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Abstract—The increasing volume and complexity of IoT sys-
tems demand a transition from the cloud-centric model to
a decentralized IoT architecture in the so called Computing
Continuum, with no or minimal reliance on central servers.
This paradigm shift, however, raises novel research concerns for
decentralized coordination, calling for accurate policies. However,
building such strategies is not trivial. Our work aims to relieve
the DevOps engineers from this concern and propose a solution
for autonomous, decentralized task allocation at runtime for IoT
systems. To this end, we present a semantic communication ap-
proach and an ad-hoc lightweight coordination strategy based on
Ant Colony Optimization (ACO). We compare the ACO strategy
with Random Search and Gossip protocol-based algorithms. We
conduct accurate experiments with up to a hundred nodes in both
a static and a dynamic environment, i.e., with device outages. We
show that ACO finds a matching node with the smallest hops and
messages sent. While the Gossip strategy can allocate the most
tasks successfully, ACO scales better, thus being a promising
candidate for decentralized task coordination in IoT clusters.

Index Terms—Decentralized IoT, Ant-Colony Optimization,
Decentralized Coordination, Communication, IoT Computing

I. INTRODUCTION

Nowadays, IoT devices pervade several areas, from health-

care to urban scenarios, industrial settings. It is predicted that

in 2025 41.6 billion devices will be in use. 1 This sheer number

of IoT devices and the massive amount of data generated

poses significant challenges to the current cloud-centric [1, 2]

IoT model: a centralized architecture where requests and data

flow from IoT devices to the cloud is becoming a bottleneck,

making it challenging to handle latency, increased required

bandwidth, vulnerability to failures, privacy concerns, and

inefficient use of resources. Therefore, a paradigm shift must

happen. As an alternative, Edge and Fog computing [3] can

provide relief to the central server, especially if collaborating

in a unified computing continuum [4, 5]. Furthermore, IoT and

Edge devices can be more self-reliant, i.e., self-managing enti-

ties that make autonomous decisions and using local resources.

1https://blogs.idc.com/2021/01/06/future-of-industry-ecosystems-shared-d
ata-and-insights/
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Fig. 1: High-level representation of RainCloud’s scenario.

Still, failures can often occur; furthermore, in mobility, IoT

nodes can arbitrarily leave and join the system. Therefore,

IoT swarms [6] are a viable alternative to the cloud-centric

paradigm. Creating swarms for device collaboration means

solving an optimization problem aiming at finding the best

paths and edges across nodes. Typically, finding an optimal

solution is complex; this task becomes even more challenging

in real-world IoT environments with real-time constraints due

to the heterogeneous and often battery-powered devices, the

diverse requirements of the applications, which might not be

supported by some devices, and the varying conditions of the

network environment [7].

This paper addresses this challenge by examining the

feasibility of a lightweight and real-time decentralized task

coordination and communication mechanism for IoT devices.

First, we design a node discovery and communication system

that emphasizes the adaptation to the dynamic nature of a

decentralized IoT environment. We achieve this by developing

a framework, Rain Cloud System (RCS) that continuously

adapts the network through constant checks, following the self-

actualization paradigm [8]. This framework leverages semantic

metadata for message exchange and can adapt to different

specific communication protocols. Second, we put forward a

lightweight metaheuristic optimization algorithm based on Ant

Colony Optimization (ACO) for task coordination, capable of

finding effective paths and offering an efficient load distribu-979-8-3503-4965-8/24/$31.00 ©2024 IEEE
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tion across the swarm by limiting the number of messages

exchanged and the serving time. Furthermore, we focus the

attention on providing a framework that can actually be used

by infrastructure and system managers. Figure 1 illustrates

these functionalities. The RainCloud System (RCS) facilitates

the formation and updating of swarms in dynamic environ-

ments by continuously evaluating the quality of connections

and optimal collaboration settings. Bolder and greener paths

represent the most reliable edges, both in terms of connectivity

and task offloading. Leveraging multiplatform technologies

and languages, we provide an interoperable framework for

decentralized coordination. Therefore, through this paper, we

wish to contribute meaningfully to decentralized task coordi-

nation in heterogeneous and dynamic IoT swarms, offering

insights into efficient and reliable task coordination strategies

and effective communication mechanisms. Furthermore, we

are focusing on communication dynamics. Combined, we

provide a holistic view and tools, including monitoring, for

letting IoT devices function collaboratively in decentralized

swarms. Our contributions are as follows:

• We present a communication framework for decentralized

coordination based on semantic information and self-

actualization.

• We introduce a lightweight metaheuristic for swarm of-

floading based on Ant Colony concepts.

• The conduction and evaluation through a realistic simu-

lation with up to 100 devices in a static environment and

in a dynamic environment with device failures, offering

a detailed comparison of our ACO-inspired coordination

strategy with two other baselines: Random and Gossips.

• We offer a turnkey open-sourced Rain Cloud System

(RCS)2 framework for edge-based device connectivity.

II. RELATED WORK

In this Section, we explore the state of the art for decen-

tralized task offloading in IoT scenarios with a focus on how

other contributions handled communication in a decentralized

system and we explore the use of variations of Ant Colony

models for handling task offloading. We clarify how our

approach goes beyond the state of the art by combining

together these aspects in a unique, ready-to-deploy framework

and draws away from previous research.

A. Communication in decentralized IoT

Communication plays an essential role in decentralized

systems. Much effort has been put into exploring how to

transmit information and what to consider as informative.

The work of Bittman et al. [9] focuses on the technology,

offering a new Remote Procedure Call (RPC) approach in

decentralized environments. The authors propose shifting from

location-centric abstractions like RPC to data-centric abstrac-

tions akin to distributed shared memory (DSM) for better

2https://github.com/auxo-gmbh/rcs-flooding-scenario
https://github.com/auxo-gmbh/rcs-documentation
https://github.com/auxo-gmbh/rcs-monitoring
https://github.com/auxo-gmbh/rcs-rain-cloud-system

module composition. The work of Wang et al. [10] also goes

in the direction of RPC. It focuses on extending RPC with

a shared address space and first-class references to promote

interoperability and reduce task duplication. However, this

approach shares the limit of the classic RPC model. Kountouris

et al. [11] propose a paradigm shift focused on the semantics

of information, unifying information generation, transmission,

and reconstruction. Semantic information spreading became

the primary basis and paradigm for the RCS Framework Com-

munication module with metadata information spreading. In

particular, efforts toward semantic communication [12, 13, 14]

seem to pave the path for richer communication patterns.

B. Ant-Colony Optimization in decentralized coordination

In the context of large and dynamic environments, such as

IoT, Kumar et al. [15] propose a comparison between ACO and

K-Means clustering algorithms for IoT job scheduling. These

two approaches are studied to find the shortest route path, op-

timize QoS constraints, and reduce energy consumption. Wang

et al. [16] present the Collection Path Ant Colony Optimization

(CPACO) method, which improves upon traditional parallel

computing task allocation methods and ACO algorithms. They

update the strategy in the Ant-Cycle Model, creating a three-

dimensional path pheromone storage space. Similarly, Zannou

et al. [17] use ACO for task allocation, considering two

parameters: the optimal path length and the nodes’ capabilities.

In distributed systems, ACO demonstrates the potential for

improving QoS. Hussein and Mousa [18] focus on reducing

latency for delay-sensitive applications in IoT-Fog systems. In

a similar fashion, Kishor and Chakarbarty [19] propose a meta-

heuristic scheduler called Smart Ant Colony Optimization

(SACO) to offload tasks in a fog environment. Latency is

a key requirement for extremely dynamic applications, such

as autonomous driving. Bui and Jung’s study [20] explores

the potential of ACO for dynamic decision-making in con-

nected vehicles within an IoT environment through swarm

intelligence. Tan et al. [21] employ a bi-objective optimization

approach with a fixed number of ants and a primary focus

on energy efficiency and task completion time. Similarly,

Wang et al. [22] introduce a sophisticated bi-ACO framework,

combining task offloading with UAV trajectory planning and

using multiple heterogeneous colonies. Xu et al. [23] present

the GA-ACO Fusion Algorithm, proposing an algorithm that

combines GA and ACO. This approach focuses on delay and

energy efficiency. Li et al. [24] explore another combination,

employing quantum computing principles to enhance the tradi-

tional ACO; through quantum bits, it expands the search space

without increasing the number of ants. A quantum-boosted

model is also presented by Dong et al. [25] even if without

explicit ACO-based techniques.

C. Summary

Unlike the other approaches, our ACO implementation

offers a fast and lightweight solution for real-time optimiza-

tion of multiple variables, as well as efficient queue size

management. This approach is suitable for real-world and
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dynamic IoT and edge computing scenarios, thanks to its

fast optimization through reducing the number of ants and

carrying the workload during the exploration. Furthermore,

we propose a communication approach that, through self-

actualization methods, dynamically adapts to the state of the

infrastructure. Finally, we offer all of this in an integrated and

flexible framework.

III. METHODOLOGY

In the following, we present our framework for decentral-

ized task offloading in IoT swarms. After presenting the struc-

ture of the system we address in our research, we delineate

how to let the nodes connect and adjust over time through a

semantic and self-actualization-based communication pattern.

Furthermore, we present the metaheuristic for the optimization

strategy, based on Ant Colony Systems.

A. Use Case Introduction

Device type Task types |Queue| Ccomm Ccomp Cstorage P(Fail) P(Recover)

s1 T1, T2 10 1 1 1 0.1 0.4
s2 T3, T4, T5 15 1 2 1 0.1 0.4
m1 T1, T4 10 1 2 2 0.2 0.3
m2 T5 5 2 2 2 0.2 0.3
m3 T2, T3 10 2 2 3 0.2 0.3
w1 T1 5 3 3 3 0.3 0.2
w2 T2 5 3 2 3 0.3 0.2
w3 T3 5 3 3 3 0.3 0.2
w4 T4 5 3 3 3 0.3 0.2
w5 T5 5 2 3 3 0.3 0.2

TABLE I: Device types and their characteristics.

We expect our framework to work in the case of heteroge-

neous IoT devices equipped with different processing, storage,

and communication capabilities, which serve different kinds

of tasks. Each IoT node periodically produces tasks and, in a

stable scenario, it takes care of executing them. However, a

node may become overloaded and require assistance, rendering

task delegation to other swarm nodes crucial. In our use case,

the system has three resource groups (computation (Ccomp),

communication (Ccomm), and storage (Cstorage)), which can

have values between 1 and 3. A lower value means that the

device is better equipped. I.e., the strongest devices in terms

of hardware are those where all three values are set to 1. The

resources directly influence the processing time of the tasks

in the system; Table I summarizes these properties.

All the devices in the swarm are connected and can com-

municate. Therefore, we leverage this scenario to implement

autonomous coordination between devices to offload tasks. In

the development of the framework and of the simulation, we

consider the following assumptions: the first is heterogeneity,

i.e., the members of an IoT swarm have different hardware

specifications (Device type), queue sizes (|Queue|), and emitter

types. The Device types include strong devices (s), mid-

strong devices (m), and resource-constrained devices, which

are the weakest with respect to resources in the swarm (w).

Different IoT devices support different tasks (Task types), and

the processing time of a task varies depending on the device’s

capabilities. Furthermore, some devices are more error-prone

than others, which affects the reliability of successful task

Fetches
comm.
links

Coordination
Strategy

DB

Connections

Deploys &
Manages

DevOps
Engineer
[deploys and

manages nodes]
Emitter

EmitterEmitter
[produces tasks]

Node
[decides if task should

 be offloaded]

Protocol

Communication

Sends offloaded task

Checks
connections

RCS Container
[responsible for communication

 and task coordination between nodes]

Fig. 2: Main components and interaction for the RCS container

responsible for a node.

processing. Secondly, we include processing and communi-
cation overhead. Most IoT devices are resource-constrained;

therefore, task coordination must avoid negatively impacting

the performance of the devices or overflowing the network

with messages. Third, scalability is essential. As there is

virtually no upper limit to the size of distributed IoT devices in

a swarm, successful task coordination algorithms must perform

at increasing scales. Finally, our approach is aware of dealing

with a dynamic environment. Task coordination must assume

that IoT devices might fail or join the system at any time.

Hence, coordination must learn the topology and adapt it at

runtime.

B. Rain Cloud System (RCS) Architecture

Figure 2 depicts the main components and flow for our

RCS system, in particular for one node. In detail, we en-

vision the stakeholder of our framework to be a DevOps

engineer, responsible for configuring and managing the IoT

devices and the running software. Therefore, the framework’s

responsibility is to ensure the machine’s connectivity. The

DevOps engineer manages the IoT swarms by adding new

nodes, deleting old ones, or generally specifying connectivity

rules, allowing for infrastructure flexibility. In this setting,

our framework provides task coordination and communication

tools. Tasks are generated by emitters, and each node decides,

based on its task queue capacity, whether to process the task

locally or forward it to other IoT devices selected according

to a coordination strategy. An example of an IoT device in

a smart city is a humidity sensor that provides data to an

irrigation application. This application example motivated the

name of our Rain Cloud System. After processing this data, the

application can use it to determine whether the park’s sprinkler

system should be activated. At this point, the application

leverages the framework to communicate with other IoT de-

vices and offload tasks when needed. The application, in turn,

transmits and exchanges monitoring data, to evaluate its own

state. To offload a task, the nodes must first connect to other

devices in a swarm to exchange their node profiles, which

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on January 13,2025 at 15:11:56 UTC from IEEE Xplore.  Restrictions apply. 



summarize device and task properties. These node profiles are

essential for obtaining information about neighboring devices

and new members, which is crucial for task coordination as

they reveal the available resources within the swarm. When

a task is offloaded, the application appends a Time-To-Live

(TTL) (expressed in seconds) to the request to indicate the

maximum waiting time. Once the TTL has expired and no

device has been found, the original node executes the task.

The goal is to maintain a balanced task queue, avoiding both

underutilization and overutilization and finding a node that can

execute an offloaded task with a minimum number of hops.

C. Communication

The communication module facilitates interaction among

devices within the swarm. We establish various protocols to

enable efficient intra-swarm communication, employing TCP

sockets for message exchange, and JSON as the message

format. This interaction is not only essential for exchanging

offloading information at runtime, but also for creating and

updating the swarm. We handle these two aspects through the

Node Discovery and Self-actualization phases.

1) Node Discovery: The Node Discovery (ND) Protocol

plays a vital role in the adaptability of the RainCloud System

Framework. Through the identification and connection of

devices, the ND Protocol allows the implementation of a

decentralized and interconnected swarm ecosystem. During the

initial handshake phase, nodes exchange profiles. A profile car-

ries a device’s crucial information, such as its processing ca-

pabilities, memory capacity, available sensors, communication

protocols, and supported services. Exchanging profiles during

the handshake phase enables information sharing, essential for

collaboration and task allocation. Devices within the swarm

can manage the number of open connections they maintain

with other members and specify the particular ports they use

for establishing these connections. This level of customization

ensures the optimization of nodes’ performance and resource

usage while balancing redundancy and scalability. This flexi-

bility allows the swarm to adapt at runtime according to the

environment dynamics. We design ND so that it relies on

semantic information, whereby the protocol draws only the

necessary metadata from the devices.3 This approach enables

other protocols to adapt based on the information’s meaning,

allowing for a more efficient and dynamic data exchange

between devices. By focusing on the semantic aspects of

device information, the ND Protocol fosters a more intelligent

and adaptable IoT ecosystem capable of responding to varying

conditions and requirements. All protocols are designed to

work asynchronously.

2) Self-actualization process: Self-actualization (SA) is

a concept first introduced by the psychologist Abraham

Maslow [8] in the 1950s. It refers to realizing and fulfilling

one’s potential, representing the highest level of psychological

development and the ultimate goal of personal growth. We use

3Semantic information contains metadata as processing capabilities, mem-
ory capacity, available sensors, communication protocols, and supported
services

Fig. 3: Concept of forward and backward ants in ACO. The

forward ant is depicted on the left-hand side, going from the

origin to the target, and the backward ant is on the right.

this concept to design a mechanism for dynamically adjusting

the swarm topology and enhancing task coordination perfor-

mance. The task coordination strategies store a specific value

for each outgoing connection to other nodes, which indicates

how attractive this connection is. For the ACO algorithm, this

specific value is the pheromones that are collected over time

on a connection variable related to the task type, and for

the Gossips algorithm, this value is the number of messages

based on the task type for the connection. SA takes this local

knowledge about the swarm and calculates the weakest links.

This computation occurs at each node and indicates which

links should be disconnected. However, a task might be still

offloaded to one of these nodes and, if the connection is

terminated, the task might not return. For this reason, the SA

process takes place in two phases. In the first stage, the nodes

are informed that they should no longer contact specific nodes

for offloading tasks because these nodes will soon disconnect.

Then, each neighbor stores the detached devices in a block

list. Here, connection requests from blocked devices are denied

to prevent the same swarm topology from being constructed,

forcing disconnected nodes to search for new neighbors. After

some time, the marked devices are removed from the list.

D. ACO-inspired offloading mechanism

Here, we explore the proposed metaheuristic for decen-

tralized task offloading. We base our approach on the Ant

System (AS), a member of the ACO family of algorithms,

bringing in some of its main characteristics for task offloading

coordination. Specifically, we aim to minimize the interval

between an offloading request and its completion.

1) Novelty: In our implementation, we first reduce the

number of ants to only a pair per offload request, exploiting

the concept of two different ant agents (see Figure 3), based

on [26, 27], i.e., the forward and backward ants. More in

detail, forward ant represents the offload request created by the

origin device and it is responsible for finding the best path that

leads to target nodes. Once it finds a suitable node for the task

execution along its path, it offloads it there and terminates its

role. The backward ant retraces the forward ant steps, updating

pheromones based on a posteriori knowledge about the node’s

quality; in our ACO implementation, the quality is a function
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of resource type and availability, plus queue length. We adopt

this approach as it avoids the formation of loops [28] and

keeps the process fast and lightweight. Furthermore, unlike

traditional ACO and, to the best of our knowledge, any other

approach, our forward ant carries the task and TTL. The

goal is to minimize message exchange. Finally, we design

the optimization process to last only one iteration, with the

goal of improving scalability and reducing computation and

communication overhead, accepting some performance loss in

task distribution as a trade-off.

2) Detailed Implementation: Formally, in our implemen-

tation the transition rule is identical to the original AS’s

approach, i.e., based on a probabilistic decision-making pro-

cedure that considers both the pheromone levels and heuristic

information associated with the possible transitions through lo-

cal, a priori knowledge and the global, a posteriori knowledge,

but adapted to our scenario. Like the traditional approach, we

keep the balance between exploration and exploitation by ad-

justing the influence of these factors through parameters α and

β, where α controls the influence of the a posteriori knowledge

and β controls the influence of the a priori knowledge. In our

case, we define the local knowledge ηij as in Equation 1. It

is exchanged during the Node Discovery (ND) protocol and

indicates whether two neighboring nodes support the task type

in the offload request. If so, a higher pheromone value defined

by τ0+ is set. If not, the lower value τ0 is used. The intention

is to favor nodes that support the task type to reduce the

offloading time and, thus, the latency and number of generated

messages.

ηij =

{
τ0+, if next node supports Ttype

τ0, otherwise
(1)

In our approach we express the quality pheromones Q at

the target node as the combination of the device’s queue

quality (Equation 3) and its available capacities (Equation 2).

The device’s queue quality QL is a function of the average

queue occupation, Lavg , and the queue limit, Llimit, i.e.,

when the queue is overloaded. The queue quality is inversely

proportional to the queue occupation. The second factor in the

quality pheromones calculation is the device’s capacities, i.e.,

communication (Ccomm), computation (Ccomp), and storage

(Cstorage).

Q = QL · 1
1
3 (Ccomm + Ccomp + Cstorage)

(2)

QL =

{
0, if 1− Lavg

Llimit
≤ 0

1− Lavg

Llimit
, otherwise

(3)

The node capable of processing the task then computes the

quality pheromones (see Equation 2), which the backward

ant then uses to update the pheromones in Equation 4. The

evaporation of the pheromones does not happen as in AS when

updating the pheromones but independently every n minutes.

The backtrack ant updates the pheromones at each node using

Equation 5 that combines the carried quality pheromones and

the distance from the current node to the source node, i.e.,

QP = 1
hopsToOrigin .

τij ← τij +Δτij (4)

Δτij = (Q ·QP ) · 100 (5)

With this setting for the quality pheromones, we can cap-

ture the device’s current availability and inherent capacities,

leading to a more informed decision-making process in the

ACO algorithm. The strategy aims to select target nodes

with higher availability and better resources. Updating the

pheromone tables at each node along the path is crucial for

learning and guiding the search process. Evaporation prevents

the algorithm from becoming overly biased towards previous

solutions, enabling it to constantly explore new paths and

encouraging a balance between exploration and exploitation.

Each node in our system performs evaporation independently,

removing a relative part of the pheromone values every n
minutes. The amount of pheromone reduced is controlled by

a parameter ρ.

We inspect the time complexity of the ACO-based task

coordination strategy, considering different aspects of the

algorithm, such as initialization of pheromones, quality

pheromones calculation, applying state transition rules, updat-

ing of pheromones, and the evaporation process.

• Pheromones Initialization. When two devices are con-

nected, the initialization involves updating the pheromone

tables for the connected edges. This process has a time

complexity of O(n), where n is the number of connected

edges.

• Quality pheromones calculation. The calculation of

quality pheromones at the target node is a constant-time

operation, resulting in a time complexity of O(1).
• State transition rule. The selection of the next node

depends on the state transition rule, which considers the

connected edges and the supported task types of the

selected node. The time complexity of this process is

O(n ·m), where n is the number of connected edges and

m is the number of supported task types of the selected

node.

• Pheromones update. Updating pheromones with the

backtrack ant involves traversing the connected edges and

updating the pheromone values accordingly. This results

in a time complexity of O(n), where n is the number of

connected edges.

• Evaporation. The evaporation process involves updating

the pheromone values for each connected edge, and each

task type the node has heard of. This results in a time

complexity of O(n · m), where n is the number of

connected edges and m is the number of task types.

Given these adaptations of the AS for our system, we can

present the pseudo-code of our ACO strategy. Algorithm 1

shows how the ants decide which node to visit next based

on a state transition rule, which gives a score on the best
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node. Once the node is selected, the task is computed, and the

backward ant updates the pheromones. Finally, periodically,

the pheromones evaporate to allow a strategy update.

Algorithm 1: Optimized Decentralized ACO Strategy

Data: Nodes nodes, Task t

// Concurrent activity at each node
1 foreach node n do
2 initializePheromoneTables()

3 while n is running do
4 if n is overloaded then
5 createForwardAnt(t)
6 while tTTL > 0 do
7 nj = applyStateTransitionRule()

8 goToNode(nj)

9 addNodeToPath(nj)

10 if nj supports ttype and not overloaded
then

11 computeTask(t)
12 createBackwardAnt(calculateQuality(),

path)

13 break

14 end
15 end
16 end
17 foreach backwardAnt do
18 while node �= nodeorigin do
19 node = popNodeFromPath(path)

20 goToNode(node)

21 applyPheromoneTrailUpdateRule()

22 end
23 end
24 if time for evaporation then
25 applyEvaporationRule()

26 end
27 end
28 end

IV. EVALUATION

This Section aims to evaluate the performance of the three

task coordination algorithms Random, ACO, and Gossips, in

the context of decentralized IoT systems. The focus of the

evaluation is on considering how the ACO algorithm impacts

task coordination’s performance compared to the remaining

approaches. To this end, we run tests on servers on which VMs

represented as IoT devices run the framework respectively. By

running tests with different numbers of devices in each static

and dynamic environment, we get a solid overview of how

the strategies perform. In the static environment, the network

topology remains unchanged throughout the experiment. On

the other hand, the dynamic environment simulates decentral-

ized IoT systems’ mobility and ever-changing nature. In this

environment, devices can fail and rejoin the network. We com-

pare the task coordination implementations through various

performance metrics with a focus on the load distribution of

the queue, the service time, and the hops per hit.

A. Benchmarks

a) Random search: The Random strategy is a straight-

forward, and common [25, 29, 30] technique for decentral-

ized task coordination in distributed IoT systems. Tasks are

offloaded to randomly selected nodes without considering

their specific characteristics or currently available resources.

While its simplicity and ease of implementation guarantee

a fast configuration for task offloading, this approach does

not possess self-learning or self-adapting capabilities, limiting

its ability to optimize task distribution and adapt to dynamic

changes in the IoT environment. The computational complexity
of selecting a random neighbor is O(n), where n is the number

of neighbors. Thus, the runtime of offloading or forwarding is

also O(n).
b) Gossips: Furthermore, we design and implement the

Gossips approach, adapted from the Gossips protocol. It has

two phases: the Gossips Discovery Phase and the Gossips
Offload Phase. The goal of the first phase is to contact as

many nodes as possible to find available targets. To this end,

the origin node starts spreading messages, so-called Gossips

discovery messages, to all its neighbors, which in turn propa-

gate these messages to their neighbors. When a node receives

a gossip discovery message and can process the task, it sends a

discovery response along the path to the origin node. The first

phase continues until the same gossip message is received by

a node or the discovery TTL passed, determined by the origin

node at the beginning. This deterministic approach aims to

build extensive knowledge about the system and its available

resources, at the same time quickly adapting to changes in

the network. In the Gossips Offload Phase the origin node

collects all received discovery response messages, which con-

tain information about the current queue capacity and the

on-board hardware resources of the target node. Then, this

information plus the path length provide a metric for selecting

the best target node. The complexity of the Gossips strategy

can be broken down into two main components: spreading and

forwarding gossip discovery messages and selecting the target

node to offload the task.

1) Spreading Gossips Discovery Messages. The com-

plexity of spreading and forwarding Gossips discovery

messages can be represented as O(n), where n is the

number of connected edges at a node.

2) Selecting the Target Node. The selection process

involves sorting the received response messages and

choosing the highest-ranked node as the target for of-

floading the task. This sorting process has a complexity

of O(n · log(n)), where n is the number of received

gossip discovery response messages.

B. Scenarios

To thoroughly evaluate the performance of the task coordi-

nation strategies, we conducted experiments in two types of

environments: static and dynamic. In the static environment,
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the network topology remains unchanged throughout the ex-

periment. This type of environment enables us to assess the

performance of the strategies in a stable and controlled setting.

On the other hand, in the dynamic environment, devices can

fail and rejoin the network. Every 15 minutes, we calculate

a probability to determine if a node will fail based on each

node’s characteristics. If the probability is above a certain

threshold, the device fails. For each “failed” device, every

minute, we extract its probability to recover; if it is higher

than a threshold, the device rejoins the network. These two

environments ensure a thorough evaluation of how well the

selected strategies can adapt to network changes and maintain

performance. For each environment, we consider settings with

different numbers of nodes. The experiments included 10, 25,

50, or 100 devices, sampling both robust nodes and resource-

constrained devices (check Section III-A). This heterogeneity

of devices types and cardinality helps us assess how well

the strategies can handle diverse resource capacities in the

network. For the processing time, we use previously collected

application data. For the arrival rate of the tasks, we leverage

the request generator from the tool Edge Runner4. Each task

type is emitted at different times to increase the heterogeneity.

T1 and T3 appear most often in the system and are short-lived,

while T4 and T5 are the task types emitted least often but

with a longer processing time. At any time, an emitter can

send out precisely one task. Combined, however, the emitters

can produce several tasks at once. Therefore, IoT devices may

produce many tasks at once in a short period, resulting in a

potential swarm overload that the offloading strategy should

handle. We deploy a total of 100 VMs on the server machines,

each of which is equipped with 3072 MB of RAM, 2 vCPU,

and 20 GB of disk space. 5

C. Performance metrics

To effectively compare the performance of the three task

coordination strategies, we rely on a set of metrics emanated

from related work [31, 32]. These metrics allow us to analyze

various aspects of the strategies and are defined as follows:

1) Load Distribution (LD). The average queue occupa-

tion measures load distribution. The metric reflects the

system’s efficiency and aims balanced load, where the

queue is neither empty nor too full.

2) Service Time (ST). It measures when the origin node

sends an offload request for a task until it receives a

response back. I.e., how long does the origin have to

wait until it can regard the offloaded task as finished? It

is expressed in seconds.

3) Hops per Hit (HPH). The metric measures the hops

required to find the target node. It indicates how often

another node must be contacted until the target node is

found.

4https://github.com/edgerun/request-generator
5The virtual machines host a Rocky Linux 9.1 OS (minimal installation,

https://rockylinux.org/) and the OpenJDK 11 Java Runtime Environment:
OpenJDK 11 (https://openjdk.org/)

4) Hit Miss Ratio (HMR). The ratio shows how often a

target node was found divided by the number of times

a target node was not found, but the offload request was

lost (e.g., if TTL had already passed).

5) Guarantee Ratio (GR). The ratio is calculated by

dividing the number of offloaded tasks by the number of

returned tasks (from the origin node to the target node

and back to the origin node).

6) Amount of Messages (AM). The metric counts the

number of messages the active strategy produces while

coordinating tasks during runtime.

7) Messages per Request (MPR). The metric calculates

the number of messages produced by the active strategy

for a single offload request for a task.

D. Results

First, we evaluate the three strategies 6 by analyzing Load

Distribution (LD), Hops-per-Hit (HPH), and Messages per

Request (MPR) in a 100-node environment. These selected

metrics provide essential insights into the efficiency of the task

relocation methods, the frequency of node contacts required

to find the target node, and the number of messages generated

by a strategy for a single task offload request. Subsequently,

we present a comprehensive overview of the three strategies

across all metrics described in the previous Subsection IV-C

to offer a broader perspective on performance.

1) Load Distribution (LD): The primary aim of LD is to

assess the balancing of load across the system. A balanced LD

ensures that tasks are offloaded to appropriate target nodes,

preventing overload on specific nodes while others remain

underutilized. We use the term queue capacity to describe how

many tasks must be in the queue before subsequent tasks must

be offloaded. Queue occupation describes the total number of

tasks in the queue, including both local tasks and tasks that will

be offloaded. If the queue occupation exceeds the capacity, we

call the device overloaded. The average queue occupation in

our system is the LD described above. We experiment with a

varying number of nodes, in both static and dynamic settings.

For the sake of brevity, we show in Figure 4 only the results

for the case of 100 nodes. The rest of the values can be found

in the summarizing tables in Section IV-D4. In Figure 4, we

can observe how the static Random approach exhibits stronger

deviations from the regression line and the queue occupation

grows at a queue capacity of ten. With a queue capacity of

15, this trend is amplified: Random’s task coordination loses

performance, and the prediction states that the devices are

overloaded after one hour. Figure 5 emphasises this behavior.

Especially for small queue sizes, the three strategies tend to

have requests that overflow the queue size, calling for more

accurate offloading mechanisms. This behavior is mitigated

by larger queue sizes for ACO and Gossips, whereas Random

Search still shows irregularities. We conclude that Random

can only cope with smaller queue capacities for large swarm

6For ACO we have to specify some hyperparameter values. We use the
following configuration: τ0 = 50, τ0+ = 100, α = 2, β = 1, ρ = 0.3.
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sizes. Gossips shows the smallest LD values, while ACO has

the highest values but never overloads the devices, which can

be concluded as a solid task coordination mechanism.

In summary, ACO demonstrates the most effective utiliza-

tion of queue resources across various scenarios and swarm

sizes, likely due to its self-learning nature. Random shows that

with large swarm sizes and larger queue capacities, it overloads

the devices and thus degrades the overall system performance.

The Gossips strategy shows the most stable values without

the risk of overloading devices, but the queue utilization is

in the lower range. In general, all three approaches have

underutilization at the five and ten queue capacities, which

can be improved in future works.

(a) |Queue| = 5. Static. (b) |Queue| = 5. Dynamic.

(c) |Queue| = 10. Static. (d) |Queue| = 10. Dynamic.

(e) |Queue| = 15. Static. (f) |Queue| = 15. Dynamic.

Fig. 4: LD in static (1st column) and dynamic (2nd column)

environments with 100 devices of different queue capacities.

2) Hops-per-Hit (HPH): Assessing the average HPH metric

allows us to understand the efficiency and scalability of

the Random, ACO, and Gossips strategies in the context of

message propagation and task coordination. HPH measures

the number of hops or nodes between the origin and target

nodes during task offloading. A lower HPH value indicates

fewer messages sent and a closer target node, leading to

reduced latency, faster communication, and shorter service

times. Figure 6 summarizes the test run with 100 nodes. Given

a swarm size of 100, Random is the worst algorithm in terms

of HPH, while ACO has the best mean value. Compared to

the Gossips, Random and ACO have more outliers. In a static

(a) |Queue| = 5. Static. (b) |Queue| = 5. Dynamic.

(c) |Queue| = 10. Static. (d) |Queue| = 10. Dynamic.

(e) |Queue| = 15. Static. (f) |Queue| = 15. Dynamic.

Fig. 5: LD in static (1st column) and dynamic (2nd column)

environments with 100 devices of different queue capacities.

(a) Static HPH. (b) Dynamic HPH.

Fig. 6: HPH in static and dynamic environments with 100

devices.

environment, Random’s highest value is even 75, meaning one-

third of all nodes were traversed until the task offload request

was accepted. Gossips shows stable and consistent values in

both environments. In summary, the ACO strategy has the

lowest and, thus, best HPH values in both environment setups,

thanks to the deposition of pheromones. It would be interesting

to know if the outliers are caused by the fact that the system

needs more time to learn due to the larger number of nodes.

I.e., the long paths (outliers) are formed at the beginning

because not enough artificial ants have explored the network.

Gossips scores well in this category and shows solid stability

and consistency in static and dynamic environments, while
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Random has the worst performance.
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Fig. 7: Message per request over time in static (left) and

dynamic (right) environments with 100 devices.

3) Messages per requests (MPR): The MPR metric allows

us to analyze the typical workload in RCS and to process its

ability to deliver tasks to its destination. In Figure 7 we can

analyze the results with a setup of 100 nodes. In this scenario,

the ACO algorithm demonstrates its effectiveness in managing

communication efficiency within distributed systems. In con-

trast, the Gossips algorithm exhibits instability in messages

per request regard, and the Random plateaus at higher values.

4) Summary: An overview of the performance of the strate-

gies in a static environment is provided in Table II, while the

results for the dynamic environment are presented in Table III.

They both report the average values for each metric, truncated

after two comma digits. The winning strategy in the metric

and swarm size category is highlighted in bold and green; the

second place is colored orange, and the last place is red. For

LD, weighting is based on whether the queue is neither too

full nor too empty – strategies should target the occupation

of 3/4 of the queue, given a capacity of 15. Lower values

indicate better performance for ST, HPH, AM, and MPR. For

the two metrics, HMR and GR, higher scores indicate better

performance by the strategies.

Overall, the proposed ACO algorithm shows great potential

for successfully coordinating nodes in a fully decentralized

way. The proposed solution constantly shows the best per-

formance in many of the used metrics. Random outperforms

only slightly ACO on service time but has poor performance

in terms of actual coordination, whereas Gossip shows better

results for HMR and GR but requires much more Service Time

and sends in the systems a much higher number of messages,

with a serious risk of clogging the network. Furthermore, the

test has only run for one hour; longer training times for ACO

will intuitively improve its performance in HMR and GR, due

to better exploration and refined pheromone trails, with the

potential of making it solidly the preferred solution.

V. CONCLUSION

This paper introduced the Rain Cloud System (RCS) frame-

work to facilitate decentralized swarm task offloading. In

Strategy #Nodes LD ST HPH AM MPR HMR GR
Random 10 4.46 64.06 4.28 713 5.40 45.45 45.45

25 4.97 65.85 4.71 3215 7.29 48.29 48.29
50 5.14 66.80 6.20 8865 11.40 46.07 46.07
100 16.73 72.21 7.82 93818 31.50 35.75 35.65

ACO 10 5.03 62.79 1.34 300 2.37 57.26 57.26
25 5.53 70.26 2.01 2309 4.75 50.84 50.84
50 5.40 71.27 1.95 4664 5.75 47.15 47.15
100 5.75 71.19 2.38 14243 8.93 48.69 48.69

Gossips 10 4.60 106.35 3.44 3900 33.42 69.36 69.36
25 4.58 107.34 5.09 37400 114.01 58.07 58.07
50 4.38 108.14 5.97 163549 296.12 53.11 53.11
100 4.47 103.68 6.42 827354 757.37 58.02 58.02

TABLE II: Comparison of strategies in a static environment.

Strategy #Nodes LD ST HPH AM MPR HMR GR
Random 10 7.35 60.39 3.34 1082 5.07 43.19 43.19

25 9.47 76.15 4.22 8220 8.40 42.33 41.30
50 8.62 73.09 6.90 20100 13.74 45.55 44.39
100 7.16 71.37 6.15 30211 13.70 48.79 47.02

ACO 10 4.97 63.78 1.11 295 2.36 52.94 52.94
25 11.48 85.80 3.36 8354 7.99 40.22 38.79
50 6.30 70.87 2.85 6693 7.00 47.06 46.75
100 8.97 78.97 4.23 32160 12.03 47.64 46.44

Gossips 10 3.69 91.27 3.69 3259 32.47 78.16 74.71
25 5.10 106.92 5.03 43816 121.22 58.60 58.60
50 5.92 104.56 5.56 196590 304.28 51.20 51.04
100 5.88 110.33 6.50 849374 720.20 52.32 52.23

TABLE III: Comparison of strategies in a dynamic environ-

ment.

particular, we developed and evaluated a semantic and self-

actualizing communication strategy, coupled with a meta-

heuristic based on the Ant Colony System and compared it

with Random Search and Gossip, adapted for the use case.

The Ant Colony Optimization (ACO) algorithm demonstrated

promising results in network management and resource distri-

bution, indicating its suitability for complex IoT challenges.

ACO and the other algorithms embedded in the RCS frame-

work allow the development of inventive strategies for re-

source distribution and task management within IoT networks.

In future work, we will incorporate path optimization for

ACO, avoiding cycles. Furthermore, we aim to optimize the

pheromones deposit during the initialization process, using

more accurate rules. In general, the pheromone calculation

could also take into account energy consumption or device

geographical proximity. In addition, we want to explore a

hybrid solution that combines the strengths of both ACO and

Gossips strategies, as the latter performs better in dynamic

settings. Lastly, we aim at performing additional experiments

as, for example, an exhaustive parameter testing for ACO.
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