
Active Inference on the Edge: A Design Study

Boris Sedlak, Victor Casamayor Pujol, Praveen Kumar Donta, and Schahram Dustdar

Distributed Systems Group, Vienna University of Technology (TU Wien), Vienna 1040, Austria.

Email: {b.sedlak, v.casamayor, pdonta, dustdar}@dsg.tuwien.ac.at

Abstract—Every year, the amount of data created by Internet
of Things (IoT) devices increases; therefore, data processing is
carried out by edge devices in close proximity. To ensure Quality of
Service (QoS) throughout these operations, systems are supervised
and adapted with the help of Machine Learning (ML). However, as
long as ML models are not retrained, they fail to capture gradual
shifts in the variable distribution, leading to an inaccurate view
of the system state and poor inference. In this paper, we present
a novel ML paradigm that is constructed upon Active Inference
(ACI) – a concept from neuroscience that describes how the brain
constantly predicts and evaluates sensory information to decrease
long-term surprise. We implemented a use case, in which an ACI-
based agent continuously optimized the operation on a smart
manufacturing engine according to QoS requirements. The agent
used causal knowledge to gradually develop an understanding of
how its actions are related to requirements fulfillment, and which
configurations to favor. As a result, our agent required 5 cycles
to converge to the optimal solution.

Index Terms—Active Inference, Machine Learning, Edge Intel-
ligence, Service Level Objectives, Markov Blanket

I. INTRODUCTION

Recent years have reported a constant transition of logic

from the central cloud towards the edge of the network [1],

thus, closer to the Internet of Things (IoT) devices that actually

generate data. This transition includes the training of Machine

Learning (ML) models (i.e., to save bandwidth and improve

privacy), as well as data processing (i.e., to decrease latency)

[2]. As soon as training has finished, ML models are a common

measure to interpret and predict the behavior of distributed

systems, e.g., to estimate the impact of redeployment [3] or

forecast potential system failures [4], which must be circum-

vented to ensure the Quality of Service (QoS).

Contrarily to the cloud, resource-restricted edge devices do

not dispose of a virtually unlimited amount of resources; to

ensure QoS during operation, edge devices scale their service

through local reconfiguration, commonly assisted by ML [5].

However, in many cases, these ML models are not retrained,

although new observations would be available [3], [4]; this

inevitably leads to an inaccurate view of the system state,

which, in turn, decreases the quality of inferred configurations.

Imagine an elastic computing system, as envisioned in [6],

which observes the system through a set of metrics, evaluates

whether QoS requirements – also called Service Level Ob-

jectives (SLOs) – are fulfilled, and dynamically reconfigures

the system to ensure SLOs are met. If the variable distribu-

tion changes and the ML model is not adjusted, this makes

it impossible to interpret system metrics correctly, and any

consequential reconfiguration will fail to fulfill its purpose.

Ensuring the precision of ML models requires continuous

feedback mechanisms; this could, for example, be achieved

by optimizing a value function, as in reinforcement learning

[7], [8]. However, we believe that this requires a more holistic

approach, which starts with making the SLOs first-class citizens

during ML training. Further, any component that uses ML for

inference should actively resolve or report ambiguities. Such a

level of self-determination could be provided by Active Infer-

ence (ACI), a concept from neuroscience that describes how

the brain constantly predicts and evaluates sensory information

to decrease long-term surprise. In cases where ML training

and inference are carried out in close proximity to the data

source, i.e., on edge devices, ACI can ensure model accuracy

whenever the accuracy drops. Equipped with ACI, edge devices

could continuously infer system configurations that ensure QoS.

Furthermore, ACI allows to develop causal understanding of a

process; this raises the trust for inferred results [3], [9].

In this paper, we present a comprehensive design study of

an ACI agent that optimizes the throughput in a smart factory.

Agents operate autonomously and decentralized while ensuring

the SLO compliance on their local edge devices. At its core, the

agent follows an action-perception cycle where it first estimates

which parameter assignments would violate given SLOs, then

compares this expectation with new observations, and finally,

adjusts its beliefs (i.e., the ML model) accordingly. While

exploring the value space, it favors solutions that are likely

to improve the model precision; this, in turn, provides the

agent with a clear understanding of the causal relations between

model variables. Hence, the contributions of this article are:

• A novel ML paradigm based on ACI that continuously

evaluates the quality of inferred configurations. Thus, edge

devices maintain QoS requirements fulfilled.

• The composite representation of agents’ behavior accord-

ing to causal relations and empirical information. This

increases trust and reproducibility of inferred results.

• A complete design study for a smart manufacturing use

case that paves the way for other researchers to implement

ACI in related automotive use cases.

The remainder of the paper is structured as follows: Sec-

tion II provides background information on ACI principles in

edge computing; Section III presents related work; in Sec-

tion IV we outline the design process of an ACI agent, which

we implement and evaluate in Section V. Finally, Section VI

concludes the paper.

II. BACKGROUND

We consider ACI an unknown concept for most readers out-

side of neuroscience; therefore, we use this section to summa-

rize core concepts of ACI according to Friston et al. [10]–[12].

PerconAI 2024: 3rd Workshop on Pervasive and Resource-Constrained Artificial Intelligence

979-8-3503-0436-7/24/$31.00 ©2024 IEEE 550

20
24

 IE
EE

 In
te

rn
at

io
na

l C
on

fe
re

nc
e 

on
 P

er
va

si
ve

 C
om

pu
tin

g 
an

d 
C

om
m

un
ic

at
io

ns
 W

or
ks

ho
ps

 a
nd

 o
th

er
 A

ff
ili

at
ed

 E
ve

nt
s (

Pe
rC

om
 W

or
ks

ho
ps

) |
 9

79
-8

-3
50

3-
04

36
-7

/2
4/

$3
1.

00
 ©

20
24

 IE
EE

 | 
D

O
I: 

10
.1

10
9/

Pe
rC

om
W

or
ks

ho
ps

59
98

3.
20

24
.1

05
02

82
8

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on June 06,2024 at 07:15:49 UTC from IEEE Xplore.  Restrictions apply. 



This includes but is not limited to (1) free energy minimization,

(2) hierarchical belief organization, (3) action-perception cy-

cles, and (4) Bayesian inference and belief updating. Following

that, we delineate our view of the intersection between ACI and

distributed systems, in particular edge computing.

A. Active Inference Principles

To interpret observable processes, agents construct generative

models, e.g., a person would reason that it rains due to water

drops falling from the sky. Based on these observations, the

agent can learn to understand real-world processes. However,

if the generative model and the process diverge, the agent

will eventually be “surprised”, e.g., because water drops were

caused by a neighbor watering her plants. The discrepancy

(or uncertainty) between the agent’s understanding of the

process and reality is called Free Energy (FE); a more accurate

understanding decreases FE at the same time.

More formally, the surprise ℑ(o|m) of observation o given

model m is the negative log-likelihood of the observation. The

surprise itself is capped by the FE of the model – expressed as

the Kullback-Leibler divergence (DKL) between approximate

posterior probability (Q) of the hidden states (x) and their exact

posterior probability (P ). While mathematical approaches, such

as exemplified in Eq. (1) & (2), provide a much-needed notation

for working with the FE principle, in practice, many variables

are computationally intractable, e.g., the true probability P .

ℑ(o|m) = − ln

Model Evidence
︷ ︸︸ ︷

P (o|m) (1)

F [Q, o] = DKL[Q(x)||P (x|o,m)] + ℑ(o|m)
︸ ︷︷ ︸

(Variational) Free Energy

≥ ℑ(o|m) (2)

Internally, agents organize their generative models in hi-

erarchical structures; each level interprets lower-level causes

and, based on that, provides predictions to higher levels. For

example, suppose it rains with a certain probability, I bring

an umbrella. This is commonly known as Bayesian inference

and allows agents to use existing beliefs (widely known as

priors) to calculate the probability of related events. Such

decision processes can be segregated into self-contained causal

structures (i.e., Markov blankets), e.g., one to interpret the

weather and another to dress. As the agent infers that it is

raining, he decides to pick the umbrella.

ACI agents constantly engage in action-perception cycles,

where they (1) predict sensory inputs, actively seek the infor-

mation, and update their beliefs depending on the outcome –

widely known as predictive coding. Afterward, they (2) can

adjust the world to their existing beliefs (e.g., SLOs) through

their own actions. While pragmatic actions (e.g., picking an

umbrella) fulfill agents’ preferences (e.g., staying dry), agents

improve their decision-making by exploring the environment

through epistemic actions. For example, a mere look at the sky

reveals that the neighbor watered her plants, avoiding surprise

when wrongfully leaving with an umbrella. The agent thus

updates its prior beliefs (i.e., rain → water) according to new

data (i.e., rain → water ← flowers) to form posterior beliefs.

B. ACI Principles in Distributed Systems

ACI encompasses multiple concepts; although there exist

few implementations that combine them in one framework,

most of them can be encountered in distributed systems. In

the following, we review the principles described above and

map them to existing concepts as far as possible:

1) Causal Inference: Causal structures (e.g., Bayesian net-

works [13]) can be trained to identify dependencies between

parts of distributed systems. As pointed out by [14], causal

structures have the fundamental advantage (over deep learning)

of justifying their actions or recommendations, thus improving

trustworthiness. Distributed systems can explain how metrics

(e.g., latency or CPU load) are related to the system state [9],

backtrack which service or device caused a system failure [3],

or predict the impact of redeployment [15].

2) Free Energy Minimization: AI models are trained to

improve their prediction accuracy, which, in turn, reduces their

FE. Energy-based models [16], in particular, rate uncertainty as

(free) energy. To ensure model accuracy over time, one option

is to continuously report prediction errors (e.g., [17]). However,

in many cases, systems lack adequate feedback loops and thus

fail to capture gradual shifts in the variable distributions (e.g.,

[3], [15], [18]). While ML training is essential to decrease FE,

epistemic actions often suffice to reduce uncertainties about

expected outcomes: distributed systems resolve contextual in-

formation, for example, by identifying a low-utilized agent for

tasks offloading [19], [20], or evaluating resource availability

before scaling a system [5], [21]. There exists a general tradeoff

between seeking either pragmatic value (exploitation) or infor-

mation (exploration); multi-agent systems (e.g., [22]) control

this through a hyperparameter called “exploration rate”, which

fosters early exploration of a global value space but decays over

time as agents report little improvement. To improve generative

models whenever feasible, this is also implemented for edge-

based systems [19].

3) Homeostasis: The ultimate goal for an ACI agent is

to persist over time; this requires maintaining certain internal

variables under control. This concept is called homeostasis and

can be found in various systems: the human body, for example,

requires a core temperature of 37° for chemical processes;

distributed systems, on the other hand, specify QoS require-

ments as SLOs [6], [21], [23], [24]. While the human body

has its own temperature-controlling mechanisms, distributed

systems rely on elasticity strategies to ensure QoS, e.g., by

scaling computational resources to cap response time. Although

surprise plays a significant role here, e.g., when reporting

SLO violations, the preferred strategy is to engage with the

environment to correct this instead of changing the perception.

III. RELATED WORK

While, to the best of our knowledge, there exists no complete

implementation of ACI in distributed systems; a handful of

research works have combined ACI with computer science:

the authors in [25] discuss ACI as a general computational

framework, highlighting how existing research used ACI for

(simulating) sensory processing. Touching on the design of

PerconAI 2024: 3rd Workshop on Pervasive and Resource-Constrained Artificial Intelligence

551

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on June 06,2024 at 07:15:49 UTC from IEEE Xplore.  Restrictions apply. 



ACI agents, Heins et al. [26] provide a Python simulation that

exemplifies how to structure action-perception cycles. Heins et

al. further remark that existing ACI research largely focuses on

formally constructing models in isolated environments such as

Matlab SPM (e.g., [27]) rather than putting them into action,

e.g., to improve the precision of ML models. A more hands-

on application of ACI is thus to extend reinforcement learning

with ACI principles [7], [8]. However, most research to date

either uses only a few ACI principles or is not applied enough

to easily transfer presented concepts to distributed systems.

The work in [22] is, therefore, an exception because it

embeds ACI into the IoT and describes how ACI can improve

the behavior of adaptive agents. Thus, individual agents

may dynamically regroup into hierarchical teams, federate

knowledge, and collectively strive after a common goal (i.e.,

a search task). By emphasizing the exchange of experiences

between agents, they were able to speed up the convergence

of the distributed task. However, while they focused on FE

minimization, they did not treat the other two principles we

identified for ACI in distributed systems: causal inference

and homeostasis. In this paper, we will present an agent that

uses all three ACI principles to infer actions, maintain agents’

internal equilibrium, and persist over time. Nevertheless, we

will use the representation from [22] for FE minimization.

IV. ACTIVE INFERENCE DESIGN PROCESS

In the following, we will walk through the design of an ACI

agent by (1) building upon ACI background information to

draw an action-perception loop, (2) describing a use case where

the agent trains a model from scratch to optimize performance,

(3) marking the boundaries of the generative model trained, and

(4) defining the agent’s behavior throughout the cycles.

A. Action-Perception Loop

To continuously ensure the precision of ML models and any

consequential action, we will employ self-evidenced agents,

i.e., they reason about their environment and train models

autonomously. To that extent, ACI agents operate in action-

perception cycles; each iteration aims to improve the accuracy

of the model, infer optimal actions, and thus persist over time.

As such, agents can be embedded into distributed systems, e.g.,

to maintain the QoS for a distributed task.

Fig. 1 provides a high-level overview of the steps that are

repeated by the agent: Initially, a set of SLOs define the agent’s

preferences (e.g., delay ≤ δ) and establishes its expectations

prior to evaluating any sensory data. The agent then assembles

a causal graph to determine which factors influence these

parameters; the conditional probability table contains the degree

to which they are affected. Afterward, the agent starts to

continuously predict the probability of observations, might

actively seek a corresponding input, and then compares the

event against the expectation. To decrease FE, the agent now

has three options: (1) adjust its beliefs accordingly, i.e., update

the causal graph and conditional probabilities; (2) change the

environment toward its preferences, e.g., executing elasticity

Predict Sensory Input

Causal Graph || Conditional Probabilities

Perception Phase

Compare to Event

Update Beliefs

Action Phase

Delay

Energy

event sampling
seeking input

Resolve Context

Elasticity Strategies

Specify Priors

Service Level Objectives

Fig. 1: Overview of the action-perception cycle in ACI

Fig. 2: A smart factory producing machine parts in batches

strategies; or (3) resolve contextual information to improve

decision-making.

B. Use Case Description

The following use case is embedded in the smart manufac-

turing environment, which provides numerous opportunities for

sensor-oriented analysis and dynamic adaptation of production.

Fig. 2 provides a high-level overview of the use case:

Within a factory, machine parts are fabricated in batches of

12 to 30 pieces; a larger batch size increases the through-

put and utilization of the factory engine. Each batch must

be completed within 500 ms; thus, an increasing batch size

decreases the timeframe for processing each part. However,

due to a consecutive assembly step, the distance between parts

should be above 5 cm. The engine’s utilization is supposed

to impact the processing duration, though the magnitude is

unknown; furthermore, the engine is wearing off over time,

which gradually changes the variable distribution. Given this

setup, the factory manager would like to operate under the

largest batch size that fulfills the constraints. However, it is not

possible to train an ML model from (nonexistent) historical

data or transfer the model from other engines due to their

heterogeneous characteristics.

To maximize production, the factory manager employs an

ACI agent that optimizes the batch size depending on the

resulting SLO fulfillment. The underlying ML model is trained

incrementally, on the edge of the smart engine; to continuously

ensure the model precision, the agent (1) estimates if an

increase or decrease in batch size would violate the given con-

straints (i.e., its SLOs), (2) compares the expectation with the

result, and (3) continuously explores the value space by slightly

varying the batch size. The agent thus gradually approaches

PerconAI 2024: 3rd Workshop on Pervasive and Resource-Constrained Artificial Intelligence

552

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on June 06,2024 at 07:15:49 UTC from IEEE Xplore.  Restrictions apply. 



TABLE I: Model variables and their boundaries

Name Unit Description Range

batch size num number of machine parts per batch [12, 30]
utilization % utilization of the factory engine [1, 100]
distance cm space between two machine parts [1,∞[
part delay ms processing time per machine part [1,∞[
batch delay ms total time for batch processing [1,∞[

Fig. 3: Initial beliefs of relations between model variables

solutions that promise high throughput while satisfying all

constraints.

C. Generative Model Setup

While the use case showed how ACI can help solve opti-

mization problems, we will now dive deeper into the generative

model created by the agent. The design process is loosely

oriented towards the guidance provided by Parr et al. [12],

which depicts an abstract sequence of steps to design ACI

systems. The main questions we aim to answer are:

1) What is part of the generative model, and what are the

interfaces to the exterior?

2) What is the hierarchical and temporal depth of the model,

and how do they affect causal inference?

3) What are the model variables and prior beliefs – what

can be modified (i.e., learned), and what is immutable?

To predict whether a batch size would fulfill the SLOs, agents

must identify the variables that have an impact on them. These

could be extracted through a causal structure (e.g., [3], [15]) or,

in the absence of training data, come from expert knowledge,

which can be updated over time. The manager initially believes

that variables are related as depicted by the Directed Acyclic

Graph (DAG) in Fig. 3; the respective variables are described

in Table I. Variables in ACI represent an interface between the

generative model and the exterior world, i.e., if the utilization

of the physical engine changes, this is reflected through the

respective variable (i.e., utilization), which in turn determines

the internal view of the system state. Information provided

through interface variables is used to construct the generative

model, but also to evaluate SLO fulfillment (e.g., batch delay

≤ 500 ms). To that extent, it needs to analyze the respective

variable (from the DAG), as well as its parent, child, and

spouse nodes. This subset provides a causal filter to the variable

state, called Markov blanket. A central premise is that all these

sensory variables accurately reflect the exterior; otherwise,

subsequent decisions (e.g., decreasing batch size to decrease

delay) would perpetuate any measurement error.

For the given use case, we use an SLO-induced boundary

as our natural limit on temporal depth: equal to the maximum

batch delay (bd), each action-perception cycle lasts 500 ms.

Within each cycle, the agent predicts the engine’s behavior (i.e.,

reflected through the metrics) over the next 500 ms; afterward,

the prediction is compared against the events observed during

that time. While the cycle’s length can be chosen freely,

longer periods decrease the prediction accuracy or increase

the computational complexity (i.e., to evaluate the SLO once,

it must consider multiple cycles or fractions of them). The

hierarchical depth, on the other hand, is determined by the

number of variables and edges in the model. A deeper hierarchy

would increase the complexity of model training and inference;

however, the use case does not provide variables other than the

ones already contained in the DAG.

So far, it only remains to explain what priors are in the

given example: priors are our assumptions about the system

before verifying them, e.g., which batch size should provide

the highest throughput without violating the SLOs. Priors are

subject to the learning process, while SLOs are fixed; each

action-perception cycle aims to improve the generative model’s

accuracy, thus decreasing FE. As we will see in Section V, the

initial beliefs (i.e., before evaluating any cycle) speed up the

convergence of ACI to the optimal solution.

D. Active Inference Agent

To find the optimal batch size, the central mechanism of the

agent is the action-perception cycle shown in Fig. 1. Initially,

the agent has little information available to form priors or

infer a fitting batch size; however, as the agent samples the

environment through its interface variables, each cycle adds

new observations (sn) to the total amount of known samples

(sk). The agent’s behavior throughout each cycle (i.e., how

it interprets sensory information and which action it takes) is

determined by three main factors: (1) pragmatic value (pv) of

actions; (2) ambiguity or risk assigned (ra) to actions; and

(3) epistemic value or information gained (ig) by actions. The

following notation of these factors is related to [12], [22],

though the composition is different. The only parameter that

the agent can actively set is batch size; the remaining variables

are causally influenced by this factor. Thus, if the agent changes

the batch size, this is reflected through the related variables.

The pragmatic value that emerges from higher batch size

is simple: more throughput. Therefore, we define pv(bs) =
bs × 100

30 , which encourages the agent to increase batch size.

The multiplier 100
30 scales the factor to the range [1, 100], which

is equal for all three factors. Contrarily, high batch size might

exceed bd ≤ 500ms or d ≥ 5cm, i.e., the SLOs associated with

batch delay and distance (d). To evaluate the risk of violating

the SLOs we consider how often past observations for a batch

size (skb) have violated the SLOs. The ra, e.g., for batchsize =
20, would thus be determined by the rate between samples that

fulfilled the SLOs and the total number of samples (|skb|); this

is formalized in Eq. (3) & (5). As long as the list of samples for

a batchsize (or short bs) is empty (i.e., |skb| = 0), the agent

interpolates the value with the prior and latter ra as reference

points, e.g., if the agent knows ra(30) = 90 and ra(20) = 20,

PerconAI 2024: 3rd Workshop on Pervasive and Resource-Constrained Artificial Intelligence

553

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on June 06,2024 at 07:15:49 UTC from IEEE Xplore.  Restrictions apply. 



in the absence of samples for batchsize = 25, it infers that

ra(25) = 55. This interpolation is contained in Eq. (4).

ra(bs) = 100−







inter(bs), if |skb| = 0

valid(bs)
|skb|

× 100, otherwise
(3)

inter(bs) = rai−1 + (bs− bsi−1)×
(rai+1 − rai−1)

(bsi+1 − bsi−1)
(4)

valid(bs) =

|skb|∑

i=1

[(bdi ≤ 500) ∧ (di ≥ 5)] (5)

The ig of an action is determined by the ambiguity that it

resolves; in other words, we aim to make future predictions less

surprising. Reviving the idea of surprise from Eq. (1), we now

require the surprise for sn given sk: Eq. (7) shows how the total

surprise is the sum of surprises of new samples; f(x) describes

the probability density function1 with µ = s̄k and σsk
. For

each sn, the surprise is appended to a list of past surprises

S = S∪surprise(sn, sk); Sx ∈ S contains all values with x =
batchsize. If a batchsize has reported repeatedly surprising

values, it supposedly provides more information gain: this is

reflected through Eq. (6) because the median surprise (S̃x) will

rise above the global average (S̄). To foster exploration of prior

unknown batchsize, in the absence of surprise values, e.g.,

|S25| = 0, it assumes ra(25) = max(S).

ig(bs) =

(

S̃bs

S̄

)

× 100 (6)

surprise(sn, sk) =

|sk|∑

i=1

− log f(di) (7)

Ultimately, to evaluate the potentials but also risks that

emerge from each batchsize, the three factors are merged into

a common one – (cf ). Since all factors are scaled to the range

[1, 100], they can be combined as cf(bs) = pv(bs)− ra(bs) +
ig(bs). At the end of each cycle, the agent resolves cf(x) for

x = [12, 30] and chooses the highest scoring as new batchsize.

V. EVALUATION

To evaluate the ideas presented in the last Section, we provide

a Python implementation of the ACI agent that comprises the

action-perception loop to create a generative model. Although

we did not embed the agent in a physical engine to measure

sensory information, we used a compatible data set generated

with [28] to simulate an equal behavior. The prototype of the

agent, the data, as well as the analysis are available on GitHub2.

The agent starts the simulation by processing a batch of items

and observes for each item a set of metrics, which represent

the variables from Table I. In each round, the agent computes

the factors that determine its behavior (i.e., pv, ra, and ig)

as described, chooses the highest common factor (cf ), and

instructs the engine to operate with the new batchsize. This

concludes one iteration in the action-perception cycle.

1A function that described the likelihood of an observation o in a continuous
range given that the probabilities are distributed with O ∼ N (µ, σ).

2https://anonymous.4open.science/r/analysis-20F6/DATE/

1 3 5 7 9 11 13 15 17 19
Active Inference Cycle

12

15

18

21

24

27

30

C
on

fig
ur

ed
 B

at
ch

 S
iz

e

agent₁₂
agent₃₁
Increment (±1)

(a) Batch size / cycle

12 15 18 21 24 27 30
Possible Batch Size

0

20

40

60

80

100

As
si

gn
ed

 R
is

k

Interpolated
Experienced
Expected Risk

(b) Risk / batch size

Fig. 4: History of best scoring batch size and associated risk

A. Comparative Analysis & Results

We evaluated two main aspects of the implementation: (1)

which batch size it chooses at the end of each cycle, and (2) how

well the generative model can reflect the partially observable

relation between utilization and part delay.

Fig. 4a tracks the chosen batch size depending on the cf

score: the blue line depicts the agent’s behavior when starting

with batchsize = 12, and the red line when starting with 30,

i.e., the safest or most ambitious priors. Agent30 reaches a

batch size of 21 after 5 iterations; whether this is a good (or

optimal) solution is determined by multiple opposite factors:

as batch size increases, both pa and ra rise. To provide more

detail, Fig. 4b contains the ra that agent30 assigned to each

batchsize after 100 iterations. Operating with batchsize = 21,

agent30 reported SLO violations for 12% of all observations.

If this cannot be tolerated, the ra must be adjusted accordingly;

otherwise, 21 presents a very high (if not optimal) pv because

any larger batch size would be more than three times more

likely to violate the SLOs, according to their ra. Complemen-

tarily, the green line shows the agent’s behavior if it simply

increases or decreases the batch size depending on whether

SLOs were fulfilled for the current batch.

While one goal was to reach a high pv, the agent’s intrinsic

motivation is to decrease the FE by developing an accurate gen-

erative model. This includes estimating the magnitude of causal

relations such as utilization → part delay. Therefore, after

receiving a number of samples, the agent can use (polynomial)

regression to infer part delay for unknown utilization. Fig. 5a

shows a 2D representation of this relation for 2500 processed

batch items, supervised by agent12; the red line represents

the agent’s internal model after training on all observations,

and the red line after training on only 30 values. After the

first round, agent12 decided to explore only batchsize ≥ 19,

thus, Fig. 5a contains no observations for utilization [45, 60].
The distribution of prediction errors between the regression

functions and all items is shown in Fig. 5b. We observe that

a larger sample size improved the accuracy, but also that a

relatively small number of samples (i.e., 30) provided initially

acceptable results.

VI. CONCLUSION

This paper presented a novel ML paradigm based on Active

Inference that continuously optimizes the precision of inference

PerconAI 2024: 3rd Workshop on Pervasive and Resource-Constrained Artificial Intelligence

554

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on June 06,2024 at 07:15:49 UTC from IEEE Xplore.  Restrictions apply. 



40 50 60 70 80
Utilization

100

200

300

400

500

600

D
el
ay

 / 
Pa

rt

Observations
Full Data
Thirty Values

(a) Polynomial regression function

Thirty ValuesFull Data
 

0

10

20

30

40

Pr
ed

ic
tio

n 
E

rr
or

(b) Prediction errors

Fig. 5: Estimated relation between utilization and part delay

according to new observations. Thus, edge devices can ensure

that local processing complies with requirements. Our approach

does not require an initial data set to train ML models – rather it

trains the model incrementally according to new observations,

thus canceling our data drifts. ML training happens locally

on the network edge; thus, it is possible to observe with low

latency how inferred device configurations impact the require-

ments and adapt the model accordingly. To that extent, the ACI

agents make use of causal variable relations that determine

how their actions affect SLO fulfillment; this increases the

trustworthiness of inferred configurations.

To evaluate the presented ideas, we conducted a design

study that optimizes the throughput for a smart manufacturing

use case. Which action the agent takes and how it adapts its

beliefs was determined by three main factors: pragmatic value,

assigned risk (of violating SLOs), and information gain. We

implemented the ACI agent in Python and tracked each cycle’s

preferred action – including the factors that led to it – and

the agent’s causal understanding between two variables. After

5 cycles, the agent converged to a solution that presented an

optimal tradeoff between high pragmatic value and negligible

SLO violations. Further, the agent needed only 30 observations

(i.e., 2 cycles) to estimate a previously unknown variable rela-

tion. Exploring causalities between variables and constructing

the agent’s behavior from empirical factors makes the produced

solutions traceable. Based on these results, we see a strong

potential for ACI to support elastic computing systems by

continuously ensuring the precision of ML models. Neverthe-

less, future work must focus on more complex scenarios and

ascertain how ACI performs when compared to other baselines.

ACKNOWLEDGEMENT

Funded by the European Union (TEADAL, 101070186).

Views and opinions expressed are those of the authors only

and do not necessarily reflect those of the EU. Neither the EU

nor the granting authority can be held responsible for them.

REFERENCES

[1] S. Deng, H. Zhao, W. Fang, J. Yin, S. Dustdar, and A. Y. Zomaya,
“Edge Intelligence: The Confluence of Edge Computing and Artificial
Intelligence,” IEEE Internet of Things Journal, Aug. 2020.

[2] V. C. Pujol, P. K. Donta, A. Morichetta, I. Murturi, and S. Dustdar, “Edge
intelligence—research opportunities for distributed computing continuum
systems,” IEEE Internet Computing, vol. 27, no. 4, pp. 53–74, 2023.

[3] P. Chen, Y. Qi, and D. Hou, “CauseInfer: Automated End-to-End Perfor-
mance Diagnosis with Hierarchical Causality Graph in Cloud Environ-
ment,” IEEE Transactions on Services Computing, 2019.

[4] A. Morichetta, V. C. Pujol, S. Nastic, T. Pusztai, P. Raith, S. Dustdar,
D. Vij, Y. Xiong, and Z. Zhang, “Demystifying deep learning in predictive
monitoring for cloud-native SLOs,” 2023.

[5] J. Fürst, M. Fadel Argerich, B. Cheng, and A. Papageorgiou, “Elastic
Services for Edge Computing,” in 2018 14th International Conference

on Network and Service Management (CNSM), Nov. 2018, pp. 358–362.
[6] S. Nastic, A. Morichetta, T. Pusztai, S. Dustdar, X. Ding, D. Vij, and

Y. Xiong, “SLOC: Service Level Objectives for Next Generation Cloud
Computing,” IEEE Internet Computing, vol. 24, no. 3, May 2020.

[7] E. C. Martı́nez, J. W. Kim, T. Barz, and M. Cruz, “Probabilistic Modeling
for Optimization of Bioreactors using Reinforcement Learning with
Active Inference,” Computer Aided Chemical Engineering, 2021.

[8] K. J. Friston, J. Daunizeau, and S. J. Kiebel, “Reinforcement Learning
or Active Inference?” PLOS ONE, vol. 4, no. 7, p. e6421, Jul. 2009.

[9] B. Sedlak, V. C. Pujol, P. K. Donta, and S. Dustdar, “Designing Recon-
figurable Intelligent Systems with Markov Blankets,” in Service-Oriented

Computing, ser. Lecture Notes in Computer Science. Cham: Springer
Nature Switzerland, 2023, pp. 42–50.

[10] K. Friston, “Life as we know it,” Journal of The Royal Society Interface,
vol. 10, no. 86, p. 20130475, Sep. 2013.

[11] M. Kirchhoff, T. Parr, E. Palacios, K. Friston, and J. Kiverstein, “The
Markov blankets of life: autonomy, active inference and the free energy
principle,” Journal of The Royal Society Interface, 2018.

[12] T. Parr, G. Pezzulo, and K. J. Friston, Active Inference: The Free Energy

Principle in Mind, Brain, and Behavior. The MIT Press, Mar. 2022.
[13] J. Pearl, Probabilistic reasoning in intelligent systems : networks of

plausible inference. San Mateo, Calif. : Morgan Kaufmann, 1988.
[14] N. Ganguly et al., “A Review of the Role of Causality in Developing

Trustworthy AI Systems,” Feb. 2023.
[15] M. Tariq, A. Zeitoun, V. Valancius, N. Feamster, and M. Ammar,

“Answering what-if deployment and configuration questions with wise,”
ACM SIGCOMM Computer Communication Review, 2008.

[16] Y. W. Teh, M. Welling, S. Osindero, and G. E. Hinton, “Energy-Based
Models for Sparse Overcomplete Representations,” Journal of Machine

Learning Research, vol. 4, pp. 1235–1260, Dec. 2003.
[17] K. Veeramachaneni, I. Arnaldo, V. Korrapati, C. Bassias, and K. Li,

“AIˆ2: Training a Big Data Machine to Defend,” in IEEE Big Data

Security, Apr. 2016, pp. 49–54.
[18] M. Simsek, B. Kantarci, and Y. Zhang, “Detecting Fake Mobile Crowd-

sensing Tasks: Ensemble Methods Under Limited Data,” IEEE Vehicular

Technology Magazine, vol. 15, no. 3, pp. 86–94, Sep. 2020.
[19] X. Huang, L. He, and W. Zhang, “Vehicle Speed Aware Computing

Task Offloading and Resource Allocation Based on Multi-Agent Rein-
forcement Learning in a Vehicular Edge Computing Network,” in IEEE

International Conference on Edge Computing (EDGE), Oct. 2020.
[20] H. Guo, J. Liu, and J. Lv, “Toward Intelligent Task Offloading at the

Edge,” IEEE Network, vol. 34, no. 2, pp. 128–134, Mar. 2020.
[21] B. Sedlak, V. Casamayor Pujol, P. K. Donta, and S. Dustdar, “Controlling

Data Gravity and Data Friction: From Metrics to Multidimensional
Elasticity Strategies,” in IEEE SSE 2023, Chicago, IL, USA, Jul. 2023.

[22] G. Levchuk, K. Pattipati, D. Serfaty, A. Fouse, and R. McCormack, “Ac-
tive Inference in Multiagent Systems: Context-Driven Collaboration and
Decentralized Purpose-Driven Team Adaptation,” in Artificial Intelligence

for the Internet of Everything. Academic Press, Jan. 2019.
[23] T. Pusztai, A. Morichetta, V. C. Pujol, S. Dustdar, S. Nastic, X. Ding,

D. Vij, and Y. Xiong, “A Novel Middleware for Efficiently Implementing
Complex Cloud-Native SLOs,” in 2021 IEEE 14th International Confer-

ence on Cloud Computing (CLOUD), Sep. 2021, pp. 410–420.
[24] B. Sedlak, V. C. Pujol, P. K. Donta, and S. Dustdar, “Equilibrium in the

Computing Continuum through Active Inference,” Nov. 2023.
[25] M. G. Vilas, R. Auksztulewicz, and L. Melloni, “Active Inference as a

Computational Framework for Consciousness,” Review of Philosophy and

Psychology, vol. 13, no. 4, pp. 859–878, Dec. 2022.
[26] C. Heins, B. Millidge, D. Demekas, B. Klein, K. Friston, I. Couzin, and

A. Tschantz, “pymdp: A Python library for active inference in discrete
state spaces,” Journal of Open Source Software, May 2022.

[27] R. Smith, K. J. Friston, and C. J. Whyte, “A step-by-step tutorial on active
inference and its application to empirical data,” Journal of Mathematical

Psychology, vol. 107, p. 102632, Apr. 2022.
[28] B. Sedlak, I. Murturi, P. K. Donta, and S. Dustdar, “A Privacy Enforcing

Framework for Transforming Data Streams on the Edge,” IEEE Transac-

tions on Emerging Topics in Computing, 2023.

PerconAI 2024: 3rd Workshop on Pervasive and Resource-Constrained Artificial Intelligence

555

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on June 06,2024 at 07:15:49 UTC from IEEE Xplore.  Restrictions apply. 


