
Learning-driven Zero Trust in Distributed
Computing Continuum Systems

Ilir Murturi , Praveen Kumar Donta , Victor Casamayor Pujol , Andrea Morichetta , and Schahram Dustdar

Distributed Systems Group, TU Wien, Vienna 1040, Austria.
{i.murturi, p.donta, a.morichetta, v.casamayor, dustdar}@dsg.tuwien.ac.at

Abstract—Converging Zero Trust (ZT) with learning tech-
niques can solve various operational and security challenges
in Distributed Computing Continuum Systems (DCCS). Imple-
menting centralized ZT architecture is seen as unsuitable for
the computing continuum (e.g., computing entities with limited
connectivity and visibility, etc.). At the same time, implementing
decentralized ZT in the computing continuum requires un-
derstanding infrastructure limitations and novel approaches to
enhance resource access management decisions. To overcome
such challenges, we present a novel learning-driven ZT con-
ceptual architecture designed for DCCS. We aim to enhance
ZT architecture service quality by incorporating lightweight
learning strategies such as Representation Learning (ReL) and
distributing ZT components across the computing continuum.
The ReL helps to improve the decision-making process by
predicting threats or untrusted requests. Through an illustrative
example, we show how the learning process detects and blocks the
requests, enhances resource access control, and reduces network
and computation overheads. Lastly, we discuss the conceptual
architecture, processes, and provide a research agenda.

Index Terms—Learning-Driven, Computing Continuum, Zero
Trust, Security

I. INTRODUCTION

In recent years, the number of Internet of Things (IoT)
devices has increased substantially in the computing infras-
tructure. This manifests in increased demand for real-time ap-
plications that are fast, secure, and protect end-users’ privacy.
This rise of IoT has shifted how we think about the pro-
cesses involved in managing IoT systems and their executions
in computing infrastructures. To effectively manage people,
devices, and data involved in these systems, it is necessary to
ensure that all of these actors are integrated and protected from
various unknown threats. In particular, there is a fundamental
need for better security models for protecting different digital
assets (i.e., resources, data, services, etc.) with highly dynamic
authorization decisions in complex and broad scenarios like
the device-edge-cloud computing continuum [1].

Traditional security models focus on securing digital asset
groups using perimeter-based security or encryption tech-
niques to ensure that only reliable and authenticated actors
may enter a secured domain [2]. However, the perimeter-based
approach cannot work in these broad scenarios due to facts that
(i) it largely ignores insider threats within an authenticated

network, and (ii) the notion of the perimeter in the computing
continuum is hardly applicable. In this regard, Zero Trust
(ZT) represents an appealing direction with perimeter-less and
continuous verification capabilities to ensure that digital assets
on the computing continuum are protected against potential
threats [3]. The key principle of ZT is ”never trust, always
verify”; meaning that all network traffic should be strictly
monitored and verified before being allowed to access a
network or resource [3]. Nevertheless, implementing ZT in the
computing continuum infrastructures requires careful planning
and further advanced mechanisms to improve the decision-
making process.

In a ZT environment, all access to data and resources
is strictly controlled and verified, regardless of whether the
access is coming from inside or outside the system network.
Monitoring activity in a ZT environment involves various
tools and techniques [2]. These tools enable us to quickly
identify and respond to any suspicious or unauthorized activity.
When suspicious activity is detected, it is typically investigated
using tools and techniques to determine the cause of the
activity and evaluate the potential risks. More specifically, this
involves analyzing logs, network traffic, or conducting further
investigations to identify the source of the activity and any
potential damage that may have been caused. Consequently,
the outcome of such analysis results in inappropriate actions
taken to address the issue. For instance, this may involve
blocking access to the requested data or resource, revoking
access privileges, blocking lateral movement, or preventing
further damage or unauthorized access [4].

As per the National Institute of Standards and Technology
(NIST), ZT is not necessarily a centralized approach, as it
can be implemented in a decentralized manner [5]. However,
implementing decentralized ZT in the computing continuum
requires careful planning, understanding infrastructure limi-
tations, and introducing further advanced mechanisms to im-
prove the decision-making process. Several challenges exist in
implementing decentralized ZT in the computing continuum,
such as:

• Limited resources: Computing continuum infrastructures
are three-tier architectures (i.e., cloud, fog, and edge) [6]
characterized by heterogeneous and dynamic devices. In
the edge-tier, edge devices usually have limited resources
in terms of processing power, storage, and networking979-8-3503-0460-2/23/$31.00 ©2023 IEEE

IEEE DASC/CyberSciTech/PICom/CBDCom 2023

0044

20
23

 IE
EE

 In
tl

Co
nf

 o
n

De
pe

nd
ab

le
, A

ut
on

om
ic

 a
nd

 S
ec

ur
e

Co
m

pu
tin

g,
 In

tl
Co

nf
 o

n
Pe

rv
as

iv
e

In
te

lli
ge

nc
e

an
d

Co
m

pu
tin

g,
 In

tl
Co

nf
 o

n
Cl

ou
d

an
d

Bi
g

Da
ta

 C
om

pu
tin

g,
 In

tl
Co

nf
 o

n
Cy

be
r S

ci
en

ce
 a

nd
 T

ec
hn

ol
og

y
Co

ng
re

ss

(D
AS

C/
Pi

Co
m

/C
BD

Co
m

/C
yb

er
Sc

iT
ec

h)
 |

 9
79

-8
-3

50
3-

04
60

-2
/2

3/
$3

1.
00

 ©
20

23
 IE

EE
 |

 D
O

I:
10

.1
10

9/
DA

SC
/P

IC
O

M
/C

BD
CO

M
/C

Y5
97

11
.2

02
3.

10
36

13
52

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on February 21,2024 at 12:37:42 UTC from IEEE Xplore. Restrictions apply.

capabilities. Therefore, enforcing complex security mea-
sures for edge devices is a challenging task and not
always possible.

• Limited connectivity: Edge devices are usually roaming
devices or static devices located in remote or inaccessible
areas. Uncertainty is the reason that makes it difficult to
establish and maintain continuously a secure connection
to the central network, respectively, to the ZT central
engine.

• Limited visibility: Edge and fog tiers represent distributed
devices in the computing continuum. Monitoring and
managing edge and fog device security metrics in real-
time in a centralized manner can be demanding and not
always possible.

Incorporating learning strategies along with ZT in the
computing continuum will make the control management
model intelligent. With learning models, ZT can predict threat
requests and block them before proceeding further. It helps
to detect non-person entries (NPEs), and therefore, it reduces
the amount of resource allocation or malicious actions [7].
Furthermore, learning algorithms are computationally inten-
sive; meaning that, they require more resources or time. Since
limitations are concerned, lightweight learning approaches are
needed to lower resource usage and produce results quickly.
Therefore, this can be accomplished with Representation
Learning (ReL). There are several ReL approaches in the
literature for computing continuum [8] matching the needs of
ZT. Nevertheless, this article is the first work targeting learning
in ZT architecture for Distributed Computing Continuum
Systems (DCCS) [9]–[11]. The key objective is to introduce a
novel decentralized framework that combines ReL and ZT into
one platform with the aim of improving security, providing
faster resource access controls to end-users, and reducing
network and computing overheads. The major contributions
of this paper are as follows:

• We introduce a novel learning-driven ZT conceptual ar-
chitecture designed for distributed computing continuum
systems. We extend the conceptual ZT framework [5]
with two novel components (i) learning and (ii) resource
management.

• We consider Bayesian network structure learning (BNSL)
to learn representations from the historical active logs.
Via the learning model, we can predict the likelihood of
a given request being authentic or fraudulent.

• Lastly, we present potential research directions that can
foster novel studies in this field and overcome the current
limitations.

The remaining sections are structured as follows. Related
work is presented in Section II. Section III discusses the ad-
vantages of learning-driven in ZT-enabled computing contin-
uum infrastructures. Furthermore, we introduce and explain a
novel learning-driven ZT conceptual architecture designed for
distributed computing continuum systems. In Section IV we
outline a research agenda. Finally, we conclude our discussion
in Section V.

II. RELATED WORK

In [12], Fu et al. show that traditional detection techniques
can detect attacks depending on their prior modeling; however,
such conventional methods may not be fully effective in
catching cyber threats because threats emerge frequently. The
proposed intelligent attack detection method is based on long
short-term memory recurrent neural networks. Its applicability
is demonstrated via experiments that show that it can ef-
fectively detect anomalous traffic activity in social networks.
Similarly, the relevance and feasibility of Convolution Neural
Networks (CNNs) to identify cyber threats in real-time have
been shown in [13]. The authors aimed to discover the impact
of the structural depths on the overall performance. Therefore,
three simple CNN models are evaluated with different inter-
nal depths for network anomaly detection. Another research
work emphasizes the feasibility and relevance of using ML
techniques to detect various attacks on IoT networks [14].
More specifically, the authors introduced an architecture of
the system that allows the detection of abnormal activity in
IoT devices using ML techniques (i.e., Decision Tree, Support
Vector Machine, Multilayer Perceptron). In [15], several ML
algorithms (i.e., Logistic Regression, Gaussian Naive Bayes,
Multi-layer Perceptron Artificial Neural Networks, Random
Forest, and Gradient Boosting classifier) are compared and
investigated for detecting different attacks in IoT such as DoS
and other malicious activities.

In [16], Ge et al. used deep learning to identify attacks on
IoT devices. They specifically extracted features from packet
headers and used a feed-forward neural network to detect four
types of attacks: DoS, DDoS, reconnaissance, and information
theft. Olivier et al. [17] present the principles and design of
a deep learning-based approach for the online detection of
network attacks. The paper investigates cybersecurity threats
faced by an IoT-connected home environment and presents
the principles and design of a learning-based approach for
detecting network attacks.

The research works mentioned above focus on solutions for
attack detection, traffic detection, and classification with ML
techniques for Software-defined network (SDN) architectures.
However, there has not been any research that has developed
a solution for implementing ZT security in a distributed
manner while taking into account the unique characteristics of
computing continuum infrastructures. Lastly, there are several
learning algorithms used in the literature for cybersecurity,
DoS attacks, IoT networks, etc. But, these approaches are
resource and time intensive; while learning strategies in ZT
have not been considered. Nevertheless, using lightweight
learning strategies such as ReL for ZT helps to make it more
adaptive and efficient in decision making such as whether to
allow or block a request.

III. LEARNING-DRIVEN ZT IN DISTRIBUTED COMPUTING
CONTINUUM SYSTEMS

Learning-driven ZT is an innovative approach that comes
into play where a set of learning mechanisms in combination
with ZT techniques can be applied to secure and increase

IEEE DASC/CyberSciTech/PICom/CBDCom 2023

0045
Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on February 21,2024 at 12:37:42 UTC from IEEE Xplore. Restrictions apply.

Fig. 1: Zero Trust framework [5] with two additional blocks:
Learning and Resource Management.

trustworthiness in the computing continuum. NIST introduced
a conceptual framework model of ZT that consists of three
main components: Policy Engine (PE) is in charge of the
ultimate decision to grant access to a resource for a given
subject. The engine utilizes information provided by various
external data sources (i.e., Activity Logs, ID Management,
Data Access Policy, etc.), and through a trust algorithm
it grants, denies, or revokes access to the resource; Policy
Administrator (PA) aims at establishing and/or shutting down
the communication path between a subject and a resource;
and finally, Policy Enforcement Point (PEP) is in charge of
monitoring, and terminating connections between a subject and
a resource. Three components of the original ZT framework
can be observed in Figure 1.

However, we advocate the need to expand this framework
(as presented in Figure 1) to be suitable for DCCS. Therefore,
we extend the framework and analyze newly added compo-
nents, explain their implementation challenges, and present
promising techniques that support learning model development
within ZT.

A. Learning

Monitoring and updating the PE in ZT is important to
ensure that it is effective at detecting and preventing fraudulent
activities for DCCS. Analyzing ZT’s activity logs (i.e., from
external data sources) helps to detect fraudulent or suspicious
requests. In general, representation learning algorithms are
useful for identifying the underlying information from data
[8], so ZT architecture can benefit from them as well. The
ReL algorithms can build a learning model by using different
information such as authentication requests and subject be-
haviors (i.e., user behavior). This learning model can predict
a likelihood of a given request being authentic or fraudulent.
Accordingly, the decision-making system (PEP1) allows or
declines the request. In Figure 2, we show the extended
form of the PEP and interactions. First, the learning model
continuously evaluates the subject’s behavior and determines
whether access should be granted 1 or not 2 . If the model
determines that subject behavior is trustworthy 1 then the
Policy Decision Point (PDP) through PEP decides whether
to give access or not to a requested resource. In the case
when a connection between PEP and PDP is not stable, the

learning model can decide whether access should be granted
or not. Notice that PEPs are distributed across the computing
continuum to improve overall service quality. Furthermore,
we consider Bayesian Network Structure Learning (BNSL)
[18] to learn from the historical active logs. BNSL due to its
probabilistic nature, causal reasoning capabilities, flexibility,
interpretability, and ability to handle incremental updates set
it apart from other approaches when it comes to learning from
historical active logs.

Learning Model Policy Enforcement Point
(PEP1)

Policy Enforcement Points (PEn)

1

Block request

Subject

2

Policy Decision Point

Fig. 2: Policy Enforcement Point with learning model.

In general, an active log can store a huge amount of
information. However, we consider a synthetic dataset with
attributes (e.g., Timestamp, Source IP Address, Destination
IP Address, Source Port, Destination Port, Protocol, User ID,
Application, and Action) to evaluate the usability of learning
in decision-making for ZT. However, the developers can also
consider several other attributes including networks, work-
loads, visibility and analytics, orchestration, etc. The score-
based BNSL analyzed the data and generated a knowledge
graph, which looks like a Directed Acyclic Graph (DAG)
with weighted links and a Conditional Probability Table (CPT)
[19]. A weighted link shows mutual information or conditional
dependency, and a CPT shows causal uncertainty among at-
tributes. The learned representation and its CPTs are shown in
Fig. 3. We consider a timestamp in an epoch, eight users, three
source IP addresses, two destination IP addresses, five source
ports, three destination ports, two protocols (SSH and HTTPS),
three user applications, and actions (allowed or blocked).
We use thirty-three entries (in the illustration example) of
active logs to generate Fig. 3. This learned representation
converged with a log-likelihood of -284.2246 and Bayesian
Information Criterion of 1113.9043.

Using the CPT values illustrated in Fig. 3, we can also
infer whether a new request is allowed or blocked through
querying. This querying process can include full or partial
information about the request. As this learning process
supports missing values, the model infers the results based on
available information. For instance, the request is generated
with the details of the application, protocol, and source
ports are a web browser, HTTPS, and 443, respectively.
The learning model queries with this information such as
P (Action=1| Source Port =443, Protocol
=’HTTPS’, Application=’Web Browser’). This
query returns a probability value for allowed, i.e., 0.9853

IEEE DASC/CyberSciTech/PICom/CBDCom 2023

0046
Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on February 21,2024 at 12:37:42 UTC from IEEE Xplore. Restrictions apply.

User

Timestamp Source Port Source IP
Address

Destination IP
Address

Destination
Port

Application

Protocol Action

DP P(DP)

22 0.36029411

44 0.03676470

443 0.24264706

8080 0.36029412

User

P(User) 0.1507353

User1

0.2389706

User2

0.209559

User3

0.1213235

User4

0.0919118

User5

0.0330884

User6

0.0919118

User7 User8

0.0625

App P(Ac=0|App)

22 0.36029411

44 0.03676470

3 0.45588235

0.98529412

0.01470588

0.01470588

0.98529412

0.54411765

P(Ac=1|App)

1

2

App P(P=1|App)

22 0.36029411

44 0.03676470

3 0.98529412

0.01470588

0.98529412

0.98529412

0.01470588

0.01470588

P(P=2|App)

1

2

SP P(App=1|SP)

22 0.36029411

44 0.03676470

52415 0.1292517

0.01754386

0.00680272

0.96491228

0.25170068

0.61904762

P(App=2|SP)

443

52412

44 0.03676470

56026 0.96491228

0.96491228 0.01754386

0.01754386

56025

44 0.036764700.49659864 0.129251756027

0.01754386

0.7414966

0.25170068

P(App=3|SP)

0.01754386

0.01754386

0.37414966

Probability is ONE for
all cases (due to

continuous variable)

User/SP

User1 0.199187

443

0.0040651

52412

0.0040651

52415

0.199187

56025

0.0040651

56026

0.5894309

56027

User2 0.2487179 0.2487179 0.2487179 0.1256411 0.0025641 0.1256411

User3 0.1432749 0.1432749 0.4239766 0.0029239 0.1432749 0.1432749

User4 0.4898989 0.0050506 0.0050506 0.0050506 0.4898989 0.0050506

User5 0.3266667 0.0066667 0.0066667 0.3266667 0.0066667 0.3266667

User6 0.0185185 0.0185185 0.0185185 0.0185185 0.0185185 0.9074075

User7 0.3266667 0.006666 0.3266667 0.006666 0.3266667 0.006666

User8 0.0098039 0.0098039 0.950981 0.0098039 0.0098039 0.0098039

User/SIP

User1 0.398374

10

0.203252

11

0.398374

12

User2 0.3743589 0.6205128 0.0051282

User3 0.7076024 0.2865497 0.005848

User4 0.010101 0.4949495 0.4949495

User5 0.9733334 0.0133334 0.0133334

User6 0.9259259 0.0370371 0.0370371

User7 0.0133334 0.9733334 0.0133334

User8 0.9607844 0.0196079 0.0196079

User/DIP

User1 0.2073171

20

0.7926829

30

User2 0.7461539 0.2538462

User3 0.5701754 0.4298246

User4 0.5 0.5

User5 0.9800001 0.02

User6 0.944444 0.0555556

User7 0.9800001 0.02

User8 0.5 0.5

CPT for node - Source Port CPT for node - Source IP Address
(192.168.1.X)

CPT for node - Destination
IP Address

(192.168.1.X)

0 - Blocked
1 - Allowed

P=1, HTTPS
P=2, SSH

Fig. 3: Example structure and conditional probability tables of
representation learning through active logs of ZT architecture.

(according to the learned model shown in Figure 3). Thus,
a request with Source Port = 443, Protocol = HTTPS, and
Application = ’Web Browser’ will be recommended for
consideration by the policy engine. In case, a request is
generated with (User 8), source IP (192.168.1.10), source port
address (56025), and SSH protocol is used. Then, a query
P(Action=1| Source Port = 56025, Protocol
= ’SSH’, User = ’User8’, Source IP address
= ’192.168.1.10’) generates the probability to be
0.45301. In such cases, the request is blocked directly,
without involving the policy engine. So, the burden on the
policy engine is reduced to evaluate the queries.

Fig. 4 shows the probability of allowing a request depending
on each individual attribute through causal effect analysis. In
this, the Y-axis shows the probability percentage of allowing,
and the X-axis indicates data series of different attributes. Con-
sider the impact of Source Port on Action. The request
came from port 56025, creating a probability of 96.1% that
it would be allowed. Similarly, requests from Source Port
52415 resulted in only a 27.4% probability of allowing the
request, which means they might not be trusted. A summary
of each metric’s effect on action is shown in Fig. 4.

B. Resource Management

Computing continuum infrastructures are complex and un-
certain environments. Implementing a consistent and effec-
tive security strategy in these infrastructures is complex and
requires a combination of many different technologies and
devices. Such challenges are also visible when developing,
deploying, and operating applications or systems on such
infrastructures. Therefore, we advocate that resource man-
agement in ZT is a must-have feature since it overcomes
several open challenges mentioned previously (see Section I).

Fig. 4: The causal effect analysis on the percentage of
allowed request depends on different metrics.

More specifically, challenges are notable in edge environments
where the network perimeter is not clearly defined and can be
more easily breached by attackers.

The resource management component includes several ca-
pabilities: 1) discovering available computing resources and
monitoring infrastructure to keep track of changes, 2) self-
adaptive monitoring, orchestrating, and determining the ap-
propriate placement for software components in order to
provide reliable and low-latency service to end users (i.e.,
discussed in Section III-C), and 3) distributing and configur-
ing learning models. Nevertheless, the resource management
component can be extended with further functionalities. The
core resource management component runs only in the cloud,
while functionalities (i.e., known as edge functions [20]) can
be distributed over the computing continuum depending on
resource demands.

1) Self-adaptive and Resilient Runtime Mechanism: Con-
trary to cloud infrastructures, computing continuum infras-
tructures are very heterogeneous environments. It is crucial
to have a way to execute functionalities on a single, consis-
tent, and lightweight runtime platform that allows them to
be executed on any device without the need for additional
configuration. As a potential candidate, we consider an open
standard technology called WebAssembly1, which provides
full interoperability across different platforms. WebAssembly
is a lightweight mechanism with several benefits (i.e., low-
latency, dynamic and scaleable, language agnostic, etc.) over
other virtualization platforms such as Docker or Java-based
OSGi2. Considering that computing continuum environments
are characterized by uncertainty [21], [22], we require novel
decision-making and an intelligent self-adaptive orchestrator
for resource discovery and placement, resource provisioning,
and adaptive monitoring, just to name a few. In this paper,
we treat resource management aspects as future work and
orthogonal to our approach; we are concerned with the core
learning mechanisms to show the feasibility to improve the
ZT security and reduce network and computations overhead
in computing continuum environments.

2) Configuration and Distributing Learning Models: Com-
puting continuum environments provide a seamless opportu-

1WebAssembly, https://webassembly.org/
2Java-based OSGi, https://osgi.org/

IEEE DASC/CyberSciTech/PICom/CBDCom 2023

0047
Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on February 21,2024 at 12:37:42 UTC from IEEE Xplore. Restrictions apply.

nity to train a shared model on multiple devices, such as
smartphones, fog, or edge devices. Rather than sharing the
raw data, sharing their locally-computed gradients reduces the
amount of data that needs to be transmitted between devices
and a central server. Optimizing communication between low-
powered devices and a centralized server is crucial, especially
for saving device energy. Since BNSL’s time complexity is
not time intensive [23], it can run on computing entities across
computing continuum. Additionally, it minimizes communica-
tion delays and ensures that active logs are not misused.

C. Deployment Considerations
Software components including their functionalities (i.e.,

edge functions), and learning shared models can be placed on
different devices in the computing continuum, yielding dif-
ferent deployments and configurations. As depicted in Figure
5, deployment types can be categorized into two models: (1)
cloud model (i.e., depicted with blue color), and (2) edge-cloud
hybrid model (i.e., depicted with green color). As can be noted
in Figure 5, software components such as Policy Administrator
and Resource Management can be deployed only in the cloud
(i.e., however, some functionalities can be distributed across
the computing continuum). These components are expected to
provide core functionalities such as orchestration and storage;
therefore, having them in the cloud is essential due to the
high availability of resources. The other three software com-
ponents or their features are distributable across the computing
continuum. For example, software components that receive
many requests from a particular region can be placed close
to end-users to improve performance and overall latency.
Similarly, a shared learning model is distributed across the
entire continuum, and then each device trains the model locally
on its data.

E

E

E

E

E E

E

E

E

E

E

E

E

Legend

Cloud

FogNode

E EdgeNode

Cloud
Deployment

Cloud/Fog
Deployment

Physical
Links

E
E

Fig. 5: Software architecture considerations in computing
continuum.

IV. AN EMERGING RESEARCH AGENDA

The ultimate goal of learning-driven ZT is to improve
decision-making convenience and enhance the security in com-
puting continuum networks and systems by using representa-
tion learning techniques. However, using learning approaches

and orchestrating architecture components in dynamic environ-
ments does entail several challenges. We identify four research
directions that must be further investigated in the future:

A. Resource management in computing continuum

Resources are distributed across different network layers
in the computing continuum, ranging from low-powered edge
devices to cloud servers. Therefore, emerging paradigms such
as multi-domain orchestration, the orchestration of compo-
nents based on WebAssembly, or Function as a Service
(FaaS) orchestration are becoming increasingly prevalent in
the computing continuum. However, current implementations
lack mechanisms for distributed orchestration and decision-
making responsibilities across the computing continuum (i.e.,
these existing paradigms are often centralized). Therefore, this
is challenging because fully centralized approaches are often
unsuitable for computing continuum systems.

B. Parameter and model selection

In learning-driven zero trust, selecting appropriate security
parameters is crucial to ensure the effectiveness and efficiency
of the system. In general, zero trust relies on collecting and
analyzing data from multiple sources, such as network traffic,
user behavior, and system logs. However, selecting specific
parameters will depend on the types of data sources available,
the quality of the data, and the computational resources
required to process it. More specifically, choosing specific
parameters will vary based on the needs and requirements
of each enterprise. Therefore, selecting the most appropriate
learning models for a given task requires understanding the
problem domain, the available data, and the computational
resources available.

C. Incremental learning in ZT

DCCS must continuously adapt to changing threats and
vulnerabilities. The learning model must constantly learn from
new data without forgetting previous knowledge and enhance
adaptability. This process keeps the learning model to be up
to date and able to detect new threats. Incremental learning
further enables scalability which helps to avoid manual up-
dates or reconfiguration. Therefore, developing novel methods
and algorithms for continuous learning in ZT-based systems
becomes a critical challenge. Such algorithms need to be
developed to handle failures gracefully, recover from them, and
ensure uninterrupted learning. Moreover, learning becomes
even more challenging in distributed environments where data
is distributed across multiple sources or devices. In such
distributed environments, consistent and up-to-date models
across distributed devices, communication, and synchroniza-
tion mechanisms are essential.

D. Light-weight AI/ML

In DCCS, resource-constrained edge devices play a major
role in computations with low latency. Light-weight AI/ML
algorithms that minimize resource usage and time spent com-
puting without affecting prediction accuracy are needed for

IEEE DASC/CyberSciTech/PICom/CBDCom 2023

0048
Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on February 21,2024 at 12:37:42 UTC from IEEE Xplore. Restrictions apply.

these edge devices. ML model compression, which reduces
redundant data in the models, is one way of achieving
lightweight learning models. However, novel methods for
lightweight AI/ML in ZT are a challenging issue and such
methods should strike a balance between compression and
accuracy trade-offs, ensuring that the compressed models still
perform well in ZT systems.

E. Risks and Challenges

Introducing ReL in ZT adds complexity and may present
potential risks. ReL can be a powerful approach; however, it
requires careful design and development to ensure security and
effectiveness within a ZT framework. Therefore, addressing
various concerns and defending against potential security holes
is important. For instance, several measures can be taken,
such as ensuring that the data used to train the models is
high quality and properly curated. Or there should be clear
boundaries for what the learning model can and cannot do
to avoid unexpected behavior and potential security holes.
Furthermore, real-time monitoring helps to detect unexpected
behavior or anomalies that may indicate security breaches
or inaccuracies in learning. Nevertheless, we advocate the
benefits that learning brings into ZT, while the mentioned risks
and several other aspects should be carefully addressed before
using these approaches.

V. CONCLUSION

Incorporating ReL in ZT helps to improve the decision-
making process by predicting threats and untrusted requests
before being processed by PDP. The ZT decision mechanism
(i.e., PDP) combined with learning models enable distributed
decisions on whether to grant or deny access to resources.
To achieve such goals, we presented a novel learning-driven
ZT architecture to improve the decision-making process for
accessing resources in distributed computing continuum sys-
tems. Nevertheless, this paper is only a small step toward
framework operationalization. In future work, we aim to
provide a complete technical framework, including technical
and architectural aspects.

ACKNOWLEDGMENT

Research has partially received funding from grant agree-
ment No. 101079214 (AIoTwin) and by EU Horizon Frame-
work grant agreement 101070186 (TEADAL).

REFERENCES

[1] S. Dustdar, V. C. Pujol, and P. K. Donta, “On distributed computing
continuum systems,” IEEE Transactions on Knowledge and Data Engi-
neering, 2022.

[2] N. F. Syed, S. W. Shah, A. Shaghaghi, A. Anwar, Z. Baig, and R. Doss,
“Zero trust architecture (zta): A comprehensive survey,” IEEE Access,
2022.

[3] S. Rose, O. Borchert, S. Mitchell, and S. Connelly, “Zero trust architec-
ture,” tech. rep., National Institute of Standards and Technology, 2020.

[4] X. Yan and H. Wang, “Survey on zero-trust network security,” in
Artificial Intelligence and Security: 6th International Conference, ICAIS
2020, Hohhot, China, July 17–20, 2020, Proceedings, Part I 6, pp. 50–
60, Springer, 2020.

[5] V. Stafford, “Zero trust architecture,” NIST Special Publication, vol. 800,
p. 207, 2020.

[6] I. Murturi and S. Dustdar, “A decentralized approach for resource dis-
covery using metadata replication in edge networks,” IEEE Transactions
on Services Computing, 2021.

[7] M. Bush and A. Mashatan, “From zero to one hundred: Demystifying
zero trust and its implications on enterprise people, process, and tech-
nology,” Queue, vol. 20, no. 4, pp. 80–106, 2022.

[8] P. K. Donta and S. Dustdar, “The promising role of representation learn-
ing for distributed computing continuum systems,” in 2022 IEEE Inter-
national Conference on Service-Oriented System Engineering (SOSE),
pp. 126–132, IEEE, 2022.

[9] V. Casamayor Pujol, A. Morichetta, I. Murturi, P. Kumar Donta, and
S. Dustdar, “Fundamental research challenges for distributed computing
continuum systems,” Information, vol. 14, no. 3, 2023.

[10] V. Casamayor Pujol, P. K. Donta, A. Morichetta, I. Murturi, and
S. Dustdar, “Distributed computing continuum systems–opportunities
and research challenges,” in Service-Oriented Computing–ICSOC 2022
Workshops: ASOCA, AI-PA, FMCIoT, WESOACS 2022, Sevilla, Spain,
November 29–December 2, 2022 Proceedings, pp. 405–407, Springer,
2023.

[11] V. C. Pujol, P. K. Donta, A. Morichetta, I. Murturi, and S. Dustdar,
“Edge intelligence—research opportunities for distributed computing
continuum systems,” IEEE Internet Computing, vol. 27, no. 4, pp. 53–
74, 2023.

[12] Y. Fu, F. Lou, F. Meng, Z. Tian, H. Zhang, and F. Jiang, “An intel-
ligent network attack detection method based on rnn,” in 2018 IEEE
Third International Conference on Data Science in Cyberspace (DSC),
pp. 483–489, IEEE, 2018.

[13] D. Kwon, K. Natarajan, S. C. Suh, H. Kim, and J. Kim, “An empir-
ical study on network anomaly detection using convolutional neural
networks.,” in ICDCS, pp. 1595–1598, 2018.

[14] I. Kotenko, I. Saenko, A. Kushnerevich, and A. Branitskiy, “Attack
detection in iot critical infrastructures: a machine learning and big data
processing approach,” in 2019 27th Euromicro International Conference
on Parallel, Distributed and Network-Based Processing (PDP), pp. 340–
347, IEEE, 2019.

[15] A. Alzahrani, T. Baabdullah, and D. B. Rawat, “Attacks and anomaly
detection in iot network using machine learning,” in International
Conference on Human-Computer Interaction, pp. 465–472, Springer,
2021.

[16] M. Ge, X. Fu, N. Syed, Z. Baig, G. Teo, and A. Robles-Kelly, “Deep
learning-based intrusion detection for iot networks,” in 2019 IEEE 24th
pacific rim international symposium on dependable computing (PRDC),
pp. 256–25609, IEEE, 2019.

[17] O. Brun, Y. Yin, J. Augusto-Gonzalez, M. Ramos, and E. Gelenbe, “Iot
attack detection with deep learning,” in ISCIS Security Workshop, 2018.

[18] M. Scanagatta, A. Salmerón, and F. Stella, “A survey on bayesian
network structure learning from data,” Progress in Artificial Intelligence,
vol. 8, pp. 425–439, 2019.

[19] J. Rusek, K. Tajduś, K. Firek, and A. Jedrzejczyk, “Score-based bayesian
belief network structure learning in damage risk modelling of mining
areas building development,” Journal of Cleaner Production, vol. 296,
p. 126528, 2021.

[20] S. Dustdar and I. Murturi, “Towards distributed edge-based systems,”
in 2020 IEEE Second International Conference on Cognitive Machine
Intelligence (CogMI), pp. 1–9, IEEE, 2020.

[21] C. Krupitzer, F. M. Roth, S. VanSyckel, G. Schiele, and C. Becker, “A
survey on engineering approaches for self-adaptive systems,” Pervasive
and Mobile Computing, vol. 17, pp. 184–206, 2015.

[22] D. Weyns, B. Schmerl, M. Kishida, A. Leva, M. Litoiu, N. Ozay,
C. Paterson, and K. Tei, “Towards better adaptive systems by combining
mape, control theory, and machine learning,” in 2021 International
Symposium on Software Engineering for Adaptive and Self-Managing
Systems (SEAMS), pp. 217–223, IEEE, 2021.

[23] M. Scutari, C. Vitolo, and A. Tucker, “Learning bayesian networks from
big data with greedy search: computational complexity and efficient
implementation,” Statistics and Computing, vol. 29, pp. 1095–1108,
2019.

IEEE DASC/CyberSciTech/PICom/CBDCom 2023

0049
Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on February 21,2024 at 12:37:42 UTC from IEEE Xplore. Restrictions apply.

