecella
and Juan Manuel Murillo for providing their expertise in agreeing to review this thesis.

Personally, I think I have been particularly fortunate with the network of postdocs I
have had around me: Víctor Casamajor Pujol was my closest colleague on a day-to-day
basis, who would spare no efforts to discuss whatever ideas came to my head; Praveen
Kumar Donta introduced me to the world of academia, including all the little rules you
need to play this game; Andrea Morichetta was always around as a coffee companion,
but it took a joint research visit to China until he also took a major role in my growth
as a researcher; and Pantelis Frangoudis answered all my questions when none of the
others knew an answer. However, the DSG would not be the same without the combined
force of Renate Weiss, Christine Kamper, and Margret Steinbuch, who would patiently
support us on a daily basis. Naturally, this also counts for Alexander Knoll—a most
iconic and inspiring young man—who would brighten up your day when it got dark.

While I have enjoyed the creative and supportive working environment at DSG, a healthy
work-life balance requires friends and family who equally support you throughout this
journey. First and foremost, I would like to thank Laura Dusl, who has always been
there for me when I was on the verge of losing myself in my work. From time to time, a
creative mind also needs a break—after working up a sweat, there was no better place to
recover than among the Sauna Herrenrunde group. Thank you for being there!

The research presented in this thesis was funded by the EU’s Horizon Research and Innovation Programme
under grant agreement No. 101070186. Views and opinions expressed are however those of the author
only and do not necessarily reflect those of the European Union. Neither the European Union nor the
granting authority can be held responsible for them. EU website for Teadal: https://teadal.eu/

vii

Kurzfassung

Als Gesellschaft sind wir mittlerweile in hohem Maße von einer Vielzahl an Internet of
Things (IoT) Geräten umgeben, die all jene intelligenten Systeme ermöglichen, mit denen
wir tagtäglich interagieren. Die meisten dieser Anwendungen erfordern die Verarbeitung
von IoT-Daten mit geringer Latenz, was den Umstieg zu Edge-Computing, also der
Verarbeitung in nächster Nähe zur IoT Quelle, einläutete. Dennoch hat sich gezeigt, dass
Edge-Computing das traditionelle Cloud-basierte Computing nicht ersetzt. Vielmehr hat
sich in der Praxis eine Kombination mehrerer Rechenebenen als vorteilhaft erwiesen,
die zu einer zusammenhängenden Plattform – dem sogenannten Computing Continuum
(CC) – führt. Das CC ermöglicht die Verteilung und Ausführung von Microservices (dt.
Mikrodienste) entsprechend ihrer individuellen Anforderungen. Um diese Anforderungen
sicherzustellen – spezifiziert als Service Level Objectives (SLOs) – erfordert es schnelle
Reaktionen auf das Laufzeitverhalten; daher muss diese Entscheidungslogik auch von
den Services dezentralisiert ausgeführt werden. Allerdings ist dies problematisch, da die
Services keine globale Übersicht darüber haben, wie sich ihre Aktionen auf abhängige
Dienste auswirken, was die Erfüllung ihrer SLOs gefährdet. Darüber hinaus werden
gängige Skalierungsmaßnahmen, wie die Bereitstellung zusätzlicher Ressourcen, selten
von heterogenen Edge-Geräten unterstützt; die Definition eines benutzerdefinierten
Skalierungsverhaltens pro Gerätetyp erscheint nicht zielführend. Um Microservices vor
Umgebungsdynamiken zu schützen, ist es daher erforderlich, flexible Skalierungslösungen
zu entwickeln, die den genauen Kontext jedes Services berücksichtigen.

Zur Schließung dieser Forschungslücke präsentiert diese Thesis eine Lösung für die autono-
me Orchestrierung von CC-Systemen, welche sich im Laufe der Zeit weiterentwickelt, um
den Anforderungen aller eingebetteten Komponenten gerecht zu werden. Unterstützend
wirkt dabei das Konzept der Active Inference (AIF), welches aus den Neurowissenschaften
stammt und darauf abzielt, die Interaktionen zwischen einer Komponente und ihrer Um-
gebung zu modellieren. Durch gezielte Erkundung der Umgebung identifiziert AIF externe
Faktoren, die sich auf die lokale SLO-Erfüllung auswirken, was erklärt, warum ein SLO
zu einem bestimmten Zeitpunkt verletzt wurde. Umgekehrt quantifizieren wir, wie sich
lokale Aktionen unter bestimmten Bedingungen auf die Umgebung auswirken, was bei der
Ermittlung der optimalen Elastizitätsstrategie hilft. Gemeinsam verwenden wir dies, um
ein kohärentes Modell der Verarbeitungsumgebung zu erstellen, mit dem sich abschätzen
lässt, wie sich die Aktionen eines einzelnen Dienstes (z.B. seine Elastizitätsstrategien)
auf die gesamte CC-Architektur auswirken. In der Folge lässt sich auch der erwartete

ix

Ressourcenverbrauch ableiten, was die Möglichkeit, Dienste auf dem selben physischen
Geräten auszuführen, erheblich verbessert. Das kohäsive CC-Modell bildet den Kern
dieser Arbeit; die dem CC innewohnende Dynamik führt jedoch dazu, dass solche Modelle
mit der Zeit immer ungenauer werden, was sich wiederum auf die Qualität der abgeleite-
ten Orchestrierungsmechanismen auswirkt. In diesem Sinne stellt diese Arbeit auch ein
funktionierendes Ökosystem zur kontinuierlichen Aktualisierung und Verfeinerung dieser
Service-Interpretationsmodelle während der Laufzeit vor. Hervorzuheben ist, dass alle
in dieser Arbeit vorgestellten Konzepte in physischen Testumgebungen implementiert
und evaluiert wurden, was den Weg für zukünftige Evaluierungen in groß angelegten
Umgebungen ebnet.

Abstract

Today, we are surrounded by an immense number of Internet of Things (IoT) devices that
power the smart environments we interact with on a daily basis. Most of these applications
require low-latency processing of IoT data, which heralded the shift of processing resources
to the Edge. Nevertheless, Edge computing has not replaced traditional Cloud-based
computing; rather, the combination of multiple computing tiers into a cohesive platform
– called the Computing Continuum (CC) – has shown synergies. As such, the CC allows
microservices to be distributed according to their individual requirements. Ensuring
requirements – formulated as Service Level Objectives (SLOs) – requires rapid response
to runtime behavior, so this logic must also be executed decentralized by the services.
However, this is problematic because services lack a global view of how their actions affect
dependent services, jeopardizing their ability to meet SLOs. Furthermore, common scaling
actions, such as provisioning additional resources, are rarely supported by heterogeneous
Edge devices; defining a custom scaling behavior per device type seems exhaustive. Thus,
for protecting microservices from environmental dynamics, the CC requires flexible scaling
solutions that take into account the precise context of each service.

To address this research gap, this thesis presents a framework for autonomous orchestra-
tion of CC system, which evolves over time to meet the requirements of all its embedded
components. This behavior is driven by Active Inference (AIF), a concept from neuro-
science that seeks to model the interactions between a component and its environment.
Through exploration, AIF identifies external factors that impact local SLO fulfillment and
explain why an SLO was violated at a specific time. Conversely, we quantify how local
actions affect the environment under certain conditions, which helps identify the optimal
elasticity strategy. Together, we use this to build a cohesive model of the processing
environment, which can estimate how an individual service’s actions (e.g., its elasticity
strategies) affect the entire CC architecture. As such, it can also infer the expected
resource consumption, which greatly improves the possibility to co-locate services in
multi-tenant environments. While this cohesive CC model forms the core of this thesis,
the inherent dynamism in the CC causes such models to become increasingly inaccurate
over time, which in turn affects the quality of the inferred orchestration mechanisms. To
that extent, this thesis also presents a working ecosystem for continuously updating and
refining these service interpretation models at runtime. Notably, all concepts presented
in this thesis were implemented and evaluated in physical testbeds, paving the way for
embedding them in large-scale environments for subsequent evaluations.

xi

Contents

Kurzfassung ix

Abstract xi

Contents xiii

Publications xv

1 Introduction 1
1.1 Problem Statement . 2
1.2 Research Questions . 4
1.3 Scientific Contributions . 6

2 Behavioral Models for the Computing Continuum 11
2.1 Distributed Computing Continuum Systems 12
2.2 Service Level Objectives . 19
2.3 Behavioral Markov Blankets . 24

3 From Metrics to Multi-Dimensional Elasticity 29
3.1 Introduction . 30
3.2 Data Gravity and Data Friction . 31
3.3 Modeling Complex SLOs and Elasticity Strategies 33
3.4 From Metrics to Elasticity Strategies 34
3.5 Related Work . 39
3.6 Summary . 40

4 Designing Reconfigurable Systems from Markov Blankets 43
4.1 Introduction . 43
4.2 Bayesian Network Learning & Inference 45
4.3 Use Case: Video Processing . 47
4.4 Related Work . 54
4.5 Summary . 55

5 Orchestration of Computing Continuum Services 57

xiii

5.1 Markov Blanket Composition of SLOs 58
5.2 Diffusing High-Level SLOs in Microservice Pipelines 79
5.3 SLO-Aware Task Offloading . 96
5.4 Takeaways . 109

6 Equilibrium through Active Inference 111
6.1 Introduction . 112
6.2 From Neuroscience to Computer Science 113
6.3 Collaborative Edge Intelligence . 115
6.4 Use Case: Distributed Video Processing 128
6.5 Results and Discussion . 134
6.6 Related Work . 145
6.7 Summary . 148

7 Conclusion 149
7.1 Summary . 149
7.2 Research Questions . 151
7.3 Limitations & Future Work . 153

Übersicht verwendeter Hilfsmittel 157

Bibliography 159

Publications

The research presented in this thesis is partly based on the following peer-reviewed
publications. A full list of publications can be found in my Google Scholar Profile1

• Boris Sedlak, Víctor Casamayor Pujol, Praveen Kumar Donta, Schahram Dustdar.
"Controlling Data Gravity and Data Friction: From Metrics to Multidimensional
Elasticity Strategies", in 2023 IEEE International Conference on Software Services
Engineering (SSE), pages 43-49, 2023.

• Boris Sedlak, Víctor Casamayor Pujol, Praveen Kumar Donta, Schahram Dustdar.
"Designing Reconfigurable Intelligent Systems with Markov Blankets", in Service-
Oriented Computing, pages 42-50, 2023.

• Boris Sedlak, Víctor Casamayor Pujol, Praveen Kumar Donta, Schahram Dustdar.
"Equilibrium in the Computing Continuum through Active Inference", in Future
Generation Computer System, volume 160, pages 92-108, 2024.

• Boris Sedlak, Víctor Casamayor Pujol, Praveen Kumar Donta, Schahram Dustdar.
"Active Inference on the Edge: A Design Study", in 2024 IEEE PerCom Workshops,
pages 550-555, 2024.

• Boris Sedlak, Víctor Casamayor Pujol, Praveen Kumar Donta, Schahram Dustdar.
"Markov Blanket Composition of SLOs", in 2024 IEEE International Conference
on Edge Computing and Communications (EDGE), pages 128-138, 2024.

• Boris Sedlak, Víctor Casamayor Pujol, Praveen Kumar Donta, Schahram Dustdar.
"Diffusing High-level SLO in Microservice Pipelines", in 2024 IEEE International
Conference on Service-Oriented System Engineering (SOSE), pages 11-19, 2024.

• Boris Sedlak, Andrea Morichetta, Yuhao Wang, Yang Fei, Liang Wang, Schahram
Dustdar, Xiaobo Qu. "SLO-Aware Task Offloading Within Collaborative Vehicle
Platoons", in Service-Oriented Computing, pages 72-86, 2024.

1https://scholar.google.com/citations?hl=en&user=m0yHSA4AAAAJ

xv

https://scholar.google.com/citations?hl=en&user=m0yHSA4AAAAJ

• Boris Sedlak, Andrea Morichetta, Philipp Raith, Víctor Casamayor Pujol, Schahram
Dustdar. "Towards Multi-dimensional Elasticity for Pervasive Stream Processing
Services", in 2025 IEEE PerCom Work In Progress (WIP), 2025 (accepted).

• Praveen Kumar Donta, Ilir Murturi, Víctor Casamayor Pujol, Boris Sedlak, Schahram
Dustdar. "Exploring the Potential of Distributed Computing Continuum Systems",
in Computers, volume: 12, issue: 10, article: 198, 2023.

• Víctor Casamayor Pujol, Boris Sedlak, Yanwei Xu, Praveen Kumar Donta, Schahram
Dustdar. "DeepSLOs for the Computing Continuum", in Proceedings of the 2024
Workshop on Advanced Tools, Programming Languages, and PLatforms for Imple-
menting and Evaluating algorithms for Distributed systems, pages 1-10, 2024.

Furthermore, several topics were investigated together with students through their
Master’s and Bachelor’s thesis under my supervision. A full list of topics investigated
with students can be found on the Distributed Systems Group website2

• Marco Brandstätter, “Optimizing Health Indicators by Applying Causal Reasoning
to Complex Health and Environmental Data”, Bachelor Thesis (2024)

• Yana Peycheva, “Dynamic Processing Routes for Mobile Video Streaming Inference”,
Master Thesis (2025 – in process)

• Elias Huhsovitz, “SLO-Aware Parallelization of Video Stream Processing in Hetero-
geneous Edge Environments”, Bachelor Thesis (2025 – in process)

2https://dsg.tuwien.ac.at/team/bsedlak/

https://dsg.tuwien.ac.at/team/bsedlak/

CHAPTER 1
Introduction

Over the last decade, the Internet of Things (IoT) has found its way into everyday life,
ranging from wearables that track vital parameters for smart health, up to smart cities
that detect traffic accidents according to camera images, or highly frequented areas
according to smartphone locations. These are just three examples of how the ubiquity
of IoT devices has revolutionized our daily lives. To process IoT data with low latency
and without exposing it to the internet, Edge computing [SD16] heralded a transition of
processing resources into the vicinity of IoT devices. Nevertheless, Edge computing has
not shown to replace traditional Cloud-based computing by any means; rather, combining
these two into a cohesive platform has shown synergies [KMH+21]: use the Edge for
low-latency operations, and use the Cloud for resource intensive tasks that require high
availability. Research has named this platform the Edge-Cloud continuum, or more
frequently, the Computing Continuum (CC), which is not limited to specific tiers; hence,
it can also include Fog nodes, such as telecommunication stations.

When processing IoT data – commonly over an extended time period – one central
question is always whether processing actually fulfills its stakeholders’ requirements,
e.g., in terms of end-to-end latency or data quality. These requirements are commonly
formalized as Service Level Objectives (SLOs), which are continuously evaluated during
runtime. In case an SLO is violated, e.g., the desired response time of a traffic application
is exceeded during rush hours, the system can provision additional resources to recover
the SLO fulfillment. This proved fruitful for Cloud systems, which can access a vast
amount of virtualized resources. However, Edge devices are naturally limited by their
local resources, which opens up a series of challenges: (1) how to protect SLO fulfillment
against external influences, (2) how to co-locate processing services on one device without
compromising their SLO fulfillment, and (3) where to deploy each of the services so that
global SLO fulfillment is optimized. Furthermore, if the SLOs for CC components would
be evaluated centrally, this would create a serious communication overhead for collecting

1

1. Introduction

metrics in the Cloud; hence, another problem is (4) how to decentralize the requirements
assurance to local inference, executed directly on Edge devices.

These and other challenges have recently been documented in the context of the
CC [CPDM+23b, NRRC24, Pet21]; most notably, how the orchestration of CC sys-
tems poses new problems due to its highly-distributed nature and the volatility in the
architecture: devices may join at any time, or new service instances might suddenly be
needed. However, research on CC has not solved these problems yet, with recent works
still marking out the capabilities of CC systems [JWTI23], or developing simulation
environments [ATG+24] that coat some of these problems. Still, to date, researchers
start to present scaling mechanisms for the CC [CDM+25, ZFFP24], or orchestration
mechanisms for Edge devices, which use Machine Learning (ML) techniques to ensure
SLOs [ZZL23] in multi-tenant devices [ZMC+22]. While this works on a local scale,
these techniques do not evaluate dependencies between services – they lack a holistic
representation of how CC components affect each other. To simplify the orchestration of
CC systems, this calls for a flexible approach that answers (1) how to ensure SLOs on a
local level, (2) how changes perpetuate in microservices architectures [VF23], so that (3)
the global SLO fulfillment can be optimized both at design and runtime.

To address this research gap, this thesis offers a framework for autonomous orchestration
of CC system, which evolves over time to meet the requirements of all its embedded
components. This behavior is fueled by Active Inference (AIF) [PPF22], a concept
from neuroscience that seeks to model the interactions between a component and its
environment [KPP+18]. Through exploration, AIF identifies external factors that impact
local SLO fulfillment; conversely, it quantifies how local actions affect the environment.
Together, we use this to build a cohesive model of the processing environment, which can
estimate how an individual service’s actions (e.g., its elasticity strategies) affect the entire
CC system. While this concept lies at the core of this thesis, the inherent dynamism in
the CC causes such models to become increasingly inaccurate over time, which in turn
affects the quality of the inferred orchestration mechanisms. To that extent, this thesis
also presents a working ecosystem for continuously updating and refining the service
models, so that the overall SLO fulfillment can be optimized throughout the CC.

1.1 Problem Statement

Computing architectures are quickly growing in size, which allows tackling new categories
of problems. However, this also comes with a number of challenges due to their inherent
complexity, in particular: (1) how can the implications and interactions of services be
modeled so that defective components can quickly be pinpointed, (2) how to improve
the adaptability of computing systems in case resources are limited, (3) how to ensure
model accuracy throughout variable drifts, and (4) how to raise the confidence in AI
mechanisms. In the following, these four aspects are elaborated in more detail to give a
clear understanding of the open problems that this thesis does address.

2

1.1. Problem Statement

Complex Service Interactions

Large-scale computing architectures, such as CC systems, can span multiple computing
tiers with applications that provide ultra low latency on the Edge, up to high availability
and vast resources in the Cloud. While such architectures promise to be the backbone of
many distributed processing use cases [NRRC24], e.g., smart cities or smart manufactur-
ing, this also comes with a price: complexity. In particular, connecting wider networks
and higher numbers of applications (i.e., microservices) makes it difficult to build a global
state, or take decisions that require one. Building a global state requires sophisticated
messaging protocols to decrease the overhead, while sometimes a local state – comprising
all the neighboring services – might suffice [KLM+23]. While it is simple to answer which
services interact, e.g., according to networking information, the larger question is what
are their impacts on each other [CQH19]. Namely, how does the quality of a service x
affect subsequent service y, and how does x need to operate to fulfill y’s SLOs? Not only
does this require analyzing pairwise relations, but this also calls for a coherent system
model that can express the dependencies through the entire service network.

Rigid Elasticity Models

One of the great benefits that gave rise to Cloud computing is the virtualization of
computing resources [DGST11], which allows clients to rent a specified amount of them.
By making this resource share dynamic, clients are able to cope for periodically changing
workload patterns, e.g., mobility applications would usually require more resources during
rush hours. However, providing additional resources has become an universal remedy
in case of SLO violation [GMP+21], which is problematic for multiple reasons: (1)
resources are not always the bottleneck, it may be, for example, the software architecture
or communication overhead, (2) not all workloads can be efficiently parallelized, and
most importantly, (3) it cannot always be assumed that additional resources can be
provisioned [FFACP18], as is the case for Edge devices. This calls for more flexible ways
to model the behavior of computing systems [LMF+25] – if an application observes a,
it does b, but only if c is given. However, such models would be very dependent on the
context of applications, which requires to build a (global) state, as discussed above.

Inaccuracy of One-Shot Training

To better understand the interactions between microservice applications, one option is
to learn a model of their state transition probabilities or policies that optimize SLO
fulfillment [DSCPD23a, THB12]. However, these models inevitably become outdated due
to variable drifts in the processing environment. The fact that thousands of variables can
be tracked also makes such models more error prone to inaccuracy because any variable
could be the source of error [CPMM+23], or there might even be cases where not all aspects
of a system were identified, leading to confounding variables. Hence, training a model
for the CC cannot be a one-shot operation, but must involve sophisticated mechanisms
for lifelong learning [SBIB+24]. However, this in turn poses multiple challenges to the

3

1. Introduction

system architecture: (1) new training data must be collected continuously over the entire
application lifecycle, (2) training a model requires dedicated resources, i.e., a share of the
resources must be reserved for this task, or when no local resources are available, the
training must be offloaded to remote nodes, and (3) if models for individual services are
amalgamated into larger cohesive structures, every time a model is retrained, the new
models must be distributed in the network so that it can then be reintegrated in the
larger-scale model. Overall, this learning overhead must be minimized [DFP+24].

Limited Confidence in Black-Box Models

Deep learning has made rapid advances due to its astonishing abilities to capture intricate
dependencies between variables, e.g., to classify images or spam emails [MPN+23b].
To the present day, this capabilities are not supported to the same extend by any
other technology, but deep learning also comes with a price: limited interpretability.
While the outcome of a neural network may be verified, e.g., it correctly identified the
cat, the individual weights in a network cannot be interpreted that simply [GFB+23].
Conventionally, neural network do not provide any legal guarantee, which is why results
must be verified by human agents to clarify the accountability in case of misclassifications.
However, this combination of human resources with the lack of interpretability for neural
networks becomes problematic in cases where the behavior of an AI must be debugged to
find an error [RPN+22], or when authorities are audited to answer on data provenance
and how specific samples did impact the decision-making.

1.2 Research Questions

The CC is designed to operate vast numbers of processing services on heterogeneous
devices [DPD23]; however, there is a gap for orchestration mechanisms that can evaluate
and enforce SLOs throughout multiple CC tiers [PD23]. This thesis aims to fill this
gap. In the following, the outlined problems are summarized in three concise research
questions (RQs) that will be addressed throughout the chapters of this thesis:

RQ.1 How to continuously assure the accuracy of service orchestration models
so that reactive elasticity strategies provide maximum utility?

To fulfill processing requirements (i.e., SLOs) in the CC throughout external perturbations,
it is necessary to dynamically adjust a system – commonly by using elasticity strategies.
Considering that a system can be scaled in multiple dimensions [DGST11, FFACP18],
e.g., quality or resources, ML techniques can be used to infer the most efficient elasticity
strategy. However, in real-world systems, variable distributions can change at any
point [LWL+23]; hence, any interpretation model, ideally causal, used to find SLO-
fulfilling elasticity strategies for individual services (RQ.2) or their compositions (RQ.3)
must be continuously adjusted according to new observations. Thus, services could avoid
sub-optimal strategies when the QoS is compromised due to concept drifts, temporary

4

1.2. Research Questions

perturbations, or confounding variables. In the following, we elaborate further under
which scenarios these three undesirable phenomena can occur:

1. Concept drifts are a commonly reported problem in ML [SCQC23] that can occur
due to non-iid distribution of sampled data or natural processes, like machine erosion.
This promotes lifelong learning to capture changes in the distribution [BXA+22,
SBIB+24]; feedback loops, such as in [DGH21], could be a valuable extension that
allows agents in the CC to continuously ensure accuracy.

2. Temporary perturbations are commonly observed when monitoring services that are
exposed to fluctuating client behavior [NKFW19], e.g., increased taxi demand due
to rainfall. If the system has a way to observe the rainfall it can learn to adjust to
these dynamics in the environment.

3. Confounding variables are factors that have an impact on a process, but for which
the system cannot (yet) account for. Continuing the above example, if a system
has no understanding of the weather as an external factor, it cannot learn the
cause of the increased client demand. Hence, systems extend their list of considered
variables, as done for feature evolvable streams [CL24].

These examples describe three fundamental problems that occur during real-world
processes; RQ.1 thus aims to find answers to them. Any answer to this would allow to
make decisions based on recent and accurate assumptions, while evolving over time.

RQ.2 How to efficiently choose between elasticity strategies by quantify their
impact on both the SLO fulfillment and underlying processing hardware?

When aiming to ensure requirements for the CC, the bottom-up approach is to start from
the smallest unit that should be supervised: an individual processing service [CPSX+24].
Suppose this service gets constrained by a set of SLOs (e.g., response time), the question
is whether the service will be able to fulfill these SLOs given its available resources.
Hence, the type of hosting device has clear implications on the potential SLO fulfill-
ment [PNM+22], e.g., a CV task might largely benefit from an available GPU. Given the
amount of heterogeneous resources in the CC, estimating the potential SLO fulfillment of
a device at a certain device type would allow: (1) optimizing service deployment at design
time by scheduling workloads to devices that likely fulfill their requirements [MPN+23a],
or (2) adjust services elastically during runtime according to dynamic changes [CLPNR22].

While scheduling and runtime adaptation are two well-studied areas, they lack a holistic
representation that answers why a specific solution (e.g., service configuration or load
distribution) fulfills SLOs. Thus, it is difficult to empirically debug the decisions made
by agents or explain produced results to non-technical stakeholders [MCM19]. Further,
deep learning models are prone to concept drifts that occur when slightly adjusting
the problem [SCQC23], e.g., by changing SLO thresholds. This impedes model transfer
between different problem domains; to that extent, RQ.2 aims to provide interpretable

5

1. Introduction

service models that allow inferring the expected SLO fulfillment in heterogeneous and
volatile processing environments, such as CC systems.

RQ.3 How to model the interactions and dependencies between microservices
to estimate the impact they have on each other’s SLO fulfillment?

Microservice architectures commonly form sequential pipelines, where the output of one
service becomes the input of another service [VF23]. While service compositions allow
building more advanced solutions, complex service interactions obfuscate the expected
SLO fulfillment of individual microservices [SPDD24d]. Whenever dependent services
can take a multitude of states, these can change the expected SLO fulfillment entirely.
Hence, modeling implications and dependencies between services improves the system’s
elasticity; as a result, SLOs can be achieved through collaboration between devices.

However, existing solutions [ATG+24, JWTI23, NRF+22] for service deployment in
heterogeneous CC environments do not consider the precise resource consumption of
individual services; hence, co-locating multiple services at one device has unpredictable
implications for their SLO fulfillment. Further, in microservice chains, services can cause
SLO violations at successive services [PNM+22]: for instance, a service A might cause
the latency SLO of a subsequent service B to fail, or the quality provided by A already
makes it impossible for B to fulfill its quality SLO. Under these circumstances, modeling
the dependencies between services (e.g., in terms of latency and quality) allows inferring
how actions or states of one service impact another. Hence, RQ.3 aims at providing an
overarching service representation that can optimize global SLO fulfillment.

1.3 Scientific Contributions

This thesis has three main contributions, each consisting of multiple sub-contributions,
which address the presented research challenges. In the following, we summarize the three
contributions and indicate the respective chapter(s) where they are developed. Together,
the three contributions form a cohesive framework, as illustrated in Figure 1.1.

C.1 Continuous Model Training for Service Interpretation

The goal to sustain – or fulfill a set of SLOs – is inherent in human cognition for
thousands of years; hence, we use AIF [PPF22], a concept from neuroscience, to train
self-evidenced agents [SPDD24a, SPDD24b], i.e., they autonomously ensure SLOs by
resolving uncertainty in their understanding of the processing environment.

To that extent, we built a service interpretation model from sensory information (i.e.,
service metrics), which expresses internal dependencies between service variables (C.1.1).
To ensure model accuracy throughout variable drifts, we developed a continuous explo-
ration mechanism (C.1.2) – essential for volatile and dynamic environments. In case the
resulting SLO fulfillment is below expectations, we adjust model training (C.1.3).

6

1.3. Scientific Contributions

Monitor Metrics

IoT sensors

Proc. Latency
Energy Cons.
Data Quality

Continuous service observation

Train Bayesian network

Speed SLO

Resource SLO

Distributed Computing Continuum Infrastructure

Model Improvement

Pragmatic Value

Orchestrate corrective actions

Optimize Deployment

Analyze Service Dependencies

Analyze Hardware Implications

Se
rv

ic
e

Le
ve

l
C

om
po

si
te

 L
ev

el

St
re

am
 d

at
a

C2

C3

C1

Compare Service Deployment

Estimate Requirement Fulfillment

Figure 1.1: Relation of the scientific contributions: (C.1) training service representations
from processing metrics, which are used to (C.2) continuously fulfill SLOs by adjusting
the service deployment; (C.3) models are composed to quantify implications between
dependent services, used to optimize global SLO fulfillment throughout CC systems

7

1. Introduction

C.1.1 Bayesian Network Learning To express how service variables are related,
e.g., video resolution influences processing latency, we train Bayesian Networks (BNs)
from processing metrics [SPDD23]. For this, we extract and accumulate metrics during
runtime, which need to go through some transformations (e.g., discretize by binning)
before we train the structure – a Directed Acyclic Graph (DAG) – and then the conditional
probabilities. This methodology is first developed in Chapter 4; it is then refined in
Chapter 6, where we evaluate the complexity [SPDD24b] of training BNs.

C.1.2 Continuous Exploration To continuously ensure the accuracy of BNs, we
developed AIF agent [SPDD24a] that evaluates the expected model improvement from
different actions. Unlike strategies like ϵ-greedy, this precisely weights the expected value
from exploration vs. exploitation in each iteration. We evaluated our agent extensively in
multiple scenarios [SPDD24b, SPM+24], i.e., video and lidar processing, where we showed
its robust accuracy despite external perturbations. This is developed in Chapter 6.

C1.3 SLO-Aware Model Retraining Complementarily to the continuous explo-
ration, we investigated ways to adjust the training interval according to current SLO
fulfillment [SMW+24]. This meant accelerating the training intervals in initial stages,
when the learned model is not yet representative, or when variable drifts unexpectedly
disturbed the inference. Thus, the SLO-aware model retraining did balance the training
overhead according to the urgency. This feature is developed in Section 5.3.

C.2 Evidence-Based Runtime Adaptation of Processing Services

To meet the expected service quality in dynamic processing environments, the processing
services must undergo runtime adaptations – commonly through elasticity strategies.
However, to improve the reactivity of scaling operations, e.g., when uncertain if there
are idle scaling resources, we create an flexible behavioral model [SCPDD23] that picks
elasticity strategies according to the context in which a service is embedded. For this, we
use BN models (C.1) to find the adaptation with the highest expected utility.

To that extent, we develop a multi-dimensional scaling solution (C.2.1) that evaluates
composite SLOs and contextual factors (e.g., resource or quality range) to find the best
elasticity strategy. Inferring actions from BNs provide another benefit: it is possible to
empirically interpret why a certain action was chosen at a particular time (C.2.2).

C.2.1 Multi-dimensional Elasticity Strategies By using the BN of a service, we
obtain a transparent view of its internal variable relations [SPDD23], for example, given
that a service fails to provide its expected throughput, decreasing resolution recovers the
respective SLO. The notable benefits of our approach are: (1) we identify the strategies
as part of the service parameters when learning the BN [SPDD23], i.e., no prior expert
knowledge is required, and (2) instead of incrementally scaling a parameter, i.e., setting
resolution ± 100, we scale parameters to absolute values, e.g., set resolution ← 720,

8

1.3. Scientific Contributions

which converges faster to the optimal values [SPDD24b]. While this methodology is first
described in Chapter 3, the inference mechanism is implemented in Chapter 4.

C.2.2 Interpretable Decision-Making Given the trained BNs, we verified the learned
variable relations – which matched our expert knowledge – and showed how the behavior
of AIF agent could be empirically debugged [SPDD24b] – answering why a certain action
was taken at a specific time. For this, we provided a mechanism that starts from a
high-level goal, e.g., minimize energy consumption, from which the respective lower-level
SLO thresholds are inferred [SPDD24d]. For stakeholders, this removes the burden of
fidgeting with SLO thresholds, as the remaining system would be orchestrated according
to their preference. These mechanisms are developed in Section 5.2 and Chapter 6.

C.3 Collaborative Computing Continuum Framework

To ensure the processing requirements of individual services, we have presented mecha-
nisms that allow inferring the optimal elasticity strategy according to the local service
context (C.2). However, microservices are severely impacted by the QoS provided by their
predecessor [Pet21], e.g., their latency or data quality; in such scenarios, an individual
service might not be capable of recovering its local SLO fulfillment. Hence, to increase the
scope of elasticity, we train higher-level structures [SPDD24c, SPDD24d] that optimize
the global SLO fulfillment through coordinated service orchestration.

To that extent, we develop an overarching service representation (C.3.1) that quantifies
the dependencies between microservices – will the subsequent service be able to fulfill its
SLOs with given resources? – this composite model is used to orchestrate the services
through a collaborative inference mechanism (C.3.2). To speed up onboarding of new
devices, we convert BN models according to heterogeneous device capabilities (C.3.3).

C.3.1 Overarching Service Representation While individual services were repre-
sented by their BNs (C.1), we evaluated two ways to create an overarching microser-
vice representation [DSCPD23a]: (1) by training it directly from one composite data
set [SPDD24d], or (2) by merging their respective BNs [SPDD24c]. In both cases, we
provided a composite BN that shows the conditional impact of adjusting one service
(e.g., more threads, or more resources) on dependent services. The basic mechanism for
this was outlined in Chapter 2, while it was implemented in Sections 5.1 and 5.2.

C.3.2 Collaborative Orchestration Mechanism Given the cohesive service model,
we raise the overall SLO fulfillment by (1) deploying microservice pipelines over heteroge-
neous resources according to the expected SLO fulfillment [SPDD24c], (2) inferring SLO
thresholds for predecessors according to local processing requirements [SPDD24d], and (3)
offloading tasks between clients according to mutual SLO improvement [SMW+24], i.e.,
shift load so that global SLO fulfillment is optimized. These mechanisms are developed
throughout Chapter 5; each of them improves collaboration between services.

9

1. Introduction

C.3.3 Merging BNs for Transfer Learning While CC systems are characterized
by their heterogeneity, i.e., different processing services or hardware, there are many
possibilities to embed multiple instances of the same hardware or of the same processing
service [DMCP+23]. To quickly raise the SLO fulfillment when starting new service
instances, or when onboarding new device types, we provide the following: (1) we collect
metrics at a mutable training device, where a BN update is computed and distributed to
all respective services [SMW+24], and (2) we provide tailor-made BNs for novel device
types, where the respective model is created by merging existing models with most
similarity [SPDD24b], i.e., according to a computed hardware distance value. These
mechanisms are developed in Section 5.3 and in Chapter 6.

10

CHAPTER 2
Behavioral Models for the

Computing Continuum

Computing paradigms have evolved significantly over the last few decades, moving from
large room-sized resources (processors and memory) to incredibly small computing nodes.
Currently, Distributed Computing Continuum Systems (DCCS) unleashes an era of
computing that unifies various computing resources, including Cloud, Fog/Edge com-
puting, the Internet of Things (IoT), and mobile devices, into a seamless and integrated
continuum. This platform provides a holistic solution to meet modern computing needs;
however, there remain various research challenges, particularly in the domain of gover-
nance and orchestration. While Cloud computing has a centralized view on the state of
the system, ensuring Service Level Objectives (SLOs) throughout a vastly distributed
computing architecture opens new gaps in research. However, infrastructure providers,
applications developers, and multiple tenants at shared computing nodes all have different,
if not competing SLOs that must be supported. This calls for novel approaches, inspired
by neuroscience, that allow to analyze the dependencies between DCCS components.
Thus, it becomes possible to infer how dependent components impact each other and how
they must act to fulfill each others SLOs. This is modeled through a behavioral Markov
blanket – a probabilistic view into the operation of individual software components.

The remainder of this chapter is organized as follows: Section 2.1 first discusses the
emergence of DCCS, current research challenges, and promising application scenarios;
Section 2.2 presents different types of SLOs that must be supported in DCCS; and
Section 2.3 introduces Markov blankets, which are continuously developed throughout
this thesis to engineer the behavior of DCCS.

11

2. Behavioral Models for the Computing Continuum

2.1 Distributed Computing Continuum Systems

DCCS1are systems built of a large variety of networked heterogeneous computing devices,
which are used to process data generated by devices such as sensors, mobile devices, and
IoT devices. Through its integration of cloud, edge, and IoT resources, it enables efficient,
real-time, and dynamic computations to meet the needs of today’s diverse applications
[DSCPD23b, BDF+20]. It performs computations by distributing the workload across
multiple devices in the system. Each device performs a portion of the computation, and
the results are combined to produce the final output. This allows for faster processing
times and increased scalability. With DCCS, computations are accomplished efficiently
while adapting to changing demands and optimizing resource utilization outside traditional
boundaries [DPD22]. This resource allocation is based on factors like resource proximity,
computational capability, and prioritizing time-sensitive tasks. Depending on the task,
real-time responses may be offloaded to edge devices, while complex analytics may be
conducted in the cloud by default. This dynamic distribution of tasks enhances system
performance, processing efficiency, and latency and reduces latency.

As an example of a DCCS architecture, consider the scenario depicted in Figure 2.1: smart
devices are embedded in the IoT and edge domain, which perceive their environment
through sensors, e.g., temperature or humidity. Data that cannot be processed directly
in the Edge tier, e.g., due to limited processing power or battery, can be forwarded to
higher tiers, such as the Fog and Cloud. While higher tiers face increasing latency to
the data sources, they are at an advantage when it comes to collecting data for training
meaningful ML models, which can be shared throughout the network.

2.1.1 Research Challenges in DCCS

DCCS offers numerous benefits and has the potential to transform modern computing,
but they are not without challenges. In this section, we outline open research gaps; some
of these are addressed in this thesis, for which we indicate the respective chapter.

Interoperability

DCCS is multi-proprietary. This means that the infrastructure resources and their
associated middle-ware layers belong to different organizations. One can imagine an
application running some services in-house, some services with high computational needs
in the Cloud, some latency-sensitive services in fog nodes next to the networking stations,
and finally, some last services at the edge to enhance responsiveness and reduce overall
bandwidth requirements. Interestingly, each set of nodes might be owned by a different
organization. Hence, each has different semantics. Therefore, the application (based on
all these services) needs to tackle the usage of very different devices, which, on top, have
different owners with, perhaps, different priorities when designing their systems.

1Over the course of this thesis, we use the terms Distributed Computing Continuum System (DCCS)
and Computing Continuum (CC) system interchangeably, while choosing according to the context.

12

2.1. Distributed Computing Continuum Systems

Fog Devices Mobile Edge
Computing

IoT Smart Things

Edge Devices
Edge Devices

Internet

Learning & Knowledge

Figure 2.1: General Architecture for Distributed Computing Continuum Systems

To improve the interoperability between computational tiers in DCCS, Chapter 5 intro-
duces mechanisms that (1) answer how actions at different tiers affect each other, (2)
how lower-level tiers must be configured to ensure higher-level goals, and (3) how tasks
can be offloaded between hierarchical devices according to device capacity and current
load. Additionally, Chapter 6 provides a runnable DCCS prototype for a hierarchical
solution that ensures processing SLOs throughout the multi-tier architecture.

Complexity of Governance

Currently, Internet-based systems are governed through the application logic and only
residually at the infrastructure level by cloud orchestrators, which can basically run
more copies of an existing job or schedule new jobs. Also, these are typically centralized
entities, which clearly do not fit with the requirements for DCCS.

Another interesting aspect of current Internet-based systems is their usage of Service
Level Objectives (SLOs) to set the minimal performance indicators for these systems.
Unfortunately, current SLOs are only low-level metrics (such as CPU usage) or time-
related metrics (such as end-to-end response time). Using SLOs for DCCS seems
appropriate. However, we identify two key aspects that need to be improved:

13

2. Behavioral Models for the Computing Continuum

1. they would need to be able to cover all aspects/components of the system so that
the governance strategies are aligned regardless of what is being controlled.

2. their granularity is adequate to perform surgical interventions. Simply put, if the
SLO is on end-to-end response time and it is violated, discovering which is the
specific service/device/component/aspect that is producing the delay can be an
overwhelming task, which cannot comply with time-constraint requirements.

To address that, this thesis provides mechanisms that allow fine-grained control over
application behavior: in Chapter 3 we introduce complex behavioral SLOs composed of
multiple factors, and multi-dimensional elasticity strategies that improve the reactivity
of applications. This is further developed in Chapter 4, where we combine complex SLOs
and multi-dimensional elasticity strategies in a video streaming prototype.

Data Synchronization

In DCCS, data is constantly generated, updated, moved, and accessed across a wide range
of distributed devices, making it necessary to ensure consistency (through proper syn-
chronization mechanisms [WZL+18]) across the continuum. Maintaining data integrity,
coherence, and consistency gets increasingly difficult as data is processed and modified
at different locations. Sometimes, end-to-end delays, network issues, and varying compu-
tational speeds (due to resource availability or constraints) can lead to inconsistencies or
conflicts between data versions. Furthermore, data synchronization across hybrid setups
involving diverse computational resources (cloud, edge, constrained IoT, or sensor nodes)
presents additional challenges due to varying processing capabilities and connectivity
limitations [RCVA22]. In DCCS, sophisticated synchronization mechanisms are required
to ensure that all components can access up-to-date and accurate data.

This thesis targets this research gap in Chapter 3 by analyzing the computational overhead
of transferring data between entities and the risks from centralized data storage, e.g., a
vendor lock-in. Additionally, Chapter 6 discusses how to train device-specific ML models
and exchange them between devices through transfer learning.

Sustainability and Energy efficiency

In terms of sustainability, there are two key aspects to consider:

1. the vast amount of computing devices and connections, and

2. their energy sources.

For the first consideration, computational infrastructure will keep growing during the
next years. However, it is important to reuse existing infrastructure to limit the need to
add new resources. Unfortunately, this challenges previous topics such as governance,

14

2.1. Distributed Computing Continuum Systems

interoperability, and others, as dedicated resources are always easier to incorporate into
a system than older ones with, perhaps, a different initial purpose.

The second sustainability consideration relates to the energy sources that are used in
computing systems. AI-based systems require high amounts of energy; hence, being
able to harvest this energy from renewable sources is of great interest. Unfortunately,
solutions that can do that require also control over the energy grid, which is usually not
the case. Energy efficiency relates to sustainability with the idea of using the minimum
energy required for any job. This translates to choosing the right algorithm/service/de-
vice/platform for each case, which requires solving complex multi-variate optimization
problems. Additionally, energy efficiency is key for energy-constraint devices, such as all
those devices that are not permanently linked to the energy infrastructure.

This thesis puts particular focus on constrained Edge devices and how their energy
consumption is affected by adjusting the runtime operation of a DCCS. For instance, the
framework in Chapter 4 provides the energy consumption under different configurations,
e.g., 10W when processing at the highest quality, and Section 5.3 uses this mechanism to
offload computation from battery-powered devices that exceed their thresholds.

2.1.2 Promising Applications of DCCS

DCCS is capable of seamlessly integrating a wide variety of computing resources, allow-
ing them to perform applications across various domains. In this section, we discuss
a few applications (Industry automation, Transportation systems [WSM+22], Smart
cities [CLH22, HMSS+22], and Healthcare [AOAL22]) with a use case example to show
the difference between current technologies with computing continuum. By adopting
DCCS features, these applications can benefit from improved resource utilization, faster
decision-making, and other benefits, depending on the application requirements.

Industry Automation: Separating defective parts in manufacturing

Industrial applications encompass a wide range of sectors and industries where technology
is utilized to enhance processes and operations. Common examples are: automated manu-
facturing, smart grids, food and beverage packaging and quality assurance, environmental
monitoring, and process control (for example, oil refining or pharmaceuticals). Most
of these applications are automated through machine technology, improving efficiency,
productivity, and safety. When machines malfunction, efficiency and safety are reduced,
while increasing maintenance costs. To increase efficiency and productivity, preventive
measures are implemented, such as regular maintenance, real-time monitoring, and
predictive maintenance. In this context, IoT is widely used in industrial applications to
collect data from machines and send it to the cloud/edge for further analysis.

In manufacturing industries such as mobile assembling, food packing, or robot manufac-
turing, identifying low-quality parts is very time-consuming and tedious. There is a huge
chance for manual errors to lead to overall quality control tasks becoming hectic. So,
most manufacturing industries turn to automation and perform defect parts separation

15

2. Behavioral Models for the Computing Continuum

Defective parts

Quality parts

3. Perform the training
and generate a learned

model

Unsorted
parts

1. A Camera used to
capture the

image/video of parts

2. Image/Video data send to
nearest edge or cloud

Conveyor belt roller

4. Sort quality and defect parts,
and place appropriately

Sorting

Edge

Quality parts Defective parts

Advantages of Automation

Approved end quality parts

Reduced cost of quality assurance

Increased accuracy in separating
quality and defect parts

Assure low time to finish the job

Control Flow

Figure 2.2: Separating qualitative and defective parts in an automated factory

using machinery. A basic quality and effective part separation system in manufacturing
automation industries is discussed in Figure 2.2. We consider a rotating conveyor belt
that moves unsorted parts (both quality and defective). In order to monitor all objects
moving on the belt, a camera is installed to capture images/videos and send them to the
nearest computing device. The robot uses this environment to sort out defective parts,
e.g., by applying a DNN model for object detection, where the accuracy of the DNN
model determines the overall performance and quality of the processing pipeline.

DCCS are capable of analyzing images or videos captured by cameras on conveyor belts
in real-time. It distributes the processing load among edge devices and cloud resources
according to resource availability. Through real-time analysis, parts can be classified
immediately, reducing decision-making time and enhancing separation speed. DCCS
facilitates seamless coordination and communication among connected devices. With
DCCS, models are continuously refined, resulting in improved accuracy in identifying
quality and defective parts. DCCS’ distributed nature also contributes to fault tolerance.
If one computing system fails, processing can be seamlessly shifted to alternative resources,
minimizing downtime and disruptions in the manufacturing process. In spite of upgrading
the entire automation system, DCCS can easily adapt and produce results according to
upgraded requirements. In this context, DCCS delivers scalability without compromising
performance to adapt to changing production requirements.

16

2.1. Distributed Computing Continuum Systems

Transportation Systems: Ensure safety during driving

Transportation systems are organized networks that move people or goods between dif-
ferent locations, e.g., through roads, railways, airways, or waterways [RVM+23, ZLC+19,
CLW+20]. DCCS plays a transformative role in modern transportation systems by
integrating real-time data processing with the compute continuum. It processes data
gathered through sensors equipped in vehicles and infrastructure to enhance traffic flow,
reduce congestion, and ensure safe navigation [DGP+23, BW20]. Additionally, they
support emergency response, infrastructure maintenance, and efficient mobility.

For example, consider a smart mobility scenario that monitors traffic and vehicle condi-
tions, such as traffic flow, speeding, or crossing red lights [SFBS20]. For this to work,
cameras could capture driver activity, radars would measure car speed, ground sensors
would count cars, and a light system would allow recording in the dark. Such sensors
must be connected to small processing units (e.g., IoT/Edge processors) to compute data,
and the cameras will be near AI inference boards. As well as a large server on which to
process video data captured by cameras, the application will have a large storage and
processing capacity (i.e., cloud). Once results are analyzed and any abnormal events are
observed, they will be immediately reported to drivers and traffic inspectors.

Through the seamless integration of edge computing, cloud resources, and real-time
analytics, DCCS significantly enhances the efficiency of the above-described use case.
DCCS allows for instant analysis of camera recordings, detection of driver activity via AI
inference, and processing of diverse sensor data at the source (e.g., the edge) simultane-
ously with improved accuracy. It minimizes latency in detecting unsafe behaviors, alerts
drivers instantly, and notifies traffic inspectors. DCCS also achieves low latency due
to its parallel processing capabilities. Furthermore, DCCS can adjust sensitivity levels
dynamically based on lighting conditions and traffic flow, enabling the system to adapt
to changing conditions. With DCCS, we can distribute data-intensive tasks accurately
and process and analyze them efficiently and timely. Ultimately, DCCS increases road
safety by detecting safety violations rapidly and accurately.

Mobile Robots: Search and Rescue in Large-scale Disasters

Robots are autonomous machines equipped with sensors, actuators, and navigation sys-
tems to interact with environments. These robots have a broad range of applications across
various industries, such as automated guided vehicles (AGVs), unmanned ground vehicles
(UGVs), aerial drones, autonomous underwater vehicles (AUVs), search and rescue robots
(SAR) and wearable mobile robots (WMR). Mobile robots continue to evolve, benefiting
from advances in artificial intelligence, machine learning, and connectivity. Hence, they
will also be part of the DCCS once several research challenges are solved [PD21]. Potential
applications range from industrial automation to healthcare, agriculture, and beyond,
where they enhance efficiency and reduce costs [WWD+23, KBHH23].

For example, consider that climate change has increased natural disasters and death
rates – the first 72 hours following a natural or human disaster are crucial for locating

17

2. Behavioral Models for the Computing Continuum

and rescuing those affected [MATM23]. Identifying victims in hostile environments
is sometimes difficult for the rescue team [FSH+21], despite researchers and industry
investigating advanced technological solutions for SAR operations. In SAR, mobile
robotic units, such as drones and underwater systems, serve as vital frontline assets
[MYG18]. As discussed earlier, these robots can detect victims and hazards in their
surroundings by using sensors, cameras, and autonomous navigation capabilities.

With Edge AI, navigation and obstacle avoidance are enhanced due to rapid, informed
decisions. By combining these technologies, rescue operations are more efficient, safe,
and effective, reducing fatalities and mitigating their effects [LZHH23]. With DCCS,
disaster response and rescue operations are enhanced by dynamically allocating computing
resources, reducing latency, filtering and prioritizing data, ensuring fault tolerance, and
adapting in real-time. Integrated data from IoT sensors and mobile robots streamlines
decision-making, thus saving lives and mitigating the impact of natural disasters.

Smart cities: Efficient Waste bin management

A smart city uses a network of sensors and devices to collect real-time information
about transportation, energy consumption, waste management, and public services
[BMS20]. The respective data can be analyzed and used for decision-making as a
means of increasing convenience, improving public services, and improving quality of
life for citizens [Zha20, LCLW21, KVT21]. Since DCCS has inherent scalability, it can
dynamically scale up or down in response to changes in the smart city ecosystem. The
DCCS distributes processing tasks intelligently over this continuum to efficiently capture,
analyze, and act on real-time data generated by IoT devices or provided by citizens.

For instance, in metropolitan cities across the world, municipal waste management has
become a critical issue due to urbanization, growth, and lifestyle changes [MMD+19,
PRD+20]. This issue affects many aspects of life beyond developing nations, including
health, the environment, recycling efforts, and multiple industries. It is possible to solve
this problem using currently available technologies by adopting smart waste management
strategies. Using this strategy, stakeholders will be notified of the type and quantity of
waste generated and how smart waste collection will be implemented [PRK+19, SJK+20].
In addition to improving fuel and time efficiency, intelligent route planning contributes
to a more sustainable waste management system. There are several approaches available
in the literature that use IoT and deep learning to improve smart waste management
[SIIA21, WQQ+21]. However, in the currently growing population and cities, more
efficient and quick solutions are needed, and DCCS can fill this gap.

The expansion of the city’s proximity and population simultaneously increases the number
of waste bins. This further generates more sensory data in greater proximity to the city.
Since the cloud is located far away, the transmission delay and computational latency
increase the delay in decision-making. DCCS integrates diverse technologies and resources
to enable real-time data processing, analysis, and decision-making, providing a great
advantage for faster decision-making. In addition to ensuring ongoing effectiveness, DCCS’

18

2.2. Service Level Objectives

scalability guarantees its resilience in the face of urban growth without interrupting the
current system. Since AI/ML reaches greater use in many applications, their advantages
are also grasped through DCCS to predict before damage happens.

Healthcare: Remote Patient Monitoring

Healthcare encompasses a variety of medical services, technologies, and systems designed
to prevent, diagnose, treat, and manage diseases and health conditions. Several medical
devices have evolved over the last few years, from wearable sensors to high-end machines,
all used to collect patient data and process it via smartphones (i.e., edge devices) or in the
cloud [DPH+19, AQIR20]. Healthcare industries require accurate and quick analytical
results from computing devices. It is sometimes necessary to analyze intensive tasks such
as medical images (X-rays or CT scans) or genomic sequencing, but the result is expected
to be available within a short period of time [MAGA+19]. In addition to optimizing
healthcare efficiency, accessibility, and outcomes, DCCS ensures seamless data flows from
point-of-care devices to the Edge-to-Cloud Continuum for further analytics.

For instance, consider that hospitals have limited caretakers, making it challenging to
monitor each patient continuously [PMS+20, NGS+20]. Thus, a remote and automatic
alert system is useful to monitor patients continuously and record their health status for
further analysis [KDKA23]. Numerous wearable sensors and medical IoT devices gather
real-time patient data, such as vital signs and health metrics (depending on the patient’s
diagnosis), and send it to a central server (private cloud) for processing [HMDC19].
In cloud-based computations, advanced algorithms and/or machine learning are used
to analyze and compare the collected data with the normalized health metrics. It is
also possible to visualize these metrics for quick assessment [RWC+20]. This approach
allows healthcare professionals to monitor patients’ conditions remotely, detect deviations,
and make well-informed healthcare decisions. Some advanced analytics and pre-trained
decision-making systems can also recommend prescriptions according to their assessment.
As a result of this system, patients receive better care by facilitating continuous monitoring
and early intervention based on real-time insight.

As the DCCS allows computation across the continuum, optimized processing, and
resource allocation between point-of-care devices and edge-to-cloud, the DCCS can handle
large computations in a limited time. The scalability of DCCS allows the system to
support an increasing number of patients and data streams without affecting performance
and existing patients. Using DCCS, healthcare providers and patients can communicate
in real-time, and critical changes in health can be detected and notified immediately.

2.2 Service Level Objectives

Applications can be composed of a large variety of services, such as healthcare monitoring
or smart city routing. Understanding SLOs as service requirements means that each
service has to be associated with SLOs that guarantee its expected behavior. The

19

2. Behavioral Models for the Computing Continuum

Device1

ServiceA

Processing Time
SLO as service requirement

Elasticity strategies

Hw Sw

Figure 2.3: The SLO as a service requirement can be cast as a requirement (processing
time) over service (A) hosted in device (1), which has elasticity strategies (Hw & Sw).

complexity of the service can demand more than one SLO; hence, it is fundamental that
the SLOs properly reflect the service’s requirements. Interestingly, this expected behavior
of the service implies some knowledge of the type of device that will be hosting it. If we
look into current Cloud-based SLOs, they do not need to consider the device in which
it will be deployed to adjust the SLO. Actually, if the service requires a specific piece
of hardware, e.g., a GPU, this constraint is sent to the scheduler. However, in this new
CC paradigm, having a single scheduler (or resource manager) managing all hardware
resources is impossible due to their geographical distance or the different ownership of the
computing resources. Hence, adding this type of constraint to the service, e.g., a specific
hardware need, gives the flexibility that, regardless of the final geographical location of
the service, the local resource manager will be aware of the service requirements.

In addition, the continuum consists of a large variety of heterogeneous devices. Hence,
expecting the same SLO compliance rate for the same service deployed in the Cloud as
in a constraint edge device is unrealistic. In that regard, SLOs need to be aware of the
possible deployment options for the service. Similarly, hosting devices can be grouped or
classified with respect to their characteristics [PMN23], as has been done with services.
Hence, in situations where the behavior of the service is known for a specific device type,
it is possible to infer its expected behavior in other types. Figure 2.3 shows the different
components required to build SLOs as service requirements for the CC. In the following
subsections, each of the aspects shown in the figure will be explained.

Running example

To start, consider a simple machine learning pipeline with three services: data gathering
and pre-processing, model training, and inference. Further, imagine that these services
are part of an eHealth application able to predict if the monitored person will suffer from
an adverse medical condition and, if so, trigger the needed alarms to provide medical
assistance as fast as possible. Defining the requirements of the services needs proper
dedication. Still, the classification of services, e.g., data gathering or inference, already
identifies which requirements can be meaningful for the service.

20

2.2. Service Level Objectives

2.2.1 SLOs definition

We will define an SLO as the probability (P) that its associated Service Level Indicator
(SLI) is within a specified (i.e., desirable) range. In such a case, we will say that the SLO
is fulfilled, or otherwise, violated. Mathematically, this is expressed as in Eq. (2.1):

SLO = P (x ≤ sli ≤ y) | x ≤ y ; ∀x, y ∈ SLI (2.1)

Where x is the lower-bound and y is the upper-bound for the SLI, which is interpreted
as the set of values that the metric can take. Latency, for example, assumes values in
R+, because time will always be a positive real number. Hence, sli describes a specific
value of the SLI for a given time. Notice that we have omitted any time reference in the
previous equation, but given that sli is time-dependent while monitoring the SLO, we
will obtain a time series. In general, SLO-based management of DCCS implies adapting
the system to maximize the probability that the sli is within its range.

To define an SLO, we need to specify its operation range, “y − x”. This means defining
where we center the range and what its length is. For the following discussion we assume
that the SLO range is normalized, so it is fair to compare ranges between different SLOs.
Intuitively, the center of the range is the expected value for the SLI. Interestingly, this
might vary depending on the device in which the service will be deployed. Simply put,
the expected response time of a service performing a machine learning inference task in
the Cloud will be lower than the same service in the Edge. The "length" of this range
describes the criticality of the service. Services with large ranges can adapt easily to
many situations and, consequently, are less critical. Conversely, a short range indicates
that an SLO is heavily constrained and the service is critical. Hence, it is important to
consider the SLO range when elasticity strategies need to be applied.

Running example

Hence, for each service requirement, an SLO must be defined. With the medical example,
one could constrain the inference service processing time (T) between Tmin and Tmax. Of
course, the lower bound for the processing time could be removed, but if there is knowledge
about the service behavior, the lower bound can help identify faults or anomalies. When
the underlying infrastructure is considered, i.e., the specific type of hardware that shall
host the services, the SLOs definition might vary, and other SLOs might be relevant. For
instance, considering that data collection and pre-processing services are hosted in an
SBC at the user. This might need a constraint on the device’s power consumption (e.g.,
hourly average consumption < 8W), which can be reflected in the device’s availability.
Also, if the inference service is in an Edge device for privacy enhancement and latency
minimization, this can shift the SLO on processing time – creating T ′

min and T ′
max.

2.2.2 Types of SLOs

SLOs are linked to services and specify their expected behavior. However, we must
remember that services are components of a larger application. In that regard, the

21

2. Behavioral Models for the Computing Continuum

Service SLO
"SLO"

Device SLO
"Low-level SLO"

Application SLO
"High-level SLO"

Figure 2.4: Types of SLO

application or significant parts of it might need specific requirements. Imagine a machine
learning pipeline (e.g., a set of sequential services that gathers data, pre-process, trains a
model, and broadcasts it to edge devices) having specific time-based requirements for
each service and an overall requirement of achieving a test accuracy of at least 95%. In
this case, the accuracy SLO can be part of any of these services, but it is really an SLO
for the pipeline meta-service2. In parallel, the underlying infrastructure belongs to other
stakeholders. Hence, it is probable that they need to set requirements for their devices
to ensure their performance when providing a host for several tenants.

We can define three types of SLOs: infrastructure, service, and application (or meta-
services). Figure 2.4 shows a graphical representation of each type of SLO. We will
use the term high-level SLO for those related to the application or meta-services and
low-level SLO for the ones that relate to the infrastructure components. Regarding the
SLOs placement, services’ SLOs will be located together with their service. For instance,
both entities would share a pod in a Kubernetes-based application. Infrastructure SLOs
would be deployed in services hosted in the critical infrastructure, i.e., devices that need
to be specifically monitored to ensure their proper behavior. However, the placement of
the application SLOs is not that clear. Actually, it brings a novel degree of freedom for
system optimization. However, our intuition is that the system architecture will show the
best candidate locations for these SLOs. Hence, one can assume that proximity to data
and to elasticity strategies is valuable. For clarification, by proximity to the elasticity
strategies, we mean that there are no significant delays between the service that requires
the elasticity strategy and the one that can apply.

Running example

The eHealth pipeline can include high-level SLOs that consider the overall cost of the
application, or the overall success of the alarm system. In contrast, lower-level SLOs
are bond to the underlying infrastructure. Edge devices might have a GPU available for

2We use meta-service for services that could be grouped, e.g., a pipeline, and for services that provide
functions beyond the application scope, e.g., an orchestrator.

22

2.2. Service Level Objectives

inference, but with shared usage, their overall usage throughout the day is limited. Or the
SBCs might run on battery power limiting its availability.

2.2.3 Tailored adaptations

One crucial aspect that motivates SLOs, considering both service and device to be
deployed, is the capacity to define tailored elastic strategies for service-device pairs. An
elasticity strategy or adaptation is a change in the service or device that ensures the
fulfillment of the SLO when it has been violated (reactive behavior) or when it is about to
be violated (proactive behavior) [DGST11]. In cloud-based applications, the adaptation
capabilities are basically horizontal and vertical scaling; the Kubernetes3 autoscaler is
the reference for both scientific and production systems. Horizontal or vertical scaling
is not always available at constrained devices; hence, tailoring elasticity strategies to a
service-device pair is fundamental for autonomous and decentralized behavior.

When considering the service and the device, we are capable of knowing if the service
will scale or if offloading to near and similar devices is an option [SPDD24b]. Further,
some devices can modify their characteristics. As an example, most NVIDIA Jetson
devices4 allow runtime configuration of their maximum energy consumption, or they
can enable/disable the GPU at runtime. Hence, these configuration options are cast as
elasticity strategies. Further, we consider service-based elasticity measures, which go
beyond adding or removing more replicas. Services configuration can be changed if they
have the proper interfaces to adapt their behavior for the specific moment. It is important
to clarify that these measures do not aim to change the service logic but to change its
behavior. For instance, one can easily change the granularity of the input data to alleviate
data processing tasks [SPDD23]. Similarly, the ML model for inference processes can be
selected by trading off accuracy with energy consumption. Hence, services must provide
interfaces to trade-off characteristics regarding quality, cost, or performance.

Running example

Executing the inference service at an Edge device with GPU allows the design of two
elasticity strategies that go beyond scaling, and might be specific for this type of host. For
instance, if the GPU can be utilized on demand, the service can run initially without, and
when the required number of inferences increases, the GPU is switched on. Further, if
the GPU usage limit is reached, the service can be offloaded (or the requests re-directed)
to another Edge device with GPU time available for the application.

2.2.4 SLOs – Areas of Interest

Up to this point, we have been explaining that (1) SLOs have to define service requirements
together with the hosting device, that (2) we have different types of SLOs, and that (3)

3Production-Grade Container Orchestration, Last accessed: April 30, 2025
4Overview of NVIDIA Jetson Modules, Last accessed: April 30, 2025

23

https://kubernetes.io/
https://developer.nvidia.com/embedded/jetson-modules

2. Behavioral Models for the Computing Continuum

tailored adaptations for the service-device pair are needed to ensure SLO compliance.
However, we have skipped a crucial aspect: decentralization.

Decentralization requires that each SLO knows its needs and capacities as any autonomous
agent. We define the area of interest of an SLO as those variables and parameters that
the SLO must consider to evaluate its current state autonomously and to take action
accordingly. Hence, evaluation and adaptation are performed locally. Indeed, higher-level
SLOs will require data coming from different parts of the system. Hence, their area of
interest might be more extensive. Regardless, filtering out redundant or irrelevant data
for the specific SLO is fundamental to achieving scalable system management.

Interestingly, why would someone need to check influencing variables or parameters to
the SLO if directly observing the SLO is feasible? The answer is twofold; on one side,
knowing the influencing variables provides the causes of SLO behavior, which leads to
explainable and accountable systems. On the other side, the influencing variables and
parameters are needed to take the most adequate elasticity strategy. Hence, providing an
area of interest per SLO maximizes the level of decentralization for any SLO-based system.
Local decisions are framed to an SLO. Therefore, its elastic strategies [ZTL+19] are cast
as parameters that the SLO can consider to choose its available elasticity strategies.
Hence, the possible adaptations for the SLO are known and available only locally.

Running example

Let’s assume that there is at least 1 SLO defined per service, at least 1 higher-level
SLO, and another lower-level one. At this point, besides monitoring SLO behavior,
other metrics and parameters of the system must be tracked. This consists of metrics of
the underlying infrastructure, from CPU/GPU usage to power consumption or requests
per second; service metrics such as inference time or pre-processing queue; and finally,
parameters that influence the service behavior, which might be used as elasticity strategies.
While expert knowledge can used to identify candidate elements to track, in DCCS, ML
technologies can help suggest relevant metrics or parameters.

2.3 Behavioral Markov Blankets

The Markov Blanket5 (MB) is a mathematical concept that defines each SLO area of
interest. This concept has two valuable perspectives. On one side, the Markov Blanket,
defined by J. Pearl [Pea88b], is purely probabilistic. Conversely, the Markov Blanket used
by K. Friston [FKH06] to define the Free Energy Principle has an ontological perspective,
i.e., it is used to define what any thing is. The Markov Blanket of a random variable, x,
(in the probabilistic sense of the meaning) contains all variables that make x conditionally
independent of any other set of variables. In a Bayesian Network, the Markov Blanket of

5Formally, there is a difference between the Markov Blanket and the Markov Boundary. The latter is
the minimal set of the first. However, to align with previous work and because this distinction is not
critical for our work, we indiscriminately use the term Markov Blanket.

24

2.3. Behavioral Markov Blankets

Sensory State

Action State

Markov Blanket

Internal State

Figure 2.5: Hierarchical dependencies between different Markov blankets

a variable can be visually identified because it is always composed of its parents, children,
and co-parents. Formally, if MB(x) are the variables from the Markov Blanket of x and
Y contains only variables outside the Markov Blanket, then Eq. (2.2) holds.

P (x|MB(x), Y) = P (x|MB(x)) (2.2)

It is possible to bring this concept to the DCCS by assuming that this central variable, x,
is the SLO at hand. Then, applying the Markov Blanket over this variable provides the
set of variables that will affect the behavior of the SLO compliance. Hence, this sets a
causality filter over the SLO, identifying only the system metrics that have to be tracked
for the SLO, heavily reducing the time needed to assess the SLO status and inferring
possible adaptation measures. Focusing on the set of variables contained in the Markov
Blanket minimizes the monitoring effort while maximizing its effectiveness.

Discovering the Markov Blanket of an SLO is a complex task that requires the combination
of two types of knowledge (1) there is a need for expert knowledge to identify the system
variables that might be needed to assess the SLO. On the other hand, (2) it requires the
system’s data to use Markov Blanket discovery methods to quantify the relation of the
selected variables with the SLO, such as presented by Fu et al. [FD08], the interested
reader can check this survey for more detail and candidate methods [VCB21].

The second perspective of the Markov blanket uses the concept to build the interfaces of
a thing (the SLO) with its environment. On the one side, it defines the sensory states –
variables affected by the environment that influence the internal state. On the other side,
the active states – variables affected by the internal state that influence the environment.
The environment is composed of many things, such as different computing services, the
users, the hardware in which services are hosted, etc. However, all of these entities feature
their own Markov blanket, which defines the interface between them and how they react
according to each others actions. Consider Figure 2.5, which shows how different Markov
blankets use their sensory states to build their internal state, and how the central blanket
uses its current state to decide for an action that affects the other blankets. This shows
how hierarchical services could take actions based on dependent services’ observations; in
particular, acting if observations indicate that SLOs (internal state) are violated.

When defining the active states, it is only partially true that these states directly influence
the environment. What they do is affect the relation of the SLO with the environment.

25

2. Behavioral Models for the Computing Continuum

M2 M3

M4M1

Figure 2.6: Markov Blanket representation of an SLO.

This means that if something in the environment is making the SLO deviate from its
equilibrium, the SLO (meaning the autonomous agent controlling it) has to perform an
elasticity strategy to revert that trend. This can be on the environment itself (external
action), e.g., spawning a new service instance to absorb the high demand. Still, it can also
change the service itself (internal action) [SCPDD23], e.g., reduce the granularity of the
data being analyzed, adapting the QoS offered to keep the environment in equilibrium.

Figure 2.6 represents an SLO with its Markov Blanket: M1, M2, and M3 depict metrics
influencing the SLO behavior, while M4 is a metric that does not influence the SLO.
Additionally, the two squares at the bottom represent action states, which can influence
the relation of the SLO with its environment. The next section will introduce the brain
behind the SLO, i.e., how we provide autonomy to the SLO.

Running example

Now that the metrics and parameters available for each SLO are defined, it is necessary
to keep only those directly affecting the SLO at hand. Computing the Markov Blanket of
each SLO allows for determining which variables (i.e., metrics and parameters) the SLO
is conditionally dependent on. This way, all variables that do not directly affect the SLO
can be discarded, reducing the total amount of data to be analyzed. The requirement is
modeled as a simplified Bayesian network, where the SLO is the central variable. Further,
those parameters that might be used as elasticity strategies are linked with other system
metrics, which will help identify the best strategy according to the system status. For
instance, the inference processing time will have dependencies only with the GPU status
and the model time. Hence, if the GPU status is already ON, the only way to reduce
processing time is by using a cached model that requires less computational effort.

26

2.3. Behavioral Markov Blankets

2.3.1 Autonomy

At this point, SLOs have all but one required ingredient to behave autonomously:
intelligence. Simply put, the capacity of the SLO/service to autonomously decide how to
adapt given its current state. Currently, software systems have three main directions to
achieve intelligence: rule-based, model-based, or agent-based. Firstly, dealing with large,
heterogeneous, and distributed systems precludes the usage of rule-based decisions as the
space of possible situations is too large and complex for anyone to predetermine all rules.
Interestingly, this is the standard approach for state-of-the-art Cloud systems (i.e., the
Kubernetes autoscaler6). This works due to Cloud homogeneity and centralization.

However, research is already going beyond this when considering the Edge. For example,
Toka et al. [TDFS21] develop AI-based models to manage Edge resources. Further,
model-based requires previously specifying the model by using the underlying laws of
physics of the system or its data to build the model. For instance, Liang et al. [LHAES23]
build models for different Edge devices that perform machine learning tasks using queue
theory. However, this results in developing and validating specific models for each service
and device type combination. Model-based approaches using deep learning have also great
success. However, the amount of data to train these models is huge; for instance, Jeong
et al. [JBP+23] used 30 days of data for training, while the generalization capabilities on
dynamic environments, such as in the CC, still need to be proven.

Lastly, agent-based systems can learn a behavioral model progressively while performing
actions. As explained by J. Pearl [PM18], performing actions on the systems does
incorporate information about the system’s behavior that cannot only be observed. The
most common agent-based intelligence is the one brought by reinforcement learning.
Specifically, most of its applications for Edge systems are model-free [XZLH20, TW22],
which means that the consequences of actions are not evaluated before the action is taken.
Formally, the probability of the new state (s′) given the current state (s) and the action
taken (a) is not assessed (P (s′|s, a)). In any case, agent-based techniques usually require
time to learn properly and suffer from the exploitation-exploration trade-off.

Hence, we opt for using the combination of both, agent-based intelligence with a system
model. Later, in Chapter 6, we will focus on Active Inference (AIF) [PPF22] – an
agent-based solution that we use for fulfilling SLOs. This promises the following benefits:
First, agent-based solutions are well-suited for decentralized systems, where components
have autonomous, self-adaptive agents. Second, the formulation of AIF is perfectly
aligned with the Markov Blanket representation of the system. This enables a complete
and more straightforward integration into the SLO-based model that we are proposing.
Third, its objective function is not reward-based but aims to improve its model of the
environment [SBPF21]. This subtle difference better suits systems that might need
to change their requirements with time. Fourth, AIF allows injecting the expected
observations into the model, i.e., fulfilling its SLO becomes the main driver for the agent
actions. Hence, it can learn how their actions affect the SLO fulfillment.

6Kubernetes Horizontal Pod Autoscaling, Last accessed: April 30, 2025

27

https://kubernetes.io/docs/tasks/run-application/horizontal-pod-autoscale/

2. Behavioral Models for the Computing Continuum

However, as previously mentioned, the exploitation-exploration trade-off is always chal-
lenging for agent-based intelligent systems. In that regard, we can quantify the risk of
new observation balanced against the information gain (e.g., model improvement) that it
can provide, and depending on the criticality of the SLO (i.e., the length of its operation
range), we can weigh the risk against the gain.

Running example Now that each SLO is modeled as the central node of a Markov
blanket, we can use AIF to improve the SLO behavioral model and find the best policy
to keep SLOs fulfilled. Improving the model means closing the gap between the predicted
outcomes and actual behavior when using elasticity strategies. Simply put, what one
believes will happen if they turn on the GPU, against what really happens when doing
it. In that regard, AIF can build policies that balance model learning (when the system
behavior is stable) with the SLO stability optimization. Returning to the running example,
the effect of GPU usage on the processing time is favorable. However, the model can
be refined so that the effect can be quantitatively measured, and hence, when the GPU
capacity is exceeded, an alternative elasticity strategy can be used.

28

CHAPTER 3
From Metrics to

Multi-Dimensional Elasticity

The growing amount of data generated at the edge of the network, e.g., by Internet of
Things (IoT) devices, made it indispensable to relocate computational power close to the
data source. Meanwhile, data tends to accumulate in chunks and is frequently subject
to resource-intensive transformations, such as privacy enforcement. These phenomena,
which are summed up as “data gravity" and “data friction", have an impact on data
processing and the overall system. However, whereas cloud centers are able to dynamically
adapt services, e.g., by provisioning additional resources, edge devices provide fewer
options to react to changing workloads. To retain the option to process data locally, we
present the idea of controlling data gravity and friction with Service Level Objectives
(SLOs). We introduce Markov SLO Configurations (MSCs) as a novel approach to
organizing performance metrics and elasticity strategies. MSCs, in conjunction with our
presented architecture, enable the evaluation of SLOs, the context-based selection of
elasticity strategy (i.e., corrective measures), and the execution of strategies directly on
edge devices. Thus, we lay the foundation for a new generation of SLOs that can operate
across multiple elasticity dimensions, e.g., by scaling quality of service (QoS).

The remainder of this chapter is structured as follows: Section 3.2 provides background
knowledge on data gravity and data friction. It also contains an illustrative example of
an SLO on data gravity and data friction. In Section 3.3 we identify metrics to capture
friction and gravity, as well as elasticity strategies to counter them; within Section 3.4
we assess to what extent SLOs on gravity and friction are supported by the state of the
art and what architectural extensions they demand. Related work, including the Polaris
framework, is considered in Section 3.5. Finally, Section 3.6 summarizes the chapter.

29

3. From Metrics to Multi-Dimensional Elasticity

3.1 Introduction
A Service Level Objective (SLO) is a commitment to maintaining a system in a desired
state over a certain period of time [KL03]. It determines a system’s status by evaluating
one or more Service Level Indicators (SLIs), usually performance metrics, and compares
the result against a benchmark. If they diverge, the SLO is violated, which is corrected by
a chain of countermeasures (i.e., elasticity strategies [PMP+21a]). SLOs thus provide a
system with “elasticity" – a degree of self-determination to adapt to changes in workload
[HKR13]. Elasticity strategies can span multiple dimensions, for example, by adjusting
the amount of resources provisioned or by scaling the quality of service (QoS) [DGST11].
However, to date, most SLOs are tied to a single elasticity strategy (e.g., scale resources in
AWS EC21) and are thus limited to one elasticity dimension [NMP+20]. This drastically
limits the versatility of SLOs to react to more complex behavior within distributed
systems, for example, compensating data gravity and data friction.

Data friction is a resistance that impedes data transfer between systems. It may be
caused, for example, by incompatible data formats or privacy enforcement, resulting in
processing delays, increased costs, and higher energy consumption [Edw10]. Data gravity
refers to the tendency of data to accumulate and attract further data and applications;
thereby, it becomes increasingly difficult and costly to move the data. To cope with this,
there is a tendency to relocate processing facilities to the edge of the network, i.e., where
data is created [Cam19, DPD23]. Processing data close to its source is motivated by
numerous benefits, such as low latency and high bandwidth [SD16]. Friction-generating
tasks (e.g., privacy enforcement) are equally assumed by edge or fog devices because,
thus, unprotected data is less exposed to unauthorized access.

However, edge devices provide few options to scale provisioned resources [NPM+21].
To retain the option of processing data locally, edge devices must limit data gravity
and data friction; otherwise, they find themselves unable to deal with growing data
chunks and resource-intensive transformations. This inability to scale resources makes it
attractive to explore other elasticity dimensions, e.g., by scaling the quality of generated
data [FFACP18]. In this context, we present the idea of limiting data gravity and data
friction by employing SLOs that extend into multiple elasticity dimensions. This chapter
conceptually builds upon the state of the art for constructing SLOs, in this case, the
Polaris framework [NMP+20], and addresses challenges that arise when attempting to
control data gravity and friction with SLOs. Within this chapter we did not evaluate
these concepts but laid the foundation for an upcoming implementation in future work.
Our main contributions towards SLOs for data gravity and friction include:

1. A mechanism to generate SLO configurations, which uses Markov blankets (MB)
for evaluating a system according to SLOs. This novel approach constructs around
a central entity (e.g., data gravity) a graph of relevant metrics, elasticity strategies,
and contextual information.

1https://aws.amazon.com/ec2/

30

https://aws.amazon.com/ec2/

3.2. Data Gravity and Data Friction

2. The Markov SLO Configuration (MSC) as a method to organize the SLO lifecycle
from the collection of metrics to the enforcement of elasticity strategies. Information
contained by the MSC (i.e., which metrics to collect and which elasticity strategies
to apply) can be administered within a distributed system to create hierarchical
SLOs that extend into the computing continuum.

3. The context-based planning of elasticity strategies, which regards the edge envi-
ronment to select an elasticity strategy. Thus, it becomes possible to compare
elasticity strategies that operate in different elasticity dimensions and pick one, e.g.,
depending on the corrective impact.

Although the goal of this chapter was to limit data gravity and friction, the results are
transferable for SLOs that pose similar requirements, e.g., planning multidimensional
elasticity strategies or orchestrating strategies directly on edge devices.

3.2 Data Gravity and Data Friction
We consider data gravity and data friction to be fairly new concepts for most readers;
therefore, we use this section to provide background information about these phenomena
and explain in more detail how they impact data processing. To illustrate the need for
SLOs based on data gravity and friction, we further present (1) an exemplary use case
that is referenced within the remainder of the chapter and (2) an overview of motivating
research challenges for creating SLOs that treat data gravity and friction.

Data Gravity

Data gravity describes the tendency of data to attract additional data. It is based on
the idea that the more data and applications are stored at a particular location, the
more attractive it becomes for other data to be stored there [Mac10]. This phenomenon
usually draws data toward the cloud but could occur anywhere along the computing
continuum, e.g., the network edge. It promotes the creation of central data storage, which
provides numerous benefits [AW15]: fewer inconsistencies, data unification, and improved
security due to fewer attack vectors. Services and applications are equally drawn to
larger amounts of data, which is motivated by two essential benefits: low latency and
high bandwidth [Mac10]. For measuring data gravity, the authors in [Dig22] provide a
formula based upon four network metrics: (1) data mass, i.e., the size of data; (2) data
activity, i.e., the number of movements and interactions with the data; (3) bandwidth;
and (4) latency. The authors raised these metrics for thousands of enterprises to compare
data gravity between different countries and regions.

Data Friction

Data friction is a resistance that impedes data transfer, for example, when exchanging
data between institutions [Edw10]. It is frequently generated by preprocessing tasks,

31

3. From Metrics to Multi-Dimensional Elasticity

such as data enrichment [XKK20] and privacy enforcement [FFACP18]. Data friction can
be introduced by either socioeconomic or regulatory factors. Socioeconomic factors can
be different understandings of data or metadata in scientific environments [EMB+11], or,
more culturally, the simple desire to keep personal information confidential. Regulatory
factors, on the other hand, are introduced to provide legal guidance, for example, the EU’s
General Data Protection Regulation (GDPR) [Bat17]. When transferring information,
data friction demands additional resources, such as time, computational power, or personal
effort. Consider, for example, privacy enforcement for a data stream: Transforming
data according to privacy policies provides benefits to stakeholders [GWK+19], it is thus
evident that the transformation cannot be omitted. Nevertheless, data friction can be
optimized by employing more efficient techniques or dividing it between individual nodes.
On the lines of data gravity, such a phenomenon must be measurable using a set of
metrics, which will be explored further in Section 3.3.

3.2.1 Illustrative Scenario

To underline the benefits that emerge from SLOs on data gravity and friction, we present
a motivating example. Although the scenario is tailored to smart health, the concepts
introduced can be applied to any field that uses distributed edge architectures, such as
industrial automation or smart cities. For now, imagine a scientific institution conducting
medical experiments; therefore, they require medical data from patients who are located
in hospitals or home care. Depending on the experiment, different data is required, for
instance, internal values (e.g., pulse, blood pressure, etc.) or skin mutations. The first is
provided as a numeric stream, and the second as an image stream. Data is provided by
IoT devices that are equipped with sensors, which stream it to the institution, where
data is accumulated until the experiment is evaluated and closed.

Patients agreed to participate if personal information was removed from the data;
therefore, medical data must be transformed according to privacy policies before being
stored centrally. To prevent unauthorized access to personal data, this transformation
must occur directly on the IoT device. Technically, the smart health device could also
provide additional data that is not part of the experiment, though this data is not
authorized to leave the device. However, patients can decide to accumulate such data
locally on the device, creating a personal data lake [AW15], and contribute this data to
another experiment. This may be motivated by a monetary incentive.

However, IoT devices can be very restricted in terms of storage and computational
power. Devices that fail to transform the data within a given time frame are facing
“high data friction". The personal data lake on the IoT device further complicates the
situation because increasing amounts of data become more difficult to manage. This can
be summarized as “high data gravity." To deal with these issues, we introduce SLOs on
data gravity and data friction. We organize IoT devices into clusters by grouping devices
that perform similar tasks and have low latencies to each other. As far as possible, we
add fog nodes (e.g., gateways and routers) to each cluster. Within each cluster, we elect

32

3.3. Modeling Complex SLOs and Elasticity Strategies

Figure 3.1: Decrease data gravity and friction by applying SLOs

the most powerful device as the cluster leader [Mur22], which will be responsible for
evaluating SLOs and orchestrating elasticity strategies.

The scenario is depicted in Fig. 3.1: Medical IoT devices are grouped into a cluster,
which contains a fog device that assumes the role of the cluster leader. To evaluate the
SLOs, IoT devices provide metrics to the cluster leader, which, once combined, reflect
the high data friction and gravity. Due to this result, the cluster leader suggests the
following elasticity strategies: (1) Transforming data is now performed nearby on a more
powerful device, reducing data friction perceived by low-resource IoT devices; (2) scaling
down the QoS (i.e., the data quality) reduces the data size and thus also data gravity
within the personal data lake. The SLOs thus provided measures to detect and control
high gravity and friction through multidimensional elasticity strategies. This improves
the self-healing abilities of IoT devices [KC03].

3.3 Modeling Complex SLOs and Elasticity Strategies
Although mostly used in statistics and machine learning so far, we use Markov Blankets
(MBs) [Pea88a], as known from Section 2.3, as a structured approach for exploring
composed network metrics – such as data gravity and friction. Within an MB, we include
the metrics required to determine the state of an SLO, elasticity strategies to correct a
faulty system state, and contextual information for selecting between these strategies.
For constructing an MB we assume a Directed Acyclic Graph (DAG), in which a central
node x is connected to a set of incoming and outgoing nodes, i.e., its parents and children.
Each parent node p1...pn represents a random variable that influences the state of x at
a certain time n; if for an arbitrary node y there exists no edge y → x in the graph, it
means that y does not have an influence on the state of x at the time n.

To form an MB of data gravity, we (1) establish data gravity as central node x, and (2)
arrange metrics as parent nodes p1...p4. Each of these parent nodes has an edge p→ x
that expresses its direct influence on the data gravity. Child nodes of x are random

33

3. From Metrics to Multi-Dimensional Elasticity

(a) Data Gravity (b) Data Friction

Figure 3.2: Constructing a Markov Blanket for (a) Data Gravity (b) Data Friction

variables that are influenced by the state of x; thus, we (3) introduce elasticity strategies
to treat data gravity. To construct a Markov blanket for a node x, we must further
include parents of its children; we thus (4) identify additional factors that influence the
probability of performing elasticity strategies. The resulting DAG is shown in Fig. 3.2a,
which is created by performing steps (1-4): Data gravity as our composed metric (red);
its parent variables that directly influence the gravity (green); further factors related
to random variables (gray); however, these are not necessarily part of the MB since
their influence can be derived indirectly through the colored nodes; child variables that
contain elasticity strategies (purple); factors that provide contextual information for
these strategies (yellow).

By definition, the MB must contain all colored nodes from Fig. 3.2a; thus including
network metrics, elasticity strategies, and factors that influence these strategies. We define
such a selection as Markov SLO Configuration (MSC), a set of variables that provides
sufficient information for evaluating an SLO and planning which elasticity strategies to
apply based on the context. Equally, Fig. 3.2b contains the DAG for constructing an
SLO for data friction, i.e., all information required to build an MSC. The graph follows
the same color code as Fig. 3.2a; any set that includes at least all colored nodes meets
the requirements of an MB.

While an MSC determines how an SLO is evaluated and executed at a time n, this
configuration can change over time, including: (1) adding or removing metrics; (2) adding
or removing factors influencing the elasticity strategies; or (3) adding or removing entire
strategies. The MSC can thus develop and adapt over time.

3.4 From Metrics to Elasticity Strategies

Based on the information contained in an MSC, it becomes possible to evaluate an SLO
and plan which elasticity strategies to apply. However, from a technical perspective,

34

3.4. From Metrics to Elasticity Strategies

there remain a variety of challenges to implementing these SLOs, including the following:

C1. SLOs were traditionally based on metrics that are generated in the cloud, for
example, resource consumption [Bel16]. SLOs on data gravity or friction are based
on metrics generated on the edge. To that extent, it requires the possibility of
collecting metrics from edge devices, accumulating them close to the data source,
and accessing them where the SLO is evaluated.

C2. Continuously collecting metrics produces a considerable amount of data. Trans-
ferring this information to the cloud for evaluation increases the overall network
traffic. To that extent, it lacks an architecture that collects metrics and evaluates
SLOs directly on the network edge. Evaluating SLOs close to where metrics are
created would also foster timely reactions to SLO violations.

C3. Traditionally, only a single predefined elasticity strategy is applied to return the
system to its desired state [NMP+20]. Contrarily, with the multitude of elasticity
strategies contained in the MSC, it becomes possible to select the most suitable
one. However, there exists no mechanism to compare elasticity strategies and select
one of them.

C4. Elasticity strategies proved useful for cloud-based processing (e.g. provisioning
virtual resources); however, elasticity strategies that scale the QoS must be enforced
directly at the data source, i.e., at the network edge. To that extent, it requires
an architecture that evaluates SLOs along the computing continuum, from where
elasticity strategies can be orchestrated to edge devices.

The given challenges can be summarized by the MAPE+K (Monitor, Analyze, Plan,
Execute, Knowledge) cycle [KC03], which the authors in [PMP+21b] used to capture all
phases of an elastic cloud application. The cycle consists of (1) monitoring the system and
collecting metrics, (2) analyzing whether the SLO is fulfilled based on this information,
(3) in case the SLO was violated, planning which elasticity strategy to apply, and (4)
executing the strategy to restore the system state. To pass information, but also to persist
knowledge-based information, a state is shared between the stages.

In the remainder of the chapter, we move through the MAPE+K cycle and address the
given challenges in their respective phases. We assume that the network is structured as
presented in Section 3.2.1: edge devices and fog nodes are combined into clusters, each
containing a powerful cluster leader. We use the Polaris runtime from Section 3.5 as a
technical reference for specifying SLOs with SLO Script and evaluating and enforcing
SLOs with their SLO Controller.

35

3. From Metrics to Multi-Dimensional Elasticity

(a) (b)

Figure 3.3: Architecture for multi-dimensional elasticity strategies: (a) Collecting and
evaluating metrics from edge devices (b) Context-based planning of elasticity strategies

3.4.1 Metrics in the Computing Continuum

Collecting metrics requires a data store deployed close to the data source. To that extent,
each cluster leader hosts (1) Prometheus2, a time-series database (DB) used to store
metrics, and (2) an instance of the SLO Controller, which will be required to evaluate
the SLO. Unlike some edge devices, the cluster leader provides sufficient resources to
run the SLO Controller and Prometheus, thus covering heterogeneity within the edge
environment. The structure of the cluster is shown in Fig. 3.3a: Device metrics and
operational metrics are generated on the edge devices and continuously ingested into the
time-series DB on the cluster leader.

Following our approach, we collect metrics close to where they are created and provide
them to the SLO Controller whenever the SLO is evaluated. We would thus solve challenge
C1, by capturing metrics that represent data gravity and friction and accumulating them
close to the edge device.

3.4.2 SLO Specification and Analysis

The second step in the MAPE+K control loop consists of analyzing the system state, i.e.,
evaluating the SLOs based on the provided metrics. As depicted in Fig. 3.3a, this is the
responsibility of the SLO Controller : It first queries low-level metrics from a configurable
data source, composes the SLOs of data friction and gravity, and then compares the
result against a benchmark. The central entity in the SLO Controller would be the
DataGravitySLO or DataFrictionSLO class, a direct representation of the SLO
logic. It includes for each low-level metric a reference to a data source (i.e., Prometheus)
and how it can be extracted.

Within the DataFrictionSLO, metrics are combined as in Eq. (3.1) and Eq. (3.2):
processingDelay and cpuLoad are multiplied to accumulate their values. The cpuLoad

2https://prometheus.io/

36

3.4. From Metrics to Elasticity Strategies

maintains a neutral factor until it rises above a certain degree (tx); only then does it have
a decisive impact on the composed metric. While processingDelay and cpuLoad are a
representation of the metric parameters, the target CPU load (tx) is configured freely.

processingDelayms × f (cpuLoad%) (3.1)

f(x) =
{︄

(x/tx)2 , if x ≥ tx

1, otherwise
(3.2)

We use SLO Script to configure the SLO and link it to an elasticity strategy. List-
ing 3.1 shows how DataFrictionSLO is mapped to SensorQualityScale, the
corresponding elasticity strategy. Whether the SLO is met or not, is specified through
frictionThreshold; the desired CPU utilization over targetDeviceLoad. Al-
though the configuration in Listing 3.1 statically maps a single elasticity strategy to the
outcome of the SLO evaluation, we will break up this connection in the planning phase.

export default new DataFrictionSloMapping({
metadata: ...
spec: new DataFrictionSloMappingSpec({

targetRef: ...
elasticityStrategy:

new SensorQualityScale(),
sloConfig: {

frictionThreshold: 50,
targetCPULoad: 70} }) });

Listing 3.1: Configuring an SLO on data friction with SLO Script

Following the architectural consideration presented, we evaluate the SLO directly on the
edge, close to where the metrics were created and stored; thus, solving challenge C2.

3.4.3 Context-aware Planning of Elasticity Strategies

Suppose that an SLO on data gravity or friction was violated, the third stage of the
MAPE+K cycle consists of planning corrective measures. To select between multiple
elasticity strategies, we introduce a component that receives the result of the SLO evalua-
tion, queries contextual information, and identifies the most beneficial elasticity strategy.
Depending on the scenario, “beneficial" could mean e.g., lowest energy consumption or
highest corrective impact on the system.

The architectural extension is illustrated in Fig. 3.3b: Instead of mapping only one
strategy to an SLO, an array of strategies can be supplied. The Strategy Planner resolves
contextual information (e.g., costs for relocating data) through the Context Provider.
Static configurations (e.g., quality measures) are queried from a separate DB, which can
be hosted in the cloud. Since this information rarely changes, it can be cached in the
Context Provider and updated by a trigger function.

37

3. From Metrics to Multi-Dimensional Elasticity

Based on contextual information, the Strategy Planner compares the impact of elas-
ticity strategies and selects one. Thus, we answer challenge C3. As a side note, the
Strategy Planner could even indicate the top n strategies to accumulate their effects
on the system. However, for now, we assume that either SensorQualityScale or
TaskOffloadKind was planned to decrease data gravity or friction.

3.4.4 Distributed Execution of Elasticity Strategies

After planning an elasticity strategy, it must be orchestrated; therefore, two components
were added to the architecture depicted in Fig. 3.3b: the Device Connector and the Edge
Controller. The Device Connector is hosted on the cluster leader and is responsible for
communicating elasticity strategies to edge devices, where they are received by the Edge
Controller. In the planning phase, the Strategy Planner picked as elasticity strategy
either SensorQualityScale or TaskOffloadKind, which are described below:

Quality Scaling adjusts the quality of the data that is produced on an edge device.
Processing a stream of lower quality has been shown to decrease the computational load of
devices [FFACP18, SMD22]; thus, reducing the data friction perceived by these devices.
The managed IoT device must therefore support dynamic changes in the generated
stream. Decreasing the quality of data reduces its size (i.e., mass); in cases where data is
accumulated locally on the edge device, this decreases data gravity at the same time.

Task Offloading moves processing to a different device in the cluster, such as powerful
fog nodes [PGPA+18]. Offloading processing is motivated primarily by minimizing the
streaming delay, but it can consider other factors, such as lower energy consumption
[CH18, GLL20].

Offloading load to more powerful or less used devices relieves individual devices of excess
load, while decreasing latency [RMBG21]. This reduces overall data friction within the
cluster because devices are less likely to be pushed beyond their operational limits. The
two strategies presented can correct high gravity or high friction within a distributed
system. For orchestration, they rely on the SLO Controller, which communicates the
instructions to edge devices. Therefore, we declare challenge C4 as solved.

3.4.5 Knowledge Transfer and Markov SLO Configurations

Components involved in SLO enforcement frequently need to share information with each
other; for example, the result of the SLO evaluation must be communicated from the
SLO Controller to the Strategy Planner. This type of information is transient and can
be passed between components without persisting. However, if we consider the content
of an MSC (i.e., metric composition and elasticity strategies), this information must
be federated between cluster leaders and manageable somewhere along the computing
continuum [DSCPD23a]. Whenever the MSC changes, e.g., by adding new types of

3The graphic is an extension of the master-worker pattern in [CGGN+18], our main modification is
maintaining knowledge-based information (K) separately and providing it to the remaining steps.

38

3.5. Related Work

Figure 3.4: Distribute MAPE+K steps over computing continuum3

metrics or elasticity strategies, cluster leaders must be able to retrieve the latest version
of the SLO configuration.

Fig. 3.4 visualizes how edge devices and the cluster leader exchange information depending
on the MAPE+K stages: Edge devices monitor the status of the system (M) by ingesting
metrics to intermediary storage. These metrics, along with other knowledge-based
information (K), are accessible through an interface in the cluster leader. Whenever the
system status is analyzed (A), metrics are queried to evaluate the SLO. Supposed the
SLO was violated, contextual information is regarded to select an elasticity strategy (P).
Eventually, elasticity strategies are orchestrated to edge devices for execution (E) to
move the system back into its desired state.

The MSC can be administered by another entity, which hierarchically stands above the
cluster leader, e.g., in the cloud. Thus, it becomes possible to erect multiple layers of
SLOs that each react to changes in their respective environments.

3.5 Related Work

Although there exists work on data gravity and data friction that discusses their in-
stitutional and technical impact, as of our knowledge, none of them is related to their
implementation as SLOs. Identifying metrics that reflect these forces can be compared
to the work in [Bel16, LEB15], which discusses performance metrics for cloud computing
environments. However, they focused solely on the computational load of the system
to scale resources, thus, only operating in one elasticity dimension. This is similar to
[ASLM13], where the authors discuss metrics for the elasticity of cloud databases. Com-
plementarily, Fürst et al. [FFACP18] introduced a programming model that supports
dynamic adaptations (comparable to elasticity strategies) within edge environments.
Depending on the resource consumption of an IoT device, it was possible to dynamically

39

3. From Metrics to Multi-Dimensional Elasticity

adjust the QoS; however, it lacked the options to consider other elasticity dimensions.

The Polaris SLO Cloud project4 provides a runtime environment that enables the combi-
nation of custom SLOs and elasticity strategies. Their work in [PMP+21b, PMP+21a,
NPM+21, NMP+20] provides fundamental concepts that are reused and extended over
the course of this chapter: Within [NMP+20] they introduced next-level SLOs, that is,
SLOs that compose multiple low-level metrics. Data gravity and data friction demand
such measures because, as explained in Section 3.2, it requires a combination of metrics
to capture such complex network behavior. The authors in [BBD+14] also support this
thought; they state that “elastic behavior should be determined by a combination of
factors”, which is similar to next-level SLOs.

A central component for evaluating next-level SLOs is the SLO Controller presented in
[PMP+21a] and [PMP+21b], which provides the following features: i) Create and update
mechanisms for SLOs, configurations can thus change over time; ii) SLOs and elasticity
strategies are loosely coupled, that is, SLOs and elasticity strategies can be replaced and
reused in multiple SLO mappings; iii) SLOs are evaluated periodically according to a
configurable interval; iv) metrics required for the SLO evaluation are queried through a
service that relies on native DB controllers; and v) elasticity strategies are translated to
orchestrator-native representations, which are submitted to the orchestrator through an
integrated controller. For the specification and configuration of SLOs, the authors have
provided a language called SLO Script [PMP+21a]. It is an extensible framework built
on TypeScript, which provides type safety, that is, ensuring compatibility between SLOs
and elasticity strategies at the time of configuration.

Existing work provided a framework for creating complex SLOs [NMP+20], measures
for dynamically adapting services based on the system state [FFACP18], and identified
the rising importance of treating data gravity and data friction [Cam19, EMB+11] at its
source, i.e., the network edge. However, we can conclude from the presented related work
that there exist no solutions that evaluate and resolve data friction or gravity within a
distributed system, which we aim to address with the proposed SLOs.

3.6 Summary
This chapter presented the autonomous control of data gravity and data friction through
SLOs. This was motivated by increasing data gravity, which requires relocating computa-
tional power to the network edge, and ubiquitous data friction, which demands additional
resources when transferring data.

To construct SLOs based on data gravity and friction, we introduced Markov blankets as
a novel approach to identify metrics, elasticity strategies, and contextual factors. Thus,
our approach provides all information needed to evaluate the SLOs. Selecting a preferred
elasticity strategy (i.e., one that operates in a certain elasticity dimension), considers the
context of the edge environment. Evaluation of SLOs, planning of an elasticity strategy,

4https://polaris-slo-cloud.github.io

40

https://polaris-slo-cloud.github.io

3.6. Summary

and orchestration of a strategy are assumed by a single powerful node. This responsibility
can rotate within the distributed system, cluster leaders can maintain a state and recover
SLO configurations in case of failure. Thus, we foster the creation of hierarchically
organized SLOs that each react to changes in their respective environments.

For future work, we plan to provide a prototype that combines the presented compo-
nents and features the entire MAPE+K lifecycle of an SLO. Certain aspects, such as
the accumulation of multiple elasticity strategies, will further require a sophisticated
orchestration model.

41

CHAPTER 4
Designing Reconfigurable Systems

from Markov Blankets

Compute Continuum (CC) systems comprise a vast number of devices distributed over
multiple computational tiers. Evaluating business requirements, i.e., Service Level
Objectives (SLOs), would require collecting data from all those devices; if SLOs are
violated, devices must be reconfigured to ensure correct operation. If done centrally,
this dramatically increases the number of devices and variables that must be considered,
while creating an enormous communication overhead. To address this, we (1) introduce a
causality filter based on Markov blankets (MB) that limits the number of variables that
each device must track, (2) evaluate SLOs decentralized on a device basis, thus increasing
the granularity of the system state, and (3) infer optimal device configuration for fulfilling
SLOs. We evaluated our methodology by analyzing video stream transformations and
providing device configurations that ensure the Quality of Service (QoS). While average
configurations violated between one and three SLOs during ten minutes of execution, the
device would not violate any SLO while operating with our inferred configuration. The
devices were thus able to perceive their environment and act accordingly – a form of
decentralized intelligence.

The remainder of the chapter is structured as follows: Section 4.2 presents our methodology
from the training of Bayesian networks to the extraction of knowledge; within Section 4.3
we present a case study used to evaluate our methodology; Section 4.4 provides an
overview of existing research in this field. Finally, Section 4.5 summarizes the chapter
and outlines future work directions.

4.1 Introduction
Computing Continuum (CC) systems as envisioned in [B+20, DPD23, T+22] are large-
scale distributed systems composed of a wide variety of devices. Applications running in

43

4. Designing Reconfigurable Systems from Markov Blankets

the CC pose ambitious requirements, e.g., near real-time latency while dealing with huge
volumes of data. Additionally, these requirements may change over time; to provide the
best possible service, the CC system must be able to adapt accordingly. For example, a
car tracking application can have night-specific requirements for precise tracking, while
during the day the challenge is to deal with the total amount of cars. However, given the
highly distributed nature of the CC, it is a challenging task to dynamically reconfigure
all contained devices, while ensuring high-level system objectives.

While it was one benefit of Cloud Computing that requirements could be evaluated
centrally, it was precisely the incapability of the Cloud to provide time-sensitive services
close to consumers that drove the emergence of Edge computing. The CC, as a com-
position of these computing tiers, is now investigating new methodologies to manage
such integrated systems, which need to be decentralized, given the system’s scale and
each tier’s requirements. In this regard, we envision CC systems employing decentralized
intelligence, which allows parts of the system to make decisions independently in favor
of the application running on top. Starting with the smallest unit in the CC – a single
edge device – the device would obtain the ability to evaluate its own state to ensure
requirements are fulfilled.

It is important to clarify that intelligence, as described here, refers to the capacity to
understand a situation and react in order to keep needs satisfied. One promising option
to model this, is the behavioral concept introduced by Friston et al. [Fri13, KPP+18,
PRP+20]. Essentially, it comprises sensory information and actions within a Markov
blanket (MB) [Pea88a], through which a thing interacts with its environment. The MB
itself shields the thing from all the variables it is conditionally independent of. Therefore,
to determine the state of the thing, only the variables in the MB must be considered.
Transferring this concept to the CC would allow modeling each device’s behavior through
MBs and evaluating device requirements by considering a limited amount of variables.

To model requirements, Cloud Computing introduced Service Level Objectives (SLOs)
as a measure to achieve business agreements between infrastructure provider and appli-
cation developer. However, we propose to expand SLOs to requirements that directly
influence the system behavior and the application performance. Inspired by the work
of Friston et al., continuing the research agenda set in [CPRD21, DPD23] and the ideas
from [SCPDD23], we aim to leverage the behavioral concept of MBs to represent SLOs
throughout the CC. The causality filter of the MB could reduce the scope of variables
that each device must analyze; thus, decreasing the computational effort of analysis.
This allows transferring intelligence from the Cloud to the Edge because it empowers
resource-constrained devices along the Edge to evaluate SLOs themselves. Knowing
the correlations between variable assignments and requirement fulfillment, the device’s
environment can be analyzed to infer configurations that best ensures SLOs.

In this chapter, we propose a methodology to evaluate application requirements through
Markov-blanket-based SLOs. The method is able to constrain each SLO to a set of
influencing metrics and infer the optimal device configuration given variable require-

44

4.2. Bayesian Network Learning & Inference

ments. Further, the output is explainable due to the graphical model used. Hence, the
contributions of this chapter are the following:

• A statistical reasoning model for analyzing conditional dependencies between metrics
in distributed systems. Whenever requirements change, the model may thus itself
answer which metrics are related to their fulfillment.

• The graphical representation of the device state as MB, which allows interpreting
the device behavior. The state can be broken down into several SLOs; in case any
of them is violated, it can be explained why.

• A mechanism to infer optimal configurations from MBs given mutable system
requirements. It was evaluated under two scenarios in which our approach provided
the only configuration that did not violate any SLO.

4.2 Bayesian Network Learning & Inference

With this section, we provide a novel degree of decentralized intelligence to devices in CC
systems. Thus, edge devices may themselves ensure SLO fulfillment without relying on
central control. From a high-level perspective, we plan to analyze the device state, map
contained variables to the SLO fulfillment, and provide adaptive device configurations.
Our three-step methodology to achieve this is visualized in Figure 4.1:

Edge devices produce metrics about ongoing processing; then Bayesian Network Learning
(#1) is used to quantify correlations between these metrics and reflect the impact of
environmental changes (e.g., increased incoming requests). Next, we introduce system
requirements (i.e., SLOs) and extract a minimum subset of metrics for SLO fulfillment
(#2). Ultimately, we use these MBs to estimate the probability of SLO violations and
(#3) infer the device configuration with the highest compliance level.

While the proposed methodology describes a sequence of actions, the tools themselves
(e.g., algorithms for structure learning) can be optimized depending on the data. In the
following, the three steps of the methodology are explained in the respective subsections.

4.2.1 Bayesian Network Learning

Bayesian network learning (BNL) is an efficient way to generate an accurate structure
for data; these approaches are mainly categorized into constraint-based (e.g., parent-
child or grow-shrink) and score-based (e.g., Hill-Climb or genetic algorithm)[SSS19]. In
this chapter, we consider the Hill-Climb Search (HCS) algorithm because of its rapid
convergence, low complexity, and efficiency when considering limited attributes.

HSC starts with an empty graph; by adding or removing edges between variables, it
creates a set of neighboring structures and selects the structure with the highest score.
In this way, HCS repeats the adding and removing of edges until it reaches a maximum

45

4. Designing Reconfigurable Systems from Markov Blankets

Metric []
CPU utilization

Processing delay
Requests / Sec.

...
Bayesian network Markov blanket

Delay

Energy

Service Level Objectives

Probability of SLO violations
Ideal configuration

Workload

#1 BNL

#2 Extract MB

#3 Infer knowledge

Figure 4.1: Training a Bayesian Network from processing metrics (#1); this is used
to extract the minimum number of variables related to SLO fulfillment (#2) and a
configuration that satisfies them (#3)

score, which describes the best DAG. Afterward, a conditional probability table for
each attribute is constructed for the DAG through parameter learning using Maximum
Likelihood Estimation (MLE), which is required for future inference and decision-making.

4.2.2 Markov Blanket Selection

A Bayesian network contains by design directed correlations and conditional dependencies
of random variables; however, to determine the state of an individual node x, only a part
of the network nodes are influential. This promotes the application of MB [AST+10,
CPRD21, DPD23], which shield a variable x from all nodes that are conditionally
independent of it. Specifically, the MB for x would contain (1) child nodes of x, (2)
parent nodes of x, and (3) child nodes’ remaining parents. Although this process appears
simple for small Bayesian networks, larger networks require sophisticated algorithms for
efficient MB extraction [TAS03, WLYW20].

Essentially, the MB is a causality filter to mask out variables that do not directly affect
the node x; we use this to identify metrics related to SLO fulfillment. Suppose we specify
an SLO (e.g., processing delay < t) and evaluate it using a single metric (e.g., delay), we
might be interested in the factors that influence the evaluated metric to better fulfill the
SLO. Namely, these are all variables contained in the MB of delay. In this context, we
distinguish between metrics that statically reflect the system state (e.g., request_count),
and those that represent a parameterizable variable (e.g., active_cpu_cores). However,
we summarize both using the term "metrics" from a BNL perspective. While static

46

4.3. Use Case: Video Processing

metrics are essential to explain why an SLO is in its current state, only parameterizable
ones can be dynamically reconfigured. Overall, the sum of metrics in the MB provides a
clear understanding of why an SLO is in its current state.

4.2.3 Knowledge Extraction

There exist two main categories of algorithms for extracting knowledge from Bayesian
networks, namely Approximate Inference (AI) and Exact Inference (EI). Given a Bayesian
network and system requirements specified as SLOs, we seek to extract probabilities of SLO
violations for a certain device configuration, e.g., P (delay > t) given active_cores = 4.
For dynamic reconfiguration, we require results to be (1) accurate, (2) converge reliably,
and (3) fast for large networks. We argue that EI and, in particular, Variable Elimination
(VE) [ZP94] as an instance, fulfill these constraints. In the following, VE is explained:

For a Bayesian network with a node set {v1, v2, v3, v4} ∈ V , VE accepts a list of target
variables T = {v1, v2}, variable assignments A = [(v3 : a3)], and an elimination order
O = {v4, v3}. The query provides the conditional probabilities of T variables given
assignments A. Each variable must either be eliminated or within the target set, thus
∀v ∈ V, v ∈ T ⊕ v ∈ O. VE iterates over O and eliminates variables from V while
updating the beliefs of remaining nodes; V thus eventually contains only T . In the given
case, v4 is eliminated first and v3 second; the difference is the assignment of v3, which
introduces evidence in the form of P ({v1, v2}|v3 = a3). While the elimination order has
no functional consequence, it is relevant for the efficiency of VE and thus its scalability.

Given a parameter assignment A = [(v3 : a3), (v4 : a4)] and a target variable T = {v2},
we can construct an SLO that seeks to limit v2 and obtain its conditional probabilities.
We then introduce a threshold t and infer the probability of v2 exceeding t given A.
For instance, recall active_cores as c, request_count as r, delay as QoS metric d, and a
minimum level of quality t. Suppose that we have a Bayesian network with {c, r, d} ∈ V ,
we can specify T = {d}, A = [(c : 2), (r : 5)], any O, and t = 8. Running VE, we obtain
the conditional probability of T given A, and from this we obtain the probability of d > t.

This will be our central mechanism for identifying the probabilities of SLO violations given
a device configuration. If an SLO is violated due to an environmental change, e.g., higher
request_count and thus exceeded delay, we can compare all possible configurations and
provide the one with the highest probability of fulfilling the SLO, e.g., set active_cores =
4. This matches our envisioned level of intelligence, i.e., "understanding a situation and
reacting according to needs", and neatly fits the principles of elastic computing [DGST11].

4.3 Use Case: Video Processing

The following case study will be used to evaluate our methodology. In particular, we
present two video streaming scenarios that require privacy-preserving transformations.
We analyze device metrics to build a Bayesian Network, specify SLOs that characterize

47

4. Designing Reconfigurable Systems from Markov Blankets

Table 4.1: (Parameterizable) Metrics captured during workload execution

Name Unit Description Param

delay ms processing time per frame No
CPU % utilization of the CPU No
memory % utilization of the system memory No
pixel num number of pixel contained in a frame Yes
fps num number of frames received per second Yes
bitrate num number of pixels transferred per second No
distance px relative distance of object between frames No
transformed T/F if the model detected a pattern (i.e., face) No
GPU T/F if the device employs a GPU No
config nominal mode in which the device operates Yes
consumption W energy pulled by the device No

the QoS, extract the MB around each SLO, and finally, infer system configurations that
have the lowest chance of violating SLOs.

4.3.1 Setup

Training a Bayesian network requires data; therefore, we use the framework introduced
in [SMDD23], which allows edge devices to detect privacy-violating patterns (e.g., screen,
face, or voice) in a stream and transform it continuously to resolve possible privacy
violations. As a workload, it fits our methodology because it (1) provides an ample set
of metrics reflecting the QoS of ongoing processing, (2) can be parameterized, and (3)
can be executed on edge devices. Using the framework, we specify a privacy model that
detects faces within a video stream and blurs the respective region, a scenario useful for
office monitoring or AR setups [BBL+20, PK18]. Within this setup, a producer (e.g.,
IoT device) provides a video stream to the edge device, which transforms video frames
according to the privacy model and then streams them to one or multiple consumers.

During execution, 11 metrics are captured, which we briefly introduce in Table 4.1 as
they will be essential for defining SLOs. Each metric row contains a short description,
the measurement unit, and if it can be parameterized. For example, pixel and fps are
video stream properties; however, the producer can adapt them to create a variable
bitrate. Config determines the device operation mode; devices such as Nvidia Jetson
Xavier NX1thereby limit their maximum energy consumption and number of active CPU
cores. In addition, the metric distance tracks the relative position of a detected face
between frames, indicating how fluent/sluggish an object is tracked.

To explore correlations of parameterizable metrics, we simulate an adaptive bitrate;
precisely, the producer periodically switches between different fps (12, 16, 20, 26, 30) and
pixel (120p, 180p, 240p, 360p, 480p, 720p), while the edge device moves through available

1https://docs.nvidia.com/jetson/archives/r34.1/DeveloperGuide/text/SO/JetsonXavierNxSeries.html

48

4.3. Use Case: Video Processing

config modes. Current parameter assignments are part of the set of metrics, which
together are persisted with every processed frame. Except for consumption, metrics are
directly observable by the device; consumption, on the other hand, is captured through
an external power plug2, which measures the energy consumption over a telemetry period
of 10 seconds. Metrics are accumulated in a CSV file on the edge device, which will
contain 189,000 metric rows for each evaluated device, captured within 2.5 hours.

We identified five SLOs that describe the system state in terms of QoS and Quality of
Experience (QoE); however, each applicable scenario can have its own subset of relevant
SLOs. We assign a name to each SLO and highlight the metrics from Table 4.1 (e.g.,
bitrate) that are used to evaluate the state of the SLO. Some SLOs are constructed
by combining metrics (i.e., within time), others are compared against a customizable
threshold (e.g., pixel distance), while other SLOs directly mimic the value (True/False)
of the metric (i.e., transform success).

network usage Edge devices have limited network interfaces, and in some cases, limited
network bandwidth. Since video streams are transferred over the network,
bitrate is important to control network congestion.

energy cons Edge devices are restricted in terms of resources and thus must economize or
limit their energy consumption while ensuring compliance with the remaining
system requirements (i.e., other SLOs).

within time Video processing introduces a considerable streaming delay, which can lead
to dropping frames and consequently poorer QoE. Hence, the stream’s fps
can be adjusted to limit/avoid dropping frames.

pixel distance Measures the quality of the object tracking capacity; we expect the tracked
object not to jump, but to have a smooth trajectory. Hence, we define a
range for the acceptable distance.

transf success Private or confidential information must not be disclosed; therefore, trans-
formed should be maximized to increase utility of privacy transformation.

The workload was executed on three devices, which are listed in Table 4.2: Although all
devices possess a GPU, only the Jetson Xavier NX supports the correct NVIDIA CUDA
version to accelerate video processing. To explore correlations between the GPU and
other metrics, we execute the entire workload twice on the Xavier NX, once with and
once without CUDA acceleration.

4.3.2 Model Construction

For constructing the Bayesian network, we leverage pgmpy3, a Python-based training
framework. Pgmpy supports an ample set of algorithms for structure and parameter
learning, including HCS and MLE (see Section 4.2.1). Training the Bayesian network

2https://www.delock.com/produkt/11827/merkmale.html, accessed June 13th 2023
3https://pgmpy.org/, accessed June 14th, 2023

49

https://pgmpy.org/

4. Designing Reconfigurable Systems from Markov Blankets

Table 4.2: List of devices used for workload execution and training data generation

Name CPU RAM GPU

Jetson Xavier NX ARM Carmel v8.2 (6 core) 8 GB NVIDIA Volta (383 core)
Jetson Nano ARM Cortex A57 (4 core) 4 GB NVIDIA Maxwell (128 core)
ThinkPad X1 Gen 10 Intel i7-1260P (16 core) 32 GB Intel ADL GT2

Figure 4.2: DAG after structure learning with Hill-Climb Search

with HCS and MLE on 756,000 rows with 11 columns of metrics takes approximately 30
seconds on a ThinkPad X1 Gen 10. The resulting DAG is presented in Figure 4.2: Nodes
in the figure represent metrics, while edges between nodes indicate a causal relationship
or at least a correlation.

After training the Bayesian network, we extract for each SLO the MB around its central
metric; the resulting MBs are visualized in Figures 4.3 & 4.4: Figure 4.3 shows three
of the four simple SLOs, i.e., such that require exactly one metric for evaluation. For
example, energy cons must evaluate consumption to determine the state of the SLO;
however, the 3 metrics surrounding consumption (i.e., bitrate, config, and GPU) could
likewise be used to derive the probability that the SLO is violated. The fifth SLO,
within time in Figure 4.4, is composed of two metrics and thus features two MBs.
Complex SLOs [NMP+20], i.e., such that consist of n metrics, produce n MBs; therefore,
increasingly complex SLOs require mechanisms to merge and compress MBs.

We argue that the MBs extracted for each SLO are plausible because contained edges
can be rationally explained. However, there is one particular case, which points toward
a central issue – do edges represent causation or merely correlation. What is THE
real cause, and what is a side effect, thus only increasing the complexity of the model?

50

4.3. Use Case: Video Processing

(a) energy cons (b) network usage (c) transf success

Figure 4.3: Markov blankets of the simple SLOs extracted from the Bayesian network

(a) fps (b) delay

Figure 4.4: Markov blankets of the within time SLO combined from two metrics

Precisely, the processing delay increases linearly with resolution (pixel→ delay), and low
resolution (≤ 180p) negatively affects the transformation rate (pixel→ transformed).
However, while transformation success (True / False) should not affect delay, the DAG
still contains an edge transformed→ delay in Figure 4.3(c). This is because low success
(i.e., mostly encountered at low pixel) is correlated with low processing delay.

We make another observation: All MB SLOs contain at least one parameterizable metric
within their sensory state, i.e., among the variables that influence the SLO outcome.
From a requirements perspective, this is essential because it allows a device to adapt
dynamically to fulfill the given SLOs.

4.3.3 Device Configuration Inference

We aim to infer device configurations with a high statistical probability of complying with
SLOs; to achieve this, we use pgmpy to run VE queries (see Section 4.2.3) for the five
SLOs defined. Instead of querying the entire Bayesian network, we execute the queries
on the minimum subset of relevant variables, i.e., the MB of each SLO. Since the MBs
of the SLOs contained all three parameterizable metrics (i.e., fps, pixel, and config), a
device must include these parameters in an inferred configuration; otherwise, there is
no full control over the SLOs. However, suppose we would only trace a subset of the
SLOs (e.g., network usage & transf success), a configuration must only include the

51

4. Designing Reconfigurable Systems from Markov Blankets

respective parameters contained in the MBs, e.g., fps & pixel, but not config.

The presented version of VE computes the probability of SLO violations for exactly one
parameter assignment; we repeatedly apply this approach for all possible assignments.
To be precise, the parameter space for (pixel : fps : config) consists of (5 : 6 : 3) possible
assignments. Iterating over 5 ∗ 6 ∗ 3 = 90 possible assignments and 5 SLO-MBs produces
5 ∗ 90 = 450 inference queries, which require roughly 250ms on the Thinkpad X1 Gen
10, 500ms on a Jetson Xavier NX, and 650ms on a Jetson Nano. The result is a list of
configurations that fulfill the given SLOs, e.g., one could be (240p : 20fps : 4C_20W).
To deal with changing requirements and heterogeneous characteristics of CC devices, it
is possible to provide additional constraints to the VE (e.g., GPU=False), or customize
SLOs to rank a metric rather than limiting it (e.g. minimize consumption).

4.3.4 Evaluation

So far we trained a Bayesian network on processing metrics, from which we extracted
MBs for each specified SLO. Afterward, we created a querying mechanism based on VE
that infers device configurations depending on SLO thresholds. To evaluate the quality
of inferred configurations, we will now compare the number of SLO violations between
devices that apply inferred configurations and those that use arbitrary configurations.

We envision two scenarios with different system requirements that are based on the
workload for face blurring. These requirements are reflected through specific SLO
thresholds, which we will use to infer device configurations suitable for each scenario.
The two scenarios are described below, while the corresponding SLO thresholds are
presented in Table 4.3. We intend to minimize energy cons for both scenarios regardless
of whether the energy supply would be constrained.

• Scenario A: To create a virtual map (similar to Google Street View4), a camera-
equipped car captures videos of streets. The car has an edge device installed
(i.e., Jetson Xavier NX) to transform the stream, i.e., blur faces. The result is
directly rendered to a local map and only accessed remotely in case of inspection,
so network usage is of less importance. We assume the rendering process to
run in the background; therefore, the GPU is not available for processing. To
create a detailed map, pixel distance must be low, and within time fulfilled in
most cases. However, the stream can be re-rendered to blur undetected faces, thus
transf success is less critical.

• Scenario B: Within a smart factory, employees equipped with head-mounted
cameras conduct an audit. For privacy protection, faces and displays are blurred
before streaming the video to remote consumers. Video streams are transformed
on edge devices (i.e., Jetson Xavier NX) that the factory employs. Video content is
intended for live inspection only; therefore, pixel distance and within time are

4https://www.google.com/streetview/, accessed June 18th 2023

52

https://www.google.com/streetview/

4.3. Use Case: Video Processing

Table 4.3: SLO thresholds that reflect the scenarios’ requirements

Scenario transf success distance network usage within time energy cons GPU

A ≥ 90% ≤ 35 ≤ 8.2 Mio. px/s ≥ 95% min(x) No

B ≥ 98% ≤ 60 ≤ 1.6 Mio. px/s ≥ 75% min(x) Yes

B ≥ 98% (≤ 60) — — — Yes

Table 4.4: List of configurations generated by exact inference or picked naively

Scenario Source Resolution FPS Mode GPU

A

inferred 240p 20 4C_15W

Nonaive 360p 30 6C_20W
random #1 120p 16 6C_20W
random #2 720p 12 2C_10W

B

inferred 240p 16 2C_10W

Yesnaive 180p 26 4C_15W
random #1 360p 20 2C_15W
random #2 480p 30 6C_20W

B* inferred #1 240p 26 — Yesinferred #2 720p — —

less important, while high transf success prevents immediate privacy breaches.
To support various providers and consumers, low network usage is desired.

To create a condensed configuration, we adapt Scenario B to track only a subset of the
SLOs – this is added as Scenario B*. Due to this, Scenario B* provides fewer SLO
thresholds and configuration parameters because some parameters (i.e., fps & config) are
no more correlated to the device state and may thus be removed from the configuration.
To infer optimal device configurations, we now supply the SLO thresholds of the Scenarios
(i.e., presented in Table 4.3) to the inference mechanism. The resulting configurations
are presented in Table 4.4: The first line contains the inferred configuration, the second
line a naive assumption; the third and fourth lines randomly generated configurations.

To evaluate the number of SLO violations, we configured the system according to Table 4.4
and measure the results in separated test runs. Performance was measured over a duration
of 10min for each configuration, e.g., the inferred configuration for Scenario A would
produce 10 ∗ 60 ∗ FPS = 12, 000 metric rows. The results are presented in Table 4.5:
Over the measurement course, the inferred configurations fulfilled the SLOs for both
scenarios. The naive assumption, on the other hand, violated one SLO within each
scenario (red cell), i.e., in Scenario A it failed to fulfill within time, while in Scenario B
transf success was violated. The randomly generated configurations committed two
SLO violations in Scenario A and one in Scenario B each. Further, we calculated the

53

4. Designing Reconfigurable Systems from Markov Blankets

Table 4.5: Fulfillment of SLOs depending on scenario and configuration

Scenario Source transf success distance5 network usage within time energy cons

A

inferred 98% 15 (97%) 2.0 Mio. 100% 6.0W
naive 100% 10 (100%) 6.9 Mio. 92% 8.0W

random #1 4% 127 (2%) 0.4 Mio. 100% 7.0W
random #2 100% 28 (89%) 11 Mio. 100% 6.0W

average 81% 73 (83%) 6.0 Mio. 81% 7.1W

B

inferred 98% 18(98%) 1.6 Mio. 100% 6.0W
naive 92% 11(99 %) 1.5 Mio. 100% 6.5W

random #1 99% 15 (100%) 4.6 Mio. 100% 6.0W
random #2 100% 10 (100%) 12.3 Mio. 97% 7.5W

average 81% 73 (86%) 6.0 Mio. 91% 6.7W

B* inferred #1 98% 12 (100%) — — —
inferred #2 100% — — — —

number of SLO violations over all possible configurations (i.e., 90 combinations), which
was on average even higher than those committed by the random configurations.

The results showed that our inferred configurations fulfilled all given SLOs while also
consuming the least energy. The fact that Scenario B* did not violate any SLO also
showed that it is possible to assemble SLOs or pick a share of them without violating
any of the remaining SLOs. Thus, the number of variables and the time required to infer
device configuration can gradually be decreased.

4.4 Related Work

Adapting a system to changing environments is itself not novel. Elastic Cloud Com-
puting [DGST11], as an example, scales system properties (e.g., resources) depending
on environmental variables (e.g., request count). This concept was transferred to the
Edge [FFACP18, NMP+20], where it is necessary to scale other elasticity dimensions,
e.g., the Quality of Service (QoS). Overall, this is a feasible approach if mapping single
variables to corrective measures, but seems still very restrictive compared to the human
mind, which uses its senses to select the best possible action. To combine multiple sensory
inputs with corrective actions, the authors in [SCPDD23] introduced MBs as a behavioral
model for edge devices. However, they assumed prior knowledge of how metrics are
related to the system state; this approach is not scalable if requirements would change
during operation and especially not if metric correlations are unknown at design time.
Thus, existing approaches fail to ensure the intricate requirements of CC systems.

Analyzing variable relations ourselves to provide evidence about the system state is what
differentiates our vision from existing work. The resulting MB – essentially a Bayesian
network – can predict if environmental changes would violate SLOs and how the system
must be reconfigured to fulfill them. In this context, there exists numerous work [AST+10,

5distance was implemented so that 95% of the measurements must lie above the threshold

54

4.5. Summary

BJ12, CGK+02] that addresses how Bayesian networks can be trained to extract MBs.
In particular, Aliferis et al. discussed how to compose causal structures around target
variables to form MBs. The extraction of MBs itself has inspired [TAS03, WLYW20] to
provide efficient mechanisms for increasingly large Bayesian networks. However, to the
best of our knowledge, there exist no attempts to embed MBs into the CC, which would
allow devices to reflect on their own sensory state and reconfigure autonomously.

Taking this into account, we envision an unprecedented degree of decentralized intelligence
to handle changing requirements; namely, identifying variables that give evidence about
the system state, and automatically inferring a device configuration that fulfills SLOs.
This is unlike [NMP+20, SCPDD23], where it was the operator’s responsibility to specify
these relations. The existing work on Bayesian networks [AST+10, BJ12, CGK+02]
will be part of this intelligent behavior and help to make the state of CC systems
more explainable. We thereby aim to solve core issues of the research timeline set in
[CPRD21, DPD23] for accelerating the development of CC systems.

4.5 Summary

This chapter proposed a methodology for analyzing the system state according to a set
of requirements and providing a configuration that meets these constraints. In particular,
we created a statistical reasoning model for explaining the correlations between workload
metrics and the system state, which is reflected by a set of SLOs and their MBs (i.e.,
the metrics most influential to the SLO). Given the MBs, we evaluated our methodology
under two scenarios, for which we inferred the device configurations with the highest
statistical probability of fulfilling SLOs, e.g., 98%, 97%, and 100% for Scenario A. We
compared the frequency of SLO violations between these configurations and a baseline,
i.e., naive assumptions, random configurations, and average violations over all possible
configurations. The configurations inferred from the MBs did not violate any SLOs, while
all baselines violated between one and three SLOs. The quality of the baseline and the
scenarios themselves clearly influenced this observation; however, it provides confidence
in continuing to develop our methodology.

Meanwhile, to maintain high-level system requirements fulfilled, CC systems, which are
composed of multiple device tiers, must ensure that each tier’s requirements are equally
fulfilled. However, the heterogeneity of devices, the manifold of requirements for each
device type, and the continuous changes in the environment make it impossible to centrally
evaluate requirements. In this context, we envision transferring the concept of SLOs from
the Cloud to the CC landscape and advocate our methodology to provide a modular
explainable structure: instead of evaluating device health centrally, we use the concept of
MBs to create cellular structures (i.e., modules) which are each characterized by a set of
SLOs. For each module, it becomes thus possible to provide an ideal configuration that
is most probable to fulfill the respective SLOs, while minimizing energy consumption.
Essentially, this provides CC systems with decentralized intelligence, which will be able
to cope with its scale and intricate requirements.

55

4. Designing Reconfigurable Systems from Markov Blankets

Our methodology was able to provide configurations that would not commit SLO vio-
lations; however, the scale of CC systems makes it necessary to assess the impacts of
increasingly large Bayesian networks in terms of performance and precision. In this
context, we selected Bayesian network training algorithms from a theoretical point of
view, i.e., because literature advised so. However, it remains to compare the graphs
generated by different training algorithms (e.g., explainability and modularity) and the
quality of inferred configurations. Furthermore, to cover heterogeneity among CC devices,
we aim to infer configurations for arbitrary devices.

56

CHAPTER 5
Orchestration of Computing

Continuum Services

The governance and orchestration of DCCS represent a major open challenge, as discussed
in Section 2.1.1. In that context, three of the most common problems [DMCP+23] are:
(1) deployment of services or applications in the DCCS – finding the right host; (2)
configuration of services and components – inferring SLOs that guarantee user satisfaction;
and (3) recovering service quality – dynamically offloading computational tasks between
devices. This chapter is a collection of three subchapters 1 to tackle these problems:

– in Subchapter 5.1 we analyze the interactions between microservices deployed over a
CC infrastructure. This allows modeling how actions of one service, i.e., changing the
service configuration, affect the remaining microservice pipeline. We propose a model for
estimating the SLO fulfillment for a set of heterogeneous processing resources and, as a
result, find the optimal service deployment for each microservice in the pipeline.

– in Subchapter 5.2 we move to more complex microservice architecture and focus on the
precise implications of fulfilling high-level SLOs. For instance, if an end user wants fast
response time for a user-facing service, what are the SLOs that backend services (e.g.,
processing, storage, etc) must ensure. As a result, we constrain all parts of a distributed
processing architecture with lower-level SLOs and parameter assignments.

– in Subchapter 5.3 we focus on the resource limitations of heterogeneous edge devices and
answer how overall SLO fulfillment can be improved by moving computation between
devices. As a result, a platoon of autonomous vehicles could offload perception tasks
(e.g., mobile mapping through Lidar) according to their current availabilities.

Finally, in Subchapter 5.4 we summarize the implications of these three contributions
and discuss what challenges in the orchestration of DCCS applications remain open.

1We use the term “subchapter” for a stronger separation of the contents in this chapter

57

5. Orchestration of Computing Continuum Services

5.1 Markov Blanket Composition of SLOs

Smart environments use composable microservices pipelines to process Internet of Things
(IoT) data, where each service is dependent on the outcome of its predecessor. To ensure
Quality of Service (QoS), individual services must fulfill Service Level Objectives (SLOs);
however, SLO fulfillment is dependent on resources (e.g., processing or storage), which are
scarcely available within the Edge. Hence, when distributing services over heterogeneous
devices, this raises the question of where to deploy each service to best fulfill both its own
SLOs as well as those imposed by dependent services. In this subchapter, we maximize
SLO fulfillment of a pipeline-based application by analyzing these dependencies. To
achieve this, services and hosting devices alike are extended with a Markov blanket
(MB) – a probabilistic view into their internal processes – which are composed into one
overarching model. Given a mutable set of services, hosts, and SLOs, the composed
MB allows inferring the optimal assignment between services and edge devices. We
evaluated our method for a smart city scenario, which assigned pipelined services (e.g.,
video processing) under constraints from subsequent services (e.g., consumer latency).
The results showed how our method can support infrastructure providers by optimizing
SLO fulfillment for arbitrary devices currently available.

The remainder of this subchapter (see footnote 1) is structured as follows: Section 5.1.2
introduces background knowledge and an illustrative scenario, and Section 5.1.3 presents
our methodology including MBC, which is implemented and evaluated in Section 5.1.4.
Section 5.1.5 provides an overview of existing work in this field; finally, Section 5.1.6,
concludes this subchapter with a future scope.

5.1.1 Introduction

Public spaces are increasingly covered with sensor networks, e.g., road surveillance or
parking sensors, which are used to build compound services such as offered by smart
cities [RRS+22] or smart homes. In particular, this can include microservice pipelines,
where one service (e.g., road analysis) feeds its results to multiple other services (e.g.,
traffic routing). While data collection is often carried out through Internet of Things
(IoT) devices, the tendency is to locate data processing services at nearby edge devices;
this promises low latency and improved privacy. However, whereas the Cloud counted
on vast amounts of virtualized scalable resources [HKR13], the limited amount of Edge
resources promoted the rise of the Computing Continuum (CC) [DPD23, NRRC24]
– a coherent integration of multiple computational tiers, starting from the IoT, over
Edge and Fog, up to the Cloud. Thus, from data provisioning, over processing, up
to consumption, services can be allocated and scaled over this large-scale multi-tenant
distributed system [DMCP+23].

To ensure high-level requirements, such as availability or response time, the Cloud allows
clients to specify Service Level Objectives (SLOs); by evaluating Service Level Identifiers
(SLIs), e.g., system metrics, it is decidable if SLOs are fulfilled. To trace a system’s
behavior at finer granularity, high-level SLOs are diffused into smaller chunks [CPMM+23,

58

5.1. Markov Blanket Composition of SLOs

SPDD24b]; for compound services (e.g., pipelines), this boils down to requirements that
individual services must fulfill. Within a pipeline, each service poses its own SLOs: a
processing service, for example, might aim for efficiency, whereas a consumer service could
aim for high video resolution, i.e., instances of Quality of Service (QoS) and Quality of
Experience (QoE). Services, however, depend on the quality provided by predecessors and
expected by successors; this constrains the actions of individual services because they must
consider how local changes influence dependent services. Furthermore, SLO fulfillment
is affected by hosting infrastructure [SCPDD23], i.e., low-resource devices (e.g., Edge)
might not be able to fulfill performance constraints to the same extent as high-resource
devices (e.g., Fog/Cloud). Hence, service deployment has strong implications not only
for its own SLO fulfillment [Cao23] but also for dependent services’.

To maximize SLO fulfillment throughout a pipeline, the infrastructure provider must
know where to deploy each service – we call this an “assignment" between services and
hosts. Estimating the quality of an assignment requires (1) an understanding of how
dependent services constrain each other’s requirements and (2) the implications for the
service and the deployed host, i.e., hardware utilization and SLO fulfillment. However,
existing works [ZZL23, XDTZ20] do not consider transitive dependencies (i.e., imposed
by dependent services) nor estimate resource utilization per service. Without the latter,
deploying multiple services on one device (i.e., multi-tenancy) is risky because it is
uncertain whether multiple services can coexist with their respective resources [ZMC+22].
Brute-force comparing all possible assignments empirically cannot be the solution: first,
the underlying optimization problem is NP-hard [SPJC18], but secondly, even though
you find the optimal assignment for one pipeline, the insight is not transferable to other
scenarios. Services and hosts change over time due to demand and availability; hence,
any solution should be able to repeatedly infer optimal assignments for changing setups.

In this subchapter, we present a 4-step methodology that finds the optimal service
assignment by analyzing intersections between dependent services and their impact on
hosting devices. In the first step, services and devices are extended with a Markov blanket
(MB) – a probabilistic representation of their internal processes [Pea88a]. This allows
predicting how changes to one variable (e.g., video resolution) change the conditional
probabilities of another variable (e.g., throughput) [SPDD23]. To consider external
factors, i.e., SLOs of dependent services, we propose the Markov Blanket Composition
(MBC): a MBC comprises an entire pipeline and different processing hardware (i.e.,
spread over the CC) in one coherent and modular structure.

Following our vision laid out in [DPD23, PSDD24], we use MBC to model hierarchical
dependencies between services, in particular, how their actions and perceptions influence
each other. Given this MBC, we estimated how assigning one service to a particular
device will impact its SLO and those of dependent services; by doing this repeatedly, the
assignment with maximum SLO fulfillment can be inferred. Hence, the contributions of
this subchapter are:

1. The MBC as a mechanism for finding dependencies between services and their

59

5. Orchestration of Computing Continuum Services

implications to processing hardware. Thus, services can incorporate and consider
SLO fulfillment of dependent services and their hosts.

2. The generalization of services’ resource utilization over heterogeneous hardware.
This extrapolates the resource usage of a service at a particular device type and
estimates the implications for comparable services or devices.

3. A collective inference mechanism that maximizes SLO fulfillment for a service
pipeline by assigning services to CC devices. This considers dependencies in terms
of QoS and QoE that services pose on their direct neighbors.

5.1.2 Preliminaries

This section provides an overview of concepts and definitions used throughout the sub-
chapter; in particular, this involves existing tools and techniques required as background
knowledge. Furthermore, this section provides an exemplary smart-city use case that
will help to put these concepts into practice.

Concepts & Definitions

In this subchapter, the most important entities are the (pipeline) services and hosting
devices. We provide a formal representation of them, as well as their joint assignment.

Definition 1 (Service, s). A service is a utility offered to other (micro-)services or end
users to fulfill a dedicated function; a service is described as s = 〈in, f, out, Ms, Q〉,
where in and out are the data ingested and produced, respectively, and f is the operation
on the data. Q is a list of SLOs that must be fulfilled during operation, and Ms contains
a list of metrics observable during service execution.

Microservice architectures (e.g., [CQH19, Pet21]) form sequential processing pipelines by
chaining together services. The implications between services are either known upfront
or can be extracted with existing techniques [VF23]; the result is a dependency graph
K = (S, E), where directed edges (E) represent logical dependencies between services
(S). Each dependency consists of a predecessor (p) and a successor (q). For two nodes
{p, q} ∈ S, pq ∈ E indicates that q is dependent on p. Also, q operates on results
produced by p; hence, q is dependent on the time for executing fp, and the network
latency (nl) to transfer the result to q. The time for providing p’s results (wt) to q is
expressed as

wt(p, q, d) = time(fp(d)) + nlp→q (5.1)

where input data d is ingested to p. Any property of in and out (e.g., data size), as well
as time(f) and consequently wt, can be observed as part of Ms. Naturally, nl depends
on the location (l) of host devices; however, notice that in the context of this subchapter,
we assume nl to be independent of data size.

60

5.1. Markov Blanket Composition of SLOs

Definition 2 (Host, h). A device provides infrastructure for hosting services; a host is
described as h = 〈l, Rh, Mh〉, where l represents the geospatial location of the device, Rh

characterizes its entire processing resources, and Mh contains a list of metrics that gives
evidence about ongoing operation.

The current resource utilization is available as part of Mh. While hosts do not have
an explicit representation of SLOs, their imperative requirement is to cap maximum
utilization, e.g., maintain cpu load below 100%. The SLO fulfillment emerges from
the deployments (e.g., hardware capabilities) and the current environment (e.g., service
demand or network issues); given Ms, Mh, it is possible to evaluate all SLO.

The set of available hosts (H) is sampled from the CC’s global pool of devices [PMN23];
ideally, these hosts possess the desired characteristics (i.e., to fulfill SLOs), but depending
on availability, it must optimize assignments for arbitrary hosts.

Definition 3 (Assignment, as). An assignment indicates that a service is executed on
a specific device; the assignment is described by as = 〈s, h, Rs〉, where s is the service
executed at host h, and Rs is the share of the host’s resources (Rh) utilized by executing
s. A short notation for any as is s ⋄ h.

Resources of multi-tenant devices are commonly partitioned into VMs and containers, i.e.,
services deployed at the same device do not access the same share of physical (processing)
resources [Pet21]. Nevertheless, the entirety of resources dedicated to n services assigned
to a host h, plus all idle resources (RI) equal the total amount of device resources (Rh).

Rh = RI +
n∑︂

i=1
Rs,i (5.2)

Each tenant is treated as an individual deployment; nevertheless, services interact
indirectly by pooling resources from the same host. Hence, when assigning services over
heterogeneous devices, the question extends from “which device can fulfill SLOs to the
maximum degree," to “how much resources would individual services demand." The precise
implications of assigning a service to a host (s ⋄ h) we call a “footprint"; both sides will
be composed into one model, i.e., the MB.

Background

Bayesian Networks (BNs), as applied by Pearl [Pea09], are structural causal models
represented as a Directed Acyclic Graph (DAG): edges between variables (e.g., quality →
latency) indicate conditional dependencies. For example, given that quality = x, what is
the probability that latency = y, can in Bayesian terms be expressed as

P (latency | quality) = P (quality | latency)× P (latency)
P (quality) (5.3)

61

5. Orchestration of Computing Continuum Services

The causal edges in BNs are a distinctive feature that extends a system with explainability.
Suppose we are interested in the behavior of a specific variable (x), we can explain x’s
state given its parents, children, and co-parent nodes. This subset is called its Markov
Blanket (MB) – formally MB(x) – as was introduced in Section 2.3.

Regardless of their size, systems can be divided into smaller modules (i.e., MBs); thus,
managed and controlled on a convenient scale. Within previous work, we built explainable
MBs around SLO-governed components [SPDD23, SPDD24b]. To understand observable
processes, we trained a causal representation of a system’s states – all contained within a
MB. Conditional variable dependencies could answer questions like “if quality rises, what
is the probability that latency rises too?", expressed by Eq.(5.3). Given MB(latency),
conditional SLO fulfillment (i.e., latency ≤ x) was analyzed to indicate the optimal
system configuration (i.e., quality = z) that fulfills SLOs.

SLOs follow the grammar var → rel → thresh, where var ∈ {Ms ∪Mh}, rel ∈ {≤,≥},
and thresh ∈ Q; hence, possible examples are latency ≤ 10, or cpu ≤ 95. The second
SLO type is supplied as obj → var, where obj ∈ {min, max}. These objectives represent
soft boundaries that are optimized during operation, such as min(energy). Recall, that
SLOs characterize the QoS and QoE of individual services and their interfaces, i.e., the
quality expected of in and out, but there is no knowledge how SLOs affect other services.
By design, these MBs contain only internal system variables.

Extracting the MB around multiple variables forms larger subsets. For a service (s), its
host (h), and m SLOs (Q), its MB is the composition of the subsets expressed as

MBE(Ms, Mh, Q) =
m⋃︂

i=1
MB(BNL(Ms ∪Mh), Qi) (5.4)

where MB and BNL are algorithms for MB extraction and BN learning, as presented in
[SPDD23]; Ms and Mh contains multidimensional metrics monitored by executing s ⋄ h.
When it is impractical to provide data for Bayesian Network Learning (BNL) upfront, or
there occur variable shifts, Active Inference, as in Chapter 6, provides a remedy.

Illustrative Scenario

City spaces are increasingly crowded with sensor networks, most of them even publicly
accessible [GH18]. This provides application developers access to vast amounts of data and
allows them to combine and assemble smart city services at will. Figure 5.1 exemplifies
how a service pipeline might be plugged together – data flows along the red errors. In that
context, the following services and requirements (written in bold) could be envisioned by
an application developer:

• SmartCamera (grey) provides batches of images from IoT cameras at a traffic
junction. Can customize video quality.

• RoadAnalysis (red) analyzes video streams of a road scene. Can get congested with
high number of frames.

62

5.1. Markov Blanket Composition of SLOs

Latency

Ingest video data

Supply results to dependent services

Alternative
deployments

SLO Fulfillment

Energy

Data Quality

Figure 5.1: Smart-city services chained together as a compound application

• TrafficRouting (green) consumes information about traffic conditions and can control
traffic lights or reroute vehicle navigation systems. Requires information timely.

• TrafficPrediction (yellow) assists local governments in estimating how traffic evolves
throughout the day. Requires large amounts of fresh data to detect irregularities.

• LiveMonitoring (purple) allows remote inspection of analyzed road scenes. Requires
high video quality.

The application developer combines the services as SmartCamera → RoadAnalysis →
{LiveMonitoring, TrafficPrediction, TrafficRouting}; hence, the first two services in the
pipeline provide their results to subsequent services. The immediate question here is
how the requirements that each service poses constrain the QoS that RoadAnalysis and
SmartCamera must provide – these are the transitive dependencies. The second question

63

5. Orchestration of Computing Continuum Services

#2: Compose Markov Blankets

Speed SLO

Resource SLO

#4: Infer Service Assignments

#3: Generalize Footprint

#1: Extract Bayesian Networks

SLOs

Figure 5.2: Methodology for maximizing the SLO fulfillment of service pipelines by
composing MBs and assigning services over heterogeneous CC hardware

this unfolds is where to deploy individual services; preferably, application developers can
stay agnostic and rely on the underlying CC infrastructure: depending on availabilities,
services get assigned to hosts so that SLO fulfillment is maximized over the pipeline.

Both questions will be addressed as part of our methodology: application developers can
customize how they would like their applications to operate (i.e., expressed in terms of
SLOs) and rely on the assignment mechanism that finds the optimal hosting device for
each service. To facilitate multi-tenancy for CC devices, this involves in-depth knowledge
of the amount of resources required under a specific configuration.

5.1.3 Methodology

In the following, we present our 4-step methodology that assigns a microservice pipeline
over heterogeneous resources, while maximizing SLO fulfillment. The sequential steps are
embedded into the respective subsections below; to accompany explanations, Figure 5.2
provides a visual representation of the methodology: first, it (1) extracts MBs of individual
services, then (2) performs MBC for the entire pipeline, (3) generalizes the service
footprints, and (4) infers the assignment with maximum SLO fulfillment.

Markov Blanket Extraction

The training data for BNL is collected from past or ongoing operations; in the best case,
services and their hosts were monitored over an extended period so that the underlying
processes can be modeled accurately. Metrics of s ⋄ h are collected simultaneously
(Ms, Mh); this tuple is appended to D, where the data of all empirically evaluated
assignments is collected. To generate training data, each service should be executed

64

5.1. Markov Blanket Composition of SLOs

at least once at an arbitrary host h ∈ H; to avoid perturbation through concurrent
services, each service requires an isolated environment that gives clear evidence about
how many resources (Rs) a service utilizes. Further, metrics of dependent services
must be captured under equal configurations, e.g., if a pipeline contains two sequential
microservices CameraWrapper → StreetAnalysis, the data produced by CameraWrapper
must be the exact same received and processed by StreetAnalysis. This can be assured by
(1) capturing both services’ metrics at the same time, or (2) maintaining their interface
variables aligned, e.g., by processing the same video resolution. If this is impractical or
there is not sufficient data available, Section 5.1.3 can provide a remedy.

The BN training data is clearly created at the hosting devices; however, the infrastructure
provider can choose freely where to execute any substep of the methodology, including
the BNL. Ideally, it is a central location in the CC (i.e., low latency to all hosts) that
can spare sufficient resources for training; otherwise, the methodology could be split up
and executed separately by different hosts.

Given the training data (D), each tuple (Ms, Mh) is ingested to MBE, which trains
the BNs and extracts the MBs around multiple SLOs (Q). This is also contained in
Algo. 5.1, which serves as a wrapper for the 4-step methodology; nevertheless, Lines 2-5
are dedicated only to MB extraction. Afterward, X contains all empirically evaluated
footprints. The remaining functions (i.e., MBC, etc) are introduced in the next steps.

Algorithm 5.1: Wrapper for the 4 Methodology steps
Require: D, H, Q, K = (S, E)
Ensure: Z {Assignment with highest SLO fulfillment}

1: X, Vd, Vc, F ← ∅
2: {MB Extraction – Step 1}
3: for each (Ms, Mh) in D do
4: X ← MBE(Ms, Mh, Qs) ∪ X {Equals s ⋄ h}
5: end for
6: Vc, Vd ← MBC(E, Q) { – Step 2}
7: F ← FPG(S, H, X) { – Step 3}
8: Y ← SASS(E, Vc, Vd, H, Q, F) { – Step 4.1}
9: Z ← MAX_AS(Y, “joint”) { – Step 4.2}

10: return Z

It is possible to logically separate the MBs of services and hosts, or rather, contained
variables. However, none of the two exists without the other: service metrics (Ms) can
only be observed during runtime; device metrics (Mh) give little insight when no service is
executed. Hence, it makes no sense to train their MBs separately. Extracting the MB of
a service also provides the impact on a hosting device – this is already their composition,
what remains is to run MBC for services.

65

5. Orchestration of Computing Continuum Services

Markov Blanket Composition

Dependencies between services indicate that their internal states are influential to another
service; thus, when aiming to maximize the SLO fulfillment of multiple services, it must
be precisely determined how they affect each other. However, individual MBs cannot
give evidence about variables external to their environment; also, training large BNs (e.g.,
[YKAQ22, WWC+21]) from one composite data set poses considerable requirements for
BNL [SPDD24b]. To this extent, we create an overarching system model by composing
the MBs of pipelined services. This assembles a common behavioral model where it is
evident how one service’s state affects another service’s SLOs.

We assume that changes to individual services perpetuate along the service pipeline
– this path is encoded in the dependency graph (K). Given K, we test dependencies
between any two services ∀p, q ∈ S, (pq ∈ E); we compose the MBs of Ē instead of S̄

2

intersections, i.e., only along the pipeline instead of pairwise for all s1, s2 ∈ S. For p, q
and two variables vp ∈Mp and vq ∈Mq, we test the statistical dependency between vp

and vq. Therefore, we compute the difference between their probability distributions
by applying two-sample Wasserstein distance (WSD) [RGC15]. Given that there is a
dependent variable vd shared by p and q, Eq. (2.2) does not hold anymore; hence, their
composition is linked by vd.

Factors that, in reality, influence a service can be wrongfully missing from its MB because
BNL could not consider them, e.g., the locations of dependent services are external.
Such factors are also called confounding variables because they decrease model accuracy
whenever they would have a conditional impact. Due to this, WSD is a good choice
because it does not fail due to linear shifts in the distributions. For instance, time(fp(d))
from Eq. (5.1) translates to delay ∈ Qq, but nlp→q cannot be represented without knowing
both p’s and q’s location. Nevertheless, when testing their dependence, WSD can detect
that they are dependent and that there is a linear confounder. Whether nl actually
is the confounder is another question; however, the evaluation does not contain other
confounders by design; hence, we will take it for granted in this subchapter and address
this issue in future work.

More commonly, there is no confounder involved and two dependent variables can be
directly mapped, e.g., a video resolution ∈Mp likely resembles the respective consumer’s
vq ∈ MB(q). To differentiate between confounded relations and the latter type, we
compute the mismatch between states in the probability distributions. Since the variable
distributions in the MBs represent discrete values, we use Jaccard similarity to quantify
the divergence between states of vp and vq.

Pairwise dependency tests would have to cover MB(p, Qp)× MB(q, Qq) variable combina-
tions; however, we are only interested in the implications to the successor’s SLOs (Qq) –
reducing complexity to MB(p, Qp)×Qq. For two dependent variables vpvq with vq ∈ Qq,
the SLO around vq constrains the states that p can take without violating q’s SLO; p
does not differentiate between its “own" SLOs (i.e., Qp) and transitive ones imposed
by q – both restrict p’s potential actions. Algo. 5.2 summarizes how the pipeline edges

66

5.1. Markov Blanket Composition of SLOs

Algorithm 5.2: Markov Blanket Composition (MBC)
Require: E, Q
Ensure: Vc, Vd {Optimal assignment from all options}

1: for each (p, q) in E do
2: for each (vp, vq) in mb(p)×Qq do
3: if WSD(vp, vq) < 0.1 then
4: if JD(vp, vq) > 0.9 then
5: Vc ← vq ∪ Vc

6: else
7: Vd ← vq ∪ Vd

8: end if
9: end if

10: end for
11: end for
12: return Vc, Vd

(E) are traversed to run pairwise dependency tests. The results are two lists of (simply)
dependent (Vd) or confounded variable relations (Vc).

Generalize Service Footprint

The implications of running a service at a particular host are unique for this pair, i.e.,
how much and which resources are utilized. To find the assignment with the highest SLO
fulfillment, a simple method is comparing the implications of all combinations [SPDD23].
Empirically testing all these pairs, however, is exhaustive for S ×H combinations, but
limiting potential assignments to those run empirically – X in Eq. (5.1) – must also be
avoided. For example, {hx, hy} = H and {sx} = S are available for assignment; however,
there exists no empirical information on sx ⋄ hy – a likely situation if hy was added
recently to the device fleet – so that sx ⋄ hx is the only assessable assignment. The
infrastructure provider, however, disposes of rich contextual information about services
and devices, which allows estimating the SLO fulfillment of hypothetical assignments
that were not tested empirically.

In particular, we use two information sources for this: The first is the metadata description
of services [MPN+23a], e.g., the primary purpose or the position in the pipeline. Our
assumption is that services have similar hardware implications depending on their position
(pos) in K, e.g., consumers located at the end have low hardware impact. The second
source is a sampling mechanism for CC infrastructure [PMN23], which provides a relative
comparison of the hardware capabilities for devices in H; h1 > h2 implies that h1 has more
resources available. This information is used to extrapolate from empirically evaluated
assignments (X) to hypothetical ones (F); hence, F will contain (s ⋄h) for ∀s ∈ S, h ∈ H.

As depicted in Algo. 5.3, we distinguish four options to estimate the footprint sx ⋄ hx

67

5. Orchestration of Computing Continuum Services

Algorithm 5.3: Footprint Generalization (FPG)
Require: S, H, X
Ensure: F {Generalized footprints for services ⋄ hosts}

1: for each sx, hx in S ×H do
2: if (sx ⋄ hx) ∈ X or ∃hy(hy ≤ hx ∧ sx ⋄ hy ∈ X) then
3: F ← (sx ⋄ hx) ∪ F {Case 1 and 3}
4: else if ∃sy(pos(sy) = pos(sx) and sy ⋄ hx ∈ X) then
5: F ← MERGE(sx ⋄ h_, sy ⋄ hx) ∪ F
6: else
7: {assumes ∃h_(sx ⋄ h_ ∈ X)}
8: F ← PENAL(sx ⋄ h_, r(hx, h_)) ∪ F
9: end if

10: end for
11: return F

of any sx, hx ∈ S × H: (i) the assignment was empirically evaluated (Line 3); (ii) a
comparable service (i.e., same pos) was evaluated at hx (Line 5); for this, we merge
sx ⋄ h_ (i.e., any host) and sy ⋄ hx by replacing all Mh

¯ variables of h_ with those of hx.
If (iii) sx was empirically evaluated at a weaker device (hy), we reuse s ⋄ hy because
we assume it cannot perform worse on hx (Line 3 or), whereas for ∀hy(hy > hx), we
cannot know the implications to more constrained devices. This case can be adapted
for comparable services as well – case (ii). The last option (iv) is using the relative
hardware difference (r) between hx and an arbitrary host (h_), where sx was empirically
evaluated, and penalizing the SLOs contained in sx ⋄ h_ according to r (Line 8). The
interested reader finds implementations of MERGE and PENAL in the code artifact.

Service Assignment

The last step remaining is to identify the assignment that maximizes overall SLO
fulfillment for all pipeline services; to that extent, we compare all hypothetical assignments
and choose the one with the highest fulfillment as the sum

S∑︂
s=1

Qs +
H′∑︂

h=1
Qh (5.5)

where H ′ are all assigned hosts; notice that |H ′| can be 1 for a multi-tenant scenario. For
∀s ∈ S and ∀h ∈ H, its footprint is retrieved by F (s ⋄ h) – this comprises the conditional
variable assignments for the service’s MB(s, Qs) and the respective hardware utilization of
the host as MB(h, Qh). Transitive dependencies imposed by other services are contained
in {Vc, Vd}; for a service s, all variables that share dependencies with other services are
contained in exts (Line 2).

Given the footprints and the dependent variables, the SLO fulfillment of each service
(i.e., constrained by exts) is obtained by ingesting the SLO thresholds (Q). As depicted

68

5.1. Markov Blanket Composition of SLOs

Algorithm 5.4: Service Assignment (SASS)
Require: E, Vc, Vd, H, Q, F
Ensure: Y {Estimated SLO fulfillment per service × host}

1: for each (s, _), h in E ×H do
2: exts ← ∀v(v ∈ mb(s) and v ∈ (Vc ∪ Vd))
3: if (exts ∩ Vc) ̸= ∅ then
4: for each (s1h1, ..., sShH) in HS do
5: Y ← INF(F (s ⋄ h), (Qs ∪Qh ∪ exts ∪ s1h1)) ∪ Y
6: end for
7: else
8: Y ← INF(F (s ⋄ h), (Qs ∪Qh ∪ exts)) ∪ Y
9: end if

10: end for
11: return Y

in Algo. 5.4 (Line 5 & 8), we infer this from a footprint by providing variable assignments
of the thresholds, and hypothetical deployments of dependent services. Internally, INF
applies variable elimination (as in Section 4.2.3) to marginalize all variables /∈ Qs ∪Qh;
hence, ending up with SLO fulfillment only. The distinction (Line 5 or 8) takes care of
the confounded variable, i.e., latency. Estimating the conditional fulfillment of an SLO
(latency ≤ x) requires considering the hypothetical location of all services in the pipeline,
i.e., HS possible assignments.

Once SLO fulfillment under all possible assignments is inferred (Y), it remains to identify
the optimal assignment; this is the role of MAX_AS. Here, our approach is to act either
greedy or joint: greedy assigns services sequentially by marginalizing the hypothetical
deployments of other services; hence, it estimates the expected SLO fulfillment of a
service without considering where dependent services will be assigned, then, it chooses
the host with the highest one. The joint approach, however, assigns services collectively
by calculating the overall SLO fulfillment that all services would reach for a hypothetical
assignment. Whenever a combination requires assigning multiple services to a single host
h, the respective hardware utilization (e.g., CPU load) is appended to the existing one;
as shown later in Table 5.4 (red), such combinations can exceed the available resources,
and hence, are disregarded because they violate the host’s SLOs (Qh).

When using joint, comparing all assignments in Y makes it evident which combination
promises the highest SLO fulfillment. An advantage of joint is that it can precisely
evaluate latency SLOs and estimate the hardware utilization of multi-tenant assignments
upfront, which avoids sub-optimal greedy assignments; however, the drawback of joint is
its high combinatorial complexity. The interested reader will find the implementation of
MAX_AS in the attached code artifact.

This concludes our 4-step methodology, which started by analyzing the dependencies
between services and devices according to their MBs. To infer the optimal assignment

69

5. Orchestration of Computing Continuum Services

between services and hosts, we use composed MBs and estimate the expected SLO
fulfillment of different hypothetical assignments. In the next section, we now present how
this methodology was implemented and evaluated.

5.1.4 Evaluation

To evaluate the ideas presented in this subchapter, we focus on the individual steps of
the methodology and highlight whether the outcome fulfills the research goals. For this,
we first outline how the methodology and the evaluation environment were implemented;
then we present the experimental setup (incl. services and hosts) and the results of our
experiments. Lastly, we summarize and discuss the implications of these results.

Implementation

We provide a Python-based prototype2that implements our methodology; this includes
all services used to generate BNL training data. To extract the MBs, our prototype
requires tabular CSV files that are internally processed with pgmpy [AT23]; this step
combines the data for each service, i.e., regardless of whether it was hosted at Xavier or
Orin. This increases the general validity of trained BNs and adds conditional information
on different device types, e.g., P (cpu = x | type).

For ∀p, q ∈ K; pq ∈ E, we run pairwise variable tests to identify dependent variables;
the required statistical tools (e.g., WSD) are native to Python. Whenever WSD ≤ 0.13,
we flag it as a potentially confounded relation. Depending on the Jaccard similarity,
i.e., states match ≥ 90%, we declare whether it is confounded or simple. In both cases,
additional constraints (i.e., external SLOs) are added to the dependent service’s MB,
which will be provided to INF (Algo. 5.4). Next, the footprint generalization is integrated
into the inference: we iterate over all S ×H combinations and estimate (1) expected
SLO fulfillment and (2) hardware utilization. The default case is to perform joint service
assignment, which internally compares assignments for HS combinations; whenever this
exceeds the maximum complexity, greedy is an alternative.

To determine the network latency (nl) between different hypothetical hosts, we rely on
the knowledge of the infrastructure provider: we assume a tabular representation (i.e.,
H ×H) for this, which provides for hx, hy ∈ H the respective nlhx→hy .

Experimental Setup

To embed and evaluate our implementation in a realistic setup, we rebuild the scenario
presented in Section 5.1.2; this means, that we use the five discussed services to instantiate
our service set (S): RoadAnalysis was implemented and executed physically – for this
we used the YOLOv84 model to detect and highlight objects within a road scene5. The

2Prototype artifact available at GitHub, accessed Feb 28th 2024
3These two thresholds (i.e., 0.1 and 0.9) rendered satisfactory results.
4YOLOv8 model from ultralytics GitHub, accessed Feb 28th 2024
5Road racing video scene from YouTube, accessed Feb 1st 2024

70

https://anonymous.4open.science/r/deploymentOptimizer-8610/
https://github.com/ultralytics/ultralytics
https://youtu.be/AxwdDDgvZYo?si=L_2JjcWmVS9DdZQS&t=7

5.1. Markov Blanket Composition of SLOs

other services were simulated based on the data ingested or produced by RoadAnalysis.
According to services’ position and purpose in the pipeline, we will use shorter synonyms:
Producer (P) for SmartCamera, Worker (W) for RoadAnalysis, and Consumer (C_)
for {LiveMonitoring, TrafficPrediction, TrafficRouting}. Services depend on the data
provided by their predecessor; hence, the dependency graph follows the inverse data flow
from Figure 5.1, i.e., K ∼ {C1, C2, C3} →W → P .

SLO variables and thresholds are chosen according to the requirements in the service
description. For simplicity, we assumed that C1, C2, and C3 have the same tractable
variables; two of them are image size and data rate, which reflect the video properties
received by Consumers. Table 5.1 contains an overview of all SLOs: W and C_ must
ensure QoS SLOs, e.g., maintain latency ≤ x or ensure image size ≥ y; P must minimize
energy, i.e., a soft-boundary SLO, that is optimized as long as it does not violate any
hard SLO (e.g., latency).

Table 5.1: SLOs inherent to each service

P W C1 C2 C3

latency – – ≤ 1s ≤ 70ms ≤ 40ms
image size – – ≥ 720p – –
data rate – – – ≥ 25f –

delta – ≤ 1
fps – – –

energy* min() – – – min()

We provide a sampled set of devices (H) to host services, as shown in Table 5.2: for each
device, it contains a short ID, hardware stats, and how these stats (p, q) are classified
relative to other devices in H. Given this information, it is evident how heterogeneous the
devices are, e.g., the processing resources of Server dwarf Nano’s. Additionally, devices
equipped with a GPU can accelerate Worker ’s video processing through NVIDIA Cuda;
this underlines the importance that hosts have on services and SLO fulfillment. The last
column contains the networking delay (nl): we assume that devices are perfectly aligned
on a single line so that the nl between two hosts can be computed based on their nl to
Nano, e.g., communicating from Xavier to Orin takes 5ms− 3ms = 2ms.

We create different evaluation scenarios by repeatedly selecting subsets of S × H, as
visible in Table 5.3: for each of the 8 scenarios, it shows available services and hosts. For
example, for t0, {P, W, C1} must be assigned over {S, L, O, X, N}. The scenarios could
reflect different positions in time, where more or fewer hosts are available for different
services. Nevertheless, we evaluate scenarios separately and do not update assignments
at runtime. Depending on the service descriptions, we decide that P must always be
assigned to Nano – the local device that bundled IoT video streams; further, we assume
that smart-city infrastructure (i.e., fed by C3) is located close to N, hence, C3 must be
assigned to any h ∈ {N, X, O}.

6Prices adopted from sparkfun, accessed Feb 13th 2024

71

https://sparkfun.com/

5. Orchestration of Computing Continuum Services

Table 5.2: Hosting devices used for implementing and evaluating the methodology

Full Device Name ID Price6 CPU [1,4] GPU [0,3] nlN→_

Custom Server Build Server (S) 2500 € Very High (4) High (3) 20 ms
ThinkPad X1 Gen 10 Laptop (L) 1700 € High (3) None (0) 10 ms
Nvidia Jetson Orin Orin (O) 500 € Medium (2) Medium (2) 5 ms
Nvidia Jetson Xavier Xavier (X) 300 € Medium (2) Low (1) 3 ms
Nvidia Jetson Nano Nano (N) 200 € Low (1) None (0) ——

Table 5.3: Services and hosts available for assignment

Services Hosts
ti P W C1 C2 C3 S L O X N
0 ✓ ✓ ✓ – – ✓ ✓ ✓ ✓ ✓
1 ✓ ✓ – ✓ – ✓ ✓ ✓ ✓ ✓
2 ✓ ✓ – – ✓ ✓ ✓ ✓ ✓ ✓
3 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
4 ✓ ✓ ✓ ✓ ✓ – – ✓ ✓ ✓
5 ✓ ✓ ✓ ✓ – – – ✓ – ✓
6 ✓ ✓ ✓ ✓ – ✓ – – – ✓
7 ✓ ✓ ✓ ✓ – – ✓ ✓ – ✓

Results

We execute the experimental setup on the prototype of our methodology; first, we show
the resulting MB composition, explain dependencies between services, and present the
inferred assignments. Afterward, we assess the quality of the assignments according
to three factors: (1) we observe their empirical SLO fulfillment at runtime, and (2)
compare the runtime fulfillment to the expected fulfillment. Additionally, we provide (3)
an exhaustive comparison of how inferred assignments score compared to all alternative
assignments. These three factors evaluate our solution in terms of QoS and QoE and
allow us to judge the feasibility of our approach.

Inference through MBC Figure 5.3 shows the intermediary outcome after two
steps, i.e., after MB extraction and composition. The purple, yellow, and green services
represent Consumers, red the Worker, and grey the Provider. The upper colored squares
contain services’ MBs, including SLO variables (fully-colored nodes) or such related to
SLO fulfillment (black nodes). The blue squares contain hosts’ respective MBs, and
how the services impact its variables. Service dependencies are represented by dashed
lines and colored margins, e.g., size (purple) is found dependent on pixel (red), and in
further consequence on resolution (grey). Hence, constraining the service provided by
SmartCamera. Now whenever red looks to infer a variable assignment that fulfills its own
SLO (i.e., in_time), it constrains this to states that fulfill purple’s SLOs as well.

The “soft" SLO, i.e., min(power), does not pose hard constraints to INF; however, given

72

5.1. Markov Blanket Composition of SLOs

latency

rate

size

type

cpu gpu

memory

delay

in time pixel

power

fps

resolution

batch size

power
power

network

memory

cpu
gpu

cpu
memory

gpu

type

type

Figure 5.3: Composed Markov blankets for Consumers, Worker, and Provider

Table 5.4: Select assignment given service & host SLOs (t2)

SLO Σ W CPU GPU Mem C3 Power Σ
1 1.70 Orin 50 30 119 Orin 8 W
2 1.52 Orin 24 30 73 Xavier 15 W
3 0.92 Server 3 31 12 Laptop 97 W

...
24 0.00 Nano 122 35 93 Laptop 26 W
25 0.00 Laptop 54 0 27 Laptop 21 W

multiple assignments with equal SLO fulfillment, the one with lowest power is chosen:
For example, the MBC between P and any host has encoded that low resolution and
batch decrease power; hence, from the parameter space that fulfills these SLOs, it chooses
480p and 15fps, i.e., the state with lowest power. Notice, the most influential variable
for the host’s MB is always the device type – whether Xavier or Server hosts the service
has a big impact on the conditional fulfillment of hosts’ SLOs (Qh).

We perform the remaining two steps of the methodology and provide the inferred
assignments for each scenario in Table 5.5. Each scenario’s first line (i.e., infer) shows how
services should be assigned (i.e., to optimize SLO fulfillment) given the available hosts. For
example, at t2, the pipeline S = {P, W, C3} had to be assigned over H = {S, L, O, X, N};
the inferred assignment is {P ⋄N, W ⋄O, C3 ⋄X}, where P ⋄N is preconditioned.

Table 5.4 exemplifies why W was assigned to O at t2: under the hood, the SLO fulfillment
of all possible assignments (Y) was compared in a joint fashion. This evaluates the
fulfillment given all 25 (= H2) hypothetical deployments of W and C3. In #1, we estimate
that the collective SLO fulfillment (i.e., QW + QC3) is 1.7; however, this assumes that
W and C3 are both deployed at Orin, which is, on one hand, desirable because keeping
W close to C3 benefits its latency SLO, but on the other hand, it is estimated that this

73

5. Orchestration of Computing Continuum Services

Table 5.5: SLO fulfillment of assignments (infer / eval)
Services

ti Mode W C1 C2 C3

0 infer X : 0.99 O : 1.00 – –
eval X : 1.00 O : 1.00 – –

1 infer S : 1.00 – S : 1.00 –
eval S : 0.98 – S : 0.99 –

2 infer O : 0.70 – – X : 0.82
eval O : 0.75 – – X : 0.76

3 infer O : 0.31 L : 1.00 L : 1.00 X : 0.36
eval O : 0.28 L : 1.00 L : 1.00 X : 0.28

4 infer O : 0.32 X : 1.00 X : 1.00 O : 0.39
eval O : 0.29 X : 1.00 X : 1.00 O : 0.29

5 infer X : 0.00 X : 1.00 N : 1.00 –
eval X : 0.02 X : 1.00 N : 0.99 –

6 infer S : 1.00 S : 1.00 S : 1.00 –
eval S : 0.97 S : 1.00 S : 0.99 –

7 infer O : 0.95 L : 1.00 L : 1.00 –
eval O : 0.99 L : 1.00 L : 0.99 –

Err ⌀ −−0.02 −−0.00 −−0.01 −−0.06

would exceed Orin’s memory (red cells). Hence, assignment #2 (green) promises the
highest SLO fulfillment, whereas #24 shows that Nano would be incapable of running
Worker, both in terms of service requirements and hardware limitations (orange).

Quality of Assignments Apart from the expected SLO fulfillment, Table 5.5 also
provides the experimental results of the assignment at runtime (eval). For each scenario,
we tracked the services’ performance at their respective hosts for 10 min, which generated
in total roughly 70.000 observations. The last table row contains the average prediction
error (i.e., over all scenarios) between expected and actual SLO fulfillment.

Figure 5.4 shows the distribution of the processing delay in different scenarios; the plots
are separated due to the y-axis scale – Server has significantly lower processing delay
per frame. The solid lines express the threshold (i.e., minus overall nl) that W has
to meet to satisfy the latency of dependent Consumers. For example, in t2 and t3 the
most restrictive latency is imposed by C3, i.e., 40ms in Table 5.1; given the inferred
assignment {W ⋄ O, C3 ⋄ X}, we subtract nlN→O = 5ms and nlO→X = 2ms, and set
the bar to 33ms. Table 5.5 confirms the validity of these distributions: t2 reached 0.75
fulfillment and t2 only 0.28. The difference between t2 and t3 occurs due to t3 demanding
higher resolution, which impacts delay (see Figure 5.3). Dotted thresholds are virtual
boundaries that fall outside the y-axis (i.e., 70 or 1000ms).

74

5.1. Markov Blanket Composition of SLOs

t0 t2 t3 t5

32

34

36

38

40

42

44

46

48
W
or
ke
r p

ro
ce
ss
in
g
de

la
y
(m

s)
Worker @ Xavier
Worker @ Orin
Worker @ Orin
Worker @ Xavier
Virtual threshold
Delay threshold

(a) t0, t2, t3, and t5

t1 t6

10

20

30

40

50

W
or
ke
r p

ro
ce
ss
in
g
de

la
y
(m

s)

Worker @ Server
Worker @ Server
Virtual threshold

(b) t1 and t6

Figure 5.4: Processing delay of Worker at their assigned host ∈{X, O, S}, combined
with the threshold they must meet to fulfill all their consumers’ SLOs

t2 t3 t4
0.0

0.5

1.0

1.5

SL
O
fu
lfi
llm

en
t;
W
 +

 C
3 Selected assignment

Alternative assignments

Figure 5.5: Combined empirical SLO fulfillment of Worker and C3 for the selected
assignment, compared to the SLO fulfillment of all alternative assignments

Finally, Figure 5.5 shows the SLO fulfillment of the inferred assignment (blue line) in
comparison to all alternative combinations. Since P does not pose any hard SLOs, we
calculate overall SLO fulfillment as QW +QC3. The boxplots contain the 25 combinations
of how these services can be deployed over H, all evaluated empirically over 10 min.

Discussion

This section summarizes presented results and highlights their implications: We report
that (1) the MB extraction provided interpretable relations within individual MBs –
the in_time SLO was correctly attributed to fps and delay (see Figure 5.3); the MB
composition was able to (2) detect dependencies between services and flag latency as

75

5. Orchestration of Computing Continuum Services

confounded due to the underlying nl. Further, while W was not empirically evaluated at
Nano, we (3) correctly estimated that Nano exceeds SLOs from service and hosts (orange
table cells), which was estimated from the relative device capabilities.

Given the composed MBs, it could (4) consider the transitive SLOs imposed by other
services – a good example is comparing t2 and t3 in Figure 5.4, which shows how delay
changed due to more restrictive SLOs from C1. Further, we (5) maximized the SLO
fulfillment given a heterogeneous list of hosts, e.g., t1 in Table 5.5 could roam freely and
save energy by assigning W to X, whereas for t5 the best option was still unsatisfying
due to tight constraints (from Table 5.1). The fact that (6) we identified the optimal
assignments (Figure 5.5) was mainly driven by low prediction errors (see Table 5.5);
ideally, this error will be fed back to improve predictions.

Limitations

While this subchapter presents a novel approach for raising SLO fulfillment of microservice
pipelines, there remain limitations that must be addressed in future work; in the following,
we will discuss three of them in more detail. Firstly, the initial process of determining
the MBs of individual microservices can be computationally expensive and difficult to
scale in large, dynamic networks. In order to avoid any overhead impeding regular device
operation, it requires dedicated experiments that analyze the scalability of the approach.
This must include a larger number of services and variables, as well as the methodology’s
performance on heterogeneous hardware.

Secondly, training an accurate BN and its corresponding MB requires substantial and
high-quality data. In environments where data is sparse, noisy, or non-representative,
the reliability of the MB and any respective inference decisions can be compromised.
It remains to evaluate the presented approach in such an environment. Thirdly, IoT
and Edge computing environments are often dynamic, with changes in node availability,
service requirements, and network conditions. Static BNs might not adapt to such
changes, making the MB outdated and less accurate over time. This issue was partly
addressed in previous work [SPDD24b, SPDD24a], which focused on capturing changes
in variable distribution. Nevertheless, dynamic retraining of the BN structure remains
an open challenge.

5.1.5 Related Work

In the context of this subchapter, we identified two main areas of related work that
intersect with our research: (1) modeling large-scale BNs to estimate how system changes
perpetuate or can be countered, and (2) optimizing service deployments for constrained
devices according to QoS requirements.

Large-scale Bayesian Network Modelling

To assess the resilience of a pipeline system, Yazdi et al. [YKAQ22] presented a dynamic
BN that provides insights under which conditions QoS can be assured. Extending to

76

5.1. Markov Blanket Composition of SLOs

compound systems, Chen et al. [CQH19] provided a dynamic causality graph called
CauseInfer that pinpoints issues during runtime. CauseInfer uses a two-tier mechanism
that splits the system into a device and a service layer. To trace fault propagation within
a vehicle control network, Wang et al. [WWC+21] transformed a dynamic fault tree
into a BN; this could infer the probability of faults under different hypothetical setups.
Multiple works use BNs for anomaly detection in IoT systems [Tog22, SAR+21, OSF22];
however, they are more focused on detecting, instead of mitigating them. The largest
BNs in comparable literature were provided by Mengshoel et al. [MPK09] as a large-
scale diagnostic system for simulating aircraft parts; however, individual blankets were
separated without intersections. BNL is still an actively developing field, which is
underlined by Kitson et al. [KCG+23]; they provide a comprehensive overview of BNL
techniques and algorithms that help create accurate causal models.

Given these works, we conclude that BNs are used for fault detection or system behavior
prediction. Most graphs featured a single large model, which appears feasible given a
central data set; however, in the CC, services (i.e., data sources) are distributed, and
training large BNs poses high requirements to edge device. CauseInfer composes a model
from multiple subgraphs; nevertheless, it lacks a notation of hardware utilization based
on deployed services. Contrarily, our method assembles a model at finer granularity.

QoS-Aware Deployment in the Computing Continuum

To find optimal services configurations for multi-tenant edge devices, Zhang et al. [ZZL23]
presented Octopus, which predicts SLO fulfillment of two variables based on a deep
neural network. To avoid resource contention, Qiu et al. [QBJ+20] created FIRM,
which predicts the resource usage of services for a multi-tenant device. Cardelli et
al. [CGGN+18] designed an autonomous elasticity mechanism for Cloud and Edge that
ensures QoS of service chains; however, they did not implement it. Khoshkholghi et
al. [KM22] presented a deployment and load-balancing mechanism that assured QoS of
Edge function pipelines through deep learning. To maximize user satisfaction, Sheu et
al. [SPJC18] propose a model deployment algorithm for the Edge that considers hardware
limitations. The work of Zobaed et al. [ZMC+22] allows to meet the latency constraints
of multi-tenant applications. Confronted with the erratic activities of mobile users, Lu et
al. [LWL+23] predicted how QoS could be assured through service updating. Their work
provisioned services for multi-tenant deployments. To assure high QoS for composite
services, Mehdi et al. [MBB13] selected individual services based on a computed trust
score. They would then construct a composite service through BNL.

Considering presented work, we conclude that multi-tenancy is common for the Edge;
there are several works that estimate resource implications of services. However, none of
them would consider the generalization of service footprints or transitive dependencies
between services (i.e., tenants). The exception is [MBB13]; however, they lack implications
on the underlying hardware. Contrarily, our method provides the precise utilization per
tenant for composite service pipelines.

77

5. Orchestration of Computing Continuum Services

5.1.6 Summary

This subchapter presented a statistical reasoning model for assigning a microservice
pipeline over a heterogeneous set of devices, which are located from the Edge to the entire
CC. To maximize the requirement fulfillment throughout a pipeline, our methodology
analyzes dependencies between services; this constrains the operation of individual
services according to the quality expected by dependent services. The evaluation of our
prototype showed that we could infer the optimal assignments given a mutable list of
services, hosting devices, and SLOs that had to be ensured. We envision our methodology
as a central tool to simplify the development of compound services, e.g., in smart cities,
where overall SLO fulfillment is optimized for whatever resources the CC has available.
In that regard, future research will focus on runtime mechanisms that allow services to
scale vertically or horizontally over the hosting devices.

78

5.2. Diffusing High-Level SLOs in Microservice Pipelines

5.2 Diffusing High-Level SLOs in Microservice Pipelines
Complex interactions within microservice architectures obfuscate the implications of
individual services to high-level requirements. This becomes even more grave for multi-
tenant and multi-vendor scenarios, like Edge computing, where different stakeholders
might specify opposing Service Level Objectives (SLOs), e.g., minimizing both energy
consumption and response time. To avoid contradictions within SLOs and to infer how
SLOs can be fulfilled, this subchapter presents a methodology that diffuses high-level
SLOs into multiple lower levels of SLOs and parameter assignments. Thus, it becomes
clear how individual sub-processes contribute to high-level SLOs, and how these must
be configured to foster their fulfillment. We evaluated our methodology for several
microservice pipelines, where the challenge is to ensure multiple high-level SLOs (e.g.,
customer satisfaction) by finding and constraining all influential factors. The results
show that by inferring multiple layers of lower-level constraints, we can fulfill high-level
SLOs up to 100%. Notably, we could extract that the restrictiveness of low-level SLOs
and the occurrence of conflicts have a severe impact on SLO fulfillment.

The remainder of this subchapter (see footnote 1) is structured as follows: Section 5.2.2
introduces background knowledge and related work; Section 5.2.3 presents our methodol-
ogy for diffusing SLOs, which is implemented and evaluated in Section 5.2.4. Finally,
Section 5.2.5, concludes this subchapter with a future scope.

5.2.1 Introduction

Many current internet-based applications are composed of a network of microservices,
each providing specific functionality to the application; common instances are data trans-
formation pipelines or machine learning pipelines. These instances benefit particularly
from service-oriented architecture [HS05], which improves both modularity and flexibility,
while keeping services loosely coupled – boosting scalability. However, each service’s
performance depends on its neighboring services, i.e., those that send or receive data
from it. Hence, if its performance deteriorates, this affects neighboring services and,
ultimately, the overall application performance.

To assess the application’s overall performance, Cloud computing uses Service Level
Objectives (SLOs); typical SLOs are response time or availability, which refers to the
entire application, but not to individual services [ZZL23]. Whenever an SLO is violated,
services are scaled to reestablish the expected performance level. However, Cloud
providers are generally unaware of which services should actually be scaled; simply
scaling all services (or candidates) can turn out extremely inefficient. In this sense,
there exist works that pinpoint which services to scale by finding applications’ critical
path [ZRR+22] or performing causal analysis on service architectures [CQH19]. Applying
such methods requires considerable time, which can propagate failures in large and
distributed applications [SMB21].

However, when looking into novel computing paradigms, such as Edge computing [SCZ+16]
or the computing continuum [DCPD23], some Cloud-based rules simply do not apply:

79

5. Orchestration of Computing Continuum Services

First, only parts of their infrastructure can be scaled; secondly, both paradigms assume
a multi-tenant and multi-vendor scenario [CPDM+23a], i.e., infrastructure is used to
host multiple applications, which belong to different stakeholders. When stakeholders
set their SLOs, it is challenging to identify whether these are compatible; in many
cases, SLOs of different stakeholders can be opposing – causing conflicts. For instance,
infrastructure providers could aim at hosting several applications on devices, and hence
limit processing time available per tenant (i.e., the applications); application developers,
on the other hand, want maximum quality for end users. Attempts to satisfy both result
in a contradiction, which must be circumvented to avoid undesired system behavior.

SLOs can be used to constrain different levels of abstraction, from high-level goals such as
response time and client satisfaction, down to hardware utilization of individual devices.
For application stakeholders, the most intuitive choice is to start posing SLOs that look
at the overall performance of the system [NMP+20]; we call the resulting constraints
“high-level SLOs". These high-level SLOs can target different aspects of QoS or Quality of
Experience (QoE), such as high video stream resolution, or decreased energy consumption,
but also cost. The question remaining is how to determine under which conditions a
system can actually fulfill them. For example, what does it take to minimize energy
consumption? The answer might be to restrict CPU load or other resource utilization; we
call these derivative constraints “low-level SLOs". However, it is tedious for application
developers to specify SLOs for increasingly large microservice applications; in most cases,
they would also lack in-depth knowledge of how to diffuse a high-level SLO into the
corresponding low-level SLOs.

To decrease the overall complexity of system design, we present a 3-step methodology
that diffuses high-level SLOs throughout an application, which means splitting them up
into a set of lower-level SLOs. To control all of these SLOs and maintain them within
bounds, the methodology identifies parameters that causally influence the required SLO
fulfillment, and how they should be assigned. Finally, the methodology detects conflicts
caused by high-level SLOs, which might occur at any abstraction level. If possible, these
conflicts are resolved autonomously; otherwise, it is indicated to stakeholders that they
require amendment. Thus, the contributions of this subchapter are the following:

1. A service-oriented methodology that describes application requirements through
multiple layers of SLOs. This enables fine-grained control of the overall system in
multi-tenant and multi-vendor scenarios.

2. A diffusion mechanism that propagates high-level SLOs into lower-level ones. To
fulfill the associated high-level SLOs, the algorithm defines adequate performance
ranges for lower-level SLOs. Further, it identifies parameters (if they exist) that
are able to control lower-level SLOs.

3. A conflict identification algorithm for high-level SLOs based on diffused lower-level
SLOs. The algorithm is able to resolve conflicts (if they can be solved autonomously),
and otherwise alert stakeholders.

80

5.2. Diffusing High-Level SLOs in Microservice Pipelines

IsentropicPrint
fig_size

IsentropicPrint
isent_level

IsentropicPrint@Fog
cpu

IsentropicPrint@Fog
gpu

CameraWrapper
pixel

VehicleRouting
energy

StreetAnalysis@Orin
gpu

StreetAnalysis@Orin
cpu

StreetAnalysis@Orin
memory

StreetAnalysis
delta

VehicleRouting
cummulative_delay

VehicleRouting
viewer_satisfaction

CameraWrapper
fps

WeatherSensors
data_size

IsentropicPrint@Fog
memory

IsentropicPrint@Fog
delta

Figure 5.6: Combined BN for a microservice pipeline that consists of the following
evaluate services: VehicleRouting (yellow center), CameraWrapper and StreetAnalysis
(left), and WeatherSensors and IsentropicPrint (right)

5.2.2 Preliminaries

This section provides an overview of background knowledge on Bayesian networks and
how these can be used to specify SLOs. Furthermore, it contains related work that
applies SLOs and Bayesian networks for describing system requirements.

Background

Bayesian Networks (BNs), as introduced in Section 5.1.2, can be used to model relations
in real-world processes: numerous works (e.g., [YKAQ22, OSF22, Tog22]) train BNs
from historical observations (i.e., metrics) to model the probabilities of different system
states. Thus, BNs can answer how likely it is to observe a certain variable assignment,
e.g., a system runtime state, given historical observations.

Notable, in this subchapter, we will use BNs to express the dependencies between
microservices; see Figure 5.6 for an example graph that is trained in Section 5.2.4. By
using the variable relations in the graph, we can evaluate SLO fulfillment as presented in
Section 5.1.2. To train BNs from microservice logs, we use BNL – a customized algorithm
for Bayesian Network Learning (BNL) – that was introduced in Section 4.2.1.

Given a BN, such as Figure 5.6, we note two fundamental properties that will be exploited
in this subchapter: (1) any variable (v) that describes a high-level SLO is a leaf node,
i.e., it has only incoming edges, otherwise, v’s child (or grandchild) would be constrained;
since BNs are acyclic, there is always a leaf. Hence, edges in BNs point toward the
high-level SLO, which means that fulfilling them is a consequence of maintaining all
parent variables in a desired range – these are low-level SLOs. Further, (2) parameters
are root nodes, i.e., without incoming edges, because they are conditionally independent

81

5. Orchestration of Computing Continuum Services

of other variables; if there were some, actively setting a parameter would remove any
parent edge. The diffusion algorithm in Section 5.2.3 will build upon these properties.

Related Work

We identified two main areas of related work that intersect with this subchapter: (1) SLO-
aware service description to continuously ensure system requirements, and (2) modeling
systems as large-scale BNs to estimate how changes propagate or can be countered.

SLO-Aware Service Description Pusztai et al. [PMP+21a, PNM+22, NMP+20]
provide next-level SLO descriptions, i.e., they are composed of multiple variable thresholds;
hence, SLOs can reflect more complex conditions. Their central contribution – an edge-
based workload scheduler – is similar to Guan and Boukerche [GB22], which presents
QoS-aware processing methods through different AI methods, though BNs were not
discussed. To ensure latency SLOs, Seo et al. [SCK+21] provide a dynamic decomposition
of ML tasks into subtasks; however, SLOs were not diffused further. Cao [Cao23] outlines
a research agenda for an SLO-oriented management layer for cloud-edge infrastructure;
Cardelli et al. [CGGN+18] design an autonomous elasticity mechanism to ensure QoS in
cloud-edge service chains. The authors in [PD23] discuss the importance of controlling
distributed systems with DeepSLOs, i.e., such that span multiple infrastructure layers;
their vision, however, was not implemented yet, neither for [WOK17].

Given these works, we summarize that SLOs are the state-of-the-art solution to specify
requirements for cloud computing; nevertheless, there is an ongoing translation of SLOs
from the cloud to the edge. Although authors like [GB22] and [SCK+21] recognize the
importance of AI to ensure edge-based SLOs, none of the presented would further diffuse
high-level SLOs to identify respective lower-level SLOs.

Large-scale Bayesian Network Modelling Yazdi et al. [YKAQ22] presented a
dynamic BN to assess the resilience of a pipeline system – providing insights under
which conditions QoS can be assured. Extending to compound systems, Chen et al.
[CQH19] provided a dynamic causality graph called CauseInfer that pinpoints issues
during runtime. CauseInfer uses a two-tier mechanism to split a system into device and
service layers. Wang et al. [WWC+21] transformed a dynamic fault tree into a BN to
trace fault propagation within a vehicle network. This could infer fault probabilities under
hypothetical setups. BNL is still an actively developing field: Kitson et al. [KCG+23]
provide a comprehensive overview of techniques and algorithms that create accurate
causal models, whereas Vowels et al. [VCB21] provides a survey on that topic.

Given these works, we conclude that numerous works focus on training accurate BNs
from observations; the use cases behind them are manifold. Although most of them apply
the BN to extract some sort of knowledge, none of them used its conditional dependencies
to infer how target states can be assured through lower-level requirements.

82

5.2. Diffusing High-Level SLOs in Microservice Pipelines

#1: Bayesian Network Learning

Latency SLO

Processing Delay

Video Resolution

#2: Diffusion of High-level SLOs

Processing Delay

#3: Conflict Management

Figure 5.7: 3-Step methodology for ensuring high-level SLOs through diffusion

5.2.3 Methodology

In this subchapter, we present a set of research questions. Then, we illustrate a 3-step
methodology that ensures high-level requirements by disseminating them into lower-level
subcomponents; it first trains a BN for a service composition or pipeline, then diffuses low-
level SLOs and parameter assignments, and lastly indicates and resolves conflicts within
low-level SLOs and parameters. Figure 5.7 provides an overview of this methodology;
the sequential steps are embedded into the respective subsections 5.2.3 to 5.2.3.

For all following algorithms, Table 5.6 presents a summary of variable notations used in
this methodology section.

Research Questions

In the following, we describe three research questions extracted from the introduction,
each accompanied by a motivating description. These questions will guide both the
methodology as well as its evaluation

RQ-1) How can high-level SLOs be translated to lower-level objectives? Fulfillment of
high-level SLOs emerges from a wide equilibrium among system components; this can
be ensured by maintaining sub-processes (or components) under desirable conditions.
However, to the best of our knowledge, there exist no mechanisms that translate stake-
holders’ high-level SLOs into lower-level SLOs. As an answer to that, our methodology
infers low-level SLOs by leveraging in-depth knowledge about system dynamics.

RQ-2) How restrictive should low-level SLOs be? The more hierarchical and dense a
list of SLOs becomes, the less trivial it is what values a low-level SLO should assume
to fulfill high-level ones. In reality, predicting the behavior of complex systems will not
yield a single possible outcome, but a probabilistic list of states. To that extent, low-level
SLOs can hardly be expressed in “black-or-white logic", but the question is how to decide
if a low-level state is desirable or not.

83

5. Orchestration of Computing Continuum Services

Table 5.6: Frequently used variable notations

Notation Meaning
s An individual microservice

Ms Multidimensional metrics describing s state
M Wrapper for all metrics in the application
D Training data set joint for all services
G Bayesian network graph trained from D
Q List of all high-level SLOs
q An individual high-level SLO q ∈ Q
p The parent node of another variable (e.g., q)

pp A grandparent node, i.e., parent of p
Shl List of desired states to fulfill SLOs
hl A state of a high-level SLO variable
ll A state of a lower-level parent variable

llq Total probability of fulfilling q with p = ll
X Dictionary to store llq according to ll
t Probability threshold for including a state ll
λ Hyperparameter to customize acceptance range
L List of raw low-level SLOs and parameters
v A random variable in G, might be q, p, etc

Lv Duplicate constraints for v in L
k Intersection between multiple constraints
A List of constraints without duplicates (easy)
B List of constraints that presented minor conflicts
U List of low-level SLOs and assignments (final)
C List of major conflicts that were not resolved

RQ-3) Where do conflicts among SLOs occur and how can they potentially be resolved?
When reasoning rationally, it is intuitive that a system cannot fulfill two competing require-
ments at the same time, e.g., minimizing energy while maximizing customer_satisfaction.
However, with an increasing number of SLOs, stakeholders cannot always maintain an
overview; hence, the question is in which part of the system conflicts will actually occur,
and to what extent, or under which conditions, they can be resolved autonomously.

Bayesian Network Learning

Given a microservices application, e.g., a sequential processing pipeline, the objective
of this first methodology step is to provide a causal understanding of the dependencies
between the services. To achieve this, we reveal the relations of different services through
BNL – this combines all their variables in one graph. Before that, however, we must
collect the necessary training data. Therefore, we observe all applied microservices
during runtime and collect multidimensional metrics (Ms) that describe each service’s
(s) internal processes.

Training data can be collected periodically or in one operation; in any case, the data
from all microservices is combined within D. Notice, that metrics from different services
must be captured under equal configurations, e.g., if a pipeline contains two sequential
microservices CameraWrapper → StreetAnalysis, the streaming data produced by Cam-

84

5.2. Diffusing High-Level SLOs in Microservice Pipelines

eraWrapper must be the exact same received and processed by StreetAnalysis. This can
be assured by (1) capturing both services’ metrics at the same time and joining rows
over their timestamp, or (2) maintaining comparable conditions for data sets and joining
them over interface variables, i.e., such that describe the same transmitted data on both
sides, like video resolution.

Next, metrics are processed with BNL to turn them into a composite graph; this is
reflected by Algo. 5.5 (Lines 1-4), which also provides the wrapper for the overall
methodology. While BNL is known from Section 5.2.2, JOIN combines training data of
different services incrementally into one data set (D); feeding D to BNL turns it into a
graph G. Afterward, G contains the dependencies between service variables and their
conditional probabilities of assuming certain variable states.

Algorithm 5.5: Wrapper for the 3 methodology steps
Require: M , Q {Service metrics and high-level SLOs}
Ensure: U, C {Low-level SLOs, params, and conflicts}

1: L, D ← ∅
2: for each Ms in M do
3: D ← JOIN(D, Ms)
4: end for
5: G← BNL(D) { – Step 1}
6: L← HLD(G, Q, ∅, ∅) { – Step 2}
7: U, C ← CIR(L) { – Step 3}
8: return U, C

Diffusion of High-level SLOs

The diffusion requires the BN (G) from the previous step and a list of high-level SLOs
(Q) – the shape of individual SLOs is as introduced in Section 5.2.2. In the following, we
start traversing G from nodes that represent high-level SLOs and then gradually visit
their ancestors (i.e., nodes with an edge pointing to them). To fulfill high-level SLOs,
each node is extended with a threshold it must ensure; if it is a root node, it is called
a “parameter", otherwise a “low-level SLO". This is shown in Fig. 5.8, where high-level
SLO variables are located on the right (purple); by traversing its parents, the middle
column is constrained to certain thresholds, which are reached through the parameter
assignments on the left (i.e., grandparents). Visiting variables more than one time can
lead to conflicts – this is discussed further in Section 5.2.3.

The diffusion’s abstract implementation is shown in Algo. 5.6, which accepts two additional
input parameters: a parent node (p) and a list of target states (Shl). However, these
are only set in subsequent recursions. The start case (Lines 2-5) is simple: for every
high-level SLO (q), find all states hl ∈ STATES(G, q) that satisfy q’s target condition
(Line 4). For example, given an SLO latency ≤ 10, Shl summarizes all known states of

85

5. Orchestration of Computing Continuum Services

Latency SLO

Max (QoE)

Processing Delay

Min (Energy)

CPU Load

Video Resolution

High-Level SLOsConflicting

FPS

Warning

Figure 5.8: Diffusing high-level SLOs into lower-level SLOs and assignments

latency that meet this threshold. Next, in Lines 18-20, find q’s parents and constrain
each parent node (pp) by inferring respective low-level states that cause Shl.

Traversing q’s parents instantiates multiple recursions (Lines 6-14): for every parent
variable (p), find p’s states that (likely) fulfill q; in other words, this is the low-level
SLO or parameter assignment. This can be inferred from a BN through variable elimi-
nation [ZP94] (VE) – an instance of exact Bayesian inference. For every low-level state
ll ∈ STATES(G, p), we call VE(G, q, p = ll), which returns the probability of different
outcomes (i.e., that a high-level state q = hl occurs) when assigning p = ll; in Algo. 5.6,
we abbreviate this P (q = hl | p = ll) as z. However, if observing q = hl is actually
desirable, is determined by hl’s occurrence in the list of target states (Line 9). For
every state ll, the probability of p = ll causing a desired outcome (i.e., fulfilling q) is
summarized (llq) and appended to X – a temporary storage to collect these probabilities.

Whether a state ll is included in the low-level SLO, is determined by llq – its probability
of causing q to be fulfilled. In particular, llq must meet the acceptance threshold (t),
which is calculated relative to the state with the highest probability (Line 15). The
acceptance range can be customized through the hyperparameter λ ∈ (0, 1] – higher λ
raises t proportionally; hence, the acceptance range becomes more narrow, meaning fewer
states can satisfy it. The accepted states constitute either a low-level SLO or a parameter
assignment of p; what follows, is that these constraints are appended to L, as done for
recursively visited nodes.

After all high-level SLO variables and their ancestors were visited, L contains all low-level
SLOs and parameters that were inferred from G; however, it potentially includes duplicate
entries for variables that were visited multiple times. This methodology step addressed
(RQ-1) by presenting a diffusion mechanism for high-level SLOs; (RQ-2) was equally
addressed by specifying the acceptance threshold λ. Nevertheless, for both of them, the

86

5.2. Diffusing High-Level SLOs in Microservice Pipelines

Algorithm 5.6: High-level SLO diffusion (HLD)
Require: G, Q, p, Shl; λ (global)
Ensure: L {List of low-level SLOs and parameters}

1: for each q in Q do
2: if p = ∅ ∨ Shl = ∅ then
3: p← q
4: Shl ← {hl | hl ∈ STATES(G, q), q(hl) = True}
5: else
6: for each ll in STATES(G, p) do
7: llq ← 0
8: for each (hl, z) in VE(G, q, p = ll) do
9: if hl ∈ Shl then

10: llq ← llq + z
11: end if
12: end for
13: X[ll]← (ll, llq)
14: end for
15: t← max(X)× λ
16: Shl ← {ll | (ll, llq) ∈ X, llq ≥ t}
17: end if
18: for each pp in PARENTS(G, p) do
19: L← HLD(G, q, pp, Shl) ∪ L
20: end for
21: end for
22: return L ∪ (p, Shl)

evaluation must provide further details on their influence on high-level SLO fulfillment.

Conflict Management

After inferring low-level SLOs and parameter assignments, the entire collection (L) is
post-processed to identify and resolve conflicts. Generally, if a variable v ∈ G was visited
n times, then L contains n constraints for v – what differs are the imposed thresholds,
each according to another high-level SLO. Recall Fig. 5.8, where the grandparent on
the left (i.e., fps and video_res) were visited two, and respectively, three times; the
colored arrows in the variable range indicate from which high-level SLO the constraint
originated. The central difference between the two cases is the following: for fps there
exists a satisfying intersection of its constraints (red ∩ green), whereas the constraints of
video_res are disjoint and not satisfiable. In the following, we resolve the former case as
“minor conflict", and indicate the latter as “major conflict".

This behavior is expressed in more detail in Algo. 5.7; in particular, all entries in L
are traversed to determine if there are conflicts, and whether they can be resolved. In

87

5. Orchestration of Computing Continuum Services

Algorithm 5.7: Conflict identification and resolution (CIR)
Require: L {List of low-level SLOs and parameters}
Ensure: U, C {Unique constraints and conflicts}

1: A, B, C ← ∅
2: for each (v, Shl) in L do
3: if COUNT(L, v) = 1 then
4: A← (v, Shl) ∪A
5: else
6: k ← INTER(DUPL(L, v))
7: if k ̸= ∅ then
8: B ← (v, k) ∪B
9: else

10: C ← v ∪ C
11: end if
12: end if
13: end for
14: return A ∪B, C

the simplest case, a variable (v) is only present once in L; all variables that fulfill this
condition are collected in A (Line 4). Otherwise, for a list of duplicate constraints (Lv),
the intersection between all the variables’ constraints is calculated according to Eq (5.6).

INTER(Lv) =
n⋂︂

i,j=1;i ̸=j

Li ∩ Lj ̸= ∅ (5.6)

If there exists an intersection (k), this resolves the conflict and k is appended to B (Line
8) – the list of minor conflicts. Otherwise, if the constraints are disjoint, v is appended
to C (Line 10) – the list of major conflicts. Finally, Algo. 5.7 returns a list of unique
constraints (U), which combines A∪B; C is maintained separately so that these conflicts
can be indicated to application developers. Algo. 5.5 returns the same lists.

With the presented methodology, conflicts occur independently of the order in which
high-level SLOs are traversed; it is not the case, for example, that the first high-level
SLO visiting a variable is prioritized. However, resolving major conflicts would inevitably
require some sort of hierarchy among the high-level SLOs, otherwise there cannot be
any satisfying variable assignment. Hence, we answered what kinds of conflicts can be
resolved (RQ-3); the evaluation will provide further details on where conflicts actually
occur. This concluded the presented methodology, which started by training a BN from
metrics, inferring low-level SLOs, and finally, in this subsection, resolving conflicts as far
as possible, or at least indicating them to the application developer.

88

5.2. Diffusing High-Level SLOs in Microservice Pipelines

Table 5.7: Microsevices available for evaluation

ID type param / var host
TrafficSensors [Wam23] Producer 1 / 1 Xavier

HistoricDB Producer 2 / 2 Server
CameraWrapper [SMDD23] Producer 2 / 2 Nano

WeatherSensors [MAM+24] Producer 1 / 1 Xavier
AnomalyDetection [Wam23] Worker 0 / 5 Fog

HistoricProvision Worker 2 / 7 Server
StreetAnalysis [SPDD24c] Worker 0 / 4 Orin

PrivacyTransform [SMDD23] Worker 0 / 6 Orin
IsentropicPrint [MAM+24] Worker 2 / 6 Fog

TrafficPrediction Consumer 0 / 2 Fog
VehicleRouting Consumer 0 / 3 Orin
LiveMonitoring Consumer 0 / 3 Server

5.2.4 Evaluation

To evaluate the presented ideas, we focus on the individual steps of the methodology and
highlight whether the outcome fulfills the research questions. For this, we first outline
how the evaluation scenarios were set up and how the methodology was implemented;
then we present the results of our experiments and discuss their implications.

Evaluation Scenarios

We evaluate our methodology multiple times under different scenarios; each scenario
consists of a microservices application, where individual services are chained together to
form a composite pipeline. Please refer to Table 5.7 for a list of all microservices. The
presented services are categorized into three types: (1) producer services provide sensor
data, (2) worker services run data processing, and (3) consumer services face clients and
determine how the pipeline is perceived; hence, stakeholders would place high-level SLOs
for consumers.

The internal state of each service is described by a set of variables, which can be collected
and analyzed through metrics. Some variables can actively be set by the stakeholder
to change the resulting service; we call those variables “parameters". Each service in
Table 5.7 features a column that specifies the ratio between parameters and variables.
For IsentropicPrint, the param/var ratio 2/5 indicates that it features 5 variables, of
which 2 are parameters. The last table column specifies at which host7the services are
executed; please refer to [SPDD23] for additional information on device capabilities.

Hosting devices have direct implications on SLO fulfillment, for example, due to het-
erogeneous hardware capabilities [SPDD24b]. Among the specified hosts, some devices
are more restricted than others; as an example, Server dwarfs all Jetson devices (i.e.,
Nano, Orin, and Xavier). Nevertheless, in this subchapter, we assume that deployments
of individual services are predetermined. Consequently, this also defines the networking

89

5. Orchestration of Computing Continuum Services

Latency < 110
MAX(QoE)

Latency < 40
MIN(energy)

Latency < 45
MIN(energy)

CameraWrapper

StreetAnalysis

VehicleRouting

TrafficPrediction

HistoricDB

LiveMonitoring

WeatherSensors
IsentropicPrint

TrafficSensorsAnomaly Detection

DataProvisioning

PrivacyTransform

Cloud Server

Fog Node

Jetson Nano

Jetson Xavier

Jetson Orin

Figure 5.9: Logical microservice architecture with the respective hosting devices

delay between services, which in turn, affects the overall execution time for service
pipelines distributed over multiple hosts.

In particular, Figure 5.9 shows the logical distribution between services and hosts,
i.e., where individual services are deployed. Microservices are connected alongside the
arrows, where data flows in the pointing direction. This creates pipelines from the
producers (blue), over the workers (red), to the consumers (yellow). For instance, using
VehicleRouting and all its parent nodes, it is possible to assemble a smart city application
that consumes road conditions to reroute traffic.

In the following, the objective is to diffuse the high-level SLOs for each consumer
application and its dependent services. The grey hexagons in Figure 5.9 represent high-
level SLOs that stakeholders specified for every consumer service. For instance, to evaluate
LiveMonitoring, its high-level SLOs are diffused over parent services it depends upon:
IsentropicPrint, WeatherSensors, PrivacyTransform, StreetAnalysis, and CameraWrapper.
Thus, we provide evidence of how these services contribute to high-level SLO.

Implementation

We provide a Python-based prototype8that implements all aspects of our methodology;
apart from that, the repository contains all microservices used to generate BNL training
data. Notice that, as depicted in Table 5.7, microservices were adopted from existing
research as far as possible. As discussed in Section 5.2.2, the applied BNL algorithm
also originates from previous work; noteworthy, for this subchapter, we implemented the

90

5.2. Diffusing High-Level SLOs in Microservice Pipelines

Table 5.8: SLOs and parameter thresholds inferred for VehicleRouting

Microservice Variable States SLO / Param

VehicleRouting
cumm_delay ≤ 45 ms

High-levelenergy ≤ 19 W
viewer_sat ————

StreetAnalysis delta ≤ 35 ms

Low-level
StreetAnalysis cpu (Orin) ≤ 21 %
StreetAnalysis gpu (Orin) ≤ 40 %
IsentropicPrint delta ≤ 37 ms
IsentropicPrint cpu (Fog) ≤ 17 %

CameraWrapper pixel = 480 p

Parameter
CameraWrapper fps = 15 f
IsentropicPrint fig_size ≤ 50 p
IsentropicPrint isent_level ≤ 200 k
WeatherSensors data_size ≤ 30 pi

algorithm with pgmpy [AT23] – a python framework. To ensure that the trained BN
models all applied microservices precisely, the services were configured to evaluate all
possible parameter permutations during runtime. While this presents a limitation to the
applicability of our methodology, it can be circumvented with alternative approaches,
e.g., interpolating between empirically visited configurations [SPDD24b].

Metrics created by each service are collected in CSV files: 80% are used for BNL, whereas
the remaining 20% are retained for evaluation purposes. For each application, we first use
the training set to train a BN, which is then used to execute our methodology. Afterward,
any resulting SLO fulfillment was measured for the test data set; the scripts to create
results, images, or tables are all contained in the repository.

Results

In the following, we address the three research questions posed in Section 5.2.3. For each
question, we explain how it was evaluated, and then discuss the respective results.

SLO Diffusion (RQ-1) A consequence of successfully translating high-level SLOs
to low-level ones would be to find system configurations (i.e., parameter assignments)
that fulfill high-level SLOs; hence, we will analyze the resulting SLO fulfillment as an
indicator for a correct diffusion. To that extent, we diffuse the respective high-level SLOs
over each consumer service and infer low-level SLOs and parameter assignments. We
configure the system according to the inferred constraints and analyze whether this could
control SLO fulfillment.

8Prototype artifact available at GitHub, accessed Apr 10th 2024

91

https://anonymous.4open.science/r/deploymentOptimizer-0F6F/SOSE

5. Orchestration of Computing Continuum Services

Table 5.9: High-level SLO fulfillment for all three microservice applications

Microservice High-level SLO % Min % Fulfill % Max

VehicleRouting cumm_delay ≤ 45 0.00 0.94 1.00
min(energy) 0.53 0.99 1.00

TrafficPrediction cumm_delay ≤ 40 0.00 0.83 0.90

LiveMonitoring cumm_delay ≤ 110 0.13 0.93 1.00
max(viewer_sat.) 0.00 1.00 1.00

The first step is to train a BN for each application; as an example, Figure 5.6 shows the
BN for VehicleRouting and all microservices it depends on. Grey nodes reflect high-level
SLOs, green ones low-level SLOs, and purple nodes parameters; each service also features
a unique symbol. For example, the fulfillment of the central energy SLO is dependent on
the variables that have an edge directed to it, i.e., the gpu of StreetAnalysis, and the cpu
from both StreetAnalysis and IsentropicPrint. Apart from them, there exist nodes that
do not impact high-level SLOs (i.e., they have no directed path to grey nodes), which
will not be traversed by Algo 5.6.

The resulting constraints are shown in Table 5.8, which contains all low-level SLOs and pa-
rameter values that were diffused from the high-level SLO; notice how viewer_satisfaction
was not constrained in this scenario. Given the high-level SLOs (i.e., first two rows), the
low-level SLOs (i.e., second part) present indicators for preferable variable distributions,
which are best assured by assigning parameters as specified. Parameters such as pixel
and fps are assigned to one value, whereas the latter three can assume arbitrary values
in a range – each value supposedly fulfills low-level SLOs to a degree > λ. For instance,
any data_size ≤ 30 causes cpu and delta (check dependencies from Figure 5.6) to stay
in bounds, while keeping energy at 19W – the lowest possible assignment.

For all three applications, we configured the parameters according to the inferred thresh-
olds and evaluated the SLO fulfillment; the respective results are contained in Table 5.9.
The maximum (or minimum) values reflect possible values from alternative parameter
combinations (i.e., permutations); orange cells indicate cases where our methodology
could not infer assignments that maximize high-level SLO fulfillment. These discrepancies
occur either due to (1) flexible boundaries, e.g., fig_size = 50 is an acceptable assignment
> λ, although cumm_delay would be more likely fulfilled with fig_size = 10, or (2)
conflicts within high-level SLOs, e.g., LiveMonitoring cannot ensure both maximum
viewer_satisfaction and cumm_delay ≤ 110 for 100 % of observations. Nevertheless, we
showed that our approach can reach SLO fulfillment of up to 100 %; the lower bound
here was given by the cumm_delay SLO of TrafficPrediction, which reached 83 %.

Acceptance Range (RQ-2) The acceptance range (λ) determines the degree of
freedom for low-level SLOs and parameter assignments. A narrow margin promises less
tolerance for SLO violations but at the same time risks SLO conflicts due to disjoint

92

5.2. Diffusing High-Level SLOs in Microservice Pipelines

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
State Acceptance Rate (λ)

0.6

0.7

0.8

0.9

1.0

SL
O

Fu
lfi

llm
en

t R
at

e

VehicleRouting HL
VehicleRouting LL
TrafficPrediction HL
TrafficPrediction LL
LiveMonitoring HL
LiveMonitoring LL

Figure 5.10: SLO fulfillment (high/low-level) of different applications and λs

inference results. To answer what λ is optimal for each application, we vary λ and
highlight its effect on high-level and low-level SLO fulfillment.

We apply our methodology with λ ∈ {0.1, 0.2, ..., 1.0} and collect the resulting parameter
assignments and low-level SLOs. Then, we configure the system according to these
constraints and evaluate all SLOs: Figure 5.10 visualizes both the high-level and the
low-level SLO fulfillment (dashed or solid lines) for different λ values. The SLO fulfillment
(y-axis) is calculated as the average of all microservices included per application, e.g.,
VehicleRouting and all its parents.

We observe, that low-level SLOs are always fulfilled to a higher degree than high-level
SLOs, which supports the claim that high-level fulfillment is a consequence. Further,
increasing λ had a positive effect on the SLO fulfillment (transition from 0.1 to 0.7);
however, as the acceptance range becomes too narrow, LiveMonitoring runs into SLO
conflicts, indicated by fulfillment = 0. The optimal λ was different for each application;
hence, it needs a dynamic mechanism that maximizes λ without risking conflicts.

Conflicts (and Resolution) (RQ-3) The missing piece for this RQ is to answer where
in the BN conflicts actually occur. To that extent, we prepare different combinations of
high-level SLOs, provide them to the diffusion algorithm, and analyze for each application
whether conflicts occur, and where they occur. Still, whenever possible, conflicts should
be resolved automatically, otherwise indicated to stakeholders.

The DAG for LiveMonitor equals in large parts the one of VehicleRouting in Figure 5.6,
which is why we reuse it for the following explanations. To show how and when conflicts
occur, we focus our evaluation on LiveMonitor : we provide three high-level SLOs,
various thresholds for each of them, and combine them as depicted in Table 5.10. The

93

5. Orchestration of Computing Continuum Services

Table 5.10: Conflicts among high-level SLOs for LiveMonitor

cumm_delay min(energy) max(customer_sat) both

≤ 120 ms ✓ ✓ �{fps}
≤ 100 ms �{pixel} ✓ �{∧ ∪ pixel}
≤ 50 ms �{∧ ∪ fps} �{gpu, pixel, fps} �{∧ ∪ gpu}
≤ 40 ms �{∧ ∪ batch} �{∧} �{∧ ∪ fig_size}
≤ 25 ms �{∧} �{∧ ∪ cache_db} �{∧ ∪ cache_db}

cumm_delay is always included in the diffusion but combined either with min(energy),
max(customer_sat), or both of them.

Depending on the combinations of high-level SLOs and the threshold of cumm_delay ≤
{120, 100, 50, 40, 25}, different variables start to show conflicts. In particular, Table 5.10
also shows for each combination of high-level SLOs whether it creates any major conflict,
which is indicated by a � symbol. While cumm_delay ≤ 120 did not produce conflicts
with either min(energy) or max(customer_sat), applying both immediately causes a
conflict for fps. In the rows below, smaller cumm_delay gradually leads to more conflicts;
∧ indicates that all conflicts from the above line are propagated, hence, ≤ 25 and
min(energy) led to three conflicting variables. Thus, conflicts can be identified prior to
runtime, which is useful to indicate what type of high-level SLOs can be combined.

Limitations

When diffusing high-level SLOs, the complexity of Algo. 5.6 is dominated by the number
of STATES of high-level SLO variables (h) and their ancestors (l), leading to a complexity
of O((h× l ×Q)m). Hence, this approach works well for variables that have few discrete
states, or continuous variables that are binned into a low number of bins; how much
precision this sacrifices depends on the use case. Apart from that, the complexity is
determined by the depth of ancestors (m).

Various optimizations could be applied to Algo. 5.6, one of them would be to “fold up"
longer subtrees in the BN that are single-parented, i.e., do not have other parent nodes.
This means, that none of them would have to be extended with a low-level SLO, except
for the root node and its direct children (not grandchildren); thus, the list of SLOs could
be simplified. However, this condition did not occur in the evaluation, which shows that
we must also aim for more complex use cases to improve our methodology further.

Lastly, the algorithm puts a lot of emphasis on the quality of the BN: if G does not
accurately reflect reality, e.g., edges are missing or pointing in the wrong direction, the
outcome of the algorithm will deviate. Although BN quality was not the focus of this
subchapter, the evaluation indicated that BNs are a bottleneck for the methodology.
In particular, the applied techniques often fluctuate regarding the direction of edges.
These minor issues can prove fatal for the results of the algorithm, hence, we tried to pin
respective edges according to expert knowledge to create a stable evaluation environment.

94

5.2. Diffusing High-Level SLOs in Microservice Pipelines

Nevertheless, the results of different BNL techniques and their impact on high-level SLO
fulfillment must be the focus of future work.

5.2.5 Summary

This subchapter presented a diffusion mechanism that translates stakeholders’ high-level
SLOs into lower-level constraints. For a composition of microservices, it becomes thus
clear how individual sub-processes contribute to high-level objectives, and how these must
be configured to ensure SLO fulfillment. In particular, we presented a 3-step methodology
that infers this knowledge from a Bayesian network, while resolving potential conflicts
among competing SLOs as far as possible. The evaluation showed how multiple high-level
SLOs, each targeting different QoS or QoE aspects, can be diffused over four different
microservice pipelines. For each application, the inferred constraints could exert direct
control over high-level SLO fulfillment, which was consequently satisfied between 83 %
to 100 % of observations. Further, we could show the impact that the "restrictiveness" of
low-level SLO assignments has on higher-level SLOs and how conflicts that occur can
endanger these values. In that regard, future work will use these insights to improve the
methodology further.

95

5. Orchestration of Computing Continuum Services

5.3 SLO-Aware Task Offloading

In the context of autonomous vehicles (AVs), offloading is essential for guaranteeing
the execution of perception tasks, e.g., mobile mapping or object detection. While
existing work on offloading focused extensively on minimizing inter-vehicle networking
latency, vehicle platoons (e.g., heavy-duty transport) present numerous other objectives,
such as energy efficiency or data quality. To optimize these Service Level Objectives
(SLOs) during operation, this subchapter presents a purely Vehicle-to-Vehicle approach
(V2V) for collaborative services offloading within a vehicle platoon. By training and
using a Bayesian Network (BN), services can proactively decide to offload whenever
this promises to improve platoon-wide SLO fulfillment; therefore, vehicles estimate how
both sides would be impacted by offloading a service. In particular, this considers
resource heterogeneity within the platoon to avoid overloading more restricted devices.
We evaluate our approach in a physical setup, where vehicles in a platoon continuously
(i.e., every 500 ms) interpret the SLOs of three perception services. Our probabilistic,
predictive method shows promising results in handling large AV platoons; within seconds,
it detects and resolves SLO violations through offloading.

The remainder of this subchapter (see footnote 1) is organized as follows: Section 5.3.2
provides an illustrative scenario, Section 5.3.3 describes our framework for SLO-aware
offloading, which is evaluated in Section 5.3.4; Section 5.3.5 provides related work. Finally,
Section 5.3.6 summarizes the subchapter with an outlook on future work.

5.3.1 Introduction

The swift evolution of Autonomous Vehicles (AVs) promises a disruptive impact [MWYY20]
for future transportation. Despite AV solutions claim considerable benefits, such as rapid
green transition and traffic flow improvement [KBJ+20], the execution of AV-enabling
services, such as perception, path planning, and control [LMYDM22] pose ambitious
processing requirements. Here, optimal allocation and execution of workloads highly
depend on AVs’ constrained computation capabilities and the supporting infrastructure’s
network bandwidth. A lack of these guarantees can cause delays in real-time perception
and decision-making, leading to potentially harmful consequences.

Services offloading [FSL+23] aims at mitigating these risks, for example, by minimizing
computation latency between neighboring vehicles through Vehicle-to-Vehicle (V2V)
or Vehicle-to-Infrastructure (V2I) transmission. However, collaborative AV scenarios
commonly have higher-level objectives besides latency. For instance, consider AV platoons
for public or heavy-duty transport, where the system providers want to minimize costs or
energy consumption. We define these requirements as Service Level Objectives (SLOs) –
a term from software engineering. The concept of SLOs is wide enough to define any high-
or low-level objective that a management framework can enforce [MSRD23, SPDD24b]
by elastically adapting hardware or software. SLO-awareness also offers promising
scenarios [QLZH18] for V2V offloading; however, its adoption remains limited, highlighting
the gap for more intelligent offloading mechanisms [GLL20].

96

5.3. SLO-Aware Task Offloading

This subchapter, therefore, aims to ensure SLOs by incorporating them into the offloading
mechanism – we call this “SLO-aware task offloading”. Our motivation stems from two
central objectives: (1) we want to ensure that vehicles fulfill the SLOs of their local services;
if SLOs are violated, this might be resolved by offloading services, and simultaneously, (2)
offloaded tasks must not jeopardize the SLO fulfillment of existing services at the target
host. This goal implies solving a combinatorial problem, i.e., the optimal assignment
of n services to m vehicles; this problem is NP-hard, hence practically intractable. A
solution could be to decompose the problem so that AVs make decentralized offloading
decisions. However, training an offloading model for every AV separately would introduce
a considerable overhead. Furthermore, we would miss the chance to combine knowledge
from multiple AVs, which promises a more profound understanding. For these reasons,
we envision a method that trains a decision model within an AV but simultaneously
integrates knowledge from other AVs.

In this subchapter, we present a modular, collaborative framework for autonomous SLO
interpretation and service offloading. We consider collaborative offloading approaches
using “decentralized” sensory data [GLZ+21]. Individual services continuously observe
their processing to understand the extent to which SLOs can be fulfilled on different
processing hardware; this knowledge is encoded in an SLO interpretation (SLO-I) model.
These models are updated by a mutable platoon leader according to AVs’ observations
and then broadcast to other AVs. Given the SLO-I model, individual services predict
how offloading impacts global SLO fulfillment. The contributions of this subchapter are:

1. An SLO-aware offloading mechanism based on Bayesian networks that dynamically
estimates the hardware implications of multiple competing services to find a satis-
fying assignment. Thus, it is possible to optimize the SLO fulfillment by shifting
computation within a composable vehicle platoon.

2. A collaborative training strategy that continuously exchanges model updates be-
tween edge devices while adjusting the training frequency according to agents’
local SLO prediction errors. Thus, service agents improve their SLO interpretation
whenever the system does not behave as predicted.

3. A modular framework for collaborative service offloading that can be extended
with custom processing services and respective SLOs. Thus, other service managers
can plug their own service implementation into the framework, which itself can be
installed on arbitrary edge device types.

5.3.2 Illustrative Scenario

Here, we consider a platoon of vehicles for heavy-duty transportation. Depending on
the trajectories of platoon members, individual vehicles can join or leave the platoon
at specific intersections, such as ramps. One of the platoon members is elected as the
leader, either apriori or dynamically. In this subchapter, we focus on V2V offloading, as
V2I infrastructures could be impractical [FSL+23] or add delays [CCL+20].

97

5. Orchestration of Computing Continuum Services

Perception
sensors

v1
v2 v3

v 4

(a) Maneuvers of the platoon

Offload
service

Latency
SLO Fulfillment

Energy
Quality

v1 v2 v3

s1 , s2 s3

t2 t3

(b) Offloading within the platoon

Figure 5.11: Composite vehicle platoons offload computations according to SLO fulfill-
ment; if service s2’s SLOs are violated at host v2, it searches for alternatives, such as v3

As shown in Fig. 5.11a, n vehicles are clustered into a platoon P = {v1, ..., vn}. We
represent each vehicle through the pair v = ⟨id, t⟩, where v.t specifies the type of processing
device embedded. Additionally, each vehicle is equipped with numerous sensors and
perception services, for instance, in Fig. 5.11b, vehicle v2 runs two services, i.e., mapping
its surroundings through Lidar (s1) and detecting objects on the road through computer
vision (s2). Given that v2 has a QR code attached to its rear, v3 follows its predecessor
by scanning for QR codes (s3). We define a service through s = ⟨type, Q, C⟩, which
reflects the type of perception service, e.g., Lidar or CV; Q specifies a set of processing
SLOs, and C a list of service constraints, e.g., CV should operate at fps = 15. These
specifications ensure safe operations when vehicles must respond to dynamic conditions.

Depending on services’ resource demand, vehicles may lack the processing capabilities to
fulfill their SLOs, which impacts how (i.e., latency and quality) a vehicle perceives its
environment. For instance, v2 might employ a weaker processing device (v2.t); however,
v3’s resources are less utilized, so v2 might offload one of its services to v3. Therefore,
v1 must now decide (1) which service, i.e., s1 or s2, should best be offloaded to v3, (2)
whether this improves SLO fulfillment of remaining services at v2, and (3) if offloading
could impact s3 negatively. In the context of this subchapter, we focus on higher-level
requirements, i.e., leaving out networking latencies for transferring input data and results
under the assumption of high network throughput between nearby vehicles.

5.3.3 Methodology

In the following, we present our modular framework for SLO-aware task offloading in
composable vehicle platoons. This means, continuously observing service executions to
collect insights, interpreting these insights through collaborative training, and making
offloading decisions. Fig. 5.12 provides a high-level overview of these processes, which
are explained in more detail in subsections 5.3.3 to 5.3.3.

98

5.3. SLO-Aware Task Offloading

v1 -- platoon leader

Service Wrapper

Proc. Latency
Energy Cons.
Data Quality

v2 -- platoon member v3 -- platoon member

update SLO interpretation model

s2s1 s3

s4

s5s2

Continuous service observation Trigger collaborative training Evaluate offloading options

t1
t2t1

s2
v1v2prediction error

Figure 5.12: Framework for collaborative offloading: inaccurate SLO predictions trigger
retraining of SLO interpretation models; services use these models to evaluate alternative
hosts according to their expected hardware utilization and SLO fulfillment

Service Observation

The first building block of our approach is observing a service, i.e., continuously monitoring
and interpreting its SLO fulfillment. Observation requires interpreting service metrics
parallel to service execution, as part of the service wrapper in Fig. 5.12. Perception tasks,
such as those executed by autonomous vehicles, usually work iteratively; hence, service
metrics are also interpreted step by step. In Algo. 5.8, it is depicted how metrics (Ds,v)
from executing a service (s) on a vehicle (v) are interpreted: for a set of SLOs (Q), the
percentage of metrics (ϕ)9that fulfill these conditions is determined as shown in Eq. (5.7);
then, ϕ is appended to the sliding window Wϕ. To avoid overhasty decisions based on
sporadic SLO violations, the length of the sliding window (|Wϕ|) can be customized.

ϕ(Q) =
∑︁|Q|

i=1 ϕ(qi)
|Q|

(5.7a)

ϕ(qi) = ϕ(qi, m, v|∀m ∈ Dv
qi

, v ∈ V) =
|Dv

qi
|∑︂

j=1

ϕ(mj , qi)
|Dv|

(5.7b)

where ϕ(qi, mj) =
{︄

1, if mqi
jmin
≤ mj ≤ mqi

jmax

0, otherwise
(5.7c)

To understand if a service should be loaded off, we consider both its current SLO
fulfillment as well as predictions according to historical observations; for this, we infer
the predicted SLO fulfillment (Line 3) using a Bayesian Network (BN). BNs, as presented

9We choose the symbol ϕ due to the sound of the letter, i.e., SLO ful-phi-llment

99

5. Orchestration of Computing Continuum Services

Algorithm 5.8: Continuous SLO Interpretation
Require: D, B, Wϕ; s, ms,t, ρ, ω, γ (global)

1: ϕs ← ϕ(s.Q)
2: Wϕ ←Wϕ ∪ ϕ
3: pϕ ← INFER(ms,t, s.Q, s.C)
4: B ← B ∪D
5: er ← abs(Wϕ − pϕ) + FULL(B)
6: if er > ρ then
7: ms,t ← RETRAIN(B); B ← ∅
8: end if
9: eo ← abs(Wϕ − pϕ)) + (1−Wϕ)

10: if eo > ω then
11: v′ ← FIND_OFFLOAD(s, v)
12: if v′ ̸= ∅ then OFFLOAD(s, v′)
13: end if

in Section 5.1.2, can answer how likely it is to observe a specific (i.e., SLO fulfilling) state
at runtime; hence, we call them SLO interpretation (SLO-I) models. For an SLO-I model
m and service s, agents predict SLO fulfillment through INFER(m, s.Q, s.C).

To ensure that predictions remain accurate regardless of variable drifts, increasing
prediction errors trigger retraining. As more training data is collected (Line 4), the
utilization of the metrics buffer, as shown in Eq. (5.8), indicates that the model becomes
outdated, putting additional weight on retraining.

FULL(B) =
∑︁n

i=1 1
|B|

(5.8)

Next, in Line 5, we calculate the evidence to retrain (er) as the sum of absolute prediction
error and metric buffer utilization. If er surpasses the retraining rate (ρ), the metrics
buffer is sent to the platoon leader to update the SLO-I model; this is further elaborated
in Section 5.3.3. Notice that the buffer size (|B|) and ρ can both be customized; for
instance, ρ = 1.0 would be exceeded if FULL(B) = 0.8 and the prediction is off by 0.3.

Model retraining assures that offloading decisions are taken based on accurate assumptions;
to that extent, the evidence to load off (eo) is computed (Line 9) as the sum of absolute
SLO violation and prediction error. When eo surpasses a custom rate ω, and only in this
case, does the agent look for a suitable host within the vehicle platoon (Line 11); if there
is one, the service will then be offloaded there; this is explained in Section 5.3.3.

Collaborative Training

Retraining of SLO-I models is carried out by the platoon leader, i.e., a distinguished
member elected; however, training data is provided by all platoon members. For instance,

100

5.3. SLO-Aware Task Offloading

recall Fig. 5.12, where s2 and s5 are two CV service instances executed on different hosts.
Each service collects evidence to retrain (er) independently of other instances; once its
er > ω, the service requests a model update from the platoon leader, providing its local
training buffer. Technically, our architecture allows platoon members to update SLO-I
models locally; however, limiting the training to the leader improves model consistency
over the platoon, plus it isolates the training overhead. Also, to avoid a platoon leader
becoming a single point of failure, new leaders can be reelected at any point; for the
context of this subchapter, we exclude leader election strategies from the analysis.

Each combination of service and device type is encoded in a unique SLO-I model.
Therefore, as soon as the platoon leader (v1) receives a metric buffer (Bs,v2) from a
member (v2), it first checks v2’s type of processing device (v2.t), e.g., Jetson Orin NX.
Next, the leader updates its local SLO-I model (ms,t) for service s and device type v2.t; in
our example, this means updating the SLO-I model of service s = CV executed on device
type t = NX. Finally, a new model version m′ = PARL(m, B) is created by updating
the BN parameters according to recent observations (Bs,v). Retraining through PARL
is limited to updating the conditional probabilities of BN variables; the structure (i.e.,
variable relations) is left untouched and only supplied through expert knowledge.

After retraining, the updated model (m′) is shared within the platoon. For this, the
platoon leader broadcasts m′

s,t to all members in {v ∈ P | v.t = v2.t}, i.e., to all platoon
members with the matching device type. Vehicles that received an updated model now
substitute the SLO-I models of locally running services. For Fig. 5.12, this would mean
that s2 gets updated, but s5 not, since v1 has a device type v2.t ̸= v1.t. Thus, all instances
of service s at vehicles with type v.t = v2 interpret their SLO fulfillment according to the
new model version.

Service Offloading

Once a service collected sufficient evidence to load off (eo), like s2 in Fig. 5.11 & 5.12,
the service looks for the best alternative host, which means comparing for each of the
other platoon members if global SLO fulfillment would be improved by offloading there.
Formally, this is described in Algo. 5.9, which uses the list of platoon members (P),
the assignments (A) of which vehicle currently executes which service, and the shared
collection (M) of all SLO-I models. In case the platoon does not contain other vehicles
(Line 1), the search stops immediately; otherwise, the service predicts (1) the combined
SLO fulfillment (ϕS) for all services (Sv) executed at vehicle v (Line 4), and (2) how
offloading s would change local SLO fulfillment (ϕS′) (Line 5). For this, we first estimate
the combined hardware demand (CONV_HW) that would emerge from co-locating the
services on a target device and then estimate per service if the increased hardware load
has an impact on its SLO fulfillment.

Before continuing Algo. 5.9, we briefly explain CONV_HW(S, t), which predicts the hardware
utilization that would result from executing all s ∈ S at a device of type t. For each
service s ∈ S, we use the respective model ms,t ∈ M to infer its expected hardware

101

5. Orchestration of Computing Continuum Services

Algorithm 5.9: Evaluating Alternative Host (FIND_OFFLOAD)
Require: s, v; P , A, M (global)
Ensure: v′ {Optimal vehicle for offloading s from v}

1: if |P | = 1 then return ∅
2: Sv ← {sa | (sa, va) ∈ A | va = v}
3: S′

v ← Sv \ {s}; Γ← ∅
4: ϕS ← INFER(M [Sv], Sv.Q,CONV_HW(Sv, v.t))
5: ϕS′ ← INFER(M [S′

v], S′
v.Q,CONV_HW(S′

v, v.t))
6: for each w in P \ {v} do
7: Σw ← {sa | (sa, va) ∈ A | va = w}
8: Σ′

w ← Σw ∪ {s}
9: ϕΣ ← INFER(M [Σw], Σw.Q,CONV_HW(Σw, w.t))

10: ϕΣ′ ← INFER(M [Σ′
w], Σ′

w.Q,CONV_HW(Σ′
w, w.t))

11: γ ← (ϕS′ + ϕΣ′)− (ϕS + ϕΣ)
12: Γ← Γ ∪ (γ, w)
13: end for
14: γ, v′ ← {(γ, w) ∈ Γ, max(γ)}
15: return v′ if γ > 0 else ∅

utilization; in our case, we consider the hardware variables hw = {cpu, gpu, memory},
but the list can be extended arbitrarily with other monitor variables included in the
SLO-I model. This returns a probability distribution (e.g., pcpu) for each variable ∈ hw;
afterward, the combined hardware load is calculated as the convolution of the individual
loads. Formally, the convolution of two or more random variables (X, Y) with probability
density functions fX(x) and fY (y), i.e., the probabilities for each hw variable, is the sum
(Z = X + Y) of their individual distributions [Bac89], as shown in Eq. (5.9).

fZ(z) = (fX ∗ fY)(z) =
∫︂ ∞

−∞
fX(t)fY (z − t) dt (5.9)

Thus, we obtain the combined hardware utilization, which is supplied as a constraint
to INFER; this allows estimating how the respective hardware load would impact SLO
fulfillment (ϕS and ϕS′). Alternative approaches to estimating combined load and
resulting SLO fulfillment might need to empirically test the service deployment, which is
infeasible when decisions must be made quickly.

In the next step, we estimate for each of the other platoon members (w) the SLO
fulfillment (ϕΣ) of its local services (Σw) and how this would be affected (ϕΣ′) if we would
offload s there. This follows the same pattern applied for the source vehicle v: we use the
list of services executed at w (Line 7) and their respective SLO-I models to estimate their
SLO fulfillment according to the combined hardware load (Lines 9 & 10). The last step is
calculating the offloading gain (γ) for each platoon member (w), i.e., whether global SLO
fulfillment would be improved by offloading s to w, and then return the best possible
vehicle. For this, it first calculates γ (Line 11), which is appended to the collection Γ. In

102

5.3. SLO-Aware Task Offloading

the final step, it selected the best alternative host among the platoon members (Line 14);
however, if not even the best host would improve overall SLO fulfillment, it prefers to
keep the current host (Line 15). The outcome is returned to Algo. 5.8, which offloads the
service accordingly.

5.3.4 Use Case: Collaborative Vehicle Platoon

Here, we evaluate our methodology for a set of heterogeneous perception services and a
composable vehicle platoon. Specifically, we implement a prototype of our framework
that addresses the illustrated scenario; afterward, we document the experimental setup,
including service implementations and applied processing hardware, then present the
experimental results, and critically discuss them.

Implementation

To implement our methodology, we provide a Python-based prototype10that follows a
clear modular structure for services, their SLOs, and device types. Hence, the framework
can be extended with new services as long as they are supported by the underlying edge
device. Once the framework is installed11, services can be started or stopped remotely
through HTTP; for running the experiments, we send the respective instructions to
different platoon members using Postman flows12. To isolate resource consumption,
services are executed in individual Python threads. During that time, each service
observes its SLO fulfillment as part of its service wrapper (i.e., Algo. 5.8); in the present
state, this is done every 500ms, though it can be customized for service types or instances.
To avoid interfering with regular service execution, model training and evaluation of
alternative service hosts run detached from the main service thread.

Vehicles communicate exclusively over HTTP; the respective connection is established
either through a local access point managed by the platoon leader, or through IBSS,
i.e., a peer-to-peer network. Training and updating of SLO-I models, or rather their
underlying BNs, uses pgmpy [AT23], a Python library for Bayesian Network Learning
(BNL). In pgmpy, BNs can be encoded in XML, which each had a size of roughly 10kB
in our evaluation; hence, a feasible size to be transmitted and shared within the platoon.

Experimental Setup

To evaluate our prototype in a realistic environment, we implement the scenario illustrated
in Section 5.3.2, i.e., perception services are offloaded within a vehicle platoon according
to their local SLO fulfillment. We provide three perception services that can be executed
on edge devices; Tab. 5.11 provides essential information on these services: CV uses
Yolov8 to detect objects in a video stream, LI processes point clouds from a Lidar sensor

10The framework prototype is available at GitHub, accessed on July 14th 2024
11Instructions are provided in the following README, accessed on July 14th 2024
12Postman is a common tool for sending HTTP requests; Postman flows is a UI extension that allows

to specify sequences of requests, e.g., start/stop services

103

https://anonymous.4open.science/r/intelligentVehicle-720C/
https://anonymous.4open.science/r/intelligentVehicle-720C/README.md

5. Orchestration of Computing Continuum Services

Table 5.11: List of all predefined services that were added to the framework

ID Service Description CUDA Parameters SLOs

CV Object Detection with Yolov8 [VM24] Yes pixel, fps time, energy, rate
LI Lidar Point Cloud Processing [Dzu20] Yes mode, fps time, energy
QR Detect QR Code w/ OpenCV [ope24] No pixel, fps time, energy

Table 5.12: List of all edge devices that were involved in the evaluation

Full Device Name ID Price14 CPU RAM GPU CUDA

Jetson Orin NX (3) NX 450 € ARM Cortex 8C 8 GB Volta 1k 11.4
Jetson Orin AGX AGX 800 € ARM Cortex 12C 64 GB Volta 2k 12.2

to map the environment, and QR uses OpenCV to detects QR codes in a video. Each
service has specific tuning parameters, such as the resolution (pixel) and fps for CV and
QR; LI accepts an additional parameter mode to define the point cloud radius.

According to our expert knowledge, each service’s expected QoS level is specified through
a list of SLOs; through heuristic trial and error, the following ones proved useful: we
constrain the processing time ≤ 1000/fps, i.e., frames must be processed faster than
they come in; the maximum energy consumption can be adjusted for individual devices:
we put a limit of ≤ 15W for regular platoon members and ≤ 25W for the platoon leader.
Notice, that this considers the vehicle-wide energy consumption over all executed services.
According to the video resolution (pixel) provided to CV, the service uses the respective
Yolov8 model size (i.e., v8n, v8s, v8m); however, this affects the number of objects that
are detected, which is ensured through the rate SLO.

The presented framework is evaluated on two different instances of Nvidia Jetson boards,
namely Jetson Orin NX and Orin AGX, which are described in more detail in Tab. 5.12:
the AGX is superior in terms of memory and GPU and has a slightly better CPU.
While the specific Nvidia CUDA version has minor importance, CUDA itself is crucial
to accelerate the CV and LI services. Each Jetson NX is embedded in a Rosmaster
R213car – a battery-powered multi-sensory vehicle used for development. To ensure a
stable evaluation environment, the service processed either prerecorded videos (CV &
QR) or binary-encoded point clouds (LI); Fig. 5.13 shows a demo output for each service.

Results

We evaluate the prototype by observing: (1) what is the overhead of continuously
interpreting services, and what limitations arise from the platoon size; (2) if the SLO-aware
retraining ensure prediction accuracy regardless of unexpected runtime behavior; and (3)

13More information about the Rosmaster R2 here, accessed Jul 14th 2024
14Prices adopted from sparkfun, accessed Jul 14th 2024

104

https://github.com/YahboomTechnology/ROSMASTER-R2
https://sparkfun.com/

5.3. SLO-Aware Task Offloading

(a) CV (Yolov8) (b) LIdar (SFA3D) (c) QR (OpenCV)

Figure 5.13: Demo output for each service according to the prerecorded input data

0 50 100 150 200
Cycle Iteration

0

200

400

600

800

Ti
m
e
co

ns
um

ed
 (m

s) Training
Check Offload

(a) Orin NX

0 50 100 150 200
Cycle Iteration

0

200

400

600

800

Ti
m
e
co

ns
um

ed
 (m

s) Training
Check Offload

(b) Orin AGX

Figure 5.14: Time required to train the SLO-I model and evaluate alternative hosts

if the framework fulfills high-level SLOs within the platoon by offloading computations.
We assess these aspects using two base cases and one advanced scenario, all of which
involve real workloads and devices:

Scenario 1A An individual vehicle (i.e., NX or AGX) executes the QR service; every
25s, we add a vehicle to its platoon, up to a maximum size of 4 vehicles. Given this, we
track the time to execute the service wrapper, i.e., how long it takes to retrain the SLO-I
model and evaluate alternative hosts for QR.

Fig. 5.14 visualizes the times required to train the SLO-I model or evaluate alternative
hosts for offloading; both processes are executed as part of the service wrapper. The
wrapper runs every 500ms for a total of 100 seconds, hence, the plot contains 200 wrapper
iterations. Vertical grey lines indicate when an additional device is introduced to the
platoon, i.e., at 50, 100, and 150 iterations.

Given this, we conclude that the platoon size has a linear impact on the time required to
evaluate alternative hosts; the exception is |P | = 1, when evaluating other vehicles for
offloading is obsolete. For a platoon with |P | ≤ 3, the entire service wrapper finished
mostly in ≤ 500ms; however, |P | ≥ 4 starts exceeding 500ms, which indicates that
it would not be possible to interpret the SLO fulfillment every 500ms. This could be
overcome by either structuring the platoon into smaller subgroups or adjusting the
evaluation interval.

105

5. Orchestration of Computing Continuum Services

0 100 200 300 400
Cycle Iteration

0.00

0.25

0.50

0.75

1.00
Ti

m
e

co
ns

um
ed

 (m
s)

Stress CPU
Retrain
Expected (pϕ)
Actual (Wϕ)

(a) Without SLO-dependent retraining

0 100 200 300 400
Cycle Iteration

0.00

0.25

0.50

0.75

1.00

Ti
m

e
co

ns
um

ed
 (m

s)

Stress CPU
Retrain
Expected (pϕ)
Actual (Wϕ)

(b) With SLO-dependent retraining

Figure 5.15: Improved prediction accuracy through SLO-dependent retraining

t=30s

Jetson NX1

Jetson AGX

Platoon at t=0s

⟨QR1, [time, energy], {pixel: 480, fps: 5}⟩

⟨CV2, [time, energy, rate], {pixel: 480, fps: 10}⟩

⟨LI3, [time, energy], {mode: single, fps: 5}⟩

⟨CV4, [time, rate, energy], {pixel: 720, fps: 10}⟩
Jetson NX1

Jetson AGX

Jetson NX2

Jetson NX3

Jetson AGX

Jetson NX2

Platoon at t=90s Platoon at t=120s

Figure 5.16: Sequential description of Scenario 2: starting services and adjusting platoon

Scenario 1B An individual vehicle (i.e., AGX) runs CV locally; however, the respec-
tive SLO-I model was not yet fine-tuned and initial predictions are likely inaccurate.
Additionally, variable drifts occur, which we simulate through stress-ng: after 125s the
CPU load of AGX is stressed 40%. We measure pϕ and Wϕ, and compare our presented
training strategy with a static service wrapper.

Fig. 5.15 visualizes for both runs the predicted (pϕ) and actual SLO fulfillment (Wϕ);
vertical grey lines indicate when retraining happened, and the red line when the pertur-
bation occurred. Not only does the left side perform fewer retraining, i.e., 8 instead of
12, but more importantly, the right side presents shorter training intervals when the SLO
fulfillment is unstable, such as during the period between x = [250, 350]. Consequentially,
the Mean Squared Error (MSE) was 0.07 on the left and 0.01 on the right side; given that,
we conclude that SLO-dependent retaining helped to increase the prediction accuracy for
initially inaccurate models or at runtime when perturbations occur.

Scenario 2 Fig. 5.16 provides a sequential description of this scenario: at time t = 0s
the platoon P = {NX1, AGX} starts 3 services (i.e., QR1, CV2, LI3); at t = 30s NX1
starts CV4; at t = 90s NX2 joins the platoon, and at t = 120s NX3 joins, NX1 leaves
the platoon, and leadership is transferred to AGX.

Fig. 5.17 visualizes the SLO fulfillment of all services executed at NX1 and AGX ; at first,
all three services (i.e., QR1, CV2, LI3) achieve maximum SLO fulfillment, i.e., Wϕ = 1.0.
However, as soon as CV4 is started at t = 30s, NX1 fails to ensure the SLOs for both
LI3 and CV4. Due to that, NX1 decides to load off both services to AGX, which in turn,

106

5.3. SLO-Aware Task Offloading

0s 30s 90s 120s0.0

0.5

1.0

SL
O
fu
lfi
llm

en
t (
W
ϕ)

CV-4
LI-3
QR-1

(a) Orin NX1

0s 30s 90s 120s0.0

0.5

1.0

SL
O
fu
lfi
llm

en
t (
W
ϕ)

CV-2
CV-4
LI-3
QR-1

(b) Orin AGX

pcpu

S = [QR1]
γ = 0.07

S = ∅
γ = 0.35

pcpu pgpu

pgpuJetson NX1

Jetson NX2

(c) CV4 at t = 90s

Figure 5.17: SLO fulfillment and decision making for constrained services in the platoon

causes AGX to fail most of its services’ SLOs. This changes at t = 55s, when AGX
decides to move one of its services (i.e., QR-1) to NX1, which slightly recovers the SLO
fulfillment of the remaining three services. Next, at t = 90s, NX2 joins the platoon,
which encourages AGX to offload another service (i.e., CV4) to NX2. Here, Fig. 5.17c
shows the decision-making of AGX : since NX1 already executes QR1, it estimates how
adding CV4 would have a negative impact on QR1 due to predicted resource shortage;
hence, it chooses NX2, which promises global SLO improvement of γ = 0.35.

Given this, we conclude that services can react in ≤ 10s to local SLO violations, which
appears practical for real-time systems. This highlights the impact of co-locating too
many services at one edge device and how this can be resolved by adding new vehicles to
the platoon. Furthermore, changing the platoon leader at t = 120 showed no negative
impact on the remaining vehicles – its ongoing computations were shifted to an idle
vehicle (i.e., NX4) that just had joined.

5.3.5 Related Work

We classify existing literature on task offloading for IoV and related scenarios in two
main categories: offloading in V2I / V2V scenarios and offloading through Markovian or
Bayesian methods. To set the foundation for our contribution, we highlight the strengths
and limitations of these approaches.

IoV offloading mechanisms

In the context of V2I task offloading, Xu et al. [XDL+23] provide a neighborhood search
algorithm that minimizes costs of task outsourcing, estimated on simulated network
traffic. Similarly, Dong et al. [DXK23] provide a multi-task and multi-user offloading
mechanism for Mobile Edge Computing (MEC), optimized through a particle swarm.
Ant colony optimization (ACO) is another explorative algorithm for optimal pathfinding:
Mousa and Hussein [MH22] apply ACO to cluster IoT devices accessed by UAVs; Ma et
al. [MSXY22] model the same scenario, but with Mixed-Integer Linear Programming
(MILP), closely to Zhang et al. [ZJXZ23]. Related to our use case, Lu et al.[LLSY22]
provide a latency-aware V2V/V2I offloading mechanism based on Deep Reinforcement

107

5. Orchestration of Computing Continuum Services

Learning (DRL). Fan et al. [FSL+23] propose a V2V/V2I offloading tool that decomposes
optimization problems with Generalized Benders Decomposition (GBD).

Other authors model offloading scenarios as shortest path [FCC+19] or stochastic op-
timization problem [HCHC19]; some methodologies focus on solely V2V offloading:
Du et al. [DLZZ20] provide a collaborative offloading mechanism for sensing tasks in
autonomous vehicle platoons, making use of idle resources. Guo et al. [GRG22] combine
LSTM-based trajectory prediction and optimization strategy for V2V offloading. However,
all these methods, while solid, rely on simulations rather than real-world data, assume
static and homogeneous infrastructures, which are unrealistic, and frequently neglect
SLO measures like energy consumption.

Offloading through Markovian and Bayesian methods

To the best of our knowledge, there are no solutions based on Bayesian Networks for
V2V task offloading in platoons. Still, Markov models and Bayesian approaches are
found in Edge-to-Cloud scenarios for task offloading [SPDD24b, SPDD24d]. Hazra et
al. [HDAD23a] use MILP to find offloading locations in hierarchical computing environ-
ments under latency and energy constraints. Wu et al. [WCB+23] offload streaming tasks
from edge nodes to fog or cloud resources through a Markov decision process, improved
through Reinforcement Learning (RL). Tasoulas et al. [THB12] provide a prediction
mechanism that uses historical observations to forecast VMs’ resource demand through
Bayesian Networks. However, these papers offer little variety for SLOs and do not
incorporate dynamic or real-time adaptations.

Takeaways

Existing research focused extensively on MEC offloading mechanisms to RSUs or UAVs
for optimizing network latency; however other objectives, as energy efficiency or QoS
are often overlooked. In addition, most approaches were only evaluated in simulations;
however, to establish reliable offloading mechanisms, it is paramount to consider dynamic
runtime behavior. Conversely, we propose an SLO-aware mechanism for V2V offloading
that optimizes various SLOs in heterogeneous vehicle platoons. Centralized approaches
suffer from the combinatorial complexity of finding a global optimum and the risk of
becoming a single point of failure; in our approach, however, services have decentralized
authority to interpret their runtime behavior and make offloading decisions.

5.3.6 Summary

This subchapter introduced a novel V2V offloading mechanism that ensures high-level
requirements during runtime. By leveraging probabilistic models, individual services
estimate the resource demand over multiple services and the consequential SLO fulfillment
at alternative hosts. We evaluated the proposed framework in a physical setup, in which
platoon members feature heterogeneous processing devices. Noteworthy, we showed
how the framework could handle an increasing number of platoon members and a

108

5.4. Takeaways

series of perception services; hence, it improves platoon-wide SLO fulfillment through
decentralized decision-making. While this subchapter showed promising results, there
remain limitations and areas of improvement: First, although baselines are scarce, the
work must be contrasted with comparable approaches. While we ruled network latency
negligible in our case, future work could also include this for more detailed analyses.
Furthermore, our implementation executes services in Python threads; we plan a more
effective and elegant solution, containerizing each service instance. Another interesting
direction would be to explore more complex architectures in which a single platoon has
multiple swarms or when multiple platoons need to coordinate with each other.

5.4 Takeaways
The results presented in this chapter support the claim that our contributions improve
the state-of-the-art for orchestrating applications in DCCS. Nevertheless, there remain
further challenges in this domain, most noteworthy the resilience and fault tolerance
in large scalable architectures. Providing solutions to these problems and evaluating
these solutions require considerable effort to build and maintain adequate evaluation
environment. For this thesis, we did not want to apply any simulations but develop
smaller, encapsulated software components that could be empirically evaluated. Hence,
evaluating the presented ideas within larger environments remains for future work.

109

CHAPTER 6
Equilibrium through Active

Inference

Computing Continuum (CC) systems are challenged to ensure the intricate requirements
of each computational tier. Given the system’s scale, the Service Level Objectives (SLOs),
which are expressed as these requirements, must be disaggregated into smaller parts
that can be decentralized. We present our framework for collaborative edge intelligence,
enabling individual edge devices to (1) develop a causal understanding of how to enforce
their SLOs and (2) transfer knowledge to speed up the onboarding of heterogeneous
devices. Through collaboration, they (3) increase the scope of SLO fulfillment. We
implemented the framework and evaluated a use case in which a CC system is responsible
for ensuring Quality of Service (QoS) and Quality of Experience (QoE) during video
streaming. Our results showed that edge devices required only ten training rounds to
ensure four SLOs; furthermore, the underlying causal structures were also rationally
explainable. The addition of new types of devices can be done a posteriori; the framework
allowed them to reuse existing models, even though the device type had been unknown.
Finally, rebalancing the load within a device cluster allowed individual edge devices to
recover their SLO compliance after a network failure from 22% to 89%.

The remainder of this chapter is organized as follows: Section 6.2 introduces background
knowledge and related work as a prerequisite. Section 6.3 presents our framework for
collaborative edge intelligence. Section 6.4 contains the prototypical implementation of
the framework and the evaluation methodology; the respective results are presented in
Section 6.5. Section 6.6 provides an overview of existing research in this field. Finally,
we summarize this chapter in Section 6.7.

111

6. Equilibrium through Active Inference

6.1 Introduction

Computing Continuum (CC) systems, as envisioned in [B+20, DPD23, T+22], are large-
scale distributed systems composed of multiple computational tiers. Each tier serves a
unique purpose, e.g., providing latency-sensitive services (i.e., Edge), or an abundance of
virtual, scalable resources (i.e., Cloud). However, the requirements that each tier must
fulfill are equally diverse, as they span a wide variety of edge devices and fog nodes.
Assume that requirements would be ensured in the cloud, e.g., by analyzing metrics and
reconfiguring individual devices, massive amounts of data would have to be transferred.
Also, if edge devices fail to provide their service to a satisfying degree, the latency for
detecting and resolving this would be high.

Given the scale of the CC, requirements must be decentralized; this means that the logic
to evaluate requirements must be transferred to the component that they concern. Cloud-
level requirements, i.e., Service Level Objectives (SLOs), may thus be disaggregated into
smaller parts that are ensured by the respective components. To contribute to high-level
goals, each device optimizes its service according to its scope. This allows SLOs to span
the entire CC, also called Deep SLOs [CPMM+23]. While it is one challenge to segregate
and disseminate SLOs, ensuring them is another. Requirements are versatile and may
change over time, every component must itself discover how its SLOs are related to its
actions. For this to happen, the device could use Machine Learning (ML) techniques to
discover causal relations between its environment and SLO fulfillment [SPDD23]. This
promotes the usage of Active Inference (AIF) [FDCS+23], an emerging concept from
neuroscience that describes how the brain continuously predicts and evaluates sensory
information to model real-world processes. By extending individual CC components with
AIF, they could develop a causal understanding of how to adjust their environment to
ensure preferences (i.e., SLOs).

Ensuring SLOs autonomously (i.e., evaluating the environment to infer adaptations)
makes components intelligent [KLM+23]; any system composed entirely of such intelligent,
self-contained components becomes more resilient and reliable. No central logic must be
employed to ensure SLOs; thus, higher-level components can rely on the SLO fulfillment
of underlying components. Ascending from intelligent edge devices, the next level would
be intelligent fog nodes; those we see in the ideal position to orchestrate the service
of edge devices. Thereby, edge devices in proximity are bundled into a device cluster,
administered by a fog node; whenever the Edge is scaled up with new devices (or device
types), existing SLO-compliance models can be exchanged within the cluster. While
each tier has its own SLOs, their tools for adaptation can have a different scale, e.g., fog
nodes would be able to shift computations within clusters from devices that fail their
SLOs. Such operations can consider environmental impacts (e.g., network issues) as well
as heterogeneous device characteristics. The Cloud, as the next layer, would even have
sweeping tools to ensure global SLOs.

To realize this vision, we present our framework for collaborative edge intelligence. Guided
by AIF, individual edge devices gradually develop a causal understanding of how to

112

6.2. From Neuroscience to Computer Science

ensure their SLO. This knowledge is federated through a device cluster; edge devices
of arbitrary types reuse existing models to ensure their SLOs. Thus, the entire Edge
becomes spanned with SLO-compliant devices, which allows other CC tiers (i.e., up to
the Cloud) to construct their service on top of that. By the same method, cluster leaders
infer how to adjust their environment; thus, each tier may achieve an equilibrium for the
compound service offered. Hence, the contributions of this chapter are:

• An AIF-based ML technique that allows CC components to gradually identify
causal relations between environmental metrics and SLO fulfillment. Components
can thus evaluate SLOs decentralized and update their beliefs according to new
observations.

• The transfer and combination of ML models between heterogeneous devices to
accelerate their convergence towards SLO-fulfilling configurations. This simplifies
the onboarding of new device types (i.e., horizontal scaling) on the Edge.

• An offloading mechanism that redistributes load in an edge-fog cluster according
to devices’ capabilities to fulfill high-level SLOs. Thus, it counters environmental
factors and improves the cluster-wide level of QoS and QoE.

6.2 From Neuroscience to Computer Science

The framework presented in this chapter builds heavily on two existing concepts that we
adapt for our usage, namely causality and AIF. Although these topics might be known
to some readers, we provide this section to ensure a solid understanding of their core
aspects and terminology. Furthermore, since both concepts are not native to computer
science (or distributed systems), we highlight existing intersections as far as possible.

Causality and Causal Network Graphs

Causality allows modeling causal relations between events or variables. While spurious
correlations are misleading and hide the true causes, causality answers why an event
happened. However, to identify causal relations, specific experiments and consideration
of expert knowledge are required. To define a general theory of causality, Pearl [Pea09]
proposed Structural Causal Models (SCMs). Such a mathematical model can be expressed
through causal graphs, e.g., as Directed Acyclic Graph (DAG). Thus, variables can be
arranged from cause to consequence.

Causality is a hot topic in research because of its ability to provide explanations for
phenomena through interpretable graphical models. This is why many works link causality
and machine learning; see [GFB+23] for a comprehensive review. Thereby, causality can
also be embedded into distributed systems, e.g., for root cause detection [CQH19]. As
another instance, Lin et al. [LCZ18] use causal graphs in Cloud computing to detect
dependencies within a microservices-based architecture. For such use cases, DAGs are an

113

6. Equilibrium through Active Inference

ideal modeling tool. Interestingly, they monitor SLOs to trigger causal inference over
their causal graphs, being able to detect the source of the SLO violation.

Another crucial concept for this chapter – or generally for scalability in the CC – is the
Markov Blanket (MB). Consider a Bayesian network (BN) represented as a DAG (e.g.,
Fig. 6.2): a random variable is conditionally independent of all other variables, given its
MB. In other words, the MB of a variable shields it from external variables. In a DAG,
the MB of a variable consists of its parents, children, and co-parents. Discovering the
structure of BNs and extracting MBs through data is not a simple task, and many works
are devoted to that; see [TAS03] or [NMC07] for specific techniques, and [VCB21] for a
thorough survey. Regardless of the system size, MBs can achieve modularity; thus, the
system can be managed and controlled on a convenient scale.

Graph-based causal models promise to make systems explainable. Inspired by that,
our work stems from [DPD23, PRD21] to build MBs around SLO-governed components.
Thus, it becomes possible to isolate the system variables that affect SLO fulfillment.
On the one hand, this drastically reduces the number of variables required for analysis
thanks to conditional independence; the system can thus be managed at scale. On the
other hand, it is possible to leverage the BN to explain causal effects between variables
in the MB and the SLOs’ behavior (e.g., failure).

Active Inference

In this chapter, we use AIF to extend devices with causal knowledge on how to fulfill
their SLOs. However, we consider AIF an unknown concept for most readers outside of
neuroscience; therefore, we use this section to summarize core concepts of AIF according
to Friston et al. [Fri13, KPP+18, FDK09, SFW22, SBPF21, PPF22].

Core Concepts To interpret observable processes, agents generate models that resemble
these processes, e.g., humans reason that it rains due to water drops falling from the
sky. However, if this generative model and the real-world process diverge, the agent will
eventually be “surprised", e.g., because water drops were actually caused by a neighbor
watering her plants. The discrepancy (or uncertainty) between the agent’s understanding
of the process and the reality is called Free Energy (FE). In simple terms: the lower the
FE, the higher the prediction accuracy.

Internally, agents organize generative models in hierarchical structures; each level inter-
prets lower-level causes and, based on that, provides predictions to higher levels. For
example, suppose (1) it rains with a certain probability, (2) I bring an umbrella. This
is commonly known as Bayesian inference and allows agents to use priors (i.e., existing
beliefs) to calculate the probability of related events. Thus, decision processes can be
segregated into self-contained causal structures (i.e., MBs) that share only a limited
number of interface variables. For example, only the weather state (rainy or sunny) is
considered for picking the umbrella; any lower-level observations that determined the
agent’s perception of the weather (e.g., humidity or illumination) are disregarded.

114

6.3. Collaborative Edge Intelligence

To decrease FE, AIF agents repeatedly engage in action-perception cycles by (1) predicting
outcomes, (2) awaiting (or seeking) the outcome, and (3) updating beliefs. Afterward,
they can actively adjust the environment to their beliefs. As generative models become
more accurate, causal relations between their preferences (e.g., SLOs) and the environment
are revealed. However, the ability of agents to discover causal relationships is highly
dependent on the number and accuracy of observations [CVGN+23]. Fortunately, the
CC provides large amounts of operational metrics.

Some aspects of AIF, in particular decision-making, intersect with reinforcement learning.
Notably, the two approaches are not mutually exclusive, on the contrary, they are
complementary as shown by existing works [FDK09, MKBC21, TMSB20]. Important
differences of AIF are that agents are biased when they try to adapt the exterior towards
their beliefs and that they are specialized in minimizing surprise for an empirically
verifiable model.

Intersection with Distributed Systems Considering presented works, most research
on AIF has not been embedded and evaluated in operative distributed systems (e.g.,
[SFW22, HMD+22]). To the best of our knowledge, our latest research [SPDD24a] is thus
among the few works that embedded AIF into distributed systems; another work that we
want to highlight is Levchuk et al. [LPS+19], which created a decentralized mechanism
for team adaptation. For the remaining chapter, our work in [SPDD24a] serves as a
reference on how AIF agents can infer SLO-compliant device configurations: agents
operate parallel to continuous processing and adapt their generative models according to
prediction errors. We call such a model – at its core a BN – an Equilibrium-Oriented
SLO-Compliance (EOSC) model. In this chapter, we will extend the EOSC model to
achieve equilibrium in the CC.

6.3 Collaborative Edge Intelligence

To ensure SLOs throughout computational tiers, we propose our framework for collabo-
rative edge intelligence that encompasses three main contributions: (1) The continuous
model optimization based on AIF, which ensures SLOs (locally) on a device basis; (2) the
federation and combination of EOSC model between edge devices, which decreases the
overhead of training models for different device types from scratch; and (3) the evaluation
of SLOs on a cluster-level, which can rebalance load within the cluster according to
environmental factors.

These three contributions are described in the respective subsections (6.3.1 to 6.3.3);
Figure 6.1 contains a high-level overview of the framework’s capabilities. On the left,
it is depicted how SLOs are evaluated to continuously train an ML model and adapt
the service accordingly; this model is then federated and combined at a fog node, which
provides the model to an unknown device type (marked as red). The fog node analyzes
the overall SLO fulfillment in the cluster; if it appears beneficial to offload computation
from one device to another one (e.g., from the blue to the red one), this is orchestrated by

115

6. Equilibrium through Active Inference

Prepare Model

Stream Offloading

Transfer ModelFederate

Optimize SLOsEvaluate SLOs

Improve Model

Adapt Service

Figure 6.1: High-level overview of the collaborative edge intelligence framework that
continuously improves model evidence, shares this knowledge between edge devices, and
optimizes SLO fulfillment within this cluster.

the fog node. Logically, the model transfer and load balancing rely on the SLO fulfillment
in the Edge; this is why all three contributions are required to ensure SLOs on multiple
tiers (or the entire CC).

6.3.1 Continuous Model Optimization

An accurate generative model allows to explain a system’s behavior (e.g., why SLOs
were violated), infer how to adapt the system to ensure SLOs, and predict how changes
will affect this. Further, prediction errors are propagated back to the agent so that
the model can be improved according to the experienced deviations. In the following,
we will first present the representation of the EOSC model and the applied training
method. Afterward, this process is integrated into an AIF agent, which uses this process
to continuously improve the model accuracy.

Static Model Training and Inference

To bootstrap from evaluated concepts, we use the Bayesian Network Learning (BNL)
methodology presented in Section 4.2. This allows us to: (#1) train generative models of
processing tasks, (#2) filter the Markov blanket around SLOs, and (#3) extract knowledge
from Bayesian networks. The following paragraphs explain how this methodology was
incorporated into the AIF framework presented in this chapter.

Bayesian Network Learning As presented, BNL is an efficient way to generate
an accurate structure from data; its two main parts are STRL – structural learning of
causal dependencies (i.e., DAG), and PARL – parameter learning as quantification of
variable dependencies. For a data set with 5 columns, the resulting DAG could look like
Figure 6.2a. The AIF agent uses these methods for constructing (and later updating)

116

6.3. Collaborative Edge Intelligence

bitrate

streams

CPU

consump

network

(a) Entire DAG

bitrate

streams

CPU

consump

network

(b) MB for network

Figure 6.2: Causal variable relations in the DAG of a trained BN

the EOSC model: for a data set D, it trains a BN as model = PARL(STRL(D), D); this
first creates the BN structure and then the its conditional dependencies.

Markov Blanket Selection As presented, the Markov blanket shield a variable from
all nodes that are conditionally independent of it. Suppose we specify an SLO according
to device capabilities (e.g., network throughput < t) and evaluate it using a single variable
(e.g., network), we want to identify metrics related to SLO fulfillment. Namely, these
are all variables contained in the MB of network; the function MB(model, network) thus
returns all blue nodes in Figure 6.2b. In this context, we distinguish between metrics that
statically reflect the system state (e.g., CPU), and those that represent a parameterizable
variable (e.g., bitrate). However, we summarize both using the term "metrics" from a
BNL perspective. While static metrics are essential to explain why an SLO is in its
current state, only parameterizable ones can be dynamically reconfigured, i.e., they are
the possible action states of the AIF agent. Overall, the sum of metrics in the MB
provides a clear understanding of why an SLO is in its current state.

Knowledge Extraction Consider the DAGs from Figure 6.2: We construct a QoS
SLO that is fulfilled if network is below t and infer the probability of SLO violations
for different variable assignments. As discussed, VE accepts a list of target variables
(T), variable assignments (A), and an elimination order (O); by iterating over O, the
graph eventually contains only T . To decrease the complexity of VE, we execute it on
mb = MB(model, network), the node list thus equals {network, streams, bitrate}. Later,
we call VE through INFERENCE(mx, T, A), where mx can be any subset of the BN. If we
execute INFERENCE with mb, T = {network}, A = [(streams : 2), (bitrate : 720)], and
arbitrary O, the result contains all conditional probabilities of network given the variable
assignment; from this we can extract P (network > t). This is our central mechanism for
identifying probabilities of SLO violations given a system state.

117

6. Equilibrium through Active Inference

Causal Graph || Conditional Probabilities

Suggest Changes

Delay

Energy

Service Level Objectives

Predict Sensory Input

Compare to Event

Update Beliefs

Process Data

Reconfigure

Provide Metrics

Stream DataStream Data

Figure 6.3: Overview of Active Inference cycle: learning how to fulfill SLOs by continuously
training a generative model from metrics and inferring device configurations

Active Inference Cycle

The tools presented in the last section created a BN from processing metrics, extracted
an MB, and inferred system configurations that fulfill given SLOs. Supposed there
is sufficient data available, BNL can be a one-time process; however, there are two
fundamental issues: (1) data shifts, which likely occur after some time, will inevitably
distort the accuracy of the ML model, and (2) it is impractical to empirically evaluate
how an exponential number of system configuration impacts SLO fulfillment. Large and
complex systems, such as the CC, require a different approach: creating and updating
a model incrementally according to new observations while drawing conclusions for
unknown parameter combinations from existing data.

To evaluate this parameter space of configurations, we extend the AIF agents from
[SPDD23] to interpolate between empirically evaluated combinations; to maintain the
model’s FE low, agents continuously update conditional probabilities of variable relation
according to new observations. By design, our AIF agents can be employed at any CC
tier; nevertheless, this chapter is focused on intelligent edge devices, which collaborate
under the supervision of a fog node. Thus, we raise the granularity of intelligence from
the Edge to the Fog. In the following, we present the different tasks executed by an
AIF agent; this includes training and updating the BN, as well as evaluating its scope
of actions according to a set of behavioral factors. Based on that, agents decide how to
modify the system; each of these changes is again reflected by system metrics.

Agent and Operation The AIF agent operates parallel to regular device tasks, e.g.,
serving clients. Although regular operation, model training, and inference are logically
separated, they take place on the same physical device; Figure 6.3 contains a visual
representation: assume an edge device that continuously performs a workload, e.g.,
processing client data. The agent observes the device state and the environment through
metrics; thus, it can evaluate whether processing complies with SLOs, e.g., if a request
was finished with delay < t. From that data, the agent creates a BN, where conditional

118

6.3. Collaborative Edge Intelligence

probabilities reflect the SLO fulfillment under a discrete environmental state. Then, the
agent starts with predictive coding, i.e., forecasting whether future events will fulfill SLOs,
comparing the expectation with actual observations, and updating the BN accordingly.

After each iteration, the agent infers how to modify the system configuration to optimize
local SLO fulfillment. Following that approach, the AIF agent can create a generative
model from scratch or update a BN according to new observations by following its
sensing-acting loop. Thus, it is possible to cancel out data shifts, e.g., the result of a
model transfer from one edge device type to another. AIF can therefore perform the
fine-tuning that is required after such an operation.

Free Energy Minimization To create an accurate model, the AIF agent operates in
cycles; each cycle processes a batch of observations that reflects the environmental state,
including the latest system configuration. The agent continuously evaluates the batch,
updates its model, and chooses which system configuration (cnext) to choose for the next
iteration. Throughout cycles, the AIF agent has one central goal: decreasing the FE, or
in other words, minimizing surprise of predictions. Therefore, we will first present how
we calculate surprise and then embed it into the high-level loop executed by the agent.

For calculating the surprise for batch and model we present Algorithm 6.1. To decrease
the complexity, we limit the calculation to variables that directly reflect SLO fulfillment
(VSLO), and execute INFERENCE only on the MB of VSLO (Line 2). This node set is
further filtered (Line 5) to contain only the evidence variables (ev) that impact the
outcome of var; afterward, in Line 7, each row in the batch is filtered to contain only
these variables. In Lines 8 & 9, the probability of observing var, i.e., the state of the SLO,
given the environment (evidence) is first inferred and then appended as log_likelihood.
For each var, the cpt from model is considered, from which k – the number of states –
can be extracted as a representation of model complexity. CPT is as a helper function to
get the Conditional Probability Table (CPT) for a var in model. Together with n – the
number of observations – the BIC is calculated (Line 14). After calculating the surprise
for each var × row, this overall sum is returned.

The surprise has a special role within our AIF cycle, as it determines when and how BNL
takes place; consider therefore Algorithm 6.2, which shows the high-level loop executed
by the AIF agent. At the beginning of each iteration, the agent ensures that there exists
a model, otherwise, it creates an initial structure from batch (Lines 1 & 2). Notice, that
STRL and PARL accept now another parameter – model – which allows to update the
DAG and CPTs of model according to batch. Whether STRL or PARL is executed (Lines
7-11) is determined by the surprise magnitude (s). If s exceeds the median surprise of
the last 10 rounds (m10) by a custom factor h, STRL is applied; otherwise, if s exceeds
m10, PARL is applied. This distinction is necessary because STRL and PARL have quite
different runtimes, as we will reveal in Section 6.5. Finally, in Lines 12 & 13, the agent
evaluates possible system configurations and determines which one it will use for the
following iteration. We will explain these two functions in the next two paragraphs.

119

6. Equilibrium through Active Inference

Algorithm 6.1: SURPRISE for model and batch
Require: model, batch, VSLO

Ensure: ℑ // surprise over all observations
1: ℑ ← 0
2: mb← MB(model, VSLO)
3: for each var in VSLO do
4: log_likelihood← 0
5: ev ← MB(model, var)
6: for each row in batch do
7: evidence← row ∩ ev
8: p← INFERENCE(mb, var, evidence)
9: log_likelihood← log_likelihood + log(p)

10: end for
11: cpt← CPT(model, var)
12: k ← |cpt| // number of states in the CPT
13: n← |batch|
14: bic← (−2)× log_likelihood + k × log(n)
15: ℑ ← ℑ+ bic
16: end for
17: return ℑ

Behavioral Factors The behavior of an AIF agent, i.e., how it selects between possible
actions, is determined by three major factors: The pragmatic value (pv) defines how
well the device fulfills client expectations, e.g., if video resolution is satisfactory. The
risk assigned (ra) determines how likely the system will fail its service, e.g., if stream
packets are delivered on time. Lastly, the information gain (ig) represents the agent’s
expectation of how much it can improve model accuracy. The ig is directly related to
surprise minimization, whereas pv and ra reflect the agent’s capability to fulfill SLOs.
To separate concerns, we divide SLOs according to their characteristics: pv represents
QoE requirements, while ra contains QoS requirements. Combined, these three factors
determine the agent’s behavior; in the following, we will calculate each of them.

To infer the optimal device configuration (i.e., highest SLO fulfillment),the agent limits
itself to finding the Bayes-optimal configuration [GABZ23], i.e., optimal under current
knowledge. Therefore, the AIF agent first infers the assignment for known parameter
combinations (ck) that were empirically evaluated and then interpolates between these
values to span the entire parameter space. Calculating pv and ra is similar to Algorithm 6.1
(Lines 5-8): It requires a subset VQ ⊆ VSLO – either QoS or QoE SLOs – which is used
as ev ← MB(model, VQ). For each row in ck, evidence is constructed equally, so that
INFERENCE(mb, VQ, evidence) provides the joint probability of QoS or QoE violations.

ig(c) = e +
(︄
ℑ̃c

ℑ̄

)︄
× 100 (6.1)

120

6.3. Collaborative Edge Intelligence

Algorithm 6.2: An Iteration in the AIF Cycle
Require: model, batch, ℑ, h, VSLO

Ensure: cnext // Next configuration
1: if model = ∅ then
2: model← PARL(STRL(∅, batch), batch)
3: end if
4: s← SURPRISE(model, batch, VSLO)
5: ℑ ← ℑ ∪ {s}
6: m10 ← median(ℑ10) // over the last 10 values
7: if s > (m10 × h) then
8: model← STRL(model, batch)
9: else if s > m10 then

10: model← PARL(model, batch)
11: end if
12: K ← CALCULATE_FACTORS(model)
13: cnext ← BEST_CONFIGURATION(K)
14: return cnext

In accordance with [SPDD24a], high surprise indicates high information insight and,
hence, possible improvement of the model precision. However, from an agent’s perspective,
is it worth abandoning a supposedly satisfactory configuration (in terms of pv and ra) to
search for a global optimal one? This presents a tradeoff between exploration of unknown
areas and the tendency to stick to exploited areas; multi-agent systems commonly model
this through hyperparameters (e.g., [LPS+19]). In our case, we calculate the ig of a
configuration c ∈ ck as presented in Eq. (6.1) [SPDD24a]: it compares the median surprise
(ℑ̃c) for c with the overall mean surprise (ℑ̄). Configurations with high ℑ̃c will thus be
preferred by the AIF agent.

Parameter Space The AIF agent calculates the behavioral factors for all entries in
ck and summarizes them as K (Line 12 of Algorithm 6.2). For the next step, imagine
two configuration parameters {fps, pixel} with their combinations arranged in a 2D
[fps × pixel] matrix. After calculating K, the blank spaces in the parameter matrix
are filled by performing linear interpolation1. As a potential result, consider the matrix
depicted in Figure 6.4a. Later, in Section 6.4.2, the agent will interpolate in a 3D
parameter space.

Contrarily to pv and ra, the agent does not apply interpolation to estimate the ig of an
unknown parameter configuration. Instead, in the absence of observations for c, it assumes
that ig(c) = max(ℑ). Further, it remains to introduce a hyperparameter from Eq. 6.1,
namely e. To improve the interpolation of pv and ra, the agent initially focuses on key

1In fact, this is done using Python scypy, which triangulates data through a convex hull to perform
linear barycentric interpolation on each triangle.

121

https://scipy.org/

6. Equilibrium through Active Inference

(a) Interpolation for pv (b) ig after 1 round

Figure 6.4: Matrices of behavioral factors used by the AIF agent

positions of the possible configurations. Figure 6.4b illustrates that tendency; the visually
highlighted blocks are increased by e = 0.3. When calculating the behavioral factors, the
AIF agent thus initially focuses on these cornerstones to set up the interpolation; after
visiting c, it subtracts e from ig(c).

To summarize possible risks but also benefits that emerge from a configuration c, we
combine the three factors under a common one (u) that we calculate as uc = pvc+rac+igc.
The AIF agent compares common factors of all possible configurations and selects the
highest-scoring (Line 13 of Algorithm 6.2). By repeating this cycle, the agent gradually
develops an understanding of which areas in the parameter space are more likely to fulfill
SLOs, e.g., the left-bottom area in Figure 6.4a.

Final AIF Agent This concludes the agent’s continuous model optimization, which
maintains an up-to-date model of a processing task (i.e., the generative process). The
high accuracy in the EOSC model allows the AIF agent to infer (Bayes-)optimal device
configurations, which ensures QoS and QoE of ongoing operation. In the following, we
will now focus on the collaboration between the Edge-based agents.

6.3.2 Knowledge Transfer within the Cluster

By now, we presented AIF agents that can create generative models from scratch or
update a model according to new observations. However, if we assume a cluster of
nearby devices that process similar workloads, training EOSC models for every device
seems redundant. Also, if we aim to extend the cluster with more devices (i.e., scaling
up horizontally), model training delays the time until devices operate according to
requirements. Instead, we envision the federation of knowledge between edge devices by
exchanging EOSC models within the device cluster. Such a transfer learning approach
appears to be a straightforward process if the models were trained in the exact same
environment [WWZ+17]. However, the Edge is composed of multiple heterogeneous

122

6.3. Collaborative Edge Intelligence

device types; the resulting models thus reflect the characteristics of the device it was
trained on, i.e., its capability to cope with SLOs depends on the processing hardware.
For example, a multi-core device is certainly capable of processing multiple video streams,
while a single-core one is not. Furthermore, the behavior of AIF agents (i.e., which
action it takes) and environmental dynamics (e.g., demand) determine which parameter
combinations get more or less exploited.

Whenever a new device (type) joins a cluster, the question is whether there exists a
device within the cluster whose environment and characteristics match the newly-joint
device’s. Meanwhile, devices present in the cluster share their EOSC models and device
characteristics (e.g., hardware specs or environmental factors) with the cluster leader
(i.e., standing hierarchically above the device cluster). As a new device joins the cluster,
its characteristics are compared with the present ones to select a fitting model. In cases
where the characteristics of multiple devices are similar, their models are merged and
provided to the newly-joint device. Thus, the newly-joint device builds its EOSC model
on top of existing knowledge in the federation.

In the following, we dive deeper into this transfer-learning process by answering (1) how
models are federated between devices, (2) how hardware characteristics are compared to
select a model, and (3) how models are combined to fit a target device.

Cluster-wide Model Exchange

The EOSC model exchange knows two roles: (1) consumer – when joining a device cluster
it might be preferable to adopt an existing model rather than training one, and (2)
provider – any device might itself share its model with devices that join the cluster. The
selection of a fitting model, however, can happen on any trusted device; we assume for
this task either a cluster leader (i.e., an outstanding device elected due to its capabilities)
or a powerful fog node. To provide an estimation, these models are supposedly smaller
than 2 MB, as measured in [SPDD23, SPDD24a].

When making the architectural decision (i.e., cluster leader or fog node), various factors
can be considered, among them: network scale, cost, geographic location, and availability.
In cases where the cluster would be small (e.g., 10 devices), an edge device (e.g., from
Table 6.3) could cope with collecting and preparing EOSC models; however, for larger
clusters (e.g., 1000 devices), regular edge devices might fail to do so. In any case, a strong
factor for using fog nodes is their high availability – fog nodes can reliably cache a high
number of models from various devices. Either choice, they assume equal responsibilities,
thus we call them simply leader node. This leader node periodically collects EOSC models
of devices registered in the cluster, as well as their hardware characteristics. Based on
this information, models will be provided for new device types.

Model Comparison and Selection

Transferring a EOSC model to a newly-joint device raises two questions: First, is the
transfer of an existing model more efficient than learning the model from scratch? And

123

6. Equilibrium through Active Inference

second, how to choose the most convenient model for the new device? Of course, the
second question assumes that the device type is unknown and the cluster does not contain
the respective trained models so far. The first question will be answered and discussed
as a result of this article; the second question, however, requires building a hypothesis
around how to choose a model.

The dynamism within the training environment has a decisive impact on the resulting
model: applications with a stable number of user requests do not suffer many dynamics,
while applications that are linked to specific events (i.e., disaster management) can
experience extremely different requirements. However, we assume that environmental
factors are out of our hands – we are unaware of the dynamics of the environment
in which the device is set. Due to that, we focus on the device characteristics when
transferring models between edge devices. To that extent, we get inspiration from
the work of Casamayor et al. [PMN23], which allows classification of heterogeneous
characteristics of the devices found in a cluster, namely their CPU and GPU capacity.
This means that we relatively classify the CPU capacity (p) of the devices in the cluster in
a range [pmin, pmax], and their GPU capacity (g) from [gmin, gmax]. Given that there are
numerous edge devices without GPU, it is possible to set gmin = 0. To make this more
tangible, in Section 6.4.2, we present a list of edge devices whose hardware is classified
accordingly. Finally, we define each device’s capacities as dc = p + g. To estimate the
similarity of device characteristics and to identify a device with a matching model, the
leader node selects the device(s) with the closest integer dc.

Combination and Preparation of Models

Heterogeneous edge devices differ in terms of hardware characteristics. Using the presented
mechanism, there would frequently occur situations in which there is not exactly one
device that trumps all others. For example, consider a device with type tx that joins
a device cluster; there are already numerous device types present, among them ta and
tb. The leader node classifies their capabilities as dca = 3, dcb = 5, and dcx = 4. Which
model should now be provided to tx, the one trained on ta or on tb? And in case
dca = 2 and dcb = 7; is choosing dca really the smartest choice?

For both cases we merge the models from ta and tb, thus creating a new model mab that
presents the intersection. In the second case, where dcx does not fall exactly between
dca and dcb, this is done proportionately. Therefore, we require a mechanism to combine
EOSC models – still BNs at their cores. To date, merging BNs is an ongoing research
field that still presents various limitations [VRP22, VLS23]; in most cases, it is coupled
to conditions that models must fulfill. Due to this, we limit our work to merging CPTs.
As long as two models ma and mb contain the same structure (i.e., their DAGs are
identical) and their CPTs have the same cardinality (i.e., variable states), this is done as
follows: For a random variable r and its CPT(m, r), each table cell’s expected value (P)
is calculated as shown in Eq. (6.2); Pa and Pb represent probabilities of ma and mb, the
coefficients wa and wb reflect the distribution of dcx between dca and dcb. For example,
if dcx is aligned centrally between them, they take the value wa = wb = 0.5; otherwise, it

124

6.3. Collaborative Edge Intelligence

is shifted proportionally, but wa + wb = 1 must remain true.

Px = (wa × Pa) + (wb × Pb) (6.2)

If ma and mb do not fulfill these requirements, they would have to undergo a transfor-
mation process. Nevertheless, in Section 6.4.2, we apply a workaround to merge BNs
whose CPTs have different cardinalities. After merging the EOSC models, the leader
node provides mab to the newly-joint device; once received, transfer learning is completed.
Thus, it decreases the time for model training or even skips it entirely.

6.3.3 Stream Offloading in the Edge-Fog Cluster

Regardless of whether trained by an AIF agent or transferred from another device, a EOSC
model is a decisive step toward SLO fulfillment. Thus, edge devices are continuously
reconfigured to achieve maximum SLO compliance. However, despite our efforts, edge
devices are still vulnerable to environmental factors that cannot be controlled, e.g.,
irregular peaks in client traffic. While a EOSC model can have a hard time finding an
SLO-compromising device configuration, idle edge devices in close proximity might be
available for offloading computation. Again, to match our desired level of intelligence, this
can be achieved through collaboration between the agents. Given that the struggling edge
device is part of a device cluster, it is possible to (1) compare the device’s capabilities to
fulfill their SLOs within their environment, and (2) balance the load accordingly. Notice,
that shifting the load within the cluster is a (local) reconfiguration that follows the same
rules as in Section 6.3.1; this time, however, on a higher level.

In the following, we describe how to evaluate, analyze, and optimize the cluster-wide SLO
compliance; the overall process is visible in Figure 6.5: The edge devices in the cluster
(red & blue) serve their respective clients, e.g., by processing data, which is subject to
dynamic reconfiguration according to the EOSC model. Throughout processing, the edge
devices supply their SLO fulfillment to the leader node. Among that, they provide other
factors (i.e., as metrics) that potentially impact the fulfillment. Environmental factors
(e.g., insufficient hardware, power shortage, or client demand) can thus be contrasted
with the devices’ capacity to fulfill SLOs. Based on that analysis, the leader reconfigures
the cluster (e.g., by redistributing the load) so that QoS and QoE SLOs are optimized
within the cluster.

Cluster-wide Evaluation of SLOs

To analyze SLO fulfillment on a cluster level, the leader node does not reevaluate lower-
level SLOs – this was already covered within the Edge. Instead, the leader node merely
collects SLO compliance rates per device as a combined factor f = pv×ra. These metrics
are collected at the leader; depending on the desired amount of historical data, the high
availability of the Fog would again be beneficial for collecting data. The question is now
how to transfer metrics: Considering the potential size of a device cluster, we opt for a
push-based approach, where devices periodically supply their data to the leader.

125

6. Equilibrium through Active Inference

Redistribution

Reconfigure

Stream Data

Redistribution

Offloading Stream

SLO Fulfillment SLO Fulfillment

Analyze Performance

Optimize Assignment

Figure 6.5: Evaluating SLOs within a device cluster and reassigning tasks

Apart from the SLO fulfillment, edge devices provide metrics that reflect their current
environmental state. This includes any factors that the leader node should consider. If a
battery-equipped device suffers occasional power shortages, it can report this conditional
to the leader node, which adapts the network, e.g., by offloading computations to
other devices to decrease its power drain. However, in the event of an entire network
outage, devices can be incapable of reporting their state, and another node (e.g., leader)
would have to detect this. Other frequent conditions can be general network congestion,
including poor latency, jitter, or packet loss, but also devices’ geographic location, user
density, and peak usage times. Given their impact on the devices’ capacity to fulfill SLOs,
the leader node will rebalance the environment.

Analysis & Optimization per Device

Optimizing the devices’ environments requires methods to draw conclusions between
discrete environmental states and their consequential SLO fulfillment. To that extent, we
aim – again – to identify causal relations between metrics; however, this time on a cluster
level. Given a metric set (i.e., reflecting the environmental state) and the respective
SLO rates per device, the leader node can construct a BN and infer how environmental
changes impact the SLO fulfillment. To accelerate the construction of such a model, the
leader node can combine metrics from devices of the same type, or even those that have
comparable hardware characteristics (as done in Section 6.3.2). Although we ascended
from an Edge to a cluster level, we still use the same tool for analyzing and adapting
the environment – the EOSC model. However, to make a distinction, we call this new
instance a EOSC-F (Fog) model.

Given a trained EOSC-F model (or rather, its BN), it is evident which environmental
factors (σenv) have a causal impact on SLO fulfillment. This can also help to improve
the QoS in the long run, e.g., by pinpointing issues within the infrastructure. However,
we aim to ensure SLO fulfillment the moment the QoS or QoE drops; the EOSC-F model
can therefore consider the devices’ environment and redistribute client load to ensure
maximum SLO fulfillment within the cluster. To that extent, we present Algorithm 6.3,

126

6.3. Collaborative Edge Intelligence

Algorithm 6.3: Client reassignment algorithm
Require: model, nclient, σenv

Ensure: ass // assignment according to env. state
1: i← 0
2: ev ← MB(model, f)
3: for each λ ∈ Λ do
4: ass[λ] = 0
5: end for
6: while i < nclients do
7: δbest = −∞
8: for each λ ∈ Λ do
9: evidence← ev ∩ (σenv[λ] ∪ ass[λ] + 1)

10: δ ← INFERENCE(ev, f, evidence)
11: if δ > δbest then
12: δbest = λ
13: end if
14: end for
15: ass[δbest]← ass[δbest] + 1
16: i← i + 1
17: end while
18: return ass

which distributes a number of streams (nclient) between the devices (Λ) in the cluster.
Inference is again executed only on the variables that relate to SLO fulfillment,
i.e., MB(model, f), by filtering the model (Line 2 & 10). In Lines 6-18, the agent then
iteratively assigns clients to the device, whose SLO fulfillment is the least impacted by
receiving another stream (ass[λ] + 1). This assumes, that both ass and σenv are part of
ev, i.e., have an impact on SLO fulfillment. To that extent, σenv[λ] can contain factors
like device characteristics. After assigning all streams within the cluster, the assignment
can be orchestrated to the clients.

Orchestration and Redistribution

As a last step, the new cluster configuration must be enforced; in this case, by informing
pertinent devices of the new assignment. The leader node pushes this information to
all edge devices that must alter their configuration. In accordance with Figure 6.5, this
includes all devices that offload or receive clients (red & blue); thus, the red device
redirects clients to the blue device. To improve the SLO fulfillment within the cluster, the
assignment considered each device’s environment to provide an adequate configuration on
a cluster level. Regardless of whether the QoS was impacted by poor network conditions
or by poor hardware, if these conditions are packed as stateful information, the leader
node optimizes the cluster accordingly. Thus, covering heterogeneities between edge
devices, which otherwise fail to scale their service given the environmental stress.

127

6. Equilibrium through Active Inference

This concluded the client load redistribution, which optimized overall SLO fulfillment in
the cluster according to the EOSC-F model. To transfer intelligence to the network edge,
or even to the level of cluster or fog nodes, this section provided various concepts that
all had the same goal: ensure SLOs in the respective system. It remains to provide a
prototypical implementation of presented ideas, evaluate it according to key aspects, and
argue to what extent it is ready for wider adoption.

6.4 Use Case: Distributed Video Processing

In the following, we describe a CC scenario that requires edge devices to continuously
transform video streams; this use case poses various requirements that must be ensured
throughout processing. Afterward, we outline our prototype that ensures SLOs through
collaborative edge intelligence. Essentially, this is the implementation of the presented
framework. Lastly, we explain the methodology according to which the prototype will be
evaluated. Section 6.5 will contain the respective results.

6.4.1 Use Case Description

The CC as a distributed system provides unprecedented opportunities for service providers
and clients, e.g., in terms of processing or requirements assurance. As an example, consider
a region with frequent natural disasters where the humanitarian situation should be
documented. Therefore, reporters provide video streams in which vulnerable groups,
e.g., minors of age, are detected. In the same step, individuals can be counted or
visually highlighted; their identities, however, must be preserved. The region suffers
from occasional network breakdowns (i.e., this affects access to global resources like the
cloud but not internal connectivity); the reporting team thus provides ad hoc networking
infrastructure in the form of edge devices, which are installed in close proximity to
the operation area. Reporters equipped with IoT cameras are now capturing their
surroundings; the video streams are transformed on edge devices, where they can be
cached as long as global internet services are unavailable. Once resumed, videos are
streamed to a cloud platform that provides the content to worldwide consumers.

Envisioned Solution Due to the nature of how disasters happen, it is impossible
to fine-tune the complete streaming architecture beforehand. Therefore, the system is
unaware of how to ensure its service (i.e., characterized by SLOs) within this highly
dynamic environment. To that extent, we advertise our framework for collaborative
edge intelligence as the missing piece: Edge devices are supervised by AIF agents, which
ensure QoS and QoE through their EOSC model. Whenever the computing architecture
is extended with new devices (i.e., scaled horizontally), existing models can be transferred
to new devices, regardless of their device types being known. Apart from that, the leader
continuously analyzes edge devices’ capacity to comply with SLOs; in case some devices
are excessively loaded or suffer from short-term network issues, IoT clients are reassigned
to edge devices to optimize the cluster-wide SLO fulfillment.

128

6.4. Use Case: Distributed Video Processing

6.4.2 Implementation

While the last part of the use case outlined the envisioned solution, not all of these aspects
are implemented and evaluated; in this regard, we focus on the ideas presented in this
chapter. This especially concerns the three contributions of the presented framework, i.e.,
the AIF-based model training, knowledge transfer between heterogeneous devices, and
rebalancing of load according to environmental factors. Aspects such as bootstrapping of
IoT and edge devices and leader node election (e.g., fog or edge) were already covered,
e.g., by Murturi et al. [MD22, DM20]. The same applies to cloud-based distribution of
video streams. An exception, however, are privacy-preserving stream transformations;
for this, we make use of previously evaluated work [SMDD23]. To give our evaluation
more rigor, we chose this over simulating a workload and its impact on SLOs.

Prototype

We share the Python-based prototype of our framework in a GitHub repository2; it
contains all source code for implementing the three contributions, as well as the EOSC
models for each device type. The core logic is separated into two classes: Agent and
FogNode. These are the high-level loops executed in the main thread; all other processes
(e.g., AIF or VideoProcessor) run in detached threads. The central library that is
applied for training and updating BNs, as well as running inference queries, is again
pgmpy [AT23]. pgmpy offers ample support of BNL techniques; however our choice is
also motivated by personal preference – the framework’s performance must be analyzed
under different libraries (e.g., as done by [ZCC+23]). To improve the portability of our
framework and simplify distribution, we provide a docker image3. The image exposes
multiple env variables for configuring the solution, e.g., forcing the Agent to create a
EOSC model from scratch or disabling AIF entirely.

The source code also contains the framework for privacy-preserving stream transforma-
tion and the ML models for face [Lin22] and age detection [RTG15]. To improve the
reproducibility of results, we cancel out irregularities in the video streams by processing
prerecorded videos; these are contained in the same repository. To simulate redirecting
IoT devices within the cluster, it thus suffices to open/close processing threads on the
edge devices; this simplifies networking. The Agent can thus reconfigure the stream
assignment immediately, at the end of every AIF iteration. Because the use case is focused
on video streaming and the number of frames per second (fps) that are transferred, each
iteration lasts up to 1000ms.

Practical Limitations

Merging BN, as presented in Section 6.3.2, is only possible under the specified conditions,
which are not always given during the AIF cycles. The number of states in a CPT, for
example, is highly dynamic and extended as new data is received. To merge the EOSC

2github.com/borissedlak/FGCS, Last accessed: April 30, 2025
3hub.docker.com/basta55/workload, Last accessed: April 30, 2025

129

https://github.com/borissedlak/workload/tree/main/FGCS
https://hub.docker.com/repository/docker/basta55/workload/

6. Equilibrium through Active Inference

models under such circumstances, we provided a workaround: Instead of merging two BNs
(ma and mb), we extend one of them (e.g., ma). The device that trained mb maintains a
backup of the training data (db); this we use to update the CPTs of ma through PARL4,
i.e., mab = PARL(ma, db). Notice, that this merges the conditional probabilities of the
models, but not the structure; this remains an open question. While the resulting models
are valid, we cannot assume that the original training data is always maintained.

Another limitation is that the DAG of the model cannot be updated frivolously through
STRL; this triggers numerous updates within the CPTs of the BN, which are not supported
by default in pgmpy. Although bnlearn [Scu10] promises these features, we require a
package that can be embedded into our Python environment. Therefore, we make use
of the following workaround: Instead of updating the DAG of model ma according to
new observations batch, we train a new BN with data = batch ∪ da, where da reflects
again the backup data. So internally, the AIF agent executes STRL(model, batch) as
PARL(STRL(data), data), which likewise updates the CPTs with every execution. Solving
this limitation will be a far-reaching achievement that requires dedicated future work.

Variables and SLOs

For the given use case, the agents consider device and application (i.e., video processing)
metrics to construct EOSC models. Internally, BNL transforms metrics into model
variables, which are used to evaluate conditional probabilities. Table 6.1 contains an
overview of all captured metrics; each row contains a description, measuring unit, and if
it can be set as parameter. Notice, that only parameterizable variables can be adjusted
by AIF agents to optimize SLO fulfillment. For example, pixel and fps are video stream
properties of the IoT device, which are reconfigured by edge devices according to agents’
behavior. The leader node, on the other hand, can adjust the number of streams per
device, which is out of scope for individual devices.

The EOSC (or EOSC-F) models can be applied in different computational tiers to ensure
each tier’s unique requirements; thus, their model variables might not overlap. The
edge-based EOSC model contains the upper part of the variables, i.e., from pixel to
success, whereas the cluster-based EOSC-F model treats the lower part. Notice that
the metric’s origin, i.e., if it was measured from system stats or the application, does
not determine where it is used as a variable. From these variables, we construct SLOs
that reflect the system state in terms of QoS and QoE. The AIF agent considers this
classification when calculating pv and ra (recall Section 6.3.1). In Table 6.2, we present
four SLOs that must be ensured during edge-based processing and one that is ensured by
the cluster’s leader node. To simplify the EOSC models, we include the SLO into BNL
and remove the source variable, i.e., distance instead of distance.

4This functionality is natively offered by pgmpy; by default, the models are merged proportionally to
the number of samples that ma and db contain. This can be fine-tuned by adjusting the n_prev_samples
parameter; we use this to prioritize new observations batch over existing conditional probabilities.

130

6.4. Use Case: Distributed Video Processing

Table 6.1: Device metrics captured, which are turned into model variables by AIF

Name Origin Unit Description Param

pixel IoT num number of pixels contained in a frame Edge
fps IoT num number of frames received per second Edge
bitrate IoT num number of pixels transferred per second No
cpu Edge % utilization of the device CPU No
memory Edge % utilization of the system memory No
streams Edge num number of IoT devices providing data Fog
consumption Edge W energy pulled by the device No
network Edge num network throughput per application No
delay App. ms processing time per video frame No
success App. T/F if a pattern (i.e., face) was detected No
distance App. num relative object movement between frames No

slo_rate Edge % combined SLO Fulfillment rate (pv × ra) No
device_type Edge enum physical device type No
congestion Edge num network congestion that increases latency No

Table 6.2: Extracted SLOs and their classification.

SLO Condition Tier Type

network throughput < 1.6 MB/s Edge QoS
in_time delay < 1/fps Edge QoS
success success = True Edge QoE
distance distance < 50 Edge QoE

slo_rate max(slo_rate) Fog Both

We consider the presented SLOs relevant because (1) network ensures that the actual
throughput does not exceed the bandwidth allocated to this application, (2) in_time
makes sure that frames are computed within the available time frame, (3) success
guarantees maximal privacy preservation, and (4) distance ascertains a smooth trajectory
for tracked objects. The slo_rate reflects the cluster-wide SLO fulfillment. Notice that
in the supplied video stream, there was always a face present, which means success can
be compared against a ground truth.

Device Classification

Video processing is very dependent on the availability of GPU acceleration [SMDD23];
therefore, we apply multiple edge devices – with and without GPUs. All devices applied
for this chapter are listed in Table 6.3; in the following, we call them by their ID. The
other columns contain hardware characteristics and – complementarily – the original
price of the device. A special instance is XavierCP U : while its physical hardware is equal
to XavierGP U , we disabled the GPU acceleration (i.e., NVIDIA CUDA) to create another
device type. Overall, our devices differ greatly in terms of computing capabilities (e.g.,

131

6. Equilibrium through Active Inference

Table 6.3: List of devices used for implementing and evaluating the presented methodology

Full Device Name ID Price5 CPU [1,4] GPU [0,2] Σ

ThinkPad X1 Gen 10 Laptop 1800 € Very High (4) None (0) 4
Jetson Orin Nano Orin 500 € High (3) High (2) 5
Nvidia Jetson Nano Nano 150 € Low (1) None (0) 1
Jetson Xavier NX XavierCP U 300 € Medium (2) None (0) 2

Jetson Xavier NX XavierGP U 300 € Medium (2) Low (1) 3

missing GPU support or a highly superior CPU with 16 cores); nevertheless, as a whole,
these devices compose the heterogeneous edge layer of the CC architecture.

As a prerequisite for transfer learning, we classify devices in a cluster according to their
hardware characteristics. Although this process is dynamic, i.e., done repeatedly as
devices join or leave or leave the cluster, we focus our evaluation on a scenario where the
cluster contains all devices from Table 6.3, excluding XavierGP U ; the latter will be the
device joining the cluster. As discussed in Section 6.3.2, we classify these devices relative
to each other according to their CPU and GPU capabilities; the results are contained
in Table 6.3. To achieve the desired distance between the scalars, the CPU is aligned
between [1 ≤ p ≤ 4] and the GPU between [0 ≤ g ≤ 2].

6.4.3 Evaluation Methodology

The implementation of the use case is thus set up for evaluation. To ensure a solid foun-
dation for our framework, we will target each of the three pillars (i.e., the contributions)
individually. The order in which they are evaluated resembles the one used throughout
the chapter; this makes sense also from a logical point of view because transfer learning
and stream offloading rely on the underlying AIF mechanism. In the three paragraphs
below, we outline the evaluated aspects and motivate each question. Combined, this
represents our evaluation methodology.

Active Inference Our main interest includes the executability of the AIF agent on
edge devices and the extent to which the EOSC model improves the SLO fulfillment
within the Edge. Because structure and parameter learning are recurrent factors in the
evaluation, we will put emphasis on when they happen. Namely, our questions include:

A-1: Do MBs reduce the complexity of inference?

Increasingly large BNs require mechanisms to limit the complexity of a system; otherwise,
resource-restricted edge devices may fail to execute the AIF cycle within an induced time
frame. The MB, as a potential remedy, could achieve this.

5Prices adopted from sparkfun, accessed Jul 14th 2024

132

https://sparkfun.com/

6.4. Use Case: Distributed Video Processing

A-2: What is AIF’s operational overhead?
Training and updating EOSC models directly on edge devices allows them to adapt
quickly to system dynamics. However, any overhead introduced by AIF must not disrupt
regular device operation, e.g., data processing.

A-3: How long require AIF agents to ensure SLOs?
To optimize SLO fulfillment, the agent must be able to infer adequate system configuration.
However, there is no guarantee after how many AIF iterations the model will converge to
the desired accuracy. Hence, we must provide an estimate for this.

A-4: Are the produced Bayesian networks interpretable?
Large-scale distributed systems, e.g., the CC, require trusted and reliable components as
a solid foundation. Given that AIF can provide structures that are empirically verifiable,
this promises to increase trust.

A-4-2: Is the behavior of AIF agents explainable?
Being able to understand an agent’s decisions allows to justify (or empirically debug) its
behavior, e.g., why the agent chose a certain device configuration at a specific time. If
agents follow patterns, this also simplifies the configuration of hyperparameters.

A-5: What is the operational impact of including BNL in the AIF cycle?
BNL was identified as the dominant factor for the complexity of the AIF cycle; therefore,
we must ascertain whether edge devices can perform BNL without limitations. Depending
on the results, the two processes could be broken up into a federated learning approach,
e.g., to execute sub-steps in the Fog.

A-6: Can changes in variable distribution be handled?
Real-world generative processes are not guaranteed to stay stable, small environmental
changes (e.g., a new client) might suffice to change the SLO result. Nevertheless, these
changes should be detected and resolved through AIF-based model training.

A-7: Can SLOs be modified during runtime?
In the CC, devices can be administered by entities that stand hierarchically above them;
these can change their role in the architecture, or more simply, their SLOs. If a device
could not adapt its existing EOSC model, it would have to train from scratch.

Knowledge Transfer After focusing on the training of EOSC models, we are mainly
interested in how well the created models can be exchanged with other edge devices,
and if this promises to improve the training time. Ideally, we would thus reuse existing
knowledge instead of “rediscovering" it.

K-1: What is the SLO fulfillment rate of transferred models?

133

6. Equilibrium through Active Inference

Transfer learning can provide ML models (i.e., specific for one device) to other devices.
However, it is not guaranteed that a transferred model performs equally to a model
specifically trained for a device. For example, the transferred model might be more likely
to violate SLOs.

K-2: Can knowledge transfer achieve any speedup?
Transferring a trained model removes computational overhead (A-2) from the recipient;
thus, it could decrease the overall energy dedicated to model training, most beneficial for
resource-restricted edge devices. Furthermore, this could decrease the time required to
ensure SLOs (A-3).

K-3: Can merged models decrease the FE compared to choosing a single one?
Models with low FE can infer SLO-fulfilling system configurations with higher accuracy.
Exchanging knowledge within the cluster can include the combination of multiple eligible
models. However, can such combined models interpret observations with less surprise
compared to a single transferred model?

Stream Offloading To optimize their SLO fulfillment, intelligent edge device con-
tinuously adapt their environment. However, for environmental factors that are out of
their scope (e.g., network failures or hardware limitations), the device cluster can be the
remedy to compensate for these issues. In this context, we want to determine whether
the SLO fulfillment of individual devices can be recovered through collaboration.

S-1: How is load distributed among resource-constrained devices?
The Edge, as one CC tier, allows clients to request services from nearby edge devices;
however, this fosters situations where load is highly unbalanced within the system. This
might cause resource-restricted devices to fail their service; once this is detected, the
load must be rebalanced within the system.

S-2: Can the CC hierarchy optimize local SLO fulfillment?

Depending on the scale of SLO failure, individual devices may be incapable of recovering
their service through local reconfiguration. Nevertheless, higher entities in the CC (e.g.,
cluster) can evaluate and resolve this by employing their own SLOs.

6.5 Results and Discussion

In the following, we evaluate the prototype according to the presented methodology. We
structure our results according to the three contributions and the evaluation order in
Section 6.4.3; based on the results, we pose derivative questions for future work. At
the end of this section, we take a bird’s-eye view to look at the results as one coherent
framework and discuss the applicability of our approach.

134

6.5. Results and Discussion

No MB 4 SLOs 2 SLOs 1 SLO
100

150

200

250

300

350

AI
F
Cy

cle
 E
xe

cu
tio

n
(m

s)

Figure 6.6: Duration of AIF cycle depend-
ing on the application of an MB and the
number of SLOs (A-1)

AIF NO AIF AIF NO AIF
10

20

30

40

50

60

70

80

CP
U
Ut
iliz

at
io
n
(%

)

XavierCPU
XavierGPU

Figure 6.7: Overhead introduced by
AIF when operating on XavierCP U or
XavierGP U (A-2)

6.5.1 Active Inference

A-1: Do MBs reduce the complexity of inference?

To show whether an MB can decrease the AIF cycle duration, we focus on one of its
subparts – the inference. We modify the implementation of Algorithm 6.1 (Lines 2 &
8) to execute INFERENCE either (1) on the entire BN including all 4 SLOs, (2) the
MB including 4 SLOs, (3) the MB with 2 SLOs, or (4) the MB with 1 SLO. Then, we
execute the AIF cycle on Laptop and capture the running time of each configuration over
a duration of 10 min; this produces 600 observations for each experiment. Figure 6.6
visualizes the time that Laptop requires for performing INFERENCE, given the different
MB sizes.

We observe: (1) applying an MB reduces the median execution type significantly, i.e.,
from 191 ms (grey) to 159 ms (blue) for 4 SLOs, and (2) decreasing the number of SLOs
gradually reduces the execution time further. We thus conclude that MBs can reduce
the complexity of VE (A-1).

A-2: What is AIF’s operational overhead?

To evaluate AIF’s overhead, we use pre-trained models for XavierCP U and XavierGP U .
Each device processes 6 video streams. We measure the CPU load (%) of the two devices
with one of these two configurations: (1) AIF enabled, and (2) AIF disabled. We capture
the load over 10 min; this produces 600 observations for each experiment. In Figure 6.7,
we show the CPU load of XavierCP U and XavierGP U . The left bar of each device shows
the load when operating with AIF and the right one without AIF.

We observe: (1) the CPU load is clearly decreased by videos processing on GPU,
XavierGP U with AIF enabled presented a 24% lower load than XavierCP U , and (2) the
AIF background process introduced a computational overhead of 3% for both devices

135

6. Equilibrium through Active Inference

0 4 8 12 16 20
AIF Cycle Iteration

0.5

0.6

0.7

0.8

0.9

1.0

SL
O
Fu
lfi
llm

en
t R

at
e

120p 30f

240p 22f

420p 14f

300p 18f

180p 22f

300p 14f

PV SLOs
RA SLOs
Conf Change

Figure 6.8: SLO fulfillment (pv & ra) when operating on a blank Laptop client (A-3)

(left vs. right bar). Overall, this provides an estimate of the general overhead (A-2);
however, whether this is acceptable depends on the use case.

A-3: How long require AIF agents to ensure SLOs?

To evaluate the time to train a EOSC model, we count (1) the number of AIF iterations
that the agent requires to arrive at a (nearly) optimal device configuration, and (2) how
often the agent changes the configuration. The model is trained from scratch; therefore,
the AIF agent (i.e., executed on Laptop) trains the model over 20 cycles and reports after
each cycle (3) the SLO fulfillment according to the selected device configuration. We
present the results in Figure 6.8: The green and red lines represent the SLO fulfillment
(pv & ra); whenever the agent reconfigures the edge device, we print a blue dot for both
lines in the graph.

We observe: (1) the agent requires roughly 7 cycles to converge to a configuration that
satisfied SLOs with more than 90%, which is maintained in later rounds; (2) this state is
reached after 3 reconfigurations; and (3) pv and ra showed similar trends in this example.
Thus, we answered how long an AIF agent requires to provide an acceptable configuration
(A-3), both in terms of AIF cycles and the number of reconfigurations.

A-4: Are the produced causal graphs interpretable?

To discuss the interpretability of created causal structures, we compare the DAGs
produced by STRL and highlight at which stage the graph can be empirically explained.
We will not consider specific metrics here but interpret the DAGs according to our expert
knowledge. On Laptop, we train a EOSC model from scratch and extract the DAGs
after {1,3,5,10} rounds of BNL. Thus, we want to show how the AIF agent discovers
(ideally) causal relations between model variables. The results are visible in Figure 6.9:
SLO variables (see Table 6.2) are colored in green; regular variables in blue.

We observe: (1) all SLO variables are influenced by variables that the AIF agent can

136

6.5. Results and Discussion

bitratein_time

success

fps

pixel

streams

distance

CPU consump

network

memory

(a) DAG after 1 round

bitrate

in_time

success

fpspixel

streams

distance

CPU

consump

network

memory

(b) DAG after 3 round

bitrate

in_time

success

fps

pixel

streams

distance

CPU consump

network

memory

(c) DAG after 10 rounds

Figure 6.9: Progress of the DAG after {1,3,10} rounds of parameter training when
creating a model with AIF on Laptop (A-4)

control, and (2) memory was the only variable that could not be related to others. After
studying the graphs carefully, we could not detect any edge that appears counterintuitive
to us; however, this does not prove that they are indeed causal. In total, we claim that
the created graph is coherent and the links are understandable (A-4), but it requires
sophisticated experiments to prove causality for each edge.

A-4-2: Is the behavior of AIF agents interpretable?

Complementarily, we were interested in how the behavior of the AIF agent could be
interpreted. In Figure 6.10 we present three matrices for each behavioral factor (i.e.,
pv, ra, and ig). We executed the AIF agent on Laptop and extracted the matrices after
{1,5,50} iterations. The first row presents the agent’s initial assumptions on how the
parameters are related to SLO fulfillment (pv & ra) and which rows provide the most
insight (ig).

We observe: (1) the ig is initially high at corner points in the parameter space (as
discussed in Section 6.3.1), which are visited in the first AIF iterations – this is evident
because at round 5 only one cell with e = 0.3 remains; (2) the interpolation improves as
transitions in the heatmap become smoother (from top to bottom); (3) the highest SLO
fulfillment is at pixel = 300, fps = 14; and (4) the agent develops clear preferences in
terms of pv (i.e., bottom-left corner), while the optimal ra is located in the center of the
parameter space. Areas to avoid would be, e.g., pixel = 120, because image detection
requires more detail, or fps > 22 because the processing time frame shrinks. Overall, we
argue that the visualizations allow understanding the agent’s behavior (A-4-2).

A-5: What is the operational impact of including BNL in the AIF cycle? To answer
whether BNL can be applied on regular edge devices, we train a EOSC model on
XavierGP U and measure the execution time of STRL and PARL, i.e., the BNL sub-steps
from Algorithm 6.2. In Figure 6.12 we visualize the execution time of STRL and PARL
over 100 AIF iterations, respectively 1.5 min of operation. We observe: (1) PARL requires

137

6. Equilibrium through Active Inference

14 18 22 26 30

12
0

18
0

24
0

30
0

36
0

42
0

0.0

0.2

0.4

0.6

0.8

1.0

(a) pv matrix after 1 round

14 18 22 26 30

12
0

18
0

24
0

30
0

36
0

42
0

0.825

0.850

0.875

0.900

0.925

0.950

0.975

1.000

(b) ra matrix after 1 round

14 18 22 26 30

12
0

18
0

24
0

30
0

36
0

42
0

0.00

0.05

0.10

0.15

0.20

0.25

0.30

(c) ig matrix after 1 round

14 18 22 26 30

12
0

18
0

24
0

30
0

36
0

42
0

0.0

0.2

0.4

0.6

0.8

1.0

(d) pv matrix after 5 rounds

14 18 22 26 30

12
0

18
0

24
0

30
0

36
0

42
0

0.825

0.850

0.875

0.900

0.925

0.950

0.975

1.000

(e) ra matrix after 5 rounds

14 18 22 26 30

12
0

18
0

24
0

30
0

36
0

42
0

0.00

0.05

0.10

0.15

0.20

0.25

0.30

(f) ig matrix after 5 rounds

14 18 22 26 30

12
0

18
0

24
0

30
0

36
0

42
0

0.0

0.2

0.4

0.6

0.8

1.0

(g) pv matrix after 50 rounds

14 18 22 26 30

12
0

18
0

24
0

30
0

36
0

42
0

0.825

0.850

0.875

0.900

0.925

0.950

0.975

1.000

(h) ra matrix after 50 rounds

14 18 22 26 30

12
0

18
0

24
0

30
0

36
0

42
0

0.00

0.05

0.10

0.15

0.20

0.25

0.30

(i) ig matrix after 50 rounds

Figure 6.10: Behavioral factors (i.e., pv, ra, and ig) interpolated by the AIF agent to
evaluate possible device configurations (A-4-2)

a stable runtime of around 250ms, (2) the runtime of STRL increases as more training
data becomes available, and (3) running STRL after 100 AIF iterations took more than
20s. We conclude that PARL might be run on the employed edge device because it can
be completed within less than 1000ms (i.e., the time frame for concluding the AIF cycle
from Section 6.4.2). However, the runtime of STRL presents an obstacle because the AIF
agent might thus have to skip iterations until the ongoing execution of STRL finishes.
Hence, it would be advisable to perform STRL on another device (A-5) or find a way to

138

6.5. Results and Discussion

0 5 10 15 20
AIF Cycle Iteration

0.0

0.2

0.4

0.6

0.8

1.0
SL

O
Fu

lfi
llm

en
t R

at
e

PV SLOs
RA SLOs
Config Change
Clients Change

(a) Stream changes (b) Video changes

Figure 6.11: Changes in the variable distribution caused (a) by higher number of video
streams or (b) lower video quality (A-6)

decrease the runtime, e.g., by updating the DAG regardless of existing CPTs.

A-6: Can changes in variable distribution be handled?

Variable distributions can change due to various external factors; to evaluate how well the
system can handle this, we either (1) simulate a peek usage time by increasing the number
of processed video streams from 1 to 6, or (2) distort the video content with a Gaussian
blur of 5px, which could resemble a foggy video setting. We measure the impact on the
SLO fulfillment (pv & ra) over 20 AIF cycles and visualize to what extent the EOSC
model is capable of restoring satisfactory (i.e., close to original) SLO rates. Figure 6.11
shows in both subfigures the SLO fulfillment rate of Laptop, when the disruptive factor
was introduced (i.e., after 3 iterations), and at which points the AIF agent reconfigured
the system (blue dots).

We observe: (1) after the stream change, Laptop took 11 AIF cycles (incl. 4 reconfigu-
rations) to recover the SLO fulfillment, and (2) the information loss introduced by the
video manipulation could not be recovered, although SLO fulfillment was improved as
far as possible. Hence, we conclude that the system was able to adapt to changes in the
variable distribution (A-6); however, only as long as the device can compensate for this
factor. In fact, the success SLO could not be fulfilled after the video change took place
because the agent could not increase the resolution sufficiently to recognize the faces.

A-7: Can SLOs be modified during runtime?

To simulate changing requirements, we modify the distance SLO from 50 to 20 (i.e.,
clearly stricter) and measure the SLO fulfillment rate before and after the modification.
Additionally, we capture the surprise (Algorithm 6.1) to show if SLO outcomes reflected
the expectations of the agent. Figure 6.13 shows in the upper part the SLO fulfillment

139

6. Equilibrium through Active Inference

0

5

10

15

20

ST
RL

 ti
m
e
(s
)

0 20 40 60 80 100
AIF Cycle Iteration

0.00

0.15

0.30

PA
RL

 ti
m
e
(s
)

Figure 6.12: Duration of structure and pa-
rameter learning on XavierGP U when train-
ing a BN from scratch (A-5)

0 4 8 12 16 20 24 28 32 36 40
AIF Cycle Iteration

0.4

0.6

0.8

1.0

SL
O

Fu
lfi
llm

en
t R

at
e

18 fps

22 fps

30 fps

PV SLOs
RA SLOs
Conf Change
SLO Change

0 4 8 12 16 20 24 28 32 36 40
AIF Cycle Iteration

0

25

50

75

100

BI
C
Su

rp
ris

e

Structure Retrain
Parameter Retrain

Figure 6.13: Impact of changing the dis-
tance SLO during runtime, combined with
the surprise measured (A-7)

rate over 40 AIF cycles; the SLO changes after 3 iterations. The lower part shows the
agent’s surprise at each round and when STRL or PARL happen.

We observe: (1) after the SLO change, the agent experienced 9 rounds of high surprise,
i.e., >> 35, (2) after 2 reconfigurations, the state prior to the SLO change was recovered,
although final SLO rates (mean 0.91) are slightly below previous (mean 0.94), (3) to satisfy
lower distance, the answer was to increase fps, and (4) the magnitude of the surprise
was decisive for the decision between STRL and PARL (as envisioned in Algorithm 6.2).
However, as known from Figure 6.12, STRL can exceed the AIF time frame multiple
times; hence, the AIF agent is forced to wait for this process to finish. This could be
solved, e.g., by offloading STRL. Hence, we conclude that the system was able to handle
SLO changes during runtime (A-7).

6.5.2 Knowledge Transfer

K-1: What is the SLO fulfillment rate of transferred models?

Transfer learning promises to accelerate model training, but we must ensure that trans-
ferred models perform similarly to trained ones. For this, we assume XavierGP U wants to
join the cluster. According to Table 6.3, Laptop and XavierCP U are eligible for providing
their model, i.e., their dc (2 & 4) are the closest to XavierGP U (3). Hence, we merge their
EOSC models and transfer the result to XavierGP U . We compare the SLO fulfillment of
the merged model with a separate run, where a model is trained from scratch. We place
both runs into Figure 6.14; the blue line represents the combined model, and the grey

140

6.5. Results and Discussion

one was trained from scratch. Additionally, we indicate each time the agents changed
the configuration.

We observe: (1) the merged model does not face substantial improvements of its initially
high SLO fulfillment; (2) the agent required 14 rounds to arrive at a comparable SLO rate
– this also matches Figure 6.8, where Laptop required 7 to 16 AIF rounds for training; and
(3) the final rates are within the range [0.85,0.95]. From that, we conclude that results
produced by the trained model are comparable to the merged model (K-1), and that KT
could achieve a speedup of 14 rounds (K-2), assuming that the transferred model was
available. Nevertheless, this is only valid for the given setup (i.e., these two devices); it is
not possible yet to derive general implications of our approach.

K-3: Can merged models decrease the FE compared to choosing a single one? As discussed
in Section 6.2, it is hard to estimate the FE of a model, but we consider the fact that
surprise is bounded by FE. Although low surprise does not imply low FE, we use it as
an indicator: We transfer a model to XavierGP U (merged from Laptop and XavierCP U

as above) and calculate the surprise throughout multiple AIF cycles. This we compare
against alternative runs, in which XavierGP U uses one of the EOSC models of the other
devices (from Table Table 6.3). Furthermore, we count the usage of PARL. The results
are presented in Figure 6.15; each of the colored lines represents one of the respective
models, which were copied to XavierGP U . The blue line, however, describes the combined
model. The lower figure shows for each run when PARL was executed.

We observe: (1) the models trained on Orin and Nano produced initially very high
surprise (>> 50), indicating that these models fit XavierGP U the least; (2) nevertheless,
the agent was able to improve these models and converge to an area where all 5 models
provide similar surprise after 25 iterations; (3) the combined model provided initially
the best values and only performed PARL twice; and (4) interestingly, although close
to each other, the combined model produces after 25 rounds the highest surprise (33),
while XavierCP U reached 17. This shows, that the frequent retraining performed by
the other devices (colored triangles in the lower graph) allowed the other models to
surpass XavierGP U . This raises the question if it would be advisable to always run PARL,
regardless of the surprise magnitude Combined, we can answer that the merged model
had initially less surprising values (K-3); however, frequent retraining may achieve even
better results.

6.5.3 Stream Offloading

S-1: How is the load distributed among resource-constrained devices?

To offload computations within the cluster, we aim to show how low-resource devices are
relieved from excessive load. For this, we assume 25 IoT devices that are either assigned
Equal to the edge devices or Random. As an indicator for maximum SLO fulfillment, we
added Single, where each device processes one stream; Table 6.4 shows an overview of
each scenario’s assignment. After operating with Equal or Random, the leader node starts
to optimize the environment, i.e., using the EOSC-F model to distribute the 25 streams

141

6. Equilibrium through Active Inference

0 5 10 15 20 25 30
AIF Cycle Iteration

0.0

0.2

0.4

0.6

0.8

1.0

SL
O
Fu
lfi
llm

en
t (
%
)

Combined
Scratch
Config Change
Config Change

Figure 6.14: Difference in SLO fulfillment
between an agent using a transferred model
or training from scratch (K-1 & K-2)

0 5 10 15 20 25

40

60

80

100

120

BI
C
Su

rp
ris

e

Model of Nano
Model of Orin
Model of Laptop
Model XavierCPU
Combined Model

Figure 6.15: Surprise per batch on
XavierGP U with combined model or exist-
ing one. Paired with PARL frequency (K-3)

Device ID Single Equal Rand Infer
Laptop 1 5 4 9
XavierGP U 1 5 8 5
XavierCP U 1 5 5 1
Orin 1 5 4 9
Nano 1 5 3 1

Sum Σ 5 25 25 25

Table 6.4: Streams for scenarios 1 4 7 10 13 16 19 22
Number of Streams Processed

0.0

0.2

0.4

0.6

0.8

1.0

Es
tim

at
ed

 (P
V
x
RA

)

Laptop
XavierCPU
XavierGPU
Orin
Nano

Figure 6.16: Regression between streams as-
signed to edge devices and respective SLO ful-
fillment rate (pv × ra)

depending on the device capabilities (Infer). This new assignment is then provided to
the edge devices. We thus perform offloading, e.g., Nano drops from 5 (or 3) to 1 stream.
In Figure 6.17, we show each device’s SLO fulfillment rate per scenario. The left bars
of Figure 6.17b show the cluster-wide average of the SLO fulfillment and the right bar
the weighted average according to the number of streams (slo_rate× stream). To get a
feeling of the heterogeneous device capabilities, Figure 6.16 provides a regression function
that shows how SLO fulfillment per device is impacted by the number of streams.

We observe: (1) the average SLO fulfillment clearly improved by using Infer (0.81) instead
of Random (0.64) or Equal (0.60); (2) this is also reflected by the weighted average (right

142

6.5. Results and Discussion

Single Infer Rand Equal
0.0

0.2

0.4

0.6

0.8

1.0

Ov
er
al
l S

LO
 fu

lfi
llm

en
t

Laptop
XavierCPU
XavierGPU
Orin
Nano

(a) SLO fulfillment per device

Single Infer Rand Equal
0.0

0.2

0.4

0.6

0.8

1.0

Av
er
ag

e
SL

O
fu
lfi
llm

en
t

(b) Average and weighted average per batch

Figure 6.17: SLO fulfillment within the edge-fog cluster when distributing load according
to Infer, Random, or Equal. Single is an upper bar for this device constellation (S-1)

bars of Figure 6.17b), which puts Laptop and Orin in focus that processed 9 streams
each; (3) the weighted average of Infer comes close to Single (0.89), even though the
cluster processed 25 instead of only 5 streams. From that, we conclude that the intelligent
cluster was able to incorporate restricted edge devices (e.g., Nano) into the architecture
(S-1), and that the overall SLO compliance improved by following our approach.

S-2: Can the CC hierarchy optimize local SLO fulfillment? To improve the SLO
fulfillment whenever individual devices lack the required scope, we will resolve such SLO
failures within the cluster. Therefore, we consider a condensed device cluster consisting
of Laptop and Orin. S-1 showed that they have comparable processing capabilities;
therefore, it is fair to split 10 streams equally between them. Figure 6.18b provides the
DAG internal to the EOSC-F model: Blue nodes are environmental factors, from which
only stream can be configured (recall Section 6.4.2); slo_rate represents the common
factor f = pv × ra. We simulate network congestion6for Orin – which the leader node
can evaluate through congestion – and redistribute the load according to the EOSC-F
model, i.e., Orin = 8, Laptop = 2. Then, we compare the overall SLO fulfillment before
and after offloading; the results are shown in Figure 6.18a. The two lines show the SLO
fulfillment (f) of Laptop (red) and Orin (blue) over 50 AIF iterations; after 10 rounds,
the network gets congested. In round 30, the cluster leader rebalanced the load according
to its EOSC-F model; although it is possible to rebalance earlier, we decided to observe

143

6. Equilibrium through Active Inference

0 10 20 30 40 50
AIF Cycle Iteration

0.2

0.4

0.6

0.8

1.0
SL
O
fu
lfi
llm

en
t r
at
e

Laptop
Orin
Net. Issue
Rebalance

(a) Impact of rebalancing

slo_rate

streams congestion

device
type

(b) Internal variable relations

Figure 6.18: Recovering network congestion by rebalancing the load within the device
cluster according to the EOSC-F model; both devices initially processed 5 streams, 3 are
offloaded to Orin (S-2)

the system behavior until manually rebalancing in round 30.

We observe: (1) the network issue crushed the SLO fulfillment of Laptop from around 0.9
to a minimum of 0.2 at round 15; (2) the edge device was able to improve the rate in the
following 20 iterations by reconfiguration, until reaching a local optimum at 0.43. Further,
(3) the cluster-wide SLO compliance was clearly improved through rebalancing, i.e., at
round 15 the sum of fLaptop + fOrin was 1.03, at round 30 it was 1.33, while at round 45
it rose to 1.54. We conclude that the intelligent cluster was able to resolve the introduced
network issue (S-2) by redistributing the load according to the EOSC-F model. However,
to draw general conclusions, we aim to consider a larger range of potential issues.

6.5.4 Result Implications

As a summary, we can report that (1) edge devices were gradually able to ensure local
SLO compliance without prior knowledge; it took them 16 rounds to identify factors
that impact SLO fulfillment and adapt the environment accordingly; the resulting SLO
fulfillment aligns close to existing work [ZZL23], (2) the underlying causal structures
and the transitions between device configuration were empirically explainable; this
increases traceability and trust of ML models, and (3) shifted variable distributions
were canceled out through continuous model retraining; edge devices took 9 rounds to
interpret an unprecedented increase in demand, while SLO failures introduced by poor
video quality could not be fully recovered. Further, (4) the causality filter based on MBs
decreased the complexity of inference and sped up SLO evaluation by 17%, and (5) our

6Internally, we increase the processing delay according to congestion; this increases the overall latency
and causes in_time to fail more likely. The EOSC-F model considers congestion as an environmental
factor for Algorithm 6.3.

144

6.6. Related Work

framework introduced a negligible CPU overhead of 3%, which makes it a suitable choice
for resource-restricted devices.

It turned out that (6) BNL, or in particular structure learning, surpassed the given time
frame for continuous model adaptation; nevertheless, parameter learning took only less
than 250 ms and the overall training time appears promising compared to [KPS+20].
Thus, (7) models transferred between nearby devices could be continuously improved, even
in cases where they fit poorly; this improves the reusability of models in the heterogeneous
Edge, (8) the SLO fulfillment of devices with transferred models equaled the one of
self-trained models; this accelerated the distribution of SLO-compliance models within
one computational tier by up to 16 rounds, (9) rebalancing the load after a network error
increased the overall SLO fulfillment from 1.03 to 1.54; this showed that collaboration
within this tier increased the scope of SLO failures that could be covered. A closing
observation is that (10) variable shifts showed the same effects on SLO fulfillment as low
accuracy after transferring a model to an unknown device type. To our framework, they
did not provide any fundamental differences, which is why they could both be resolved
through continuous model training.

6.6 Related Work

This section provides recently published related works that discuss (1) the training and
application of causal ML models on the Edge, (2) transfer learning approaches in the CC,
and (3) methods of load balancing and computation offloading that are popular across
the CC. Following that, we highlight for each of these fields the research gap that our
work aims to fill.

Causal ML Training on the Edge Sudharsan et al. [SBA20] developed an Edge2Train
model to analyze real-time data on the fly. With Edge2Train, Support Vector Machine
(SVM) models are trained offline in edge nodes using real-time IoT. Adopting causality
to Edge2Train can help converge the most efficient training models quickly. Diagnosing
the root cause of performance degradation in the CC is a challenging issue, and Chen et
al [CQH19] use causal inference (CauseInfer) mechanisms to pinpoint the root causes
within the system. CauseInfer determines fault propagation paths that can be determined
explicitly, without production systems being instrumented. A similar approach (called
Nazar) is designed by Hao et al. in [HWH+23], where they apply mobile devices to
diagnose root causes in distributed systems. Further, this approach enhances its train-
ing models through cause-specific adaptive mechanisms. Through experiments, Nazar
confirmed that training models can be improved due to cause-specific adaptation while
monitoring a large number of devices.

Lin et al. introduced Microscope in [LCZ18], a micro-service environment to diagnose
the possible root causes of abnormal services in distributed systems through causal graphs.
Lin et al. demonstrate that Microscope can construct a service causal graph in real time
and infer the root cause of abnormal services. Tariq et al. present the What-If Scenario

145

6. Equilibrium through Active Inference

Evaluator (WISE) tool in [TZV+08], which predicts the effect of potential configuration
and deployment changes on content delivery networks (CDN). WISE initially learns causal
relations among existing response time distributions. Based on the available datasets, it
estimates possible future response time distributions. Finally, it allows network designers
to express possible deployment scenarios without knowing how variables will affect
response time.

There evidently exists work that identifies and applies causal understanding to ensure
system requirements; however, with the exception of Nazar [HWH+23], they treat model
training as a one-time process. Hence, drifts (or shifts) in the variable distribution
stay undetected. Further, it is impractical to assume that sufficient training data is
available to arrive at this causal understanding; this is also the shortcoming of Nazar.
Contrarily, our approach, which focuses on ACI, is able to gradually create causal models
over multiple iterations (i.e., as new training data becomes available), and continuously
ensures model accuracy by updating beliefs according to prediction errors.

Transfer Learning in the CC Goyal et al. present MyML [GDB22], a hardware-
friendly model transfer for edge nodes. MyML uses transfer learning to create small,
lightweight, custom ML models based on user preferences. This approach is hardware-
friendly, bottom-up pruning, which can be utilized on any mobile edge platform because of
its ability to handle large, compute-intensive ML models. In addition, systolic array-based
edge accelerators are introduced to prevent cloud interactions. Wu et al. present a novel
approach to online transfer learning for both heterogeneous and homogeneous labels of
multi-source domains [WWZ+17]. This approach is very efficient in online classification,
and the weights are dynamically adjusted depending on the source domain. The work
fits well into the CC due to the complex heterogeneity of devices within the system. Hsu
et al. provide a clustering mechanism that considers the similarity of domains and tasks
for transfer learning [HLK18]. They provided a similarity function for cross-task transfer
learning that is based on similarities between domains.

Xing et al. introduced a model called RecycleML in [XSB+18] that enables multi-
modality among edge devices, where knowledge is shared by transforming common latent
features into their lower layers. Further, it provides task-specific knowledge transfer
between models through the retraining of higher layers beyond the latent space shared
by both models, thus reducing the need for labeled data. Sharma et al. proposed a
knowledge transfer technique between edge devices to lower computational intensity
without losing accuracy and convergence speed [SBZ18]. In this, the student network
takes the knowledge from the teacher network to achieve this goal. Using an IoT testbed,
Kolcun et al. [KPS+20] evaluated various machine learning classifiers’ convergence speed
and accuracy. These testbeds considered both data- and resource-specific constraints.
The results of each local testbed’s training models are transmitted to the gateway to
minimize global training model overhead.

Transferring ML models is an important measure for relieving resource-restricted devices
from training; teacher devices can therefore consider the context of the student to provide

146

6.6. Related Work

a tailored model. This is an important feature since edge devices have heterogeneous
characteristics; however, none of the presented works considered low-level hardware
characteristics to identify potential teachers among nearby devices. Further, while it is
possible to combine models, the presented techniques are not applicable to the causal
structures that we require for decentralized SLO assurance. To that extent, our framework
uses hardware classification to find adequate models within a device cluster and creates
a tailored model by merging the conditional probabilities of BNs.

SLO-Induced Load Balancing and Offloading Elasticity is one of the most effective
ways to ensure requirements of dynamic workloads by automatically provisioning or
de-provisioning resources based on demand [DGST11]. SLOC is a novel elastic framework
developed by Nastic et al. in [NMP+20], that allows users to provide and consume cloud
resources in an SLO-native manner while guaranteeing performance. Its primary goal
is to provide better support for SLOs by exploiting and advancing current elasticity
management solutions. Further, Furst et al. bring elastic service principles from the cloud
to edge computing [FFACP18]. They evaluated elastic and non-elastic services at the
edge while processing images to latency SLOs, and noticed improved service provisioning
through elasticity.

Tran and Kim introduce an edge serverless auto-scaling method based on traffic prediction
that can be used against a Kubernetes cluster [TK24]. In their work, system resource
usage is optimized to ensure latency SLOs. No additional resources are required to
perform this operation; this optimizes the amount of available resources. Hazra et
al. [HDAD23b] proposed efficient heuristic-based transmission scheduling and graph-
based computational offloading (TSCO) through mixed linear programming to achieve
energy efficiency and minimize latency. A single- and multi-task load balancing with a
prioritization approach to computing Deep Neural Networks (DNNs) at the edge has
been presented by Karjee et al. in [KPNS21]. In these approaches, prioritized tasks are
distributed among IoT and edge nodes to balance energy, lower latency, and continue
task execution without restarting the system. Lim and Lee proposed a load-balancing
approach for distributing mobile devices tasks within a cloud-edge continuum using graph
coloring [LL20]. Through this process, computing resources are scaled with increased
edge resource utilization.

A trilayer mobile hybrid hierarchical peer-to-peer (MHP2P) model was proposed by Duan
et al. in [DTZ+22] as a cloudlet for efficient load balancing strategy through mobile
edge computing (MEC). MHP2P promises high reliability, scalability, and efficiency in
service lookups. Moreover, there is a load-balancing scheme to ensure that MHP2P loads
are evenly distributed between MEC servers and queries. In [Men21], Menino proposed
efficient failure detection mechanisms for unstructured overlay networks. This approach
aims to identify efficient neighborhood overlays, which dynamically identify and maintain
each node in P2P networks.

SLOs are an efficient way for modeling and enforcing requirements; thus, high-level
SLOs can be segregated and enforced at the respective CC component. Nevertheless,

147

6. Equilibrium through Active Inference

the remaining question is whether the component has the required scope to recover
SLO failures (e.g., by offloading computation), but it is impractical to evaluate SLOs in
the cloud (e.g., MHP2P). Hence, ad-hoc hierarchical structures could provide a remedy,
which Menino [Men21] are the only ones to use among the related work. However, they
all assume prior knowledge of which variables impact SLO fulfillment. Contrarily, our
approach (1) gradually increases the SLO scope by forming device clusters that can span
the entire CC, and (2) evaluates causal relations among environmental variables to shift
the load from impacted devices.

6.7 Summary
This chapter presented a novel framework for collaborative and distributed edge intelli-
gence that ensures decentralized SLO fulfillment. It allows CC systems to disaggregate
high-level requirements and enforce them at the component they concern; thereby, we
create self-adaptive devices that themselves ensure dynamic requirements. For each
component, the framework is able to develop causal reasoning between environmental
factors and SLO fulfillment. Resource-restricted devices that cannot create this knowl-
edge were able to exchange and combine causal models according to their hardware
characteristics. This accelerates the onboarding of unknown device types and simplifies
horizontal scaling within the Edge. Contrarily, any attempt to achieve this centrally
would struggle with heterogeneous device characteristics, the induced network latency,
and the communication overhead. To increase SLO coverage and the action scope, devices
collaborated as clusters under the supervision of a Fog node; this forms higher-level
components that can again supervise their own set of SLOs. Consequentially, the cluster
was able to use its extended environment to resolve SLO violations, e.g., by offloading
computation among pertinent devices. Erecting these hierarchical structures provides
an accurate representation of observable processes and infers how to fulfill the intricate
requirements of multiple computational tiers.

We provided a prototype of the framework for a distributed video transformation use case
and evaluated it according to 12 aspects; the results showed the potential of our approach
for ensuring SLOs throughout CC tiers. For future work, we aim to dynamically update
the structure of presented models and evaluate limitations regarding the number of SLOs
and devices. Further, this chapter builds heavily on (causal) relations between SLO
fulfillment and environmental factors; however, to prove causality, dedicated experiments
must be integrated into the framework. Once this is established, the framework will
provide necessary causal links to tame requirements in the CC.

148

CHAPTER 7
Conclusion

This chapter concludes the thesis. First, in Section 7.1 we give a brief summary of
the covered topics and the presented contributions. Then, in Section 7.2 we revisit the
research questions posited in the introduction. Finally, in Section 7.3 we give a brief
outlook on future research directions and upcoming research challenges.

7.1 Summary
The ubiquity of IoT devices has heralded a transition of processing resources to the Edge
of the network, where data can be processed under tight resource constrains. However,
this has not shown to replace traditional Cloud computing; instead, computing tiers are
merged into a cohesive platform – called the Computing Continuum (CC). While the
CC promises unprecedented computing capabilities, it also increases the complexity for
orchestrating applications. Contrarily to the traditional Cloud computing, processing
requirements – formulated as Service Level Objectives (SLOS) – cannot be evaluated
centrally due to the induces communication overhead. At the same time, Edge devices
struggle to fulfill SLOs because of their limited hardware capacities, leaving an entire
processing tier without adequate measures to ensure local SLOs.

In this thesis, we offer a framework for autonomous orchestration of CC system. First,
in Chapter 2, we give an overview of contemporary research on the CC, including open
research challenges and promising application areas. To support these use cases, we discuss
(1) what types of SLOs are needed to constrain various aspects of CC architectures, and
(2) how the SLO fulfillment can be ensured throughout external perturbations. Together,
this envisions a behavioral model for context-aware service orchestration at any hierarchy,
fostering collaboration between services to ensure higher-level SLOs.

While in some occasions it might be possible to recover the SLO fulfillment by provisioning
more resources, making it the default behavior is too rigid. To that extent, Chapter 3

149

7. Conclusion

develops the idea of multi-dimensional elasticity strategies that are not fixed to one
predetermined elasticity strategy, but can choose how to optimally adapt the system.
To make this more tangible, we present a detailed use case in which we aim to control
data gravity and data friction – two undesired concepts that occur when processing IoT
data. To control data gravity and data friction, we provide a conceptual architecture of
a MAPE-K framework that analyzes multiple sensory observations for evaluating SLOs,
while choosing elasticity strategies according to the current context. In this case, this
can mean to compress data if the quality allows it, or scaling resources if they are not
completely depleted. While this scenario was not evaluated experimentally, this reference
architecture greatly helped for implementing the latter chapters.

While intuition or expert knowledge might be a way to find the right elasticity strategy
in a particular context, this gives no formal guarantee that this strategy will actually
have the expected effect. Hence, in Chapter 4, we looked into ways to estimate the effects
of elasticity strategies directly from data, which gives a likelihood of which action would
provide the most utility. To implement this, we used processing metrics to create the
most likely variable structure – encoded in a Bayesian Networks (BNs). We implemented
this methodology for a distributed video processing use case, where a video should be
transformed and streamed to a consumer under latency and energy SLOs. Our results
showed how the trained BN could be used to infer informed scaling actions, e.g., set
video resolution = 240p because this likely ensures latency < 20ms while consuming
energy < 10W . While variable relations in the BN are not necessarily causal, our
methodology repeatedly found the optimal actions under changing SLO thresholds.

In Chapter 5, we present a series of orchestration mechanisms that use the created BNs:
(1) to optimize the microservice deployment in a distributed CC architecture, we analyzed
dependencies between services by merging their Markov blankets (MBs) – a minimum
representation of relevant variables in the BN. Consequently, our experiments showed to
provide the optimal service deployment. Further, (2) to simplify the SLO definition for
distributed components, we inferred lower-level thresholds for backend services according
to higher-level SLOs, e.g., maximize streaming quality. In our evaluation, 12 microservices
did ensure high-level SLOs whenever possible. The exception are cases with contradicting
high-level SLOs, e.g., minimize energy and minimize latency; in such cases, our method
reported these conflicts to the stakeholder. Lastly, (3) to optimize the global SLO
fulfillment between heterogeneous device, we estimate the impact of shifting computation
between devices, i.e., how both sides are affected by exchanging load. We evaluated this
for a platoon of autonomous vehicles, where perception services (e.g., object detection)
were shifted to less utilized vehicles whenever they could not be run locally.

The methodologies in this thesis are very dependent on the quality of the BNs; if
these models would become inaccurate, any inferred adaptation would likely fail to
show the desired effect. To continuously ensure model accuracy, Chapter 6 provides an
ecosystem for continuously training BNs; hence, it provides the backbone for all other
methodologies presented. Our lifelong learning strategy is fueled by Active Inference
(AIF) – a curiosity-based concept from neuroscience – where agents seeks to model their

150

7.2. Research Questions

(processing) environment. Our experiment showed how AIF agent can ensure local SLO
fulfillment by training BNs for processing services. Agents collaborate in two ways: (1)
by exchanging BNs between themselves to speed up the onboarding of new devices, and
(2) by creating hierarchical structures, where leader nodes optimize the SLO fulfillment
of their member nodes. In a series of experiments we showed that the trained BNs are
empirically interpretable and allow to explain the behavior of agents at a particular time
– greatly boosting the trustworthiness into any inferred scaling action.

7.2 Research Questions

In Section 1.2 we posed three fundamental research question that have driven the research
in this thesis. Their purpose was to (1) ensure that services are always orchestrated based
on accurate and informed decision, (2) find elasticity strategies that suit the given context
and quantify their impact on SLO fulfillment, and (3) optimize global SLO fulfillment
by analyzing the dependencies and interactions between services. We now discuss the
research questions and contextualize the contributions of this thesis.

RQ.1 How to continuously assure the accuracy of service orchestration models
so that reactive elasticity strategies provide maximum utility?

This thesis mainly discussed one instance of a model that was used for service orches-
tration: Bayesian Networks (BNs). To ensure their accuracy despite concept drifts or
temporary perturbations, it requires lifelong learning mechanisms that counter perturba-
tions whenever they occur. Hence, model training cannot be a one-shot process. While
there exist multiple ways to ensure model accuracy through continuous retraining, in
Chapter 6 we chose Active Inference (AIF) for this task; in the following, we elaborate
why: Contemporary Reinforcement Learning (RL) strategies often use simple exploration
mechanisms, e.g., ϵ-greedy, where an initial high exploration rate depletes as the training
converges. Contrarily, AIF uses two fundamental concepts to ensure accuracy over time:
(1) it uses surprise to quantify the discrepancy between the expected and actual outcome;
however, instead of avoiding these areas, the agent focuses on these areas and tries to
improve its understanding. This is because (2) the agent uses a formal representation to
express the potential model improvement when taking a certain action; for every action
it compares the pragmatic value (e.g., expected SLO fulfillment) with the information
gain (i.e., uncertainty in the model). While RL-based orchestration mechanisms often
uses model-free training [GMP+21], AIF aims to ensure an accurate model.

As the processing environment changes over time, e.g., anomalous CPU load is introduced
in the background, AIF will search for the reason why a certain configuration cannot
fulfill SLOs anymore. For instance, the agent might detect that the additional CPU load
was caused by a background thread updating the system; by incorporating the update
interval into the sensory state of the BN, it can resolve this confounding variable when
inferring a scaling action. Notably, these factors can also be discovered during runtime,
the only prerequisite is that they must be tracked by the AIF agent as metrics.

151

7. Conclusion

RQ.2 How to efficiently choose between elasticity strategies by quantify their
impact on both the SLO fulfillment and underlying processing hardware?

The generative models trained by AIF – in this case BNs – have the fundamental
advantage that the expressed relations can be empirically verified, something that is
generally not given by Neuronal Networks (NNs). Hence, BNs can also provide insights
to stakeholders on why a certain elasticity strategy is useful in a specific context. As
such, BNs can be used to create a reactive behavioral model, as envisioned in Chapter 2,
where agents estimate the impact of adjusting different system variable, e.g., how would
SLO fulfillment change when decreasing streaming quality or provisioning additional
resources. By comparing the expected utility of these actions, the AIF agent identifies
variables that serve well as elasticity strategies, which are uses to recover SLO fulfillment
when necessary. One fundamental design choice here is whether to design the action
space discrete of continuous; while in Chapter 4 we started off discrete, in Chapter 6
we investigated continuous actions. Apart from the different representation, the main
difference lies in the granularity of the inferred actions. For instance, a continuous
scaling action could infer that the optimal streaming resolution would be around 662p,
while a discrete one is bound to a limited amount of bins1. We found that the design
choice – favoring discrete, continuous, or even hybrid relations – is very dependent on
the situation: while discrete relations can be more efficient at training and inference,
continuous relations may allow inferring actions that are closer to optimal.

To quantify the precise impact of computing services on the underlying processing
hardware, we found that it is possible to extend any services’ BN with the respective
variables. This means, that by adding the hardware-related variables (e.g., energy, or
CPU/GPU load) to the BN learning, we would also be able to infer what would be the
expected hardware load under a certain configuration. For instance, when running a
video processing service with a resolution = 720p, what would be the expected energy
consumption and the claimed amount of CPU load. From this example, we can conclude
that: (1) this allows to find system configurations that minimize energy consumption,
which is highly needed given the exploding consumption of computing systems in the last
years [ZKQ+24], and (2) this greatly helps when co-locate multiple computing services
at a single device, i.e., for each service the required resources can be precisely estimated
so they may not end up cannibalizing resources needed for other services.

While runtime metrics from services and the underlying hardware proved essential to
form behavioral BNs, the complexity during training and inference increases with every
variable. Hence, we were challenged to ensure that inference does not only provide
accurate results, but also runs efficiently. To maintain a lean view on the factors that
impact SLO fulfillment – while filtering out such that have not shown any – we applied
the concept of the Markov Blanket (MB), which was first introduced in Chapter 3 and
then systematically used throughout the thesis. The MB reduces a system’s variables
to those that either impact the internal state (i.e., in this case the SLO fulfillment), or

1A common example for these bins would be the resolutions offered on YouTube, e.g., 720p, 1080p.

152

7.3. Limitations & Future Work

those that are impacted by the internal state. In Chapter 6, filtering the MB has shown
to decrease the time for inference, while decreasing the number of variables that must be
tracked during runtime; hence, deciding more efficiently on an elasticity strategies.

RQ.3 How to model the interactions and dependencies between microservices
to estimate the impact they have on each other’s SLO fulfillment?

While the mechanisms developed for RQ.2 have shown to ensure the SLO fulfillment for an
individual component, e.g., a single processing service in the Computing Continuum (CC),
the CC is composed of a multitude of services that have reciprocate influences on each
other. To that extent, we investigated how BNs could reflect the conditional probabilities
between processing services. To avoid testing n2 service pairs for dependencies, we
considered the microservice architecture: services usually form sequential pipelines, hence,
we only have to evaluate the dependencies between services that directly interact, e.g., by
exchanging data. In Chapter 5 we identified two approaches for this: (1) combining BNs
that were trained independently according to their variable distributions, or (2) training
a composite BN from one combined data set. While we did not compare the complexity
of these two approaches, this poses an interesting question for future work, in particular,
considering the complexity from exchanging metrics or model updates in a network. Using
the composed BNs, we showed how to estimate the impact of their elasticity strategies
on dependent services. This proved particularly important for microservice pipelines –
we found that subsequent services might not be able themselves to ensure their local
processing SLOs, but would have to request a certain service level from their predecessor.
For instance, if a stream consumer requires a certain video resolution under a latency
boundary, the remaining components – video provider and processing – must be aligned
with these goals. As a consequence, we started constraining all dependent components
accordingly, which showed to ensure global SLO fulfillment.

Constraining all parts of an application according to high-level objectives showed to
greatly improve SLO fulfillment – matching the vision of deepSLOs described in Chapter 2.
At the same time, it revealed an inherent problem with SLO-based orchestration: how
to deal with conflicting requirements? For instance, if stakeholders wished to minimize
both latency and energy consumption, this inevitable leads into a conflict. We find it is
essential to highlight such cases to stakeholders, so that their requirements can be refined.
This is possible using our methodology; consequently, the conflicts can be resolved by
assigning a weight to both SLOs, i.e., representing their severity, so that one or multiple
of them can be traded off. The result can still be optimal under the given SLOs.

7.3 Limitations & Future Work
Considering the contributions presented in this thesis, there is strong evidence that AIF
is a fitting solution for achieving autonomous orchestration of CC systems. However, to
maintain a clear scope, we excluded numerous challenges for future work that were not at
the center of the posed research questions. To improve the presented concepts and help
them transition to state-of-the-art, this section outlines four research directions that we

153

7. Conclusion

would like to highlight, namely: (1) to underline the generalizability of our approach, it
must be evaluated in a large-scale testbed; (2) to clarify the fundamental differences with
RL-based techniques, our AIF-based methodology must be contrasted further, including
when to prefer which approach; (3) to ensure fast training and inference of BNs on
resource-restricted devices, the methodology must be optimized even further; and (4) to
increase the trust into inferred scaling actions, we must formally prove the causality of
edges in the BN. In the following, we elaborate these points in more detail.

Evaluation in Large-Scale Testbed

Developing and evaluating a prototype in a physical processing environment often provides
more entropy than running it solely in a simulation environment. To that extent, the
methodologies presented in this thesis, from Chapter 3 up to Chapter 6, have all been
experimentally evaluated in a physical testbed, often using Edge devices like Nvidia
Jetson, or Edge servers with stronger GPUs. However, setting up a physical testbed
and maintaining it throughout multiple research papers present an extraordinary effort;
hence, we only used up to 5 devices per experiment. While simulations may be a good
start to evaluate our ideas in larger setups, e.g., with more than 1000 nodes, we would
only achieve the desired rigor by using a physical testbed of that size. While this was
out of scope for this thesis due to the complexity to handle such an environment, we are
very keen on evaluating our approach in such a large-scale environment.

Extensive Comparison with Reinforcement Learning

Throughout the research conducted for this thesis, a frequent comment we received was
that AIF has close resemblance with RL. Consequently, we often pointed our that the
approaches are not mutually exclusive, but can be used complementarily, as also reported
by other researchers [TMSB20, FDK09]. To that extent, further research is required to
define a clearer margin between these approaches and answer when to prefer one, or
when best to combine them. As a matter of fact, this work was embedded in an open
research gap; due to their novelty, many of the envisioned orchestration mechanisms have
not yet been implemented by other researchers, for example, with RL. Hence, there were
limited possibilities to compare our approaches with a larger amount of baselines. To
that extent, we have started to provide these baselines ourselves, for example in our latest
work [SMR+25] we started from a RL-based methodology, which we intend to extend
in the next iteration with a AIF-based agent. Thus, bit by bit, we aim to compare our
results with custom baselines or other upcoming orchestration mechanisms.

Optimize Bayesian Network Learning & Inference

While Cloud servers usually dispose of an abundance of resources, Edge devices, located at
the read end of the CC, have clear hardware limitations. To that extent, the methodologies
in this thesis must be tailored to the weaker end of the device spectrum; otherwise, Edge
devices could end up incapable of performing decentralized decision-making, revoking

154

7.3. Limitations & Future Work

their gained autonomy. Although in Chapter 6 we analyzed the overhead of training
BNs and the impact of MB on the inference time, this requires further experiments on
different hardware, ideally in a larger-scale testbed, as discussed. Potential improvements
that we can envision are: (1) pruning BN variables that do not show to have an impact
on SLO fulfillment, (2) comparing the results of different algorithms for structure and
parameter learning, (3) comparing the performance impact of using discrete, continuous,
or hybrid relations, and (4) comparing our methods for merging BNs from subgraphs.
Future work will gradually introduce these improvements to our methodologies.

Proving Causal Relations

This thesis used BN learning to extract the most likely structure for data; while there is a
high probability that extracted relations are causal, there is no formal guarantee to this.
Ultimately, edges that are proved to be causal provide stronger guaranteed to the model,
improving its quality. To make CC systems more predictable, we declared it our goal to
find causal implications between systems [PSDD24], which we did formally not achieve
yet. While our evaluations throughout the thesis have shown that the created BNs are
indeed empirically verifiable, we envision to apply dedicated experiments that can prove
the causality of relations. However, this raises the question of the expected overhead for
causal testing, which must be performed on resource-restricted devices and thus opposed
the aforementioned optimization challenges. In any case, this requires further work to
contrast the qualities of the created models with a reasonable training overhead.

155

Übersicht verwendeter Hilfsmittel

Throughout the research conducted for this thesis, no generative AI (GenAI) tools have
been used to author contents (e.g., text, images, etc); this also excludes generating
texts and rephrase them with GenAI. A minor exception to this is the German chapter
“Kurzfassung” – the direct equivalent of the abstract – for which we used DeeplPro2 to
translate the text; the revision was again done manually, without any help of AI.

However, GenAI tools, like ChatGPT, have also shown to be of great aid [ADF+25] for
achieving a first impression on a novel topic. As such, GenAI has been used over the
course of some chapters to gain a quick overview into a certain research aspect, e.g., by
asking ChatGPT3 to explain “the core differences between Reinforcement learning and
Active Inference”. However, as pointed out before, no contents thereby generated were
incorporated in the thesis – neither directly nor indirectly.

2Deepl Pro Translator, in its version of: 30. April 2025
3ChatGPT in its version GPT-4o mini of: 30. April 2025

157

https://www.deepl.com/en/translator
https://chatgpt.com/

Bibliography

[ADF+25] Jens Peter Andersen, Lise Degn, Rachel Fishberg, Ebbe K. Graversen,
Serge P. J. M. Horbach, Evanthia Kalpazidou Schmidt, Jesper W. Schnei-
der, and Mads P. Sørensen. Generative Artificial Intelligence (GenAI) in
the research process – A survey of researchers’ practices and perceptions.
Technology in Society, 81:102813, June 2025.

[AOAL22] Daria Alekseeva, Aleksandr Ometov, Otso Arponen, and Elena Simona
Lohan. The future of computing paradigms for medical and emergency
applications. Computer Science Review, 45:100494, 2022.

[AQIR20] Afroj Alam, Sahar Qazi, Naiyar Iqbal, and Khalid Raza. Fog, edge and
pervasive computing in intelligent internet of things driven applications
in healthcare: Challenges, limitations and future use. Fog, edge, and
pervasive computing in intelligent IoT driven applications, pages 1–26,
2020.

[ASLM13] Rodrigo F Almeida, Flávio R C Sousa, Sérgio Lifschitz, and Javam C
Machado. On defining metrics for elasticity of cloud databases. 2013.

[AST+10] Constantin Aliferis, Alexander Statnikov, Ioannis Tsamardinos, Subramani
Mani, and Xenofon Koutsoukos. Local Causal and Markov Blanket In-
duction for Causal Discovery and Feature Selection for Classification Part
I: Algorithms and Empirical Evaluation. Journal of Machine Learning
Research, 11, January 2010.

[AT23] Ankur Ankan and Johannes Textor. pgmpy: A Python Toolkit for Bayesian
Networks, April 2023.

[ATG+24] Negin Akbari, Adel N. Toosi, John Grundy, Hourieh Khalajzadeh, Mo-
hammad S. Aslanpour, and Shashikant Ilager. iContinuum: An Emulation
Toolkit for Intent-Based Computing Across the Edge-to-Cloud Continuum.
pages 468–474. IEEE Computer Society, July 2024.

[AW15] Hassan Alrehamy and Coral Walker. Personal Data Lake With Data
Gravity Pull. August 2015.

159

[B+20] Pete Beckman et al. Harnessing the computing continuum for programming
our world. In Fog Computing, pages 215–230. John Wiley & Sons, Ltd,
April 2020.

[Bac89] F. I. Bacchus. Representing and reasoning with probabilistic knowledge.
Artificial Intelligence. MIT Press, 1989.

[Bat17] Jo Bates. The politics of data friction. Journal of Documentation, 74,
August 2017.

[BBD+14] Marcello M. Bersani, Domenico Bianculli, Schahram Dustdar, Alessio
Gambi, Carlo Ghezzi, and Srđan Krstić. Towards the formalization of
properties of cloud-based elastic systems. In Proceedings of the 6th In-
ternational Workshop on Principles of Engineering Service-Oriented and
Cloud Systems, PESOS 2014, pages 38–47, New York, NY, USA, May 2014.
Association for Computing Machinery.

[BBL+20] Pratik Baniya, Gaurav Bajaj, Jerry Lee, Ardeshir Bastani, Clifton Francis,
and Mahima Agumbe Suresh. Towards Policy-aware Edge Computing
Architectures. In 2020 IEEE International Conference on Big Data (Big
Data), pages 3464–3469, December 2020.

[BDF+20] Pete Beckman, Jack Dongarra, Nicola Ferrier, Geoffrey Fox, Terry Moore,
Dan Reed, and Micah Beck. Harnessing the computing continuum for
programming our world. Fog Computing: Theory and Practice, pages
215–230, 2020.

[Bel16] Marta Beltran. Defining an Elasticity Metric for Cloud Computing Envi-
ronments. In Proceedings of the 9th EAI International Conference on Per-
formance Evaluation Methodologies and Tools, VALUETOOLS’15, pages
172–179, Brussels, BEL, January 2016. ICST (Institute for Computer
Sciences, Social-Informatics and Telecommunications Engineering).

[BJ12] Anh Bui and Chi-Hyuck Jun. Learning Bayesian Network Structure Using
Markov Blanket Decomposition. Pattern Recognition Letters, 33, December
2012.

[BMS20] Elarbi Badidi, Zineb Mahrez, and Essaid Sabir. Fog computing for smart
cities’ big data management and analytics: A review. Future Internet,
12(11):190, 2020.

[BW20] Azzedine Boukerche and Jiahao Wang. Machine learning-based traffic pre-
diction models for intelligent transportation systems. Computer Networks,
181:107530, 2020.

[BXA+22] Romil Bhardwaj, Zhengxu Xia, Ganesh Ananthanarayanan, Junchen Jiang,
Yuanchao Shu, Nikolaos Karianakis, Kevin Hsieh, Paramvir Bahl, and Ion

160

Stoica. Ekya: Continuous Learning of Video Analytics Models on Edge
Compute Servers. pages 119–135, 2022.

[Cam19] Mark Campbell. Smart Edge: The Effects of Shifting the Center of Data
Gravity Out of the Cloud. Computer, 52(12):99–102, December 2019.

[Cao23] Yinan Cao. Better Orchestration for SLO-Oriented Cross-site Microser-
vices in Multi-tenant Cloud/Edge Continuum. In Proceedings of the 24th
International Middleware Conference, New York, USA, December 2023.

[CCL+20] Chen Chen, Lanlan Chen, Lei Liu, Shunfan He, Xiaoming Yuan, Dapeng
Lan, and Zhuang Chen. Delay-optimized v2v-based computation offloading
in urban vehicular edge computing and networks. IEEE Access, 8:18863–
18873, 2020.

[CDM+25] Valeria Cardellini, Patrizio Dazzi, Gabriele Mencagli, Matteo Nardelli,
and Massimo Torquati. Scalable compute continuum. Future Generation
Computer Systems, 166:107697, May 2025.

[CGGN+18] Valeria Cardellini, Tihana Galinac Grbac, Matteo Nardelli, Nikola
Tanković, and Hong-Linh Truong. QoS-Based Elasticity for Service Chains
in Distributed Edge Cloud Environments. In Autonomous Control. 2018.

[CGK+02] Jie Cheng, Russell Greiner, Jonathan Kelly, David Bell, and Weiru Liu.
Learning Bayesian networks from data: An information-theory based
approach. Artificial Intelligence, 137(1-2):43–90, May 2002.

[CH18] Min Chen and Yixue Hao. Task Offloading for Mobile Edge Computing in
Software Defined Ultra-Dense Network. IEEE Journal on Selected Areas
in Communications, 36(3):587–597, March 2018.

[CL24] Yanfei Chen and Sanmin Liu. A novel learning method for feature evolvable
streams. Evolving Systems, May 2024.

[CLH22] Yew Leong Cheng, Meng Hee Lim, and Kar Hoou Hui. Impact of internet
of things paradigm towards energy consumption prediction: A systematic
literature review. Sustainable Cities and Society, 78:103624, 2022.

[CLPNR22] Valeria Cardellini, Francesco Lo Presti, Matteo Nardelli, and
Gabriele Russo Russo. Runtime Adaptation of Data Stream Processing
Systems: The State of the Art. ACM Comput. Surv., 54(11s):237:1–237:36,
September 2022.

[CLW+20] Chen Chen, Bin Liu, Shaohua Wan, Peng Qiao, and Qingqi Pei. An
edge traffic flow detection scheme based on deep learning in an intelligent
transportation system. IEEE Transactions on Intelligent Transportation
Systems, 22(3):1840–1852, 2020.

161

[CPDM+23a] Victor Casamayor Pujol, Praveen Kumar Donta, Andrea Morichetta, Ilir
Murturi, and Schahram Dustdar. Edge Intelligence—Research Oppor-
tunities for Distributed Computing Continuum Systems. IEEE Internet
Computing, 27(4):53–74, July 2023. Conference Name: IEEE Internet
Computing.

[CPDM+23b] Víctor Casamayor-Pujol, Praveen Kumar Donta, Andrea Morichetta, Ilir
Murturi, and Schahram Dustdar. Distributed Computing Continuum
Systems – Opportunities and Research Challenges. March 2023.

[CPMM+23] Víctor Casamayor-Pujol, Andrea Morichetta, Ilir Murturi, Praveen Kumar
Donta, and Schahram Dustdar. Fundamental Research Challenges for
Distributed Computing Continuum Systems. Information, 14:198, March
2023.

[CPRD21] Victor Casamayor Pujol, Philipp Raith, and Schahram Dustdar. Towards
a new paradigm for managing computing continuum applications. In IEEE
3rd International Conference on Cognitive Machine Intelligence, CogMI
2021, pages 180–188, 2021.

[CPSX+24] Victor Casamayor Pujol, Boris Sedlak, Yanwei Xu, Praveen Kumar Donta,
and Schahram Dustdar. DeepSLOs for the Computing Continuum. In
Proceedings of the 2024 Workshop on Advanced Tools, Programming Lan-
guages, and PLatforms for Implementing and Evaluating algorithms for
Distributed systems, ApPLIED’24, pages 1–10, New York, NY, USA, June
2024. Association for Computing Machinery.

[CQH19] Pengfei Chen, Yong Qi, and Di Hou. CauseInfer: Automated End-to-
End Performance Diagnosis with Hierarchical Causality Graph in Cloud
Environment. IEEE Transactions on Services Computing, 2019.

[CVGN+23] Gustau Camps-Valls, Andreas Gerhardus, Urmi Ninad, Gherardo Varando,
Georg Martius, Emili Balaguer-Ballester, Ricardo Vinuesa, Emiliano Diaz,
Laure Zanna, and Jakob Runge. Discovering causal relations and equations
from data. Physics Reports, 1044:1–68, October 2023.

[DCPD23] Schahram Dustdar, Victor Casamayor Pujol, and Praveen Kumar Donta.
On Distributed Computing Continuum Systems. IEEE Transactions on
Knowledge and Data Engineering, 35(4):4092–4105, April 2023.

[DFP+24] Anastasiya Danilenka, Alireza Furutanpey, Victor Casamayor Pujol, Boris
Sedlak, Anna Lackinger, Maria Ganzha, Marcin Paprzycki, and Schahram
Dustdar. Adaptive Active Inference Agents for Heterogeneous and Lifelong
Federated Learning, October 2024.

[DGH21] Daniel Del Gaudio and Pascal Hirmer. Towards Feedback Loops in Model-
Driven IoT Applications. In Johanna Barzen, editor, Service-Oriented

162

Computing, Communications in Computer and Information Science, pages
100–108, Cham, 2021. Springer International Publishing.

[DGP+23] Muhammet Deveci, Ilgin Gokasar, Dragan Pamucar, Aws Alaa Zaidan,
Xin Wen, and Brij B Gupta. Evaluation of cooperative intelligent trans-
portation system scenarios for resilience in transportation using type-2
neutrosophic fuzzy vikor. Transportation Research Part A: Policy and
Practice, 172:103666, 2023.

[DGST11] Schahram Dustdar, Yike Guo, Benjamin Satzger, and Hong-Linh Truong.
Principles of Elastic Processes. Internet Computing, IEEE, 15:66–71,
November 2011.

[Dig22] Digital Realty. Data Gravity Index DGx. Technical Report V1.5, 2022.

[DLZZ20] Hao Du, Supeng Leng, Ke Zhang, and Longyu Zhou. Cooperative Sensing
and Task Offloading for Autonomous Platoons. In IEEE GLOBECOM
2020, December 2020.

[DM20] Schahram Dustdar and Ilir Murturi. Towards Distributed Edge-based
Systems. In 2020 IEEE Second International Conference on Cognitive
Machine Intelligence (CogMI), pages 1–9, Atlanta, GA, USA, October
2020. IEEE.

[DMCP+23] Praveen Kumar Donta, Ilir Murturi, Victor Casamayor Pujol, Boris Sedlak,
and Schahram Dustdar. Exploring the Potential of Distributed Computing
Continuum Systems. Computers, 12(10):198, October 2023.

[DPD22] Schahram Dustdar, Victor Casamayor Pujol, and Praveen Kumar Donta.
On distributed computing continuum systems. IEEE Transactions on
Knowledge and Data Engineering, 35(4):4092–4105, 2022.

[DPD23] Schahram Dustdar, Victor Casamayor Pujol, and Praveen Kumar Donta.
On Distributed Computing Continuum Systems. IEEE Transactions on
Knowledge and Data Engineering, 35(4):4092–4105, April 2023.

[DPH+19] L Minh Dang, Md Jalil Piran, Dongil Han, Kyungbok Min, and Hyeonjoon
Moon. A survey on internet of things and cloud computing for healthcare.
Electronics, 8(7):768, 2019.

[DSCPD23a] Praveen Kumar Donta, Boris Sedlak, Victor Casamayor Pujol, and
Schahram Dustdar. Governance and sustainability of distributed con-
tinuum systems: a big data approach. Journal of Big Data, 10(1):53, April
2023.

163

[DSCPD23b] Praveen Kumar Donta, Boris Sedlak, Victor Casamayor Pujol, and
Schahram Dustdar. Governance and sustainability of distributed con-
tinuum systems: a big data approach. Journal of Big Data, 10(1):1–31,
2023.

[DTZ+22] Zhenhua Duan, Cong Tian, Nan Zhang, Mengchu Zhou, Bin Yu, Xiaobing
Wang, Jiangen Guo, and Ying Wu. A novel load balancing scheme for
mobile edge computing. Journal of Systems and Software, 186:111195,
April 2022.

[DXK23] Shi Dong, Yuanjun Xia, and Joarder Kamruzzaman. Quantum Particle
Swarm Optimization for Task Offloading in Mobile Edge Computing. IEEE
TII, August 2023.

[Dzu20] Nguyen Mau Dzung. Super Fast and Accurate 3D Object Detection based
on 3D LiDAR Point Clouds (SFA3D), 2020.

[Edw10] Paul N. Edwards. A vast machine: computer models, climate data, and
the politics of global warming. MIT Press, Cambridge, Mass, 2010. OCLC:
ocn430736496.

[EMB+11] Paul Edwards, Matthew Mayernik, Archer Batcheller, Geoffrey Bowker,
and Christine Borgman. Science Friction: Data, Metadata, and Collabora-
tion. Social studies of science, 41:667–90, October 2011.

[FCC+19] Xiayan Fan, Taiping Cui, Chunyan Cao, Qianbin Chen, and Kyung Sup
Kwak. Minimum-Cost Offloading for Collaborative Task Execution of
MEC-Assisted Platooning. Sensors, 2019.

[FD08] Shunkai Fu and Michel C. Desmarais. Fast Markov Blanket Discovery
Algorithm Via Local Learning within Single Pass. In Advances in Artificial
Intelligence, pages 96–107. Springer, Berlin, Heidelberg, 2008.

[FDCS+23] Karl Friston, Lancelot Da Costa, Noor Sajid, Conor Heins, Kai Ueltzhöffer,
Grigorios A. Pavliotis, and Thomas Parr. The free energy principle made
simpler but not too simple, May 2023.

[FDK09] Karl J. Friston, Jean Daunizeau, and Stefan J. Kiebel. Reinforcement
Learning or Active Inference? PLOS ONE, 4(7):e6421, July 2009.

[FFACP18] Jonathan Fürst, Mauricio Fadel Argerich, Bin Cheng, and Apostolos Papa-
georgiou. Elastic Services for Edge Computing. In 2018 14th International
Conference on Network and Service Management (CNSM), pages 358–362,
November 2018.

[FKH06] Karl Friston, James Kilner, and Lee Harrison. A free energy principle for
the brain. Journal of Physiology Paris, 100(1-3):70–87, July 2006.

164

[Fri13] Karl Friston. Life as we know it. Journal of The Royal Society Interface,
10(86):20130475, September 2013.

[FSH+21] Sheng Feng, Haiyan Shi, Longjun Huang, Shigen Shen, Shui Yu, Hua Peng,
and Chengdong Wu. Unknown hostile environment-oriented autonomous
wsn deployment using a mobile robot. Journal of Network and Computer
Applications, 182:103053, 2021.

[FSL+23] Wenhao Fan, Yi Su, Jie Liu, Shenmeng Li, Wei Huang, Fan Wu, and
Yuan’an Liu. Joint task offloading and resource allocation for vehicular
edge computing based on v2i and v2v modes. IEEE Transactions on
Intelligent Transportation Systems, 2023.

[GABZ23] Davide Ghio, Antoine L. M. Aragon, Indaco Biazzo, and Lenka Zdeborová.
Bayes-optimal inference for spreading processes on random networks. Phys-
ical Review E, 108(4):044308, October 2023.

[GB22] Shichao Guan and Azzedine Boukerche. Intelligent Edge-Based Service
Provisioning Using Smart Cloudlets, Fog and Mobile Edges. IEEE Network,
36(2):139–145, March 2022.

[GDB22] Vidushi Goyal, Reetuparna Das, and Valeria Bertacco. Hardware-friendly
User-specific Machine Learning for Edge Devices. ACM Transactions on
Embedded Computing Systems, 21(5):62:1–62:29, October 2022.

[GFB+23] Niloy Ganguly, Dren Fazlija, Maryam Badar, Marco Fisichella, Sandi-
pan Sikdar, Johanna Schrader, Jonas Wallat, Koustav Rudra, Manolis
Koubarakis, Gourab K. Patro, Wadhah Zai El Amri, and Wolfgang Nejdl.
A Review of the Role of Causality in Developing Trustworthy AI Systems,
February 2023.

[GH18] Mila Gascó-Hernandez. Building a smart city: lessons from Barcelona.
Communications of the ACM, 61(4):50–57, March 2018.

[GLL20] Hongzhi Guo, Jiajia Liu, and Jianfeng Lv. Toward Intelligent Task Of-
floading at the Edge. IEEE Network, 34(2):128–134, March 2020.

[GLZ+21] Yujia Gao, Liang Liu, Xiaolong Zheng, Chi Zhang, and Huadong Ma.
Federated sensing: Edge-cloud elastic collaborative learning for intelligent
sensing. IEEE Internet of Things, 2021.

[GMP+21] Yisel Garí, David A. Monge, Elina Pacini, Cristian Mateos, and Carlos
García Garino. Reinforcement learning-based application Autoscaling in
the Cloud: A survey. Engineering Applications of Artificial Intelligence,
102:104288, June 2021.

165

[GRG22] Hui Guo, Lan-lan Rui, and Zhi-peng Gao. V2v task offloading algorithm
with lstm-based spatiotemporal trajectory prediction model in svcns. IEEE
TVT, 2022.

[GWK+19] Stefanos Gritzalis, Edgar R. Weippl, Sokratis K. Katsikas, Gabriele
Anderst-Kotsis, A Min Tjoa, and Ismail Khalil, editors. Trust, Privacy
and Security in Digital Business: 16th International Conference, TrustBus
2019, Linz, Austria, August 26–29, 2019, Proceedings, volume 11711 of
Lecture Notes in Computer Science. Springer International Publishing,
Cham, 2019.

[HCHC19] Yuyu Hu, Taiping Cui, Xiaoge Huang, and Qianbin Chen. Task Offloading
Based on Lyapunov Optimization for MEC-assisted Platooning. In 2019
11th International Conference on Wireless Communications and Signal
Processing (WCSP), pages 1–5, October 2019.

[HDAD23a] Abhishek Hazra, Praveen Kumar Donta, Tarachand Amgoth, and
Schahram Dustdar. Cooperative Transmission Scheduling and Computa-
tion Offloading With Collaboration of Fog and Cloud for Industrial IoT
Applications. IEEE Internet of Things Journal, March 2023.

[HDAD23b] Abhishek Hazra, Praveen Kumar Donta, Tarachand Amgoth, and
Schahram Dustdar. Cooperative transmission scheduling and compu-
tation offloading with collaboration of fog and cloud for industrial iot
applications. IEEE Internet of Things Journal, 10(5):3944–3953, 2023.

[HKR13] Nikolas Herbst, Samuel Kounev, and Ralf Reussner. Elasticity in cloud
computing: What it is, and what it is not. International Conference on
Autonomic Computing, pages 23–27, January 2013.

[HLK18] Yen-Chang Hsu, Zhaoyang Lv, and Zsolt Kira. Learning to cluster in order
to transfer across domains and tasks. In Sixth International Conference
on Learning Representations (ICLR 2018), March 2018.

[HMD+22] Conor Heins, Beren Millidge, Daphne Demekas, Brennan Klein, Karl
Friston, Iain Couzin, and Alexander Tschantz. pymdp: A Python library
for active inference in discrete state spaces. Journal of Open Source
Software, May 2022.

[HMDC19] Carol Habib, Abdallah Makhoul, Rony Darazi, and Raphaël Couturier.
Health risk assessment and decision-making for patient monitoring and
decision-support using wireless body sensor networks. Information fusion,
47:10–22, 2019.

[HMSS+22] Baydaa Hashim Mohammed, Hasimi Sallehuddin, Nurhizam Safie, Afi-
fuddin Husairi, Nur Azaliah Abu Bakar, Farashazillah Yahya, Ihsan Ali,
and Shaymaa AbdelGhany Mohamed. Building information modeling and

166

internet of things integration in the construction industry: A scoping study.
Advances in Civil Engineering, 2022, 2022.

[HS05] M.N. Huhns and M.P. Singh. Service-oriented computing: key concepts
and principles. IEEE Internet Computing, 9(1):75–81, January 2005.
Conference Name: IEEE Internet Computing.

[HWH+23] Wei Hao, Zixi Wang, Lauren Hong, Lingxiao Li, Nader Karayanni,
Chengzhi Mao, Junfeng Yang, and Asaf Cidon. Monitoring and Adapting
ML Models on Mobile Devices, May 2023.

[JBP+23] Byeonghui Jeong, Seungyeon Baek, Sihyun Park, Jueun Jeon, and Young-
Sik Jeong. Stable and efficient resource management using deep neural
network on cloud computing. Neurocomputing, 521:99–112, February 2023.

[JWTI23] Matthijs Jansen, Linus Wagner, Animesh Trivedi, and Alexandru Iosup.
Continuum: Automate Infrastructure Deployment and Benchmarking in
the Compute Continuum. In ACM SPEC 2023, New York, NY, USA,
April 2023.

[KBHH23] Tae Ho Kim, Sang Ho Bae, Chang Hun Han, and Bongsu Hahn. The
design of a low-cost sensing and control architecture for a search and rescue
assistant robot. Machines, 11(3):329, 2023.

[KBJ+20] Sampo Kuutti, Richard Bowden, Yaochu Jin, Phil Barber, and Saber
Fallah. A survey of deep learning applications to autonomous vehicle
control. IEEE TITS, 2020.

[KC03] J.O. Kephart and D.M. Chess. The vision of autonomic computing.
Computer, 36(1):41–50, January 2003.

[KCG+23] Neville Kenneth Kitson, Anthony C. Constantinou, Zhigao Guo, Yang
Liu, and Kiattikun Chobtham. A survey of Bayesian Network structure
learning. Artificial Intelligence Review, 56(8):8721–8814, August 2023.

[KDKA23] Mudassar Ali Khan, Ikram Ud Din, Byung-Seo Kim, and Ahmad Almogren.
Visualization of remote patient monitoring system based on internet of
medical things. Sustainability, 15(10):8120, 2023.

[KL03] Alexander Keller and Heiko Ludwig. The WSLA Framework: Specifying
and Monitoring Service Level Agreements for Web Services. Journal of
Network and Systems Management, 11(1):57–81, March 2003.

[KLM+23] Henna Kokkonen, Lauri Lovén, Naser Hossein Motlagh, Abhishek Ku-
mar, Juha Partala, Tri Nguyen, Víctor Casamayor Pujol, Panos Kostakos,
Teemu Leppänen, Alfonso González-Gil, Ester Sola, Iñigo Angulo, Mad-
husanka Liyanage, Mehdi Bennis, Sasu Tarkoma, Schahram Dustdar,

167

Susanna Pirttikangas, and Jukka Riekki. Autonomy and Intelligence in
the Computing Continuum: Challenges, Enablers, and Future Directions
for Orchestration, February 2023.

[KM22] Mohammad Ali Khoshkholghi and Toktam Mahmoodi. Edge intelligence
for service function chain deployment in NFV-enabled networks. Computer
Networks, 219:109451, December 2022.

[KMH+21] Dragi Kimovski, Roland Mathá, Josef Hammer, Narges Mehran, Hermann
Hellwagner, and Radu Prodan. Cloud, Fog or Edge: Where to Compute?
IEEE Internet Computing, 25(4):30–36, July 2021. arXiv:2101.10417 [cs].

[KPNS21] Jyotirmoy Karjee, S Praveen Naik, and N Srinidhi. Energy Profiling
based Load-Balancing Approach in IoT-Edge for Split Computing. 2021
IEEE 18th India Council International Conference (INDICON), pages
1–6, December 2021.

[KPP+18] Michael Kirchhoff, Thomas Parr, Ensor Palacios, Karl Friston, and Julian
Kiverstein. The Markov blankets of life: autonomy, active inference and
the free energy principle. Journal of The Royal Society Interface, 2018.

[KPS+20] Roman Kolcun, Diana Andreea Popescu, Vadim Safronov, Poonam Yadav,
Anna Maria Mandalari, Yiming Xie, Richard Mortier, and Hamed Haddadi.
The Case for Retraining of ML Models for IoT Device Identification at
the Edge, November 2020.

[KVT21] Mohamad Kashef, Anna Visvizi, and Orlando Troisi. Smart city as a smart
service system: Human-computer interaction and smart city surveillance
systems. Computers in Human Behavior, 124:106923, 2021.

[LCLW21] Zhihan Lv, Dongliang Chen, Ranran Lou, and Qingjun Wang. Intelli-
gent edge computing based on machine learning for smart city. Future
Generation Computer Systems, 115:90–99, 2021.

[LCZ18] Jinjin Lin, Pengfei Chen, and Zibin Zheng. Microscope: Pinpoint Perfor-
mance Issues with Causal Graphs in Micro-service Environments. In Claus
Pahl, Maja Vukovic, Jianwei Yin, and Qi Yu, editors, Service-Oriented
Computing, Lecture Notes in Computer Science, pages 3–20, Cham, 2018.
Springer International Publishing.

[LEB15] Sebastian Lehrig, Hendrik Eikerling, and Steffen Becker. Scalability,
Elasticity, and Efficiency in Cloud Computing: a Systematic Literature
Review of Definitions and Metrics. In Proceedings of the 11th International
ACM SIGSOFT Conference, pages 83–92, New York, USA, May 2015.

[LHAES23] Qianlin Liang, Walid A. Hanafy, Ahmed Ali-Eldin, and Prashant Shenoy.
Model-driven Cluster Resource Management for AI Workloads in Edge

168

Clouds. ACM Transactions on Autonomous and Adaptive Systems,
18(1):2:1–2:26, March 2023.

[Lin22] Linzaer. Ultra Fast Face-Detector, February 2022.
https://github.com/Linzaer/Ultra-Light-Fast-Generic-Face-Detector-
1MB.

[LL20] JongBeom Lim and DaeWon Lee. A Load Balancing Algorithm for Mobile
Devices in Edge Cloud Computing Environments. Electronics, 9(4):686,
April 2020.

[LLSY22] Lingyun Lu, Xiang Li, Jingxin Sun, and Zhihe Yang. Cooperative Compu-
tation Offloading and Resource Management for Vehicle Platoon: A Deep
Reinforcement Learning Approach. In IEEE Int Conf on High Performance
Computing & Communications, 2022.

[LMF+25] Sergio Laso, Ilir Murturi, Pantelis Frangoudis, Juan Luis Herrera, Juan M.
Murillo, and Schahram Dustdar. A Multidimensional Elasticity Framework
for Adaptive Data Analytics Management in the Computing Continuum,
January 2025.

[LMYDM22] Luc Le Mero, Dewei Yi, Mehrdad Dianati, and Alexandros Mouzakitis. A
survey on imitation learning techniques for end-to-end autonomous vehicles.
IEEE Transactions on Intelligent Transportation Systems, 23(9):14128–
14147, 2022.

[LPS+19] Georgiy Levchuk, Krishna Pattipati, Daniel Serfaty, Adam Fouse, and
Robert McCormack. Active Inference in Multiagent Systems: Context-
Driven Collaboration and Decentralized Purpose-Driven Team Adaptation.
In Artificial Intelligence for the Internet of Everything. Academic Press,
2019.

[LWL+23] Shuaibing Lu, Jie Wu, Pengfan Lu, Ning Wang, Haiming Liu, and Juan
Fang. QoS-Aware Online Service Provisioning and Updating in Cost-
Efficient Multi-Tenant Mobile Edge Computing. IEEE Services Computing,
2023.

[LZHH23] Mingyang Lyu, Yibo Zhao, Chao Huang, and Hailong Huang. Un-
manned aerial vehicles for search and rescue: A survey. Remote Sensing,
15(13):3266, 2023.

[Mac10] Dave MacCrory. Data Gravity – in the Clouds – Data Gravitas, December
2010.

[MAGA+19] Ammar Awad Mutlag, Mohd Khanapi Abd Ghani, Net al Arunkumar,
Mazin Abed Mohammed, and Othman Mohd. Enabling technologies for
fog computing in healthcare iot systems. Future generation computer
systems, 90:62–78, 2019.

169

[MAM+24] Ryan May, Sean Arms, Patrick Marsh, Eric Bruning, John Leeman, Kevin
Goebbert, Jonathan Thielen, Zachary Bruick, and M. Drew Camron.
MetPy: A Python Package for Meteorological Data, April 2024.

[MATM23] Leonardo Militano, Adriana Arteaga, Giovanni Toffetti, and Nathalie
Mitton. The cloud-to-edge-to-iot continuum as an enabler for search and
rescue operations. Future Internet, 15(2):55, 2023.

[MBB13] Mohamad Mehdi, Nizar Bouguila, and Jamal Bentahar. A QoS-Based Trust
Approach for Service Selection and Composition via Bayesian Networks.
In 2013 IEEE 20th International Conference on Web Services, June 2013.

[MCM19] Andrea Morichetta, Pedro Casas, and Marco Mellia. EXPLAIN-IT: To-
wards Explainable AI for Unsupervised Network Traffic Analysis. In
Proceedings of the 3rd ACM CoNEXT Workshop on Big DAta, Machine
Learning and Artificial Intelligence for Data Communication Networks,
Big-DAMA ’19, pages 22–28, New York, NY, USA, December 2019. Asso-
ciation for Computing Machinery.

[MD22] Ilir Murturi and Schahram Dustdar. A Decentralized Approach for Re-
source Discovery using Metadata Replication in Edge Networks. IEEE
Transactions on Services Computing, 15(5):2526–2537, September 2022.

[Men21] Vítor Hugo Menino. A Novel Approach to Load Balancing in P2P Overlay
Networks for Edge Systems. 2021.

[MH22] Mohamed H. Mousa and Mohamed K. Hussein. Efficient UAV-based mobile
edge computing using differential evolution and ant colony optimization.
PeerJ Computer Science, 2022.

[MKBC21] Ernesto C. Martínez, Jong Woo Kim, Tilman Barz, and M. Cruz. Prob-
abilistic Modeling for Optimization of Bioreactors using Reinforcement
Learning with Active Inference. Computer Aided Chemical Engineering,
2021.

[MMD+19] Patric Marques, Diogo Manfroi, Eduardo Deitos, Jonatan Cegoni, Ro-
drigo Castilhos, Juergen Rochol, Edison Pignaton, and Rafael Kunst.
An iot-based smart cities infrastructure architecture applied to a waste
management scenario. Ad Hoc Networks, 87:200–208, 2019.

[MPK09] Ole Mengshoel, Scott Poll, and Tolga Kurtoglu. Developing Large-Scale
Bayesian Networks by Composition: Fault Diagnosis of Electrical Power
Systems in Aircraft and Spacecraft. January 2009.

[MPN+23a] Andrea Morichetta, V. Casamayor Pujol, Stefan Nastic, Schahram Dustdar,
Deepak Vij, Ying Xiong, and Zhaobo Zhang. PolarisProfiler: A novel
metadata-based profiling approach for optimizing resource management in

170

the edge-cloud continnum. In 18th Annual System of Systems Engineering
Conference (SOSE), 2023.

[MPN+23b] Andrea Morichetta, Vıctor Casamayor Pujol, Stefan Nastic, Thomas
Pusztai, Philipp Raith, Schahram Dustdar, Deepak Vij, Ying Xiong, and
Zhaobo Zhang. Demystifying deep learning in predictive monitoring for
cloud-native SLOs. 2023.

[MSRD23] Andrea Morichetta, Nikolaus Spring, Philipp Raith, and Schahram Dust-
dar. Intent-based management for the distributed computing continuum.
In 2023 IEEE International Conference on Service-Oriented System Engi-
neering (SOSE), pages 239–249. IEEE, 2023.

[MSXY22] Xiandong Ma, Zhou Su, Qichao Xu, and Bincheng Ying. Edge Computing
and UAV Swarm Cooperative Task Offloading in Vehicular Networks.
In 2022 International Wireless Communications and Mobile Computing
(IWCMC), pages 955–960, May 2022.

[Mur22] Ilir Murturi. Resource Management and Elasticity Control in Edge Net-
works. PhD thesis, 2022.

[MWYY20] Yifang Ma, Zhenyu Wang, Hong Yang, and Lin Yang. Artificial intelligence
applications in the development of autonomous vehicles. IEEE Journal of
Automatica Sinica, 2020.

[MYG18] Carla Mouradian, Sami Yangui, and Roch H Glitho. Robots as-a-service
in cloud computing: Search and rescue in large-scale disasters case study.
In 2018 15th IEEE Annual Consumer Communications & Networking
Conference (CCNC), pages 1–7. IEEE, 2018.

[NGS+20] B Naveen Naik, Rekha Gupta, Ajay Singh, Shiv Lal Soni, and GD Puri.
Real-time smart patient monitoring and assessment amid covid-19
pandemic–an alternative approach to remote monitoring. Journal of
Medical Systems, 44:1–2, 2020.

[NKFW19] Sina Niedermaier, Falko Koetter, Andreas Freymann, and Stefan Wagner.
On Observability and Monitoring of Distributed Systems – An Industry
Interview Study. In Sami Yangui, Ismael Bouassida Rodriguez, Khalil
Drira, and Zahir Tari, editors, Service-Oriented Computing, 2019.

[NMC07] Alexandru Niculescu-Mizil and Rich Caruana. Inductive Transfer for
Bayesian Network Structure Learning. In Proceedings of the Eleventh
International Conference on Artificial Intelligence and Statistics, pages
339–346. PMLR, March 2007.

171

[NMP+20] Stefan Nastic, Andrea Morichetta, Thomas Pusztai, Schahram Dustdar,
Xiaoning Ding, Deepak Vij, and Ying Xiong. SLOC: Service Level Objec-
tives for Next Generation Cloud Computing. IEEE Internet Computing,
24(3), May 2020.

[NPM+21] Stefan Nastic, Thomas Pusztai, Andrea Morichetta, Victor Casamayor
Pujol, Schahram Dustdar, Deepak Vii, and Ying Xiong. Polaris Scheduler:
Edge Sensitive and SLO Aware Workload Scheduling in Cloud-Edge-IoT
Clusters. In 2021 IEEE 14th International Conference on Cloud Computing
(CLOUD), pages 206–216, Chicago, IL, USA, September 2021. IEEE.

[NRF+22] Stefan Nastic, Philipp Raith, Alireza Furutanpey, Thomas Pusztai, and
Schahram Dustdar. A Serverless Computing Fabric for Edge and Cloud. In
2022 IEEE 4th International Conference on Cognitive Machine Intelligence
(CogMI), pages 1–12, Atlanta, GA, USA, December 2022. IEEE.

[NRRC24] Matteo Nardelli, Gabriele Russo Russo, and Valeria Cardellini. Compute
Continuum: What Lies Ahead? In Euro-Par 2023: Parallel Processing
Workshops, 2024.

[ope24] opencv. opencv at 4.9.0, 2024.

[OSF22] Murugaraj Odiathevar, Winston K.G. Seah, and Marcus Frean. A Bayesian
Approach To Distributed Anomaly Detection In Edge AI Networks. IEEE
Transactions on Parallel and Distributed Systems, December 2022.

[PD21] Victor Casamayor Pujol and Schahram Dustdar. Fog robotics–
understanding the research challenges. IEEE Internet Computing, 25(5):10–
17, 2021.

[PD23] Victor Casamayor Pujol and Schahram Dustdar. Towards a Prime Directive
of SLOs. In 2023 IEEE International Conference on Software Services
Engineering (SSE), pages 61–70, July 2023.

[Pea88a] Judea Pearl. Probabilistic reasoning in intelligent systems : networks of
plausible inference. San Mateo, Calif. : Morgan Kaufmann, 1988.

[Pea88b] Judea Pearl. Probabilistic Reasoning in Intelligent Systems: Networks of
Plausible Inference. Morgan Kaufmann Publishers Inc., San Francisco,
CA, USA, 1988.

[Pea09] Judea Pearl. Causal inference in statistics: An overview. Statistics Surveys,
3(none):96–146, January 2009.

[Pet21] Dana Petcu. Service Deployment Challenges in Cloud-to-Edge Continuum.
Scalable Computing: Practice and Experience, November 2021.

172

[PGPA+18] Pierluigi Plebani, David Garcia-Perez, Maya Anderson, David Bermbach,
Cinzia Cappiello, Ronen I. Kat, Achilleas Marinakis, Vrettos Moulos, Frank
Pallas, Stefan Tai, and Monica Vitali. Data and Computation Movement
in Fog Environments: The DITAS Approach. In Zaigham Mahmood,
editor, Fog Computing: Concepts, Frameworks and Technologies, pages
249–266. Springer International Publishing, Cham, 2018.

[PK18] Christopher T.J. Prentice and Georgios Karakonstantis. Smart Office
System with Face Detection at the Edge. In 2018 IEEE SmartWorld,
pages 88–93, October 2018.

[PM18] Judea Pearl and Dana Mackenzie. The Book of Why: The New Science of
Cause and Effect. Basic Books, Inc., USA, 2018.

[PMN23] Victor Casamayor Pujol, Andrea Morichetta, and Stefan Nastic. Intelligent
Sampling: A Novel Approach to Optimize Workload Scheduling in Large-
Scale Heterogeneous Computing Continuum. In 2023 IEEE International
Conference on Service-Oriented System Engineering (SOSE), July 2023.

[PMP+21a] Thomas Pusztai, Andrea Morichetta, Victor Casamayor Pujol, Schahram
Dustdar, Stefan Nastic, Xiaoning Ding, Deepak Vij, and Ying Xiong.
SLO Script: A Novel Language for Implementing Complex Cloud-Native
Elasticity-Driven SLOs. In 2021 IEEE ICWS, pages 21–31, Chicago, IL,
USA, September 2021. IEEE.

[PMP+21b] Thomas Pusztai, Andrea Morichetta, Víctor Casamayor Pujol, Schahram
Dustdar, Stefan Nastic, Xiaoning Ding, Deepak Vij, and Ying Xiong. A
Novel Middleware for Efficiently Implementing Complex Cloud-Native
SLOs. In 2021 IEEE 14th International Conference on Cloud Computing
(CLOUD), September 2021.

[PMS+20] Akira-Sebastian Poncette, Lina Mosch, Claudia Spies, Malte Schmieding,
Fridtjof Schiefenhövel, Henning Krampe, and Felix Balzer. Improvements
in patient monitoring in the intensive care unit: survey study. Journal of
medical Internet research, 22(6):e19091, 2020.

[PNM+22] Thomas Pusztai, Stefan Nastic, Andrea Morichetta, Víctor Casamayor
Pujol, Philipp Raith, Schahram Dustdar, Deepak Vij, Ying Xiong, and
Zhaobo Zhang. Polaris Scheduler: SLO- and Topology-aware Microservices
Scheduling at the Edge. In 15th International Conference on Utility and
Cloud Computing, pages 61–70, December 2022.

[PPF22] Thomas Parr, Giovanni Pezzulo, and Karl J. Friston. Active Inference:
The Free Energy Principle in Mind, Brain, and Behavior. The MIT Press,
March 2022.

173

[PRD+20] Kellow Pardini, Joel JPC Rodrigues, Ousmane Diallo, Ashok Kumar Das,
Victor Hugo C de Albuquerque, and Sergei A Kozlov. A smart waste
management solution geared towards citizens. Sensors, 20(8):2380, 2020.

[PRD21] Víctor Casamayor Pujol, Philipp Raith, and Schahram Dustdar. Towards
a new paradigm for managing computing continuum applications. In 2021
IEEE Third International Conference on Cognitive Machine Intelligence
(CogMI), December 2021.

[PRK+19] Kellow Pardini, Joel JPC Rodrigues, Sergei A Kozlov, Neeraj Kumar, and
Vasco Furtado. Iot-based solid waste management solutions: a survey.
Journal of Sensor and Actuator Networks, 8(1):5, 2019.

[PRP+20] Ensor Rafael Palacios, Adeel Razi, Thomas Parr, Michael Kirchhoff, and
Karl Friston. On Markov blankets and hierarchical self-organisation.
Journal of Theoretical Biology, 486, February 2020.

[PSDD24] Víctor Casamayor Pujol, Boris Sedlak, Praveen Kumar Donta, and
Schahram Dustdar. On Causality in Distributed Continuum Systems.
IEEE Internet Computing, 28(2):57–64, March 2024.

[QBJ+20] Haoran Qiu, Subho S. Banerjee, Saurabh Jha, Zbigniew T. Kalbarczyk,
and Ravishankar K. Iyer. FIRM: An Intelligent Fine-grained Resource
Management Framework for SLO-Oriented Microservices. pages 805–825,
2020.

[QLZH18] Guanhua Qiao, Supeng Leng, Ke Zhang, and Yejun He. Collaborative task
offloading in vehicular edge multi-access networks. IEEE Communications
Magazine, 56(8):48–54, 2018.

[RCVA22] Daniel Rosendo, Alexandru Costan, Patrick Valduriez, and Gabriel Anto-
niu. Distributed intelligence on the edge-to-cloud continuum: A systematic
literature review. Journal of Parallel and Distributed Computing, 166:71–
94, 2022.

[RGC15] Aaditya Ramdas, Nicolas Garcia, and Marco Cuturi. On Wasserstein Two
Sample Testing and Related Families of Nonparametric Tests, October
2015.

[RMBG21] Sanaz Rabinia, Haydar Mehryar, Marco Brocanelli, and Daniel Grosu.
Data Sharing-Aware Task Allocation in Edge Computing Systems. In 2021
IEEE International Conference on Edge Computing (EDGE), pages 60–67,
September 2021. ISSN: 2767-9918.

[RPN+22] Dumitru Roman, Radu Prodan, Nikolay Nikolov, Ahmet Soylu, Mihhail
Matskin, Andrea Marrella, Dragi Kimovski, Brian Elvesæter, Anthony
Simonet-Boulogne, Giannis Ledakis, Hui Song, Francesco Leotta, and

174

Evgeny Kharlamov. Big Data Pipelines on the Computing Continuum:
Tapping the Dark Data. Computer, 55(11):74–84, November 2022.

[RRS+22] Abderahman Rejeb, Karim Rejeb, Steve Simske, Horst Treiblmaier, and
Suhaiza Zailani. The big picture on the internet of things and the smart
city: a review of what we know and what we need to know. Internet of
Things, August 2022.

[RTG15] Rasmus Rothe, Radu Timofte, and Luc Van Gool. DEX: Deep EXpectation
of Apparent Age from a Single Image. In 2015 IEEE International Confer-
ence on Computer Vision Workshop (ICCVW), pages 252–257, Santiago,
Chile, December 2015. IEEE.

[RVM+23] Banoth Ravi, Blesson Varghese, Ilir Murturi, Praveen Kumar Donta,
Schahram Dustdar, Chinmaya Kumar Dehury, and Satish Narayana Sri-
rama. Stochastic modeling for intelligent software-defined vehicular net-
works: A survey. Computers, 12(8), 2023.

[RWC+20] Gregory B Rehm, Sang Hoon Woo, Xin Luigi Chen, Brooks T Kuhn,
Irene Cortes-Puch, Nicholas R Anderson, Jason Y Adams, and Chen-
Nee Chuah. Leveraging iots and machine learning for patient diagnosis
and ventilation management in the intensive care unit. IEEE Pervasive
Computing, 19(3):68–78, 2020.

[SAR+21] Kumar A. Shukla, Shahanawaj Ahamad, G.Nageswara Rao, Avein Jabar
Al-Asadi, Ankur Gupta, and Makhan Kumbhkar. Artificial Intelligence
Assisted IoT Data Intrusion Detection. In ICCCT 2021, December 2021.

[SBA20] Bharath Sudharsan, John G. Breslin, and Muhammad Intizar Ali.
Edge2Train: a framework to train machine learning models (SVMs) on
resource-constrained IoT edge devices. In Proceedings of the 10th Inter-
national Conference on the Internet of Things, IoT ’20, pages 1–8, New
York, NY, USA, October 2020. Association for Computing Machinery.

[SBIB+24] Andrea Soltoggio, Eseoghene Ben-Iwhiwhu, Vladimir Braverman, Eric
Eaton, Benjamin Epstein, Yunhao Ge, Lucy Halperin, Jonathan How,
Laurent Itti, Michael A. Jacobs, Pavan Kantharaju, Long Le, Steven
Lee, Xinran Liu, Sildomar T. Monteiro, David Musliner, Saptarshi Nath,
Priyadarshini Panda, Christos Peridis, Hamed Pirsiavash, Vishwa Parekh,
Kaushik Roy, Shahaf Shperberg, Hava T. Siegelmann, Peter Stone, Kyle
Vedder, Jingfeng Wu, Lin Yang, Guangyao Zheng, and Soheil Kolouri. A
collective AI via lifelong learning and sharing at the edge. Nature Machine
Intelligence, 6(3):251–264, March 2024.

[SBPF21] Noor Sajid, Philip J. Ball, Thomas Parr, and Karl J. Friston. Active
inference: demystified and compared. Neural Computation, 2021.

175

[SBZ18] Ragini Sharma, Saman Biookaghazadeh, and Ming Zhao. Are Existing
Knowledge Transfer Techniques Effective For Deep Learning on Edge
Devices? In Proceedings of the 27th International Symposium on High-
Performance Parallel and Distributed Computing, HPDC ’18, pages 15–16,
New York, NY, USA, June 2018. Association for Computing Machinery.

[SCK+21] Wonik Seo, Sanghoon Cha, Yeonjae Kim, Jaehyuk Huh, and Jongse Park.
SLO-Aware Inference Scheduler for Heterogeneous Processors in Edge
Platforms. ACM Transactions on Architecture and Code Optimization,
18(4):1–26, December 2021.

[SCPDD23] Boris Sedlak, Victor Casamayor Pujol, Praveen Kumar Donta, and
Schahram Dustdar. Controlling Data Gravity and Data Friction: From
Metrics to Multidimensional Elasticity Strategies. In 2023 IEEE Interna-
tional Conference on Software Services Engineering (SSE), pages 43–49,
Chicago, IL, USA, July 2023.

[SCQC23] Andrés L. Suárez-Cetrulo, David Quintana, and Alejandro Cervantes. A
survey on machine learning for recurring concept drifting data streams.
Expert Systems with Applications, 213:118934, March 2023.

[Scu10] Marco Scutari. Learning Bayesian Networks with the bnlearn R Package.
Journal of Statistical Software, 35:1–22, July 2010.

[SCZ+16] Weisong Shi, Jie Cao, Quan Zhang, Youhuizi Li, and Lanyu Xu. Edge
Computing: Vision and Challenges. IEEE Internet of Things Journal,
3(5):637–646, October 2016.

[SD16] Weisong Shi and Schahram Dustdar. The Promise of Edge Computing.
Computer, 49(5):78–81, May 2016.

[SFBS20] Mohammad Shahverdy, Mahmood Fathy, Reza Berangi, and Moham-
mad Sabokrou. Driver behavior detection and classification using deep
convolutional neural networks. Expert Systems with Applications, 2020.

[SFW22] Ryan Smith, Karl J. Friston, and Christopher J. Whyte. A step-by-step
tutorial on active inference and its application to empirical data. Journal
of Mathematical Psychology, 107:102632, April 2022.

[SIIA21] Nicholas Chieng Anak Sallang, Mohammad Tariqul Islam, Moham-
mad Shahidul Islam, and Haslina Arshad. A CNN-based smart waste
management system using tensorflow lite and LoRa-GPS shield in internet
of things environment. IEEE Access, 9:153560–153574, 2021.

[SJK+20] Manu Sharma, Sudhanshu Joshi, Devika Kannan, Kannan Govindan,
Rohit Singh, and HC Purohit. Internet of things (iot) adoption barriers of
smart cities’ waste management: An indian context. Journal of Cleaner
Production, 270:122047, 2020.

176

[SMB21] Jacopo Soldani, Giuseppe Montesano, and Antonio Brogi. What Went
Wrong? Explaining Cascading Failures in Microservice-Based Applications.
In Johanna Barzen, editor, Service-Oriented Computing, pages 133–153,
Cham, 2021. Springer International Publishing.

[SMD22] Boris Sedlak, Ilir Murturi, and Schahram Dustdar. Specification and
Operation of Privacy Models for Data Streams on the Edge. In 2022 IEEE
6th International Conference on Fog and Edge Computing (ICFEC), pages
78–82, Messina, Italy, May 2022. IEEE.

[SMDD23] Boris Sedlak, Ilir Murturi, Praveen Kumar Donta, and Schahram Dustdar.
A Privacy Enforcing Framework for Transforming Data Streams on the
Edge. IEEE Transactions on Emerging Topics in Computing, 2023.

[SMR+25] Boris Sedlak, Andrea Morichetta, Philipp Raith, Victor Casamayor Pujol,
and Schahram Dustdar. Towards Multi-dimensional Elasticity for Pervasive
Stream Processing Services. In 2025 IEEE International Conference on
Pervasive Computing and Communications Workshops and other Affiliated
Events (PerCom Workshops), 2025.

[SMW+24] Boris Sedlak, Andrea Morichetta, Yuhao Wang, Yang Fei, Liang Wang,
Schahram Dustdar, and Xiaobo Qu. SLO-Aware Task Offloading Within
Collaborative Vehicle Platoons. In Walid Gaaloul, Michael Sheng, Qi Yu,
and Sami Yangui, editors, Service-Oriented Computing, pages 72–86, Sin-
gapore, December 2024. Springer Nature.

[SPDD23] Boris Sedlak, Victor Casamayor Pujol, Praveen Kumar Donta, and
Schahram Dustdar. Designing Reconfigurable Intelligent Systems
with Markov Blankets. In Service-Oriented Computing, pages 42–50.
Springer Nature Switzerland, 2023.

[SPDD24a] Boris Sedlak, Victor Casamayor Pujol, Praveen Kumar Donta, and
Schahram Dustdar. Active Inference on the Edge: A Design Study. In
2024 IEEE PerCom Workshops, pages 550–555, March 2024.

[SPDD24b] Boris Sedlak, Victor Casamayor Pujol, Praveen Kumar Donta, and
Schahram Dustdar. Equilibrium in the Computing Continuum through
Active Inference. Future Generation Computer System, 160:92–108, 2024.

[SPDD24c] Boris Sedlak, Victor Casamayor Pujol, Praveen Kumar Donta, and
Schahram Dustdar. Markov Blanket Composition of SLOs. In 2024
IEEE International Conference on Edge Computing and Communications
(EDGE), pages 128–138, Shenzhen, China, 2024.

[SPDD24d] Boris Sedlak, Víctor Casamayor Pujol, Praveen Kumar Donta, and
Schahram Dustdar. Diffusing High-level SLO in Microservice Pipelines.

177

In 2024 IEEE International Conference on Service-Oriented System Engi-
neering (SOSE), pages 11–19, Shanghai, China, 2024.

[SPJC18] Jang-Ping Sheu, Yi-Cian Pu, R.B. Jagadeesha, and Yeh-Cheng Chang.
An efficient module deployment algorithm in edge computing. In IEEE
Wireless Communications and Networking Workshops (WCNCW), April
2018.

[SPM+24] Boris Sedlak, Victor Casamayor Pujol, Andrea Morichetta, Praveen Kumar
Donta, and Schahram Dustdar. Adaptive Stream Processing on Edge
Devices through Active Inference, September 2024.

[SSS19] Mauro Scanagatta, Antonio Salmerón, and Fabio Stella. A survey on
bayesian network structure learning from data. Progress in Artificial
Intelligence, 8:425–439, 2019.

[T+22] William Tärneberg et al. The 6G Computing Continuum (6GCC): Meet-
ing the 6G computing challenges. In International Conference on 6G
Networking, July 2022.

[TAS03] Ioannis Tsamardinos, Constantin F. Aliferis, and Alexander Statnikov.
Time and sample efficient discovery of Markov blankets and direct causal
relations. New York, USA, August 2003. Association for Computing
Machinery.

[TDFS21] László Toka, Gergely Dobreff, Balázs Fodor, and Balázs Sonkoly. Machine
Learning-Based Scaling Management for Kubernetes Edge Clusters. IEEE
Transactions on Network and Service Management, 18(1):958–972, March
2021.

[THB12] Vangelis Tasoulas, H. Haugerud, and Kyrre M. Begnum. Bayllocator: A
Proactive System to Predict Server Utilization and Dynamically Allocate
Memory Resources Using Bayesian Networks and Ballooning. December
2012.

[TK24] Minh-Ngoc Tran and YoungHan Kim. Optimized resource usage with
hybrid auto-scaling system for knative serverless edge computing. Future
Generation Computer Systems, 152:304–316, 2024.

[TMSB20] Alexander Tschantz, Beren Millidge, Anil K. Seth, and Christopher L.
Buckley. Reinforcement Learning through Active Inference, February 2020.

[Tog22] Mesut Togacar. Detecting attacks on IoT devices with probabilistic
Bayesian neural networks and hunger games search optimization ap-
proaches. Transactions on Telecommunications Technologies, 2022.

178

[TW22] Ming Tang and Vincent W.S. Wong. Deep Reinforcement Learning for
Task Offloading in Mobile Edge Computing Systems. IEEE Transactions
on Mobile Computing, 21(6):1985–1997, June 2022.

[TZV+08] Mukarram Tariq, Amgad Zeitoun, Vytautas Valancius, Nick Feamster,
and Mostafa Ammar. Answering what-if deployment and configuration
questions with wise. ACM SIGCOMM Computer Communication Review,
2008.

[VCB21] Matthew J. Vowels, Necati Cihan Camgoz, and Richard Bowden. D’ya
like DAGs? A Survey on Structure Learning and Causal Discovery, March
2021.

[VF23] Victor Velepucha and Pamela Flores. A Survey on Microservices Archi-
tecture: Principles, Patterns and Migration Challenges. IEEE Access,
2023.

[VLS23] Miroslav Vanis, Zdenek Lokaj, and Martin Srotyr. A Novel Algorithm for
Merging Bayesian Networks. Symmetry, 15(7):1461, July 2023.

[VM24] Rejin Varghese and Sambath M. YOLOv8: A Novel Object Detection
Algorithm with Enhanced Performance and Robustness. In ADICS, 2024.

[VRP22] Matteo Vagnoli and Rasa Remenyte-Prescott. Updating conditional prob-
abilities of Bayesian belief networks by merging expert knowledge and
system monitoring data. Automation in Construction, August 2022.

[Wam23] Innocent Gicheru Wambui. Improving Traffic Flow Using LSTM Networks
in Python: A Step-by-Step Guide, August 2023.

[WCB+23] Yuxin Wu, Changjun Cai, Xuanming Bi, Junjuan Xia, Chongzhi Gao,
Yajuan Tang, and Shiwei Lai. Intelligent resource allocation scheme for
cloud-edge-end framework aided multi-source data stream. EURASIP
Journal on Advances in Signal Processing, 2023, May 2023.

[WLYW20] Hao Wang, Zhaolong Ling, Kui Yu, and Xindong Wu. Towards efficient and
effective discovery of Markov blankets for feature selection. Information
Sciences, 509, January 2020.

[WOK17] Jürgen Walter, Dušan Okanović, and Samuel Kounev. Mapping of Ser-
vice Level Objectives to Performance Queries. In Proceedings of the 8th
ACM/SPEC on International Conference on Performance Engineering
Companion, ICPE ’17 Companion, pages 197–202, New York, NY, USA,
April 2017. Association for Computing Machinery.

[WQQ+21] Cong Wang, Jiongming Qin, Cheng Qu, Xu Ran, Chuanjun Liu, and Bin
Chen. A smart municipal waste management system based on deep-learning
and internet of things. Waste Management, 135:20–29, 2021.

179

[WSM+22] Abdul Waheed, Munam Ali Shah, Syed Muhammad Mohsin, Abid Khan,
Carsten Maple, Sheraz Aslam, and Shahab Shamshirband. A comprehen-
sive review of computing paradigms, enabling computation offloading and
task execution in vehicular networks. IEEE Access, 10:3580–3600, 2022.

[WWC+21] Chong Wang, Lide Wang, Huang Chen, Yueyi Yang, and Ye Li. Fault Di-
agnosis of Train Network Control Management System Based on Dynamic
Fault Tree and Bayesian Network. IEEE Access, 9:2618–2632, 2021.

[WWD+23] Gongcheng Wang, Weidong Wang, Pengchao Ding, Yueming Liu, Han
Wang, Zhenquan Fan, Hua Bai, Zhu Hongbiao, and Zhijiang Du. Develop-
ment of a search and rescue robot system for the underground building
environment. Journal of Field Robotics, 40(3):655–683, 2023.

[WWZ+17] Qingyao Wu, Hanrui Wu, Xiaoming Zhou, Mingkui Tan, Yonghui Xu,
Yuguang Yan, and Tianyong Hao. Online Transfer Learning with Multiple
Homogeneous or Heterogeneous Sources. IEEE Transactions on Knowledge
and Data Engineering, 29(7):1494–1507, July 2017.

[WZL+18] Tian Wang, Jiyuan Zhou, Anfeng Liu, Md Zakirul Alam Bhuiyan, Guojun
Wang, and Weijia Jia. Fog-based computing and storage offloading for data
synchronization in iot. IEEE Internet of Things Journal, 6(3):4272–4282,
2018.

[XDL+23] Bin Xu, Tao Deng, Yichuan Liu, Yunkai Zhao, Zipeng Xu, Jin Qi, Sitao
Wang, and Dan Liu. Optimization of cooperative offloading model with
cost consideration in mobile edge computing. Soft Computing, 27(12):8233–
8243, June 2023.

[XDTZ20] Zhengzhe Xiang, Shuiguang Deng, Javid Taheri, and Albert Zomaya.
Dynamical Service Deployment and Replacement in Resource-Constrained
Edges. Mobile Networks and Applications, 25(2):674–689, April 2020.

[XKK20] Fatos Xhafa, Burak Kilic, and Paul Krause. Evaluation of IoT stream
processing at edge computing layer for semantic data enrichment. Future
Generation Computer Systems, 105:730–736, April 2020.

[XSB+18] Tianwei Xing, Sandeep Singh Sandha, Bharathan Balaji, Supriyo
Chakraborty, and Mani Srivastava. Enabling Edge Devices that Learn
from Each Other: Cross Modal Training for Activity Recognition. In
Proceedings of the 1st International Workshop on Edge Systems, Analytics
and Networking, pages 37–42, Munich Germany, June 2018. ACM.

[XZLH20] Xiong Xiong, Kan Zheng, Lei Lei, and Lu Hou. Resource Allocation Based
on Deep Reinforcement Learning in IoT Edge Computing. IEEE Journal
on Selected Areas in Communications, 38(6):1133–1146, June 2020.

180

[YKAQ22] Mohammad Yazdi, Faisal Khan, Rouzbeh Abbassi, and Noor Quddus.
Resilience assessment of a subsea pipeline using dynamic Bayesian network.
Journal of Pipeline Science and Engineering, 2(2):100053, June 2022.

[ZCC+23] Qiyang Zhang, Xiangying Che, Yijie Chen, Xiao Ma, Mengwei Xu,
Schahram Dustdar, Xuanzhe Liu, and Shangguang Wang. A Comprehen-
sive Deep Learning Library Benchmark and Optimal Library Selection.
IEEE Transactions on Mobile Computing, pages 1–14, 2023.

[ZFFP24] Anastasios Zafeiropoulos, Nikos Filinis, Eleni Fotopoulou, and Symeon
Papavassiliou. AI-Assisted Synergetic Orchestration Mechanisms for Au-
toscaling in Computing Continuum Systems. IEEE Communications
Magazine, 2024.

[Zha20] Changhao Zhang. Design and application of fog computing and internet
of things service platform for smart city. Future Generation Computer
Systems, 112:630–640, 2020.

[ZJXZ23] Zhe Zhang, Ju Jiang, Haiyan Xu, and Wen-An Zhang. Distributed dynamic
task allocation for unmanned aerial vehicle swarm systems: A networked
evolutionary game-theoretic approach. Chinese Journal of Aeronautics,
December 2023.

[ZKQ+24] Muhammad Zakarya, Ayaz Ali Khan, Mohammed Reza Chalak Qazani,
Hashim Ali, Mahmood Al-Bahri, Atta Ur Rehman Khan, Ahmad Ali,
and Rahim Khan. Sustainable computing across datacenters: A review
of enabling models and techniques. Computer Science Review, 52:100620,
May 2024.

[ZLC+19] Fenghua Zhu, Yisheng Lv, Yuanyuan Chen, Xiao Wang, Gang Xiong, and
Fei-Yue Wang. Parallel transportation systems: Toward iot-enabled smart
urban traffic control and management. IEEE Transactions on Intelligent
Transportation Systems, 21(10):4063–4071, 2019.

[ZMC+22] Sm Zobaed, Ali Mokhtari, Jaya Prakash Champati, Mathieu Kourouma,
and Mohsen Amini Salehi. Edge-MultiAI: Multi-Tenancy of Latency-
Sensitive Deep Learning Applications on Edge. pages 11–20. IEEE Com-
puter Society, December 2022.

[ZP94] N. Zhang and D. Poole. A simple approach to Bayesian network computa-
tions. In Engineering-Economic Systems, Stanford, 1994.

[ZRR+22] Zhizhou Zhang, Murali Krishna Ramanathan, Prithvi Raj, Abhishek
Parwal, Timothy Sherwood, and Milind Chabbi. {CRISP}: Critical Path
Analysis of {Large-Scale} Microservice Architectures. pages 655–672, 2022.

181

[ZTL+19] Fan Zhang, Xuxin Tang, Xiu Li, Samee U Khan, and Zhijiang Li. Quanti-
fying cloud elasticity with container-based autoscaling. Future Generation
Computer Systems, 98:672–681, 2019.

[ZZL23] Ziyang Zhang, Yang Zhao, and Jie Liu. Octopus: SLO-Aware Progressive
Inference Serving via Deep Reinforcement Learning in Multi-tenant Edge
Cluster. In Service-Oriented Computing, Cham, 2023.

182

	Kurzfassung
	Abstract
	Contents
	Publications
	Introduction
	Problem Statement
	Research Questions
	Scientific Contributions

	Behavioral Models for the Computing Continuum
	Distributed Computing Continuum Systems
	Service Level Objectives
	Behavioral Markov Blankets

	From Metrics to Multi-Dimensional Elasticity
	Introduction
	Data Gravity and Data Friction
	Modeling Complex SLOs and Elasticity Strategies
	From Metrics to Elasticity Strategies
	Related Work
	Summary

	Designing Reconfigurable Systems from Markov Blankets
	Introduction
	Bayesian Network Learning & Inference
	Use Case: Video Processing
	Related Work
	Summary

	Orchestration of Computing Continuum Services
	Markov Blanket Composition of SLOs
	Diffusing High-Level SLOs in Microservice Pipelines
	SLO-Aware Task Offloading
	Takeaways

	Equilibrium through Active Inference
	Introduction
	From Neuroscience to Computer Science
	Collaborative Edge Intelligence
	Use Case: Distributed Video Processing
	Results and Discussion
	Related Work
	Summary

	Conclusion
	Summary
	Research Questions
	Limitations & Future Work

	Übersicht verwendeter Hilfsmittel
	Bibliography

