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Abstract—The use of connected devices in the industry
represents a necessity and, at the same time, a challenge.
Building a network of interconnected industry assets can improve
performance and scale but can lead to dangerous security risks and
attacks. However, the amount of data shared, and the widespread
distribution of devices make the protection of industrial resources
cumbersome. One problem is to know the type of information
flowing and check for anomalies, making the job of anomaly-based
Intrusion Detection Systems (IDSs) arduous. In this direction, we
explore a semi-supervised approach, “Deep-SAD,” to overcome the
partial knowledge of the data. Due to the size of the data, and the
need for privacy measures, we combine this model with a federated
learning (FL) framework “Flower,” distributing the learning phase
through five industrial areas. We evaluate our implementation over
the WUSTL-IIoT-2021 dataset, a testbed simulation of an actual
plant where threats have been injected. This work presents and
evaluates a framework for semi-supervised anomaly detection,
starting with feature engineering. The results reveal that the
difference in the performance of the federated and centralized
settings is minimal, denoting the promising application of the
federated approach. Combined with the security and privacy-
preserving characteristics of FL, this demonstrates the value of
the federated approach to the semi-supervised anomaly-based
IDS in the IIoT networks.

Index Terms—Internet of Things (IoT); Security and Privacy;
DoS attacks; Federated Learning

I. INTRODUCTION

The ongoing adoption of information technology in the
industrial infrastructure is the primary driver of the emerging
fourth industrial revolution, also known as Industry 4.0. It aims
to radically change industrial sites by interconnecting smart
devices, workers, suppliers, and customers to create intelligent
systems capable of advanced analytics and decision-making.
Industrial IoT is an essential component of Industry 4.0. In
a broad sense, it refers to enhancing industrial systems with
“smart” devices such as sensors, actuators, and RFID tags.
However, hardware and software used in IoT devices are very
heterogeneous, and the current technology needs to improve
in consistent security standardization and risk assessment
norms [1], [2]. At the same time, industrial networks usually

leverage legacy systems designed with different requirements,
as these systems were traditionally detached from the Internet,
the so-called operation technology (OT) sector. As a result,
attacks against industrial systems are on the rise due to the
larger, more complex attack surface [3]. As the Kaspersky ICS
CERT report from 2021 [4], out of all industrial computers
that used Kaspersky tools, 39.6% received attacks during the
year. Many industrial sites belong to critical infrastructure,
and an interruption to their service might result in enormous
costs and even lead to catastrophic events. For example, cyber-
attacks on the Ukrainian power grid in 2015 resulted in a
massive power outage that continued for multiple hours [5].
Therefore, Denial of Service attacks (DoSs) represent a real
threat. However, tackling them in such a scenario is cumber-
some [6], [7], [8], [9], [10], [11]. In this context, anomaly-based
Intrusion Detection Systems (IDSs) can model the general
“regular” traffic and detect unusual activity. Modern IDSs
usually require developing and training machine learning (ML)
models, demanding large datasets and extensive computing
resources. Hence, the deployment of ML applications typically
occurs in a cloud environment, often outsourced to third-party
vendors. This way, the data flows through the network to the
central cloud location for ML training. However, this approach
comes with shortcomings in the case of industrial IDS [12].
First, sharing the network traffic with a third-party cloud can
breach privacy regulations, mainly if the provider resides in
a different country. Furthermore, connecting all end nodes
to the Internet and transferring confidential and sensitive data
creates additional vulnerabilities. Finally, uploading the massive
industrial network data to a distant cloud location results in
high bandwidth costs and latency issues [13] in critical industry
scenarios with real-time constraints, such as power grids and
nuclear plants.

Federated Learning holds the promise to solve the main
drawbacks mentioned above. Models train locally on each end
node, and only the model parameters are shared for further
cloud aggregation. The cloud server builds a more accurate
global model by aggregating the received weights and sending
the outcome back to the edge devices for anomaly detection in
the edge network traffic. After the introduction by McMahan979-8-3503-0460-2/23/$31.00 ©2023 IEEE
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et al. in [14] in 2016, FL became a popular topic in academia
and industry. However, there are considerably fewer studies
regarding FL application to anomaly-based IDS in IIoT. In
addition, considering the humongous dimension of industrial
network traffic, more than supervised learning is needed, as
labeling all the items is impractical. However, alternatives
like semi-supervised approaches in FL are understudied. In
reality, dealing with partially labeled sets offers performance
advantages and makes the process more manageable. Further-
more, public open-source FL frameworks, like Flower [15], are
overlooked. Instead, they can foster the research in a production-
ready scenario. Flower can handle large-scale heterogeneous
devices and is agnostic regarding hardware, ML frameworks,
programming languages, and communication protocols.

Therefore, this work aims to collect the pinpointed gaps,
inspecting a federated semi-supervised approach for IDS
model training in IIoT, specifically for DoS attacks. We offer
a methodology for semi-supervised deep learning using a
novel model called Deep-SAD, where we define the main
challenges and solution. Furthermore, we test the framework
in a federated learning scenario. Furthermore, we evaluate it
through a case study with a rich security dataset, showing the
promising direction of this approach and set the foundation for
production IDSs. Section II briefly overviews the theoretical
background for IIoT security and semi-supervised anomaly
detection for IDS and FL. Firstly Section III is dedicated to the
methodology, where we present the semi-supervised anomaly
detection and FL frameworks, the dataset, and the performance
metrics. Section IV discusses the frameworks’ optimization,
focusing on configurations and experiments on the case study.
Furthermore, it provides the experimental results and compares
the performance of centralized and federated setups. Section V
concludes the paper, discussing the limitations and possible
future research directions.

II. BACKGROUND AND MOTIVATION

We propose a federated semi-supervised anomaly-based
approach to IDS for IIoT security. complexity, lack of stan-
dardization, massive data, and privacy regulations

a) Overview: Security in Industrial IoT: IIoT is the
interconnection of internet-connected devices and industrial
machines, who collaborate [16, p.1]. However, the exposure
to the network lead to many security issues in IIoT, with
more frequent external cyber-attacks [17] that might expose
sensitive data and can even directly impact human health
and safety [5]. There needs to be more than conventional IT
cybersecurity measures to address such a scenario characterized
by largely heterogeneous devices. In the context of external
attacks, an Intrusion Detection System (IDS) can be used
to check IIoT systems for suspicious activity and possible
intrusions. However, this scenario has some challenges that
typically undermine the IDS efficacy.

• Challenge 1. IIoT systems are complex and lack stan-
dardization, making building rules to monitor and keep
track of the highly dynamic threat landscape difficult. [2].

Possible Solution: anomaly-based IDS powered by ML
[18].

• Challenge 2. IIoT systems produce a massive amount of
heterogeneous data, which makes it barely feasible to label
huge traffic datasets. Possible Solution: Semi-Supervised
Learning(SSL) [18].

• Challenge 3. Having IDS models in the cloud requires
extensive data transfer over the Internet from the IIoT
end nodes to a remote central location. Other than
latency issues, this approach creates additional cyber-
attack vectors and potentially violates privacy regulations
such as GDPR.

To overcome the challenges above, we propose a federated semi-
supervised anomaly-based approach to IDS for IIoT security.
We provide theoretical justifications for each constituent
method, including anomaly-based IDS, SSL, and Federated
Learning (FL) [18], [19].

b) Anomaly-based IDS: There exist various categories of
IDSs. Given the challenges of the IIoT scenario, it is essential
to make the most suitable decisions while designing one.
Since IIoT devices are often resource-constrained, we focus on
network-based IDSs that, conversely to host-based, reside on
network devices, capturing the traffic flowing through them [20].
Furthermore, IDSs can be signature-based and anomaly-based,
depending on how they tackle intrusions. Signature-based IDSs
compare the observed activity to known attack patterns. When
matched, they produce an alarm. Thus, this category requires
constant maintenance and updates due to the rapidly evolving
threat landscape. Unknown attacks, like zero-day vulnerabilities,
or attacks to new categories of devices are out of sight for
the standard signature-based IDS. Anomaly-based IDSs, on
the other hand, model their inspector over regular activity;
they raise the alarm whenever something deviating occurs [21].
Therefore, network- and anomaly-based IDSs represent the
most suitable solution for IIoT, undertaking the heterogeneity
of devices and behaviors, and addressing Challenge 1.

c) Semi-Supervised Deep Learning for Anomaly Detec-
tion: Compared to many other ML techniques, DL does not
require extensive feature engineering by human experts and
can process raw data input. As traffic volumes are universally
increasing, including in IIoT systems, DL is a promising
approach to anomaly-based IDS, as the traffic data directly
inputs in the model training [22]. Based on the training data,
DL, like other ML techniques, can be divided into supervised,
unsupervised, and semi-supervised learning. Semi-Supervised
Learning(SSL) falls between the first two categories as it can
operate on mixed types of training data. However, as Engelen
et al. [23] state, semi-supervised learning needs unlabeled
samples to contain new information that can enrich the model
knowledge. In IIoT networks, a large volume of unlabeled
standard traffic is typical, alongside rare anomalies. In this
scenario, it is possible to obtain labeled anomalies, e.g., through
red teaming exercises or domain knowledge by security experts.
Thus, unlabeled data is essential as it reveals new information
on the expected system behavior, aligning with Engelen et al.’s
perspective. Applying semi-supervised learning to the anomaly-

2
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based IDS tackles Challenge 2, by providing autonomous and
sophisticated models to identify security breaches.

d) Federated Learning: Federated Learning (FL) is a
privacy-preserving approach proposed by Google researchers in
2016 that enables Machine Learning (ML) with distributed data
sources [14]. Since then, FL has received considerable attention,
being applied to various applications [24], [25], [26]. A relevant
characteristic of FL is enabling collaboration between various
entities, such as end devices [27] and independent organiza-
tions [28], without exposing their sensitive or proprietary data.
This characteristic makes FL suitable for the edge computing
paradigm. It has advantages for IoT systems [29], [30], [31],
and IIoT in particular, and can help tackle Challenge 3 [19].
Semi-supervised anomaly detection with FL includes various
label distribution scenarios, such as Label-centralized Federated
SSL and Label-distributed Federated SSL [32]. This work
focuses on the Label-distributed Federated SSL, where each
client has approximately the same amount of labeled and
unlabeled data, fitting the Labels-at-Client Scenario [33].

III. METHODOLOGY

A. WUSTL-IIoT-2021 Dataset

Currently, public datasets that come from actual industrial
environments are scarce. According to [5], [34], industrial
companies have multiple reasons, such as (1) user privacy
regulations; (2) confidentiality policies related to intellectual
property and adopted technological solutions; (3) concerns
about exposing internal security and safety architectures to
potential intruders. Furthermore, real-world datasets might not
be suitable for security research due to insufficient attack
scenarios. The alternative is to use simulations building
testbeds [5]. One of such physical testbeds for industrial
cybersecurity research, set up by Teixeira et al. in [35] and
further extended by Zolanvari et al. in [34]. It is our choice for
the evaluation. It comprises a water tank, sensors, actuators, and
the underlying Modbus network. The idea is to simulate and
resemble an industrial plant for a water supervision system. The
traffic was captured for 52 hours, during which the researchers
carried out four types of cyber-attacks: backdoor, command
injection, reconnaissance, and DoS attacks, the latter being
the predominant one in the dataset. The resulting dataset was
cleaned from missing and corrupted values and made available
as WUSTL-IIoT 2021 Dataset[36]. This work references the
dataset as the IIoT dataset. The original IIoT dataset consists
of 1 194 464 samples, and 49 features. 1

B. Handle Categorical features

The dataset contains three categorical features, stored as
integers: Source Port, Destination Port, and Protocol, nominal
and high-cardinal. Therefore they cannot be easily encoded with
methods such as one-hot encoding, which would increase the
input cardinality. Moreover, they do not capture the relationship
between categories. The authors of the IIoT dataset train various

1As advised in [36], the following features are removed from the dataset:
StartTime, LastTime, SrcAddr, DstAddr, sIpId, dIpId.

ML models in [34], but they do not mention any pre-processing
of the categorical features. Therefore, we suggest the IIoT
dataset needs a better approach to handle its categorical data.
In this work, we present two possible approaches to this issue.
The first solution, defined as Framework 1, includes removing
the categorical features from the dataset to rely only on the
numerical data. The second solution, Framework 2, handles
the categorical features with the help of Entity Embeddings.
Framework 1. Keeping only the numerical features and
removing the categorical ones simplifies the application of
ML algorithms. However, Zolanvari et al. [36] examined the
importance of each feature by removing one feature per training
and by measuring the change in performance. Source Port and
Destination Port are among the five most important features.
We use a different model in the evaluation but might still skip
some relevant information.
Framework 2. An embedding is the compression of multi-
dimensional data into a lower-dimensional space. Entity Embed-
ding is a term coined by Guo and Berkhahn [37] that defines
a representation of categorical features as lower-dimensional
vectors in the Euclidean space; the distance between the vectors
captures meaningful relations between the categories. Each
categorical feature is one-hot encoded and passed through a
neural layer – called the embedding layer. The output of all
embedding layers and the numerical features are concatenated
and used as the input to the main classification model. The
neural layers learn the mappings of the categorical data to the
numerical vectors during the model’s training process.

We implement the embedding layers developing on Seth
et al. [38]. In our case, the embedding layer is not preceded
by a dropout layer but rather concatenated with the numerical
features and connected to the neural network. A critical em-
bedding parameter is the resulting numerical vector dimension.
In the experiment, we follow the so-called “rule of thumb 2”:

dims = min(600, 1.6 · n_cat0.56) (1)

where dims is the resulting vector dimensionality and n_cat
is the cardinality of the categorical feature. We present the
resulting dimensions of the categorical features in Table I. This
approach is more complex than Framework 1, impacting the
training time.

Feature Cardinality Embedding Dimensions

Source Port 51047 600
Destination Port 33 11
Protocol 7 5

TABLE I: Embedding dimensions of the categorical features

C. Anomaly Detection Framework

In the search process for a suitable AD framework, we
inspect methodologies able to work with partial knowledge of
the data, i.e., capable of semi-supervised learning. Furthermore,
the model must be capable of processing non-image datasets.

2https://github.com/fastai/fastai/blob/master/fastai/tabular/model.py
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Many available frameworks in AD research mainly process
image data [39]. Given these prerequisites, we choose “Deep
Semi-Supervised Anomaly Detection” (Deep-SAD). 3 Deep-
SAD compresses high-dimensional input to a low-dimensional
vector space by passing it through the neural layers. The vector
output of the last layer is the latent representation of the input
data point [23]. The model then maps similar data points
close within the latent space. The idea is to map all regular
data points on a hypersphere, as close as possible to a fixed
point c, representing the central point of all regular samples.
At the same time, the anomalous data is mapped as further
away from the center of the hypersphere so that it can be
discriminated based on the distance to c. The center c is
initialized by passing the training data through the initially
untrained network, finding the mean value for the output vector.
The initial network is initialized randomly or via pre-training
with an autoencoder. The semi-supervised learning in DeepS-
AD assumes that anomalies are infrequent events and that most
unlabeled data lie in the regular class. Therefore, the model
is trained to map unlabeled samples closer to the center c.
Once trained, the model outputs anomaly scores for each input
sample. Therefore, it is necessary to fix a specific threshold
for the anomaly score to separate instances into two classes
(regular and anomalous) for binary classification.

a) Deep-SAD parameters: Deep-SAD changes the labels
of regular labeled data to 1, anomalous labeled data to -1,
and unlabeled data to 0. The framework enables supervised,
unsupervised, and semi-supervised learning by three parameters.
The first two, namely ratio of labeled regular samples and
ratio of labeled anomalous samples, regulate the percentage of
labeled points for regular and anomalous points over the whole
set. The third, ratio of unlabeled anomalies in the unlabeled
data (pollution ratio), controls how much of the unlabeled
subset should contain known anomalous points. Furthermore,
a fourth parameter η defines whether labeled or unlabeled
samples are more emphasized during the training. η > 1
gives more weight to the labeled data, η < 1 emphasizes
the unlabeled data and η = 1 treats both types of data as
equally important.

1) Neural Architecture: The authors of Deep SAD [39]
utilized different neural architectures for each test dataset. As a
template, we use the structure for the ODDS datasets4, standard
benchmarks for AD research, and tabular, like our IIoT dataset.
Similarly to [39], we use a neural network with one input layer,
two hidden layers(h1,h2), and one representational layer(rep).
The input layer consists of the same number of neurons as the
number of input features; for other layers, the following rules
are used: h2 = h1

2 , rep = h1
4 . Thus, only h1 requires a fixed

value, while other neural layers are derived from it. To find a
suitable number of neurons in (h1) we define a set of possible
values for the hyperparameter optimization; we discuss this
in the case study evaluation IV. As we have two frameworks
for categorical data handling, their neural architectures are

3https://github.com/lukasruff/Deep-SAD-PyTorch
4http://odds.cs.stonybrook.edu/

different, i.e., framework 2 has additional embedding layers.
The neural architectures of the frameworks are demonstrated
in Figure 1.

Numerical features
Dim = 38

Hidden Layer 1
Linear Layer

Dim = h1
Batch Norm
LeakyReLU

Hidden Layer 2
Linear Layer
Dim = h1/2
Batch Norm
LeakyReLU

Representational Layer 
Linear Layer
Dim = h1/4
Batch Norm
LeakyReLU

Anomaly score
𝑎𝑛𝑜𝑚𝑎𝑙𝑦 𝑠𝑐𝑜𝑟𝑒 =
∑ 𝑟𝑒𝑝!"# − 𝑐 $

(a) Framework 1

Numerical features
Dim = 38

Hidden Layer 1
Linear Layer

Dim = h1
Batch Norm
LeakyReLU

Hidden Layer 2
Linear Layer
Dim = h1/2
Batch Norm
LeakyReLU

Representational Layer 
Linear Layer
Dim = h1/4
Batch Norm
LeakyReLU

Anomaly score
𝑎𝑛𝑜𝑚𝑎𝑙𝑦 𝑠𝑐𝑜𝑟𝑒 =
∑ 𝑟𝑒𝑝!"# − 𝑐 $

Protocol
Cardinality = 7

Destination Port
Cardinality = 33

Source Port
Cardinality = 51047

Embedding Layer
Linear Layer
Dim = 600

Embedding Layer
Linear Layer

Dim = 11

Embedding Layer
Linear Layer

Dim = 5

Batch Layer

Input

(b) Framework 2

Fig. 1: Neural architectures of Framework 1 and Framework 2

2) Federated Learning Framework: To evaluate the feder-
ated setting, we select the open-source framework Flower [15].
Compared to other platforms, like OpenFL 5 – which is
more security oriented – Flower exhibits better maturity and
documentation. It is worth noticing, though, that OpenFL and
Flower will collaborate, so some characteristics of the former
will be included in Flower. Flower interfaces can be extended
and adjusted for a specific production or research objective.
Furthermore, Flower is agnostic regarding programming lan-
guages, ML frameworks(TensorFlow, PyTorch, and others),
communication approaches, and underlying hardware. This
characteristic is advantageous in the case of heterogeneous
clients. These properties of Flower make it a suitable framework
for IIoT applications. Another advantage mentioned is the
capability to move ML models from a centralized setting to
the federated one.

a) Federated Deep-SAD with Flower: The transition of
an existing ML model to the FL setting is facilitated by the
high-level interface FlowerClient. The server side of FL is
supported by high-level interfaces FlowerServer and Strategy.
This FlowerClient class comes with functions such as fit,
set_parameters, and evaluate. We override the functions to
invoke the respective Deep-SAD training and testing routines,
thereby embedding the model in FlowerClient. No further
changes to the underlying Deep-SAD architecture are needed.
A separate FlowerClient instance is created and loaded in
memory for each federated client, making it unsuitable for

5https://github.com/securefederatedai/openfl
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large-scale experiments. Therefore, a new workflow, enabled
by the Flower’s Virtual Client Engine(VCE) tool, solves this
issue. 6. VCE instantiates and keeps an actual client object
only during client tasks, such as training or testing. After the
task completion, VCE erases the client object, resulting in
higher memory efficiency. Still, due to the Deep-SAD internal
structure, client instances must be preserved in the memory
so that the parameters, such as the hypersphere center c, can
be exchanged between training and testing. This limitation
could be bypassed by adjusting the implementation of Deep-
SAD; however, it is out of the scope of this paper. The
FlowerServer class leverages all the necessary server-side
architecture. Strategy is one of the major components; it
implements the client selection, model aggregation, and model
evaluation routines. Flower provides built-in algorithms but
also allows for modifications and extensions. In this work, we
leverage the default architectures.

D. Performance Metrics

We use performance metrics in multiple experimental
phases, including selecting hyperparameters and evaluating
the centralized and federated models. We measure performance
using the AUC-ROC metric, which calculates the area under
the ROC curve, and the AUC-PR metric, which calculates the
area under the Precision-Recall curve. AUC-PR is crucial for
highly skewed datasets, providing additional insights into False
Positives. F-score is not used in performance evaluation, as it
is sensitive to the anomalous class ratio and requires a fixed
threshold for the anomaly score. Instead, we use AUC-ROC
and AUC-PR to evaluate performance. 7

IV. CASE STUDY

Here we conduct a series of experiments both in centralized
and federated settings for our IIoT case study. All experiments
are conducted on a desktop computer with Python 3.7, Windows
10 Pro operating system, Intel©Core™i7-4790K CPU running
at 4.0 GHz, 8 GB of RAM, and one NVIDIA GeForce GTX
970.

A. Dataset Pre-processing

The dataset contains four different attack types. However,
this work focuses on the binary classification of anomalies.
Therefore, we keep only regular and DoS samples, as the DoS
attacks produced the most anomalous traffic. We have more
than 1 million samples, with the malicious samples (DoS) equal
to 6.6% of the whole dataset. In all subsequent experiments,
we utilize 60% of the dataset for training and 40% for testing.
We apply the Z-score standardization to each numerical feature
and scale the range to [0,1]. Categorical features are untouched.
We conduct the experiments in the semi-supervised setting
assuming that most of the data in real-world scenarios are
unlabeled and that most unlabeled data belongs to the regular

6https://flower.dev/docs/changelog.html#v0-17-0-2021-09-24
7Davis et al. [40] noted that AUC-ROC might be misleading when applied

to heavily imbalanced datasets, and we include the AUC-PR metric for such
datasets.

class. Still, a small fraction of anomalies can be in the unlabeled
data. The pollution rate in the training dataset is therefore set
to 5%. That also means that 95% of the unlabeled data in
training belongs to the regular class. Next, we assume that
labeling the regular class would not be prioritized, so there
are no labeled regular samples in the training phase. However,
obtaining a small training set of labeled anomalies is essential
to increase anomaly detection; therefore, 1% of the overall
training dataset has labeled anomalies. Moreover, we set η = 1
so that both labeled and labeled are treated as equally crucial
by Deep SAD. The semi-supervised setting is summarized in
Table II.

Parameter Value

η 1
Ratio of normal labeled samples 0% (of the total training dataset)
Ratio of anomalous labeled samples 1%(of the total training dataset)
Pollution rate 5% (of the unlabeled training subset)
Ratio of normal unlabeled samples 95% (of the unlabeled training subset)

TABLE II: Experimental semi-supervised setting

B. Hyperparameter Tuning and Framework selection

The fixed DL parameters used in the experiments are
Weight decay: 10−6, Adam optimizer, 50 epochs training,
and a learning rate of 25. We use the hyperparameter op-
timization framework Tune, offered by the distributed com-
puting framework Ray [41]. We tune the hyperparameters
for Framework 1 and Framework 2 before comparing their
performances. The selected hyperparameters are: Learning Rate:
[0.0001, 0.001, 0.01], Batch size: [64, 128, 256], and number
of neurons in the first hidden layer: [64, 128, 256, 512]. There
are 36 possible configurations, Tune trials, where a trial is
a single experiment with a fixed set of hyperparameters. We
limit the number of trials to 18, which comprises 50% of all
possibilities. However, instead of choosing the 18 configurations
randomly, we employ Tune’s built-in optimization libraries,
such as Search Algorithms and Trial Schedulers. The search
algorithm optimizes the parameter selection for each trial
by prioritizing the most promising parameters in the queue.
Here, we use the HyperOpt algorithm8. The trial scheduler
is responsible for stopping unpromising trials. In this work,
we use the ASHA algorithm. 9 For the trials’ evaluation, we
utilize the AUC-ROC. That means each trial is compared based
on its AUC-ROC. As estimated by Tune after 18 trials, the
best AUC-ROC for Framework 1 and 2 were delivered by
the following hyperparameters: Framework 1: (Learning rate:
0.001, batch size: 256, number of neurons: 128); Framework 2:
(Learning rate: 0.01, batch size: 64, number of neurons: 128).

Having the tuned configurations of Framework 1 and
Framework 2, we compare the performances of the frameworks.
Framework 1 scores better based on AUC-ROC and AUC-PR.
Even though some categorical features belong to the five most
essential features according to Zolanvari et al. [36], it was still
possible to get excellent results. Another obvious advantage
of Framework 1 is the training time, which is 13 times faster

8https://docs.ray.io/en/latest/tune/api_docs/suggestion.html
9https://docs.ray.io/en/latest/tune/api_docs/schedulers.html
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than Framework 2. Adding the embedding layers increases
the training time drastically, a significant drawback for time-
constrained applications. Thus, we elect Framework 1 as the
primary model.

C. Pre-training

In [39], the weights of the Deep-SAD neural network were
initialized with the help of an autoencoder(AE), which encoder
part has the same neural architecture as the original Deep-SAD
network. The encoder part of the trained AE initializes the Deep
SAD network weights. This approach offers a better way to
initialize weights than random ones. In our case, we use random
weight initialization when tuning Framework 1 and 2. After
selecting Framework 1, in this Section, we analyze the influence
of the autoencoder pre-training on the model performance. We
utilize an AE with the same neural architecture in the Encoder
part as Framework 1. The overall structure of the AE used
for Framework 1 is presented in Figure 2. While the model
training without pre-training results in the same performance
(PR = 99.3%), the configuration with pre-training takes three
times longer 10 which significantly differs in processing time.
Therefore we select Framework 1 without the pre-training.
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Batch Norm
LeakyReLU

Hidden Layer 2
Linear Layer
Dim = h1/2
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Fig. 2: Neural architecture of the autoencoder used for
Framework 1 pre-training.

D. Federated Setup

We use the 0.18 Flower release for the FL experiment, and
the training runs as a single-machine simulation. The federated
configuration includes 5 Clients and 1 Server. Each client
simulates a region in the IIoT scenario and utilizes the exact
configuration of Deep SAD as the centralized model. In this
case study, we consider the scenario where each client has
both labeled and unlabeled data and has a comparably equal
subset of the IIoT dataset. Furthermore, each client has the
same proportion of unlabeled and labeled data. Table III shows
the summary of the clients’ datasets.

Client 1 Client 2 Client 3 Client 4 Client 5

Normal labeled samples in the training set 0 0 0 0 0
Anomalous labeled samples in the training set 1413 1413 1412 1412 1413
Anomalous unlabeled samples in the training set 6996 6994 6992 6991 6996
Normal unlabeled samples in the training set 132940 132900 132849 132840 132938
Total number of samples in the training set 141349 141307 141253 141243 141346
Anomalous samples in the test set 6234 6261 6295 6300 6234
Normal samples in the test set 88628 88600 88566 88561 88626
Total number of samples in the test set 94862 94861 94861 94861 94860
Total number of samples in the full dataset 236211 236168 236114 236104 236206

TABLE III: Summary of IIoT dataset in the experimental semi-
supervised setting for each federated client.

10Training time: 1405.46s No pre-training, 2661.53s Pretraining; testing
time: 12.69s No pre-training, 14.82s Pretraining

The model aggregation algorithm is the built-in FedAvg, a
standard baseline algorithm in FL research. Given our scenario,
we set to five the following FL parameters in the Flower
framework: (i) min_fit_clients, the minimum number of clients
that need to participate in the training phase; min_eval_clients,
the minimum number of clients participating in the testing
phase; and min_available_clients, the minimum number of
clients that need to be connected to the server to start a federated
round11. The evaluation consists of three federated rounds, with
the first round performing the following steps: (1) The server
randomly initializes the weights of the global model. (2) The
server waits until all five clients are available and connected to
the server. (3) The server selects all five clients to participate
in the training and shares the global model with them. (4) The
clients pick and train the model with their local datasets. (5)
The clients return their locally trained models to the server.
(6) The server aggregates the received models into the updated
global model with FedAvg. (7) The server selects all five clients
to participate in the testing and shares the updated global model.
(8) The clients pick and evaluate the new global model with
their local datasets. For the subsequent FL rounds, we repeat
steps 2-8. Each client trains the model for 50 epochs per round;
thus, in total, 150 epochs.

E. Experimental Results

Here, we evaluate the performance of Framework 1 in
centralized and federated settings. The centralized model is first
trained with 60% of the whole IIoT data. In the testing phase,
the trained model outputs anomaly scores for the remaining
40% of the data. Based on the resulting anomaly scores, we
measure AUC-ROC and AUC-PR. For the federated setting,
in each round, each client trains the model with 60% of the
client’s data. Each round has a testing phase, where anomaly
scores are produced for the remaining 40% of the data, together
with AUC-ROC and AUC-PR. We extract the average AUC-
ROC and AUC-PR for all clients after every round to compare
the centralized and federated settings. The resulting AUC-ROC
for both settings is presented in Table IV, while the resulting
AUC-PR is presented in Table V. The results demonstrate that
the centralized model produces the best AUC-ROC and AUC-
PR. For AUC-ROC, the model even achieves the perfect score
of 100%. We consider two possible motivations for that: 1) As
mentioned in Section III-D, AUC-ROC can sometimes produce
an overly optimistic measure of performance, and it is helpful to
measure AUC-PR for additional insights. Indeed, the centralized
model achieved a slightly lower but still excellent AUC-PR of
99.93%; 2) We evaluate the models’ performance only on DoS
samples in the IIoT dataset. The DoS traffic often has distinctive
characteristics such as a high rate of packets transmitted per
second or only unidirectional communication [42]. We assume
the model has quickly learned to distinguish the DoS traffic in
the IIoT dataset. Future framework evaluation should include
multiple attack types and more sophisticated attack scenarios.
However, despite the limitations, this centralized configuration

11https://flower.dev/docs/strategies.html
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of Deep SAD shows promising results for DoS attack detection
in IIoT networks. Even though the centralized model shows
the best results, the difference between the two settings is
negligible. Moreover, when compared separately with each
client, 4 out of 5 clients achieved the same AUC-ROC after
three federated rounds. Also, after three federated rounds, 2
out of 5 clients achieved better AUC-PR than the centralized
model.

Round 1 Round 2 Round 3

Client 1 99.98% 100.00% 100.00%
Client 2 99.96% 99.92% 100.00%
Client 3 99.98% 99.99% 100.00%
Client 4 99.65% 99.87% 99.99%
Client 5 99.97% 99.99% 100.00%
Average 99.908% 99.954% 99.998%
Centralized 100%

TABLE IV: Comparison of AUC-ROC in centralized and
federated settings.

Round 1 Round 2 Round 3

Client 1 99.74% 99.94% 99.96%
Client 2 99.43% 99.73% 99.91%
Client 3 99.60% 99.76% 99.83%
Client 4 99.49% 99.83% 99.96%
Client 5 99.61% 99.65% 99.71%
Average 99.574% 99.782% 99.874%
Centralized 99.93%

TABLE V: Comparison of AUC-PR in centralized and federated
settings.

The plots of ROC and PR curves measured in the centralized
setting are demonstrated in Figure 3. The plots of ROC and
PR curves measured for each client after each federated round
are summarized in Table IV and Table V accordingly, due
to page limit constraints. As indicated, even after the first
federated round, each client produces very similar ROC curves
to the centralized model, delivering almost 100% in AUC.
For the AUC-PR, the increase in performance after each
subsequent round is more visible, which supports the argument
that utilizing only the ROC metric is not enough. Especially
for Client 2, Precision drops more abruptly for higher Recall
values after the first round but improves after all federated
rounds are completed.
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Fig. 3: ROC curve and PR curve of the centralized model.

Figure 3 depicts the ROC and PR curves measured in the
centralized setting. Due to page limit constraints, we summarize
the federated ROC and PR results in Table IV and Table V.
For the AUC-PR, the increase in performance after each
subsequent round is more visible, which supports the argument
that utilizing only the ROC metric is insufficient. Especially
for Client 2, Precision drops more abruptly for higher Recall
values after the first round but improves at the end.

In the centralized setting, we measure the time spent on
training and testing. We compare it to the duration of the
whole FL process, which consisted of 3 federated rounds.
Each client needs approximately 420 seconds per round for
training and 3.5 seconds for testing. The training time of
a client is shorter than the training time of the centralized
training due to the five times larger dataset used in the
latter setting. However, five clients utilized the entire dataset
for three federated rounds, constituting 150 training epochs
versus 50 training epochs on the full dataset in centralized
learning. Still, it takes less time, thanks to the distribution
of the learning process. Considering the demonstrated high
performance and time efficiency, combined with the security
and privacy-preserving nature of FL, the proposed federated
approach to the semi-supervised IDS in IIoT systems proved
to be a promising alternative to centralized learning. However,
even though both centralized and federated scenarios deliver
high AUC values, the detection performance would depend on
the chosen anomaly threshold in a real-world application. There
are various approaches to choosing a threshold, for example,
sorting all anomaly scores and placing the top k of them into
the anomalous class. Another solution is to evaluate the ROC
curve and set a threshold that delivers the most suitable TPR
and FPR. For example, by zooming into the ROC plot of the
centralized model as shown in Figure 3b, it is visible that
higher TPR results in higher FPR.

V. CONCLUSIONS

In this paper, we addressed the concerns for IIoT network
security. This context can significantly benefit from anomaly-
based IDSs to detect unusual activity in the traffic and,
potentially, zero-day attacks. Using semi-supervised approaches,
industrial organizations can utilize massive unlabeled traffic
data produced by IIoT devices and enhance performance by
labeling a fraction of the data. In this paper, we summarized
the theoretical justification of the approach, proposed concrete
frameworks for federated semi-supervised anomaly detection
using the promising DeepSAD model, introduced methods for
handling the categorical data, and measured the framework
performance in various configurations. Furthermore, we com-
pared the framework’s performance in federated and centralized
scenarios. The results are promising, with very high precision
in detecting DoS attacks in federated settings. Nevertheless, we
plan future improvements to cover the following limitations: 1)
In this work, we consider one semi-supervised setting (Label-
distributed Federated SSL with Labels-at-Client scenario), but is
essential to study the performance of FL under different label
distributions; 2) The case study experiments were simulated in
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a single-machine. We plan to review the proposed framework
in a real physical network, for example, in a small-scale IIoT
testbed; 3) Anomaly detection only considered DoS attacks. For
real-work applications, it is essential to extend the framework
to the multi-anomalies classification, including sophisticated
attacks. 4) It is crucial to explore the security risks of FL
and explore the extension of the proposed framework with
additional security and privacy-preserving methods such as
encryption.
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