
Towards Message Brokers for Generative AI: Survey, Challenges, and

Opportunities

ALAA SALEH, Center for Ubiquitous Computing, Oulu, Finland

ROBERTO MORABITO, Department of Communication Systems, Eurecom, Biot, France

SCHAHRAM DUSTDAR, Distributed Systems Group, TU Wien, Vienna, Austria

SASU TARKOMA, Computer Science and Engineering, Helsinki, Finland

SUSANNA PIRTTIKANGAS, Center for Ubiquitous Computing, Oulu, Finland

LAURI LOVÉN∗, Center for Ubiquitous Computing, Oulu, Finland

In today’s digital world, GenAI is becoming increasingly prevalent by enabling unparalleled content generation capabilities

for a wide range of advanced applications. This surge in adoption has sparked a signiicant increase in demand for data-centric

GenAI models spanning the distributed edge-cloud continuum, placing increasing demands on communication infrastructures,

highlighting the necessity for robust communication solutions. Central to this need are message brokers, which serve as

essential channels for data transfer within various system components. This survey aims to delve into a comprehensive analysis

of traditional and modern message brokers based on a variety of criteria, highlighting their critical role in enabling eicient

data exchange in distributed AI systems. Furthermore, we explore the intrinsic constraints that the design and operation

of each message broker might impose, highlighting their impact on real-world applicability. Finally, this study explores the

enhancement of message broker mechanisms tailored to GenAI environments. It considers key factors such as scalability,

semantic communication, and distributed inference that can guide future innovations and infrastructure advancements in the

realm of GenAI data communication.

CCS Concepts: · Computing methodologies → Semantic networks; Self-organization; Multi-agent systems; Intelli-

gent agents; Cooperation and coordination; Information extraction; · Networks→ Application layer protocols.

Additional KeyWords and Phrases: Generative AI, Message Brokers, Publish/Subscribe Paradigm, Brokerless, Edge Computing,

Large Language Models.

1 Introduction

In the burgeoning ield of Generative Artiicial Intelligence (GenAI), the computing continuum faces unprece-

dented challenges in eiciently managing data lows and computational resources. GenAI has predominantly

targeted consumer applications, ofering applications such as the ChatGPT [1], a conversational AI agent based

on a large language model (LLMs), a type of machine learning (ML) model with a deep neural network. However,

a surge in machine-to-machine (M2M) use cases, coupled with the increasing possibility of relying more and

more on decentralized, distributed, and edge-based Large Language Models (LLMs), beckons a reevaluation of

∗Corresponding Author

Authors’ Contact Information: Alaa Saleh, Center for Ubiquitous Computing, Oulu, Finland; e-mail: alaa.saleh@oulu.i; Roberto Morabito,

Department of Communication Systems, Eurecom, Biot, France; e-mail: roberto.morabito@eurecom.fr; Schahram Dustdar, Distributed

Systems Group, TU Wien, Vienna, Austria; e-mail: dustdar@dsg.tuwien.ac.at; Sasu Tarkoma, Computer Science and Engineering, Helsinki,

Uusimaa, Finland; e-mail: sasu.tarkoma@helsinki.i; Susanna Pirttikangas, Center for Ubiquitous Computing, Oulu, Pohjois-Pohjanmaa,

Finland; e-mail: susanna.pirttikangas@oulu.i; Lauri Lovén, Center for Ubiquitous Computing, Oulu, Pohjois-Pohjanmaa, Finland; e-mail:

lauri.loven@oulu.i.

This work is licensed under a Creative Commons Attribution International 4.0 License.

© 2025 Copyright held by the owner/author(s).

ACM 1557-7341/2025/6-ART

https://doi.org/10.1145/3742891

ACM Comput. Surv.

HTTPS://ORCID.ORG/0009-0009-6317-2823
HTTPS://ORCID.ORG/0000-0002-4240-9934
HTTPS://ORCID.ORG/0000-0001-6872-8821
HTTPS://ORCID.ORG/0000-0003-4220-3650
HTTPS://ORCID.ORG/0000-0003-2428-9948
HTTPS://ORCID.ORG/0000-0001-9475-4839
https://orcid.org/0009-0009-6317-2823
https://orcid.org/0000-0002-4240-9934
https://orcid.org/0000-0001-6872-8821
https://orcid.org/0000-0003-4220-3650
https://orcid.org/0000-0003-2428-9948
https://orcid.org/0000-0001-9475-4839
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3742891
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3742891&domain=pdf&date_stamp=2025-06-05


2 • A. Saleh et al.

the supporting communication infrastructure. This reevaluation is necessitated by the evolving demands for

higher bandwidth, lower latency, and more robust data processing capabilities that these advanced applications

require [2, 3]. This survey paper delves into the role of publish/subscribe (pub/sub) message broker systems,

considering in particular their emerging role for seamless and scalable data exchange in GenAI applications. We

scrutinize contemporary message brokers for their adaptability and eiciency in GenAI contexts, outline existing

challenges, and chart promising research avenues for future development.

In more detail, while the focus of GenAI systems has been on consumer-oriented applications, there is an

increased interest towards M2M use cases. GenAI has been proposed to be used in, for example, for networking,

wireless communication, and compression [4].

As a result, current computing continuum platforms, spanning the networks and computational resources

from user devices to cloud [5, 6], face new challenges. These platforms provide support AI models, ofering

interconnect between their data sources and sinks, and optimising their use of resources in the computing

continuum. As GenAI models require and generate ever larger amounts of data [7], all the while consuming

computational resources varying from moderate to massive [5], the computing continuum must ofer a dynamic

and scalable communication and computation substrate to ensure timely data dissemination and eicient use of

resources [8, 9].

Pub/sub approach is equally useful alongside other paradigms across the computing continuum for a wide

range of AI applications, including smart cities [10], healthcare [11], and many other domains. This approach

decouples data producers from their consumers, allowing applications to develop components independently,

and enhancing system robustness and adaptability [12]. Furthermore, pub/sub makes system design more lexible

by increasing the independence between system components with a reliable interconnect.

Pub/sub systems are based on the exchange of data between clients (e.g., services or application components)

through a message broker. Publishers submit content to the broker, which then allows subscribers to access

that content without knowing its source [13, 14]. By managing, iltering, and routing communication between

publishers and subscribers, the message broker acts as an intermediary layer [15], routing and distributing

messages eiciently, accurately, and in a timely manner, based on the interests expressed by subscribers. Within

the brokers, message queues can temporarily store the messages, protecting the system from overlows or

outages. Moreover, brokers also often provide other essential features such as persistent storage, monitoring, and

authentication.

As GenAI continues to evolve, parallels can be drawn with the historical trajectory of IoT systems, where the

emergence of robust and adaptive message brokers marked a signiicant evolutionary step. These message brokers

became a de facto paradigm, primarily because they addressed critical challenges associated with scalability,

real-time data processing, and the integration of heterogeneous devices and platforms [16]. Similarly, in the

context of GenAI, the anticipation of an analogous development is not without merit. The complexity and volume

of data that GenAI applications demand, coupled with the necessity for high-quality service monitoring and data

exchange processes, suggest that a transition towards more sophisticated message brokering solutions may be

inevitable. Such solutions would not only have to manage the large data throughput but also ensure adaptability,

reliability, and eiciency in dynamic GenAI ecosystems. Relecting on the IoT evolution, the motivations for this

shift include the need to support scalable communication, facilitate interoperability among diverse systems, and

uphold stringent Quality of Service (QoS) standards, which are likely to be paralleled in the GenAI domain [17].

However, it is critical to acknowledge that the evolution towards more sophisticated message brokering

solutions, speciically tailored to accommodate GenAI application needs, does not come without its challenges.

Bearing all this in mind, the primary contributions of this survey are summarized as follows:

ACM Comput. Surv.



Towards Message Brokers for Generative AI: Survey, Challenges, and Opportunities • 3

Subscribers
Publishers Broker

Fig. 1. The Publish/Subscribe paradigm.

• We provide a comprehensive review of recent message brokers, evaluating the brokers by their suitability

for GenAI systems. We aim to guide the development of a compatible brokering framework in consideration

of the evolving requirements for GenAI systems in the future.

• We summarize the challenges of message brokers and highlight the need for a robust and eicient data

communications substrate based on an increase in GenAI applications.

• We discuss central research topics and their potential focus areas for making message brokers suitable for

GenAI applications. We also describe promising algorithms for implementing such brokers.

This paper’s remaining sections are organized as follows. Section 2 provides a general deinition of pub/sub

paradigm and highlights the advantages and disadvantages of both broker-based and brokerless messaging

architectures. Section 3 presents existing message brokers with their features and cons. Section 4 examines

possible ways to make message brokers suitable for GenAI applications. The paper concludes with Section 5.

2 The Pub/Sub Paradigm

Pub/sub is a messaging paradigm where publishers send messages without indicating speciic recipients. Remain-

ing oblivious to the original publishers, subscribers receive relevant messages according to their interests. At

its core, pub/sub thus decouples message delivery from the senders and recipients. This enhances the system’s

adaptability and robustness, as it allows publishers and subscribers to operate independently [12]. Furthermore,

subscribers can lexibly choose topics based on their interests, enabling them to ind content relevant to their

preferences. As a result of pub/sub, real-time messaging can be sent to a wide range of subscribers, enabling

scalable and timely dissemination of information [14, 18, 19].

As part of the pub/sub communication model, a message broker functions as an intermediary layer, managing

the low ofmessages from publishers to subscribers. By ensuring that messages are accurately routed to subscribers,

based on their expressed interests or speciic topics, the broker ensures that messages are received by subscribers

precisely as they have been requested. By providing a layer of abstraction between publishers and subscribers,

the broker goes beyond simply facilitating message transmission. Therefore, neither party needs to be aware of

the other’s operations or presence. A key strength of the broker is its reliability [20], as it has mechanisms for

guaranteeing delivery of messages even when subscribers are temporarily oline or have connectivity diiculties.

Moreover, message queues are general-purpose components of the broker that temporarily store messages

from publishers until they can be delivered to subscribers as part of the broker process [21]. By orchestrating the

overall low of messages, the message broker ensures that the appropriate subscribers receive the messages based

on their subscriptions, while a message queue ensures that these messages are held and dispatched in an orderly

manner, ensuring that publishers and subscribers are able to communicate in an asynchronously and decoupled

ways as shown in Fig. 1.

ACM Comput. Surv.



4 • A. Saleh et al.

19
90

s

Distributed computing
and enterprise

messaging systems
provided the basis for

message brokers

Open-source solutions with
industry evolution, the

growth of the internet, the
advent of cloud computing,
the increasing demand for

enterprise integration

Apache ActiveMQ
Amazon SQS

RabbitMQ

Google Cloud
Pub/Sub

Amazon Kinesis

Azure Service Bus
Kafka

Amazon MQ

2004

2007 2011

2013

2015

2017

2010s

Support
microservices,
IoT, and real-

time
processing

IBM MQ

1992

20
00

s

2020s

Future

GenAI on message
broker, GenAI for message

broker, semantic
communication, intelligent
resource management, ...

Support hybrid cloud,
multi-cloud deployments

and edge
computing. Integration of
ML and AI with message

brokers

Support a huge
amount of data and

edge-to-cloud
continuum
deployment

Present

Fig. 2. The timeline of message broker evolution from 1990 to present.

2.1 Message broker development

Over the past 30 years, message broker technology has evolved and innovated signiicantly as shown in Fig. 2.With

the development of message-oriented middleware (MOM) and the Java Message Service (JMS), the technology

began to gain prominence between 1980 and 1999, as organizations began to require greater integration and

communication [22, 23]. During the period 2000-2009, the technology underwent signiicant advancements,

inluenced by the implementation of service-oriented architecture (SOA), the increased internet usage, and

the emergence of cloud computing [24]. Among these developments was the implementation of web services

standards and open-source alternatives, laying the foundation for future advances in cloud-based message brokers.

During the following decade, from 2010 to 2019, the technology adapted to new demands such as real-time data

processing, cloud computing, IoT, and microservices architectures [21]. Increasing demands for Internet of Things

and real-time data processing have led to the rise of containerization platforms such as Docker and Kubernetes.

With the advent of cloud-native architectures, microservices, edge computing, and IoT demands, message

broker technology continued to evolve unabated between 2020 and 2023 [25]. The integration of AI and ML

was particularly important for optimizing message routing, anomaly detection, and auto-scaling, addressing the

complexities of growing data volumes. In the future, message broker technology will continue to evolve, leveraging

advances in computing and communication. As 5G/6G technologies advance, cross-platform interoperability,

and decentralized architectures are developed, a number of trends are set to shape its future. These include edge

computing, quantum computing, enhanced security, serverless architectures, and advancements in the 5G/6G

technologies.

2.2 Broker vs. Brokerless Messaging Architecture

A broker is the main unit for managing and monitoring data of pub/sub systems [13], ofering scalability, balanced

load distribution, and optimal resource utilization, among others. Additionally, the message broker ensures that

messages are reliably transmitted, preventing any loss of data.

Despite their beneits, certain challenges accompany message brokers, particularly concerning scalability and

eiciency. As data volume grows, brokers face increased complexity, undermining scalability ś a common issue

also observed in brokerless pub/sub systems known for their simplicity, quick access, and improved eiciency.

In such systems, publishers and subscribers interact directly, making discovery, management, and availability

crucial factors. However, the absence of a central unit for overseeing message lows complicates supervision and

control. Furthermore, this setup does not inherently guarantee reliable message delivery [26].

ACM Comput. Surv.



Towards Message Brokers for Generative AI: Survey, Challenges, and Opportunities • 5

3 Survey of Message Brokers

In the past decade, numerous message brokers have been developed both in proprietary and open-source

sectors. Each broker possesses unique features and pitfalls, inluenced by their respective vendors and intended

applications. This section focuses on the most commonly used message brokers, with their features and challenges.

To clarify the methodology used for the comparative analysis, we utilized data sourced from the oicial websites of

the brokers under study. This data included technical documentation, feature descriptions, code explanations, and

vendor-provided whitepapers. The comparative analysis framework is structured in Tables 1 to 4. We categorize

these message brokers based on their open-source availability and the priority-based delivery of messages (built-in

priority-support) that ensures messages are delivered in priority order, with high-priority messages processed

irst.

3.1 Open Source Message Brokers

We found 30 message brokers that were available as open source. Out of these, 17 supported priority messages,

while 13 did not. Each is discussed in more detail in below subsections.

3.1.1 Priority Support. Apache ActiveMQ [27] is a Java-based message broker licensed under the Apache 2.0

license. Through the use of double layers of SSL/TLS security layers, it provides dual security levels. A distribution

of Apache ActiveMQ provided by FuseSource, Fuse Message Broker [28] supports J2EE integration capabilities

such as Java Database Connectivity (JDBC), J2EE Connector Architecture (JCA), and Enterprise JavaBeans (EJB).

Apache Qpid [29], on the other hand, provides cloud-based messaging capabilities and supports queuing for

structured message exchange, making it essential for distributed applications.

RabbitMQ [30] was developed by Rabbit Technologies Ltd in 2006 using the Erlang programming language and

released under the Mozilla Public License. It supports multiple protocols, including AMQP, STOMP, and MQTT.

HornetQ [31], a Java application based on JBoss, provides a distributed messaging platform for enterprise-level

applications using STOMP and AMQP protocols.

Red Hat AMQ [32] is a messaging protocol based on Java for large-scale Internet business applications with no

administrative costs, installation, or coniguration required. Celery [33] is written in Python and supports multiple

message brokers, including RabbitMQ and Redis. Using Java Messaging Service (JMS) API, JBoss Messaging [34]

is a messaging broker provided by JBoss, a division of Red Hat for facilitating communication between diferent

components or applications in a distributed system.

OpenMQ [35] is implemented in Java and was developed by Oracle as an open source protocol. Beanstalk [36]

creates queues automatically with pure Python. Gearman [37] is an optimized server written in C/C++ with a

simple interface that provides low application overhead. Enduro/X [38] is written in C and ofers native APIs for

C/C++. For enhanced interprocess communication, it utilizes in-memory POSIX kernel queues. As part of the

WSO2 Integration platform, WSO2 Message Broker [39] is a message-based communication component.

HiveMQ [40] is compatible with MQTTv3.1 and all subsequent versions. The Eclipse Public License (EPL) and

Eclipse Distribution License (EDL) cover this implementation. Redis [41] is BSD-licensed, used by companies such

as Uber, Instagram, and AirBNB for caching and messaging queues. With 100 million concurrent connections

per cluster and sub-millisecond latency, EMQX [42] can eiciently and reliably connect massive amounts of

IoT devices. EMQX nodes can be bridged by other MQTT servers and cloud services to send messages across

platforms. Additionally, it deploys and operates on all public cloud platforms. Apache Pulsar [43] is an open-source

distributed messaging system developed as a queuing system, but it recently added event streaming features. It

combines many Kafka and RabbitMQ features.

3.1.2 No Priority Support. Apache Kafka [44] was developed by LinkedIn as a distributed streaming platform,

supporting multiple data formats, including JSON, Avro, and XML. Furthermore, Java, Python, and Go are the

ACM Comput. Surv.



6 • A. Saleh et al.

oicial client libraries and several cloud platforms are supported, including Amazon Web Services, Microsoft

Azure, and Google Cloud Platform. It provides a variety of tools for managing and monitoring Kafka clusters,

such as Kafka Manager, Kafka Monitor, and Kafka Connect.

Apache RocketMQ [45] is a cloud-native platform that operates across distributed systems, facilitating real-time

data processing. With support for versions 5.0, 3.1.1, and 3.1, Eclipse Mosquitto [46] implements the MQTT

protocol. ZeroMQ [47] is supported by a large and active open source community, and utilizes a broker-less

pub/sub pattern.

Apache NiFi [48], developed by the Apache Software Foundation, automates data exchange between software

systems, and facilitates the conversion of data formats in real time. Ably Realtime [49] is built on Ably’s Data

Stream Network, which includes a cloud network and realtime messaging fabric. Additionally, over 40 Client

Library SDKs are available, as well as native support for six real-time protocols. Apache SamZa [50] is a streaming

framework based on Apache Kafka and Apache Hadoop developed by LinkedIn and now part of the Apache

Software Foundation. It processes real-time data streams generated by Apache Kafka, Amazon Kinesis, and Azure

Event Hub.

VerneMQ [51] was launched in 2014 by Erlio GmbH. It supports MQTT messages in LevelDB, and uses a

clustering architecture based on Plumtree, however it isn’t actively developed and lacks features. NServiceBus [52]

is designed with simplicity. With a number of retry strategies, a message which fails processing can automatically

be forwarded to an error queue for manual investigation. Kestrel [53] is a JVM-based distributed message queue

inspired by Blaine Cook’s "Starling".

InNSQ [54], distributed and decentralized topologies are promoted, allowing fault tolerance and high availability

as well as reliable delivery by replicating every message across multiple nodes within the cluster. NATS [55] was

originally released in 2011 and was written in Go. KubeMQ [56] is a modern and innovative message queue and

broker that facilitates communication across cloud platforms, on-premise environments, and edge deployments.

3.2 Proprietary Message Brokers

We found 16 proprietary message brokers, out of which 10 supported priority messages while 6 did not. Each is

discussed in more detail in below subsections.

3.2.1 Priority Support. IBM MQ [57] supports data exchange between applications, systems, services, and iles

via messaging queues, serving as a crucial communication layer for message low management. It ofers lexibility

in deployment options, whether in virtual machines or containers, including Docker, Kubernetes/Cri-O and Red

Hat OpenShift. Moreover, it is ideal for applications demanding high reliability and zero message loss. Amazon

Simple Queue Service [58] is operated by Amazon, so it can handle a lot of traic with providing authentication

using the Amazon API key and secret. However, requests are sent to the SQS web service via HTTP, which is

susceptible to latency issues.

Microsoft Message Queue [59] is a messaging infrastructure created by Microsoft and built into the Windows

Operating System. It serves as a queue manager and allows two or more applications to communicate without

immediately knowing each other’s responses.

As a Java-based message broker, Oracle GlassFish Server Message Queue [60] provides message brokering

services to popular message queue systems such as AQ, IBM MQ Series, and TIBCO Rendezvous. It provides

a consistent, open, JMS-compliant API for these message queuing systems. Additionally, OMB supports both

durable and non-durable subscribers, as well as the JMS standard pub/sub, topic-based routing.

TIBCO Rendezvous [61] is a peer-to-peer architecture for high-speed data distribution. TIBCO Enterprise Message

Service [62] is a message oriented middleware that supports a wide range of message protocols and technologies,

including the Java Message Service (JMS) standard using Java and J2EE, Microsoft .NET, TIBCO FTL, TIBCO

Rendezvous and C and COBOL on the Mainframe. Besides supporting up to 10 MB payloads in XML, JSON, CSV,

ACM Comput. Surv.



Towards Message Brokers for Generative AI: Survey, Challenges, and Opportunities • 7

HTML and plain text formats, Anypoint MQ [63] also has easy connectivity to Mule applications or non-Mule

applications.

Azure Service Bus [64] from Microsoft is a cloud-based message broker that only supports AMQP and STOMP

protocols. As a fundamental part of SAP NW PI [65] architecture, an Integration Broker facilitates communication

between diferent enterprise applications, both SAP-based and non-SAP.

Solace Message Broker [66], also known as Solace PubSub+, is an advanced event broker that facilitates the

eicient exchange of information between applications, IoT devices, and users through several messaging

paradigms, including pub/sub, queue, request/reply, and streaming.

3.2.2 No Priority Support. Google Cloud Pub/Sub [67] is a messaging service ofered by Google Cloud. In addition

to native integration with other Google Cloud services, including Cloud Functions, Datalow, and BigQuer, as

well as a variety of development tools like Cloud Shell, Cloud Code, and Cloud Build, it supports real-time data

processing for ML applications with Google Cloud AI Platform and other ML services. Aside from the Stackdriver

Logging and Stackdriver Monitoring tools, it also provides SDKs for Java, Python, Node.js, and Go.

Amazon MQ [68] developed for ActiveMQ based on Java with support for MQTT, AMQP, STOMP, and

WebSocket. Intel MPI Library [69] provides a cloud support for Amazon Web Services, Microsoft Azure, and

Google Cloud Platform. Amazon Kinesis [70] is a real-time streaming data service with a scalable and durable

architecture that can capture and store GBs or TBs of data per second from multiple sources for up to 24 hours. It

provides various developer tools and integrations with AWS services, such as SDKs, templates, and integrations

with AWS CloudFormation.

Azure Storage Queue [71] provides cloud messaging that enhances communication in the cloud, on desktops,

on-premises, and on mobile devices. IronMQ [72] runs on public clouds as well as on-premise with providing

client libraries in a wide variety of programming languages, including Python, Ruby, Java, PHP, and NET.

3.3 Summary on Message Brokers

Message brokers play a major role in streamlining communication between distributed systems by ensuring

messages are properly routed. As highlighted in Tables 1 to 4, key strengths of message brokers include reliability,

achieved through guaranteed message delivery that ensures no data loss during transmission, and lexibility,

provided by pub/sub mechanisms that decouple publishers and subscribers. Additionally, they often provide

mechanisms for message persistence so that they do not lose a single message in the event of a system failure.

Their support for multiple messaging patterns, many diferent protocols, programming languages, and data styles,

meets the needs of various types of communication. Moreover, many brokers come with an array of features.

These features are critical elements, each contributing signiicantly to creating a robust message broker capable of

managing communications in complex systems, ensuring eiciency. Further details of these features are provided

below.

• Clustering support [27] enables scaling the message service to accommodate more clients or connections,

efectively handling large message volumes and numerous clients.

• Monitoring [128] tools are crucial for tracking a message broker’s performance and health, allowing for

proactive management, early problem detection, and reliable operation.

• Pub/sub support [103] enables separation of publishers from subscribers, increasing system lexibility.

• Parallel processing support [44] allows the message broker to handle multiple messages simultaneously,

improving throughput and eiciency.

• Pull and push support [44] allow lexible and timely message delivery.

• Reliable delivery support [129] ensures messages are not lost during transit, typically through acknowledg-

ments, retries, or temporary storage until successful delivery.

• Persistence support [130] safeguards messages against loss during broker restarts or storage message failures.

ACM Comput. Surv.



8 • A. Saleh et al.

Table 1. A summary of open source and priority-supporting message brokers.

M
e
ss
a
g
e

B
ro
k
e
rs

a
n
d
Q
u
e
u
e
s

C
lu
st
e
ri
n
g
S
u
p
p
o
rt

M
o
n
it
o
ri
n
g
S
u
p
p
o
rt

P
u
b
/S
u
b
S
u
p
p
o
rt

P
a
ra
ll
e
l
P
ro
ce
ss
in
g

P
u
ll
&
P
u
sh

S
u
p
p
o
rt

R
e
li
a
b
le

D
e
li
v
e
ry

P
e
rs
is
te
n
t

A
u
th
e
n
ti
ca
ti
o
n

S
ca
la
b
le

D
is
tr
ib
u
te
d

F
a
u
lt
T
o
le
ra
n
ce

S
h
o
rt
co

m
in
g
s

F
e
a
tu
re
s

Apache ActiveMQ [27] ✓ ✓ ✓ ✓ Both ✓ ✓ ✓ ✓ ✓ ✓

Message delivery guarantees are limited [27].

Memory per queue is limited, the default number

of messages is 400 [27].

Installation is complex [27].

Scaling is challenging [27].

Multi-protocols & multi-languages support [27].

Eicient management and resource allocation [27].

Supports low control and message expiration [27].

Provides message groups as well as virtual and combined queues [27].

Works on small and medium-scale applications [27].

Fuse Message Broker [28] ✓ ✓ ✓ ✓ Both ✓ ✓ ✓ ✓ ✓ ✓ Limited monitoring tools[73].

Written in Java [73].

Supports JMS 1.1 & J2EE 1.4 integration-related components [73].

Supports loosely couple applications [73].

Supports multi-languages including C/C++, Java, .NET, Ruby, Perl,

PHP, Pike,& Python [73].

Supports message compression [73].

Apache Qpid [29] ✓ ✓ ✓ ✓ Both ✓ ✓ ✓ ✓ ✓ ✓

Compatibility issues between versions [29].

Message size is limited to 100MB for AMQP

protocols 0-8, 0-9, or 0-91 [29]

Implements AMQP Protocol [29].

Easy to use [74].

Detects failures and assigns messages to diferent brokers [29].

Low latency [29].

Supports multiple authentication schemes [29].

Active connections can be limited to protect client processes

from malicious activity [29].

RabbitMQ [30] ✓ ✓ ✓ ✓ Push ✓ ✓ ✓ ✓ ✓ ✓

Written in Erlang, which is unfamiliar to many

developers [30].

Queues with large numbers of messages are memory-

intensive and strain brokers [30].

Redundant message broker communication [14].

Clustering has few features and is complicated [30].

Message size is limited to 512MB [14, 30].

Runs on all major operating systems [30].

Has good documentation [30].

Works with C, C++, .NET, and Python [30].

Supports asynchronous cluster-to-cluster message routing [75].

Supports multiple messaging protocols [30].

Ofers several built-in exchange types [30].

Supports low control for balancing workloads and avoiding rapid

messages looding [30].

HornetQ [31] ✓ ✓ ✓ ✓ Both ✓ ✓ ✓ ✓ ✓ ✓

Data loss may occur [14].

Delay may occur with large messages (up to 100KB)

due to split message into multiple packages [76].

Supports AMQP and STOMP protocols [77].

Provides better performance and stability when combined with

ActiveMQ [14].

Red Hat AMQ [32] ✓ ✓ ✓ ✓ Both ✓ ✓ ✓ ✓ ✓ ✓

Queue access is limited by special characters [78].

Non-persistent messages are lost when brokers

stop [78].

Enables real-time integration [32].

Supports multi-message patterns for real-time messaging [32].

Supports multi-languages, including Java, C, C++, Python, Ruby,

& .Net [32].

Supports mission-critical applications [32].

Celery [33] ✓ ✓ ✓ ✓ Push ✓ ✓ ✗ ✓ ✓ ✓

Compatibility and integration with other brokers

can be complicated [33].

Overall complexity [33].

Monitoring and management are challenging [33].

Number of connections is limited by 10 connections [33].

Enables operations to manage and maintain distributed task queues

,such as starting, stopping, and restarting worker processes [33].

Functions as a task queue [33].

Focuses on real-time processing [33].

Supports task scheduling [33].

Supports multi-message brokers [33].

Integrates with multi-web frameworks [33].

Supports automatic retry in the event of connection loss or

failure [33].

JBoss Messaging [34] ✓ ✓ ✓ ✓ Push ✓ ✓ ✓ ✓ ✓ ✓
Delay may occur with large messages (up to 100KB) due

to split message into multiple packages[79].

Supports AMQP, MQTT, STOMP message protocols [79].

Supports transactions [79].

Provides management processes related to deployments, coniguration,

and access control [79].

Easy integration with other JBoss and Java EE components [79].

OpenMQ [35] ✓ ✓ ✓ ✓ Both ✓ ✓ ✓ ✓ ✓ ✓
Setup is complex [35].

High Latency [14].
Loosely-coupled architecture [35].

Beanstalk [36] ✓ ✓ ✗ ✓ Pull ✓ ✓ ✗ ✓ ✗ ✗
Lacks authentication [36].

Message size is limited to 64 KB [80].

Unprocessed messages are automatically returned to the queue [80].

Supports Ruby, Rails, Java, JavaScript, Haskell, and PHP [81].

Gearman [37] ✓ ✓ ✗ ✓ Both ✗ ✓ ✗ ✓ ✓ ✓

Does not have authentication and SSL support [37].

Manual coniguration [37].

Monitoring tools are limited [37].

Used by LiveJournal, Yahoo!, and Digg [37].

Multi-languages support [37].

No single point of failure [37].

No limits on message size [37].

Supports load balancing [37].

Enduro/X [38] ✓ ✓ ✓ ✓ Both ✓ ✓ ✗ ✓ ✓ ✓

Message size is limited to max 10 MB [82].

Bufer size is limited to max 64KB [82].

Cluster nodes number is limited to max 32 nodes [82].

Resource managers numbers with single transaction

are limited to max 32 [82].

Versions compatibility depends on the date of

release [38].

Limitations on availability of the operations that can be

executed within the callback [82].

Distributed transaction processing [82].

Works on multi-platforms [38].

WSO2 [39] ✓ ✓ ✓ ✓ Both ✓ ✓ ✓ ✓ ✓ ✓
Heap memory size allocation is limited to max

4GB [83].

Supports widely used protocols such as HTTP/S, JMS, VFS, UDP,

TCP, MQTT, MSMQ, and MailTo [84].

Supports message iltering [85].

Integrates easily with other WSO2 products and third-party

systems [39].

HiveMQ [40] ✓ ✓ ✓ ✓ Push ✓ ✓ ✓ ✓ ✓ ✓

Number of characters broker accepts in an Client ID is

limited between 1 and 65535 [86].

Number of characters broker accepts in a topic string is

limited between 1 and 65535 [86].

Resource intensive for maintenance [86].

Is a client-based MQTT broker for M2M communication [40].

Suitable for mission-critical applications [40].

Supports real-time monitoring of device data & integration with

existing systems [40].

Redis [41] ✓ ✓ ✓ ✓ Push ✓ ✓ ✓ ✓ ✓ ✓

Uses a memory dump which leads to slow

performance [41].

Has only basic security options [87].

Supports multiple data types [41].

In-memory data storage [41].

EMQX [42] ✓ ✓ ✓ ✓ Both ✓ ✓ ✓ ✓ ✓ ✓ Setup, coniguration and management are complex [88].
Supports MQTT bridging [42].

Supports data integration [42].

Apache Pulsar [43] ✓ ✓ ✓ ✓ Push ✓ ✓ ✓ ✓ ✓ ✓

Complex coniguration and deployment [43].

Complex architecture, based on four components (Pulsar

servers, Apache BookKeeper, Apache ZooKeeper, and the

RocksDB database) that need to be conigured and

managed [43].

Supports event streaming [43].

An index-based storage system [43].

Low latency [43].

Supports messaging, streaming, and queuing [43].

ACM Comput. Surv.



Towards Message Brokers for Generative AI: Survey, Challenges, and Opportunities • 9

Table 2. A summary of open source and non-priority-supporting message brokers.

M
e
ss
a
g
e

B
ro
k
e
rs

a
n
d
Q
u
e
u
e
s

C
lu
st
e
ri
n
g
S
u
p
p
o
rt

M
o
n
it
o
ri
n
g
S
u
p
p
o
rt

P
u
b
/S
u
b
S
u
p
p
o
rt

P
a
ra
ll
e
l
P
ro
ce
ss
in
g

P
u
ll
&
P
u
sh

S
u
p
p
o
rt

R
e
li
a
b
le

D
e
li
v
e
ry

P
e
rs
is
te
n
t

A
u
th
e
n
ti
ca
ti
o
n

S
ca
la
b
le

D
is
tr
ib
u
te
d

F
a
u
lt
T
o
le
ra
n
ce

S
h
o
rt
co

m
in
g
s

F
e
a
tu
re
s

Apache Kafka [44] ✓ ✓ ✓ ✓ Pull ✓ ✓ ✓ ✓ ✓ ✓

Resource intensive [44].

Provides a data backlog [44].

Complex [44].

Supports topic (log) compaction & distributed event streaming [44].

Supports data integration [44].

Language support [44].

Supports multiple data formats [44].

Supports permanent storage & the management of data low and

consumer groups [44].

Supports replication and partitioning of data [44].

Supports deployment in diferent environments [44].

Apache RocketMQ [45] ✓ ✓ ✓ ✓ Both ✓ ✓ ✓ ✓ ✓ ✓
Message size is limited to max 4MB [45].

Message sending retries is limited to max 3 times [45].

Supports message broadcasting, tracking, iltering, and retrying [45].

Low latency [45].

Maintains the order of messages [45].

Supports multi-protocols [45].

Supports multiple programming languages [45].

Eclipse Mosquitto [46] ✗ ✓ ✓ ✗ Both ✓ ✓ ✓ ✓ ✓ ✓

Limited security [46].

No built-in clustering [89].

Unsuitable for large-scale deployments [89].

Deployment is challenging in a cloud environment [89].

Message size is limited to max 256MB [46].

Low resource usage [90].

QoS support [46].

Topic-based message iltering [46].

Supports logging and debugging [46].

Supports functioning as a bridge [46].

Supports dynamic restart coniguration [46].

Suitable for low-power machines [90].

ZeroMQ [47] ✓ ✓ ✓ ✓ Both ✓ ✗ ✓ ✓ ✓ ✓

High load of local control modules [14].

Fails to manage relationships between all network

components [14].

Limited security [91].

Scaling is challenging [92].

Delivery is not guaranteed [92].

Brokerless messaging platform [47].

Multi-languages and platforms support [47].

Carries messages across IPC, TCP, TPIC, and multicast [47].

Low latency [47].

Apache NiFi [48] ✓ ✓ ✓ ✓ Both ✓ ✓ ✓ ✓ ✓ ✓

Data extraction is diicult when a node is

separated from a cluster [48].

Under certain conditions, data is automatically

deleted [48].

Complex coniguration [48].

Provides a data low framework [48].

Provides data compression using a user-speciied algorithm to reduce

data size [48].

Prevents data loss by controlling data low and stopping the

production of more data than a queue can handle [48].

Supports bufering of all queued data [48].

Integrates and processes multiple data sources [48].

Ably Realtime [49] ✓ ✓ ✓ ✓ Both ✓ ✓ ✓ ✓ ✓ ✓

Caps the number of channels per connection [49].

Peak connections number limited between 200 and

240 [49].

Message size limited to 16KB [49].

Number of queues limited to 5 [49].

Queue length limited to 10,000 [49].

Addresses challenging real-time requirements [49].

Supports streaming data [49].

Supports multiple protocols [49].

Apache SamZa [50] ✓ ✓ ✓ ✓ Pull ✓ ✓ ✗ ✓ ✓ ✓

Only supports JVM languages [93].

Coniguration is complex [50].

Resources intensive with large data volumes [94].

Stream processing framework [50].

Supports message storage, routing, and processing management [50].

Supports at-least once data processing [50].

Real-time data processing with low latency [50].

Easy to integrate [50].

VerneMQ [51] ✓ ✓ ✓ ✓ Both ✓ ✓ ✓ ✓ ✓ ✓

Lack of security [14].

Clustering architecture is unproofed [95].

Limited enterprise features [95].

Not under active development [95].

Limited support for MQTT integration [95].

Lacks management and monitoring features [95].

No cloud-based service [51].

Master-less clustered messaging protocol [51].

Supports low control [14].

Low latency [51].

NServiceBus [52] ✓ ✓ ✓ ✓ - ✓ ✓ ✗ ✓ ✓ ✓

Scalability is limited due to use centralized

resource [96].

Monitoring tools are limited [97].

Debugging is complex with huge stream of

messages [96].

Ensures message processing [52].

Supports transactions and recovery is built-in [96].

Messages can be retried at regular intervals [96].

Kestrel [53] ✗ ✓ ✗ ✓ Pull ✓ ✓ ✗ ✗ ✗ ✗

Low support of security [53].

Low clustering capabilities [53].

Memory size is limited to max 128MB [53].

Number of items in the queue is limited to 500 [53].

Data size of each item in the queue is limited to max

32bytes [98].

Written in Scala [53].

Each server handles ordered MQs, with no cross

communication, resulting in a cluster of k-ordered queues [53].

NSQ [54] ✓ ✓ ✓ ✓ Push ✓ ✓ ✗ ✓ ✓ ✓

Data loss with server crash [54].

Messages are unordered [54].

Limited persistence [54].

No message recovery [54].

Lacks replication [54].

Messages are delivered at least once, which may

duplicate messages [54].

Load-balanced message delivery [54].

Eicient handling of high-volume& real-time data streams [54].

NATS [55] ✓ ✓ ✓ ✓ Both ✓ ✓ ✓ ✓ ✓ ✓ Message size is limited to max 64MB [99].

Suitable for real-time communication [99].

Easy to use [99].

Minimal resource consumption [99].

Ofers persistence with "at-least-once" and "exactly-once" [99].

KubeMQ [56] ✓ ✓ ✓ ✓ Both ✓ ✓ ✓ ✓ ✓ ✓
Unsuitable to all use cases due to it’s designed for

dynamic microservice environments [100].

Builds a hybrid infrastructure across clouds, on-prem, and at the

edge to allow microservices from multi-environments to

communicate [56].

Support for pub/sub, microservices, multistage pipeline,

and tasks queue use cases [56].

Runs in Kubernetes and connects natively to the K8S

cloud-native ecosystem [56].

Simple deployment in Kubernetes [56].

Easy to use [56].

Low latency [56].

ACM Comput. Surv.



10 • A. Saleh et al.

Table 3. Summary of proprietary and priority-supporting message brokers.
M
e
ss
a
g
e

B
ro
k
e
rs

a
n
d
Q
u
e
u
e
s

C
lu
st
e
ri
n
g
S
u
p
p
o
rt

M
o
n
it
o
ri
n
g
S
u
p
p
o
rt

P
u
b
/S
u
b
S
u
p
p
o
rt

P
a
ra
ll
e
l
P
ro
ce
ss
in
g

P
u
ll
&
P
u
sh

S
u
p
p
o
rt

R
e
li
a
b
le

D
e
li
v
e
ry

P
e
rs
is
te
n
t

A
u
th
e
n
ti
ca
ti
o
n

S
ca
la
b
le

D
is
tr
ib
u
te
d

F
a
u
lt
T
o
le
ra
n
ce

S
h
o
rt
co

m
in
g
s

F
e
a
tu
re
s

IBM MQ [57] ✓ ✓ ✓ ✓ Push ✓ ✓ ✓ ✓ ✓ ✓

High costs [101].

Problems with message prioritization due to unordered way

of allocating messages [102].

Does not always integrate with the newest forms of

messaging [102].

Messages are unordered [102].

QoS support [103].

Provides robust monitoring & tracing of all

messages [103].

Controls undelivered messages [103].

Multi-APIs support [103].

Allows applications to be decoupled [103].

Easy to deploy on various platforms [103].

Amazon SQS [58] ✗ ✓ ✓ ✓ Pull ✓ ✓ ✓ ✓ ✓ ✓

High scale-up cost [58].

Message size is limited between 1KB and 256 KB [104].

Message ordering is not guaranteed [58].

Message retention before deletion is limited between 1 minute

and 14 days [58].

Cloud-based web service [58].

Supports decoupling microservices, distributed

systems, and serverless applications [58].

Transmits, stores, and receives messages across

software components using SQS at any volume [58].

Messages are delivered at least once [58].

Microsoft MQ (MSMQ) [59] ✓ ✓ ✓ ✓ Push ✓ ✓ ✓ ✓ ✓ ✓

May experience resource failure [59].

Limitation on message size [59].

Drops all MSMQ messages if the appropriate server is not

deployed [105].

Open queue failure error prevents data transfer [105].

Multi-protocols support [59].

Tracks and deletes expired messages [59].

Manages distributed brokers [59].

Supports remote access [59].

Efective routing [59].

Provides guaranteed message delivery [59].

Provides a store and forward mechanism [59].

Supports transactions [59].

Oracle GlassFish Server

Message Queue [106]
✓ ✓ ✓ ✓ Both ✓ ✓ ✓ ✓ ✓ ✓

Resource intensive as the number of messages increases [106].

High latency as connections number to the broker

increases [106].

Size of message is limited to max 70MB [106].

Supports transactions [106].

Supports JMS 1.1, STOMP, and HTTP

protocols[106].

Well-known standards-based messaging

support [106].

TIBCO

Enterprise

Message Service [62]
✓ ✓ ✓ ✓ Both ✓ ✓ ✓ ✓ ✓ ✓

Excludes fault tolerance of the server [107].

Recourse intensive as message size increased up to 512MB [108].

Supports load balancing [107].

Manages the real-time low of information [62].

Supports multiple message protocols and

technologies [107].

Easy integration with TIBCO eFTL™ software

expands broker to web and mobile

applications [62].

Loosely coupled design [62].

Supports integration for heterogeneous

platforms [62].

TIBCO Rendezvous [61] ✗ ✓ ✓ ✓ Both ✓ ✓ ✓ ✓ ✓ ✓
Expensive [109].

Queue size limited to max 500 [110].

Supports C, C++, Java , & .NET programming

language [111].

Easy to use & setup [111].

Has a distributed architecture to eliminate

failure [111].

Anypoint MQ [63] ✓ ✓ ✓ ✓ Pull ✓ ✓ ✓ ✓ ✓ ✓

Expensive [112].

Payload size is limited to max 10 MB [63].

Converts the payload format, leading to an increase in

payload size. [63].

Supports data integration [112].

Stores messages in a queue [63].

Provides intelligent message routing [63].

Azure Service Bus [64] ✓ ✓ ✓ ✓ Both ✓ ✓ ✓ ✓ ✓ ✓

Is a cloud-only service [64].

Message size is limited between 256 KB and 100 MB [64].

Number of queues is to max 10,000 [113].

Number of subscriptions per topic is limited to max 2,000 [64].

Provides duplicate detection, duplicate

messages will not be stored in the queue [64].

Guarantees ordering [113].

Ofers scheduling [114, 115].

Integrates well with other Azure products [115].

Supports multi-protocols [64].

Provides delivery guarantee (at-least-once,

at-most-once) [113].

SAP NW PI [65] ✓ ✓ ✓ ✓ Both ✓ ✓ ✓ ✓ ✓ ✓
Message size is limited to max 350 MB [116].

Performance is directly afected by the message size [116].

Supports various integration patterns [65].

Supports message transformation [65].

Solace PubSub [66] ✓ ✓ ✓ ✓ Both ✓ ✓ ✓ ✓ ✓ ✓

Message size is limited to 64 MB [117].

Broker connections is limited to max 1000, some functions

are not available with the default 100 connections [117].

Guaranteed messaging is not supported over connections [117].

Provides dynamic message routing [118].

High availability & high-performance [118].

Provides distributed tracing [66].

Event-driven architecture [118].

Supports multi-protocols [118].

• Authentication support [130] is vital for permitting only authorized users and systems to publish or subscribe

to messages, especially in systems dealing with sensitive data.

• Scalability [131] refers to a message broker’s ability to handle increasing loads from a large number of

concurrently connected clients.

ACM Comput. Surv.



Towards Message Brokers for Generative AI: Survey, Challenges, and Opportunities • 11

Table 4. Summary of proprietary and non-priority-supporting message brokers.
M
e
ss
a
g
e

B
ro
k
e
rs

a
n
d
Q
u
e
u
e
s

C
lu
st
e
ri
n
g
S
u
p
p
o
rt

M
o
n
it
o
ri
n
g
S
u
p
p
o
rt

P
u
b
/S
u
b
S
u
p
p
o
rt

P
a
ra
ll
e
l
P
ro
ce
ss
in
g

P
u
ll
&
P
u
sh

S
u
p
p
o
rt

R
e
li
a
b
le

D
e
li
v
e
ry

P
e
rs
is
te
n
t

A
u
th
e
n
ti
ca
ti
o
n

S
ca
la
b
le

D
is
tr
ib
u
te
d

F
a
u
lt
T
o
le
ra
n
ce

S
h
o
rt
co

m
in
g
s

F
e
a
tu
re
s

Google Cloud

Pub/Sub [67]
✗ ✓ ✓ ✓ Both ✓ ✓ ✓ ✓ ✓ ✓

Unsuitable for large-scale deployments

due to limitations on resources [67].

Message size is limited to max 10MB [67].

Provides real-time stream analytic [67].

Handles the underlying infrastructure,

including provisioning servers, monitoring,

scaling, backups, and security updates [119].

Provides service maintenance feature that suitable

for Google’s most fundamental products to serve

all customers efectively [67].

Provides system maintenance feature to detect

any issues with releases by continuously-running

tests it is before used by customers and by

monitoring [67].

Integrates with other Google Cloud services [67].

Supports automatic retries and message

ordering [67].

Azure Storage Queue [71] ✗ ✓ ✓ ✓ Pull ✓ ✓ ✓ ✓ ✓ ✓
Orders messages randomly [113].

Message size is limited to max 64 KB [71].

Maximum number of queues is unlimited [113].

Activity monitoring support [71].

Supports storing large numbers of messages [71].

Messages are delivered at-least-once [113].

Does not provide duplicate detection [113].

Amazon MQ [68] ✓ ✓ ✓ ✓ Both ✓ ✓ ✓ ✓ ✓ ✓

Number of broker connections

is limited to 1,000, or 100 for micro

brokers [120].

Supports Standard Java Message Service (JMS)

features [120].

Performs maintenance to the hardware,

operating system,& the engine software

a message broker [120].

Integrates with other AWS services and

applications [68].

Supports distributed transactions [120].

Multi-protocols support [120].

Intel MPI Library [69] ✓ ✓ ✗ ✓ Both ✓ ✓ ✓ ✓ ✓ ✓

Expensive [121].

Compatibility issues with some

systems [69, 122].

Other processor architectures are not

supported [69].

Uses OpenFabrics Interface (OFI) to handle all

communications [69].

Establishes the connection only when needed,

which reduces the memory footprint [69].

Chooses the fastest transport available [69].

Supports multi-cloud platforms [69].

Supports multi-cluster interconnects [69].

Amazon Kinesis [70] ✓ ✓ ✓ ✓ Push ✓ ✓ ✓ ✓ ✓ ✓

Permission issues [123].

Costly as data volume increases [70].

Data payload size is limited to max

1MB), data read rate to to 1MB/s,

and number of consumers for each

data stream to max 20 [124].

Operations are rate-limited [124].

Limitation on number of data

streams [124].

Each record is added to a bufer with a

deadline [124].

Provides bufering and processing of real-time

data streaming [70].

Serverless streaming data service [70].

Provides reliable data processing and delivery with

checkpointing and error-handling [70, 125].

Ofers monitoring and management [70].

Ofers various developer tools [70].

IronMQ [72] ✓ ✓ ✓ ✓ Both ✓ ✓ ✓ ✓ ✓ ✓
Expensive [126].

Limited control [127].

Meets the needs of both small businesses and large

enterprises [127].

Supports multiple programming languages [127].

Uses REST API [72].

Easy to install [127].

Handles load bufering, synchronicity, and database

oloading issues [127].

No limitation on the number of queues [72].

ACM Comput. Surv.



12 • A. Saleh et al.

• Message brokers can operate in distributed environments [103], allowing them to work on multiple devices

or locations, optimizing workload distribution.

• Fault tolerance support [103] enables the message broker to recover from failures and continue operating

smoothly.

The evolution of message brokers as illustrated in Tables 1 to 4 highlights signiicant advancements in their

features and capabilities, driven by by advancements in computing architectures, application demands, and

integration with emerging technologies. In the early stages, clustering support was either absent or limited,

posing challenges to scalability. This prompted brokers such as Apache Kafka and Intel MPI Library to provide

robust clustering capabilities, enabling horizontal scaling and eicient multi-cluster interconnects to handle large

message volumes efectively. Initially, monitoring tools were sparse and often relied on third-party integrations.

Today, platforms like Google Cloud Pub/Sub and IBM MQ ofer integrated monitoring features, facilitating

proactive issue detection and performance optimization.

Current systems have moved beyond basic routing to support advanced topic-based iltering, as seen in

Eclipse Mosquitto, and support multiple protocols and programming languages, such as Apache ActiveMQ.

Reliable delivery mechanisms have also evolved from minimal guarantees like "at-most-once" delivery to robust

mechanisms "at-least-once" delivery through acknowledgments, retries, and persistent queues, as exempliied by

NATS, Azure Service Bus, and Azure Storage Queue. Furthermore, fault tolerance has seen signiicant progress,

with features such as automatic retries helping to prevent data loss and downtime, as demonstrated by Celery

and Google Cloud Pub/Sub.

With these capabilities, they are able to serve as the backbone for a wide variety of event-driven architectures

and asynchronous communication patterns by serving as the basis for these architectures. Each feature relects a

critical capability necessary for brokers to meet the demands of modern, dynamic, and data-intensive applications,

like GenAI applications. For example, these applications require several operational requirements, including

scalability to meet dynamic demand, eicient data exchange management, real-time responsiveness, reliability,

and robust security.

With scaling support, message brokers can distribute workloads across multiple nodes eiciently and meet

GenAI applications’ growing demands. Additionally, pub/sub support capabilities enable seamless asynchronous

communication between multiple components in distributed environments. The message broker with parallel

processing capabilities can eiciently handle multiple messages simultaneously, enabling high throughput and

low latency (real-time responsiveness), which are key to GenAI applications’ real-time requirements. Additionally,

push and pull support ensures timely processing of high-priority or time-sensitive data while facilitating eicient

data stream management.

The message broker equipped with monitoring tools is crucial, since real-time monitoring allows for detection

and seamless recovery of issues such as latency, bottlenecks, and failures before they afect system performance.

This capability improves reliability, for example latency-sensitive GenAI tasks, such as real-time translation and

conversational AI. GenAI applications also require guaranteed delivery mechanisms, such as acknowledgments

and retries, to ensure the integrity of critical data. This is particularly important in scenarios where data loss can

lead to system failure. Also, the sensitive nature of GenAI systems’ data-such as personal or medical information-

demands robust authentication mechanisms to prevent unauthorized access and ensure data security.

Despite their inherent strength, message brokers have several limitations that can impact their performance.

Among these limitations, for instance, message size, message sending retries, security features, queue length,

monitoring tools, memory size limitations and the number of allowable broker connections. These limitations

further highlight the challenges associated with these systems. For instance, brokers face in complex setup

ACM Comput. Surv.



Towards Message Brokers for Generative AI: Survey, Challenges, and Opportunities • 13

En
vi

r
on

m
en

t

Message Broker

Actions

Perception

Observations

LLM Agent

LLM

Sensors

User

Decision-Making

Core LLM

Goals

Memory

Knowledge
Base

Planning

Decision-
MakingActuation

Actuators

Tools

Fig. 3. The overall architecture of a GenAI agent, with possible integration points with message brokers.

processes and real-time processing demands, such as latency issues. Additionally, maintenance, monitoring, inte-

gration, large-scale deployments, and management can pose signiicant diiculties that contribute to considerable

resource consumption.

Furthermore, the limited ability of some brokers to handle large volumes of data require the use of methods

such as GenAI tools to enhance their capabilities and meet the growing processing and performance demands of

GenAI applications. These applications require a dynamic and adaptive communication infrastructure capable

of eiciently managing large-scale data generation. In the following section, we will explore the role of GenAI

models in enhancing message brokers, the contribution of message brokers to GenAI, and advanced techniques

designed to optimize their functionality within the GenAI context.

4 Message brokers and GenAI

The exploration of pub/sub communication patterns from the perspective of GenAI opens up a vision for the

future, suggesting a range of beneits that could potentially enhance content delivery, personalization, and

user engagement. Leveraging AI models such as GPT-3 [132] and its successors holds the promise of delivering

customized content in real-time, tailored to the unique preferences of individual subscribers. This could be

achieved by automatically generating human-like text that aligns with each subscriber’s interests [7]. While

the full realization of these beneits remains a subject for further research and development, the integration of

advanced AI technologies with pub/sub systems ofers a promising opportunities into the possibilities for more

dynamic and personalized communication strategies. In this and following sections, we will attempt to shed light

on this vision with practical examples and discuss how emerging enabling technologies can play a key role in

this respect.

Language-based GenAI systems ofers the capability to process subscriber queries and feedback eiciently

using natural language understanding. These systems can power chatbots and virtual assistants, enabling users

to communicate both interactively and intelligently with each other. Furthermore, their ability to summarize

content, translate it into diferent languages, and moderate it signiicantly enhances the quality and accessibility of

information [133]. Consequently, such systems enable the design of proactive information delivery mechanisms,

including automated reporting, anomaly detection, and predictive analysis [134ś136]. For instance, LLMs can learn

ACM Comput. Surv.



14 • A. Saleh et al.

from historical data and trends to autonomously analyze security logs and reports, generating comprehensive

summaries that detail threat sources and attack paths while providing early warnings about potential threats [137,

138]. Additionally, within network environments, LLMs can predict peak usage periods by analyzing historical

trends in user activity, workload demands, and performance metrics, allowing for proactive scaling of computing

resources [139]. With these capabilities, LLMs can contribute to reliability and resource optimization.

These advancements in language processing and interaction capabilities signify a critical opportunity in the

evolution of computing architectures, especially as we address the rising processing and performance demands

of GenAI applications. The complexity and sophistication of these applications necessitate a robust architectural

framework that is not only capable of supporting the intricate dynamics of GenAI operations but also adaptable

to the novel types of data generated by GenAI applications. This architecture should be speciically tailored to

leverage the unique advantages that GenAI ofers, such as enhanced content personalization and user engagement,

while still aligning with traditional scenarios where message broker technologies are pivotal. For instance, the

architecture can integrate LLMs and Large Multi-modal Models (LMM) to enhance the capabilities of actuators

and sensors, enabling them to extract more semantic information from data and identify combinational patterns

among them [140]. This approach ensures that the system can dynamically adapt and respond to the evolving

landscape of GenAI-driven communication, making it possible to abstract richer, more meaningful insights and

foster synergistic interactions within the pub/sub ecosystem.

In this regards, central to our discussion is the conceptualization of the GenAI agent model, which exempliies

the architecture required to harness the full potential of GenAI applications Fig. 3. This model, segmented into

environment interaction, perception, decision-making, and actuation components, serves as the backbone for

integrating GenAI capabilities with pub/sub systems. It encapsulates the essence of GenAI’s interaction with its

surroundings, leveraging advanced computational engines like LLMs for processing and decision-making tasks.

The perception component perceives the environment through observations. It is equipped with sensing

elements which may include physical sensors to gather diverse data from the surrounding environment, software-

based tools, or both, along with a message broker designed to facilitate communication between these elements.

These physical sensors can capture multi-modal observations, including visual, auditory, and textual data, as

well as other modalities that can help the GenAI agent to understand its situation. The software-based tools

such as LLMs, interface with abstract data streams. They read, analyze, and transform the gathered data into a

comprehensible format for the agent’s brain. These tools includes such as Multimodal-GPT [141], Flamingo [142],

HuggingGPT [143], AudioGPT [144], GPT-4 [145], Visual ChatGPT [146], etc. Using sensors with LLMs enhances

their capability to understand and react to changes in the environment, leading to more efective decision-making

in dynamic situations.

The agent’s decision-making component, or brain, executes memorizing, thinking, analyzing and decision-

making tasks, supporting long and short-term memory, knowledge, and planning [147]. Short-term memory

records recent tasks and actions, while long-term memory acts as an external database, enhancing the agent’s

ability to recall past conversations and pertinent details. Utilizing subgoal decomposition [148] and a chain-of-

thought approach [149], the agent breaks down large tasks into multiple manageable subgoals that are processed

by a group of LLMs models. Through self-critics and relection [150, 151], the agent can learn from its errors,

enhancing its capabilities iteratively.

The agent uses actual physical actuators, LLMs-based tools, or both to execute tasks in the actuation com-

ponent. These elements allow agents to interact with and respond to their environments. The LLMs-based

tools include text generation through text-based tools such as ChatGPT [152]. Moreover, agents’ workspaces

have been expanded with embodied actions to support their integration and interaction with the physical world.

LM-Nav [153] analyzes input commands and the environment, aiming to identify the optimal walk based on a

topological graph that is constructed internally. EmbodiedGPT [154] enables robots to comprehend and perform

ACM Comput. Surv.



Towards Message Brokers for Generative AI: Survey, Challenges, and Opportunities • 15

motion sequences in physical settings through multimodal visual understanding. Using these non-textual output

tools extend the functionality of language models and agent scenarios.

Crucially, GenAI agents are also able to generate novel tools. With frameworks like CREATOR [155], agents

can generate executable programs or merge existing tools into more robust ones. Furthermore, with frameworks

such as Self-Debugging [156], agents can iteratively improve the quality of the generated tools, autonomously

learning from past experience, self-correcting and adapting, enhancing their tool-generation capabilities.

Following milestone studies in edge intelligence [157ś159], the interaction between brokers and GenAI can

be separated into two diferent categories: the beneits that GenAI can bring to message brokers, as well as the

beneits that message brokers can provide to GenAI, are illustrated in Table 5 and Table 6.

4.1 GenAI for message brokers

GenAI has the potential to complement and enhance the intelligence and eiciency ofmessage brokers, particularly

by supporting the prediction of routing decisions to avoid busy routes. LLM can analyze network status, traic,

routing data to evaluate network performance [135]. Based on this information, LLMs can automatically adjust

routing strategies and allocate traic to optimal paths, reducing latency. For instance, during times of network

congestion, LLM can dynamically reroute some traic to less congested paths, reducing latency and enhancing

service quality [139].

Furthermore, GenAI’s ability to identify patterns that may induce errors [135, 160ś162] ofers a promising

avenue for augmenting message brokers with automatic corrective measures, potentially increasing system

reliability and reducing downtime.GenAI’s could assist in proactively distributing workloads or services across

multiple nodes and determining the optimal time for scaling computing resources by analyzing historical usage

patterns, workload demands, and performance metrics [139]. This potentially can minimize access times and

enhance the eicient utilization of resources.

By leveraging GenAI’s advanced capabilities in understanding, interpreting, and generating text [163], there

is an opportunity to improve topic matching accuracy by analyzing the content of messages, enhancing the

precision with which messages are delivered to their intended recipients. Additionally, GenAI’s capacity for

learning from ongoing interactions and its explainability could create a continuous feedback loop [164] that,

when used alongside existing machine learning models, reines system performance over time. Table 5 highlights

the integration of GenAI in message broker systems and addresses key issues, their impact of message broker

systems, the GenAI solutions that can be applied to enhance traditional AI capabilities within a message broker

system, and the associated challenges.

To concretely illustrate the enhancements that GenAI brings to message brokers, we present a representative

use-case scenario involving a smart city infrastructure. Consider an IoT ecosystem with a message broker

responsible for managing communications between thousands of devices across a smart city infrastructure. This

scenario is visualized in Figure 4, which illustrates how a message broker facilitates communication between

IoT devices, AI modules, and system operators. Traditional AI modules within the broker analyze sensor data to

facilitate basic routing and load balancing. However, with the integration of GenAI, the system gains a signiicantly

broader and deeper analytical capabilityÐin particular, the ability to process and interpret large volumes of

unstructured log data and textual feedback from devices and users in real-time, which traditional AI modules

are not typically equipped to handle. For instance, GenAI models, trained on large and diverse datasets, can

analyze historical trends and real-time environmental signals to predict traic congestion on network pathways

[165]. This semantic-level understanding and forecasting ability enables the message broker to dynamically

reroute data lows, reducing latency and avoiding congested network nodes in ways that go beyond traditional

rule-based or statistical methods. In this respect, and still referring to the example shown in Figure 4, GenAI

modulesÐsuch as LLMs or foundation models ine-tuned for system log understandingÐcan interpret user

ACM Comput. Surv.



16 • A. Saleh et al.

Table 5. GenAI for Message Broker.

Issues Impact on Message Broker GenAI Solution Challenge

Routing

&

Filtering

&

Matching

- Accurate routing decisions for eicient

message delivery.

- High accuracy for iltering and matching

of messages.

- Prediction of routing decisions to avoid busy routes

- Filtering of messages according to speciic criteria.

- High matching accuracy by analyzing the content of

messages

- Handling large-scale dynamic message low.

- Maintaining low latency for real-time systems.

Load

Balancing

- Bottlenecks due to uneven workload

distribution.

- Coordination across multiple nodes.

- Proactive distribution of workloads or services

across various nodes.

- Minimizing access times.

- Adapting to luctuating workloads.

- Ensuring fair distribution of computational

resources.

Failure

- Downtime impacts system reliability

and user trust.

- Potential for failures in distributed systems.

- Increasing system reliability and reducing downtime.

- Identify patterns that may induce errors or security

breaches.

- Automatic corrective measures.

- Predicting failures in highly dynamic and

unpredictable environments.

- Addressing failures before they impact

other systems.

- Ensuring system recovery.

Scalability

- Systems must handle growing data low while

maintaining eiciency.

- Poor scalability leads to service degradation.

- Determining the optimal times for scaling resources.

- Ensure eicient operation under varying loads.

- Eicient resources utilization.

- Balancing cost-eiciency with performance.

Continuous

Improvment

- Continuous adaptation to evolving

requirements.

- Learning from system interactions to

improve over time.

- Learning from ongoing interactions.

- Improving system performance over time.

- Integrating learning mechanisms without

disrupting ongoing operations.

Fig. 4. GenAI for Message Brokers in a Smart City Context. This diagram illustrates how GenAI modules enhance traditional
AI capabilities within a message broker system deployed in a smart city infrastructure. The integration enables more intelligent
routing decisions, semantic error detection, and adaptive resource scaling by leveraging real-time sensor data, user feedback,
and predictive insights.

feedback and error reports, detect semantic anomalies, and suggest proactive corrective actions [136ś138]. These

modules complement traditional AI by handling more abstract and unstructured data inputs [166, 167], ultimately

enabling more adaptive and context-aware broker decisions.

Moreover, GenAI’s pattern recognition capabilities [168] extend to identifying subtle signs of potential system

failures or security breaches before they escalate. By analyzing error logs and user reports, GenAI can pinpoint

anomalies that traditional systems might overlook, enabling preemptive maintenance and strengthening the

network’s security layout.

In the context of resource scaling, LLMs can be used for time series analysis [169, 170] to intercept trends in

data traic and device engagement to forecast demand spikes [171, 172]. This foresight enables the system to scale

resources up or down eiciently, ensuring optimal performance without wastage of bandwidth or computing

power. The continuous learning aspect of GenAI [173], fueled by an ongoing feedback loop, ensures that the

message broker’s performance and decision-making processes improve over time, adapting to the evolving needs

of the smart city infrastructure.

ACM Comput. Surv.



Towards Message Brokers for Generative AI: Survey, Challenges, and Opportunities • 17

Table 6. GenAI on Message Broker.

Issues Impact on GenAI Message Broker Solution Challenge

Scalability
High volume of data streams across

distributed systems impacts lexibility.

- Dynamic load balancing

- Horizontal scaling

- Decoupling.

Ever-growing data volumes & connections

overwhelm traditional brokers.

Fault

Tolerance

Message loss during failures impacts

reliability.

- Persistent message storage

- Acknowledgments

- Retries.

Complexity, especially in resource-constrained

environments.

Low Latency
Delays disrupt real-time applications

like chatbots.

- Optimized routing

- Real-time queuing mechanisms.

Advanced methodologies (e.g., distilled models,

computing & networking-aware orchestration,

resource management techniques).

Heterogeneity
Diiculty integrating various

sub-components.

- Seamless interoperability

- Balanced oloading of tasks.

Ensuring consistent communication between

heterogeneous components.

Dynamic

Workloads

Resource bottlenecks due to

unpredictable spikes.

- Manage the real-time data streams

eiciently.

GenAI workloads are unpredictable &

vary signiicantly over time.

Energy

Eiciency

High energy consumption due to

large-scale workloads.

- Energy-eicient message routing

- Optimized resource utilization.

Balancing performance and energy eiciency

in large-scale deployments.

Ethical

& Privacy

Inaccurate or misleading outputs can

disrupt critical applications.
- Monitor and detect anomalies.

Real-time validation, continuous monitoring,

robust security measures, ine-tuning.

To conclude, we reairm that the integration of GenAI into message brokers opens new possibilities for

enhancing both the intelligence and adaptability of broker systems. As showcased through the smart city example,

GenAImodules can help overcome some of the limitations that are inherent to traditional AI approaches, especially

when dealing with unstructured inputs and dynamic environments. Overall, this approach aims to enable brokers

to support more context-aware decision-making, thereby improving service quality in complex, heterogeneous,

and large-scale deployments.

4.2 GenAI on message brokers

GenAI introduces unparalleled content generation capabilities for advanced applications across diverse do-

mains [7]. Future GenAI systems are expected to experience a data explosion due to the integration of multimodal

systems [174]. This heterogeneous data explosion will span across a distributed edge-cloud continuum, placing

increasing demands on current communication infrastructures [7].

As GenAI applications scale, managing large datasets across edge, fog, and cloud layers will require opti-

mized distribution strategies that minimize inference latency [17]. Additionally, coordinating and managing the

distributed inference process across distributed nodes is crucial for ensuring responsiveness in reactive applica-

tions [17], while also ensuring the integrity of AI-generated content. This requires communication infrastructure

that can meet the requirements of GenAI applications. Table.6 highlights the critical issues afecting GenAI,

emphasizes the importance of message brokers in addressing these issues, and outlines the associated challenges.

Message brokers, leveraging asynchronous communication capabilities [103], can operate to enhance GenAI

task processing eiciency. This approach facilitates interactions that do not necessitate real-time communication,

streamlining the processing of real-time data streams. By decoupling the sending and receiving processes, message

brokers can ofer a lexible and scalable solution for managing the complex data worklows associated with GenAI

applications.

Central to message brokers is their robust mechanism to prevent message loss [130], which is key in conserving

computational resources and safeguarding critical data for GenAI applications. These systems are equipped with

tools designed to monitor and regulate message low efectively. This functionality is fundamental in preserving

the performance and operational integrity of GenAI by ensuring that data is processed eiciently and reliably,

mitigating the risk of bottlenecks and data overlow.

ACM Comput. Surv.



18 • A. Saleh et al.

Furthermore, message brokers facilitate service decoupling [103], enabling GenAI tomanage growingworkloads

more efectively. The broker’s ability to distribute tasks to diferent nodes allows GenAI to achieve a balanced

load distribution [103], with diferent components running on diferent nodes. This is particularly important for

GenAI deployments in the computing continuum, providing them with access to local environments with limited

computational capacity. In such cases, a message broker can act as an intermediary, bridging sensors with the

perception module and conveying actions to the actuators and responses to the user [3, 17].

Within the critical brain component, message brokers play a vital role in linking various sub-components, each

ofering distinct features or possessing heterogeneous computational resources and functionalities. By promoting

interoperability and collaboration among diverse LLMs agents that contribute to decision-making, message

brokers can signiicantly boost the performance of agents on complex tasks. This collaborative framework also

facilitates the balanced oloading of tasks, optimizing the utilization of computing, communication, and storage

resources across the network.

This highlights using agent frameworks such as AutoGen [175] and LangChain [176]. These frameworks enable

building autonomous LLM agents conigured to perform diverse tasks while collaborating within a coordination

layer withminimal human intervention. These entities have the ability to integrate with external data sources, such

as APIs and knowledge bases, enhancing their capability to access, process, and utilize information dynamically.

Incorporating message brokers within the coordination layer contribute to manage the low of information

between agents, as well as enable decoupling of LLM agents (producers and consumers), allowing LLM agents

and external tools or APIs to independently publish or consume messages without direct interdependencies.

Additionally, message brokers ability to support the integration of agents or tools is beneicial in enabling parallel

processing for complex worklows involving multiple agents. Furthermore, the asynchronous communication

is essential for managing tasks with varying execution times or priorities, ensuring the system responsiveness.

Message brokers can manage retries, storage, and error handling, ensuring the stability and reliability of these

frameworks.

For instance, integrating Kafka within the AutoGen framework [177] established a responsive infrastructure

that eiciently routed multimedia data to subscribing agents or tools based on topics. This integration allowed

the system to manage multiple data streams and distribute them among agents without bottlenecks, enabling

seamless interaction between LLM agents and external data sources.

However, integrating GenAI into message broker requires careful planning and customization to mitigate the

risks of biased, misleading, or delayed outcomes. Addressing hallucination problems [178], inference latency [7],

privacy [134], and ethical considerations [179] is paramount to align GenAI implementations with speciic

system objectives [134]. For further details, as illustrated in the Table 6, one prominent challenge is model

hallucination, where the AI generates inaccurate content [178]. This issue can signiicantly impact message brokers

by propagating misinformation, thereby lack of user trust. Enhancing message broker through implementing

robust validation mechanisms to verify model outputs and ine-tuning the model with domain-speciic data is

essential strategies to address this issue [180].

Another key concern is inference latency, which refers to the delay between a request to the model and the

generation of its response. High latency disrupts time-sensitive applications, such as real-time communica-

tion, creating bottlenecks and reducing the overall throughput of the message broker. Consequently, message

brokers must adopt advanced methodologies to manage the extensive data volumes generated and consumed

by GenAI applications efectively and minimize computational demands in this context [181]. As example for

these methodologies, implementing computing- and networking-aware orchestration, resource management

techniques [182], and deploying lightweight versions of the model or small language models, such as distilled

models. These methodologies are not only essential for enhancing connectivity but also play a crucial role

in reducing the computational demands and latency that are often associated with GenAI tasks. Additionally,

ethical and privacy concerns present signiicant challenges, as GenAI may generate biased, harmful, or malicious

ACM Comput. Surv.



Towards Message Brokers for Generative AI: Survey, Challenges, and Opportunities • 19

content, compromising user trust [134, 179]. Addressing these issues requires integration broker with continuous

monitoring, robust security measures [183].

Fig. 5. Message brokers for GenAI. This diagram illustrates a smart manufacturing system where a message broker facilitates
the flow of multimodal data from sensors and cameras to a GenAI model and a traditional ML model. The GenAI model
performs comprehensive analysis by combining diverse data types, while the ML model focuses on predictive maintenance
tasks.

In practical terms, there are several technical aspects contribute to enhancing the suitability of message

brokers for GenAI applications. Among these technical aspects are model compression and model training

acceleration strategies. The integration of these strategies within message broker can signiicantly mitigate

GenAI’s computational requirements and delays, addressing one of the major challenges in deploying these

advanced systems eiciently. Furthermore, message broker with intelligent resource management algorithm can

distribute workloads based on each node’s capacity signiicantly, enhancing the performance of the distributed

system and ensuring optimal utilization of computational and storage resources while maintaining smooth

operation, even under varying loads.

Embedding semantic communication techniques within message brokers may contribute in management and

real-time analysis of vast data volumes generated by GenAI applications. This include integrate techniques to

transform GenAI input and output data into priority-based smart data, facilitating more timely and efective

processing. Embedding a prioritization mechanism similar to the QoS levels deined in MQTT [184] serves as

a suitable approach, ensuring that critical tasks are processed with the urgency they require. This adaptation

enhances the responsiveness of GenAI systems by ensuring that high-priority data is attended to promptly,

mirroring the eiciency and reliability seen in established communication protocols.

Additionally, integrate techniques to select the right models and their continuous adaptation in response to

evolving data landscapes. This is crucial for maintaining the accuracy and relevance of GenAI outputs. In this

context, incorporating methods for model ine-tuning [185], continual and in-context learning within message

brokers can enable dynamic adjustments to the models based on real-time data, ensuring that the GenAI system

remains efective and up-to-date. This requirement underscores the necessity for message brokers to support

not just the routing and handling of messages, but also the intelligent adaptation of GenAI models to changing

conditions, thereby maximizing the potential of GenAI applications in diverse environments.

In this respect, embedding a continuous monitoring system within the message broker to promptly detect

anomalies and data loss becomes fundamental. This system enables corrections and adaptations in real time,

ACM Comput. Surv.



20 • A. Saleh et al.

Fig. 6. GenAI-enabled and Semantic Communication. This diagram illustrates a trafic management system where a message
broker, enhanced with semantic processing and LLMs capabilities, prioritizes and analyzes trafic data and emergency alerts.

fostering the necessary model adaptation and ensuring that the GenAI systems remain both robust and responsive

to the dynamic nature of real-world data and application demands.

We have outlined several key aspects on how message brokers can facilitate the integration and management

of GenAI applications within various domains. For instance, Figure 5 demonstrates a practical application in

smart manufacturing, where a message broker orchestrates the low of multimodal data to both GenAI and

traditional ML models. This setup enhances real-time decision-making and operational eiciency, showcasing

the dynamic capabilities of message brokers in supporting advanced analytics.

As we noticed, the integration message broker within GenAI require advanced message broker that leverage

distributed architectures to schedule tasks, ensure scalability, and maintain correctness in dynamic environments.

However, the central challenge is the broker’s need to adopt new methods and techniques to address scalability,

semantic communication, and distributed inference challenges. In the following sections, we will further discuss

advanced methods designed to enhance the functionality of message brokers within the GenAI context, over-

coming deployment challenges [3, 17]. By tackling these issues, we aim for the seamless integration and optimal

performance of GenAI applications. This exploration will include discussions on how speciic platforms and

frameworks can be leveraged to enable our envisioned approach with insights into the integration of existing

and advanced methods and techniques within speciic brokers, highlighting their potential adaptations in the

analyzed context.

4.3 Semantic Communication

Efective management and real-time analysis of vast data volumes are crucial for the development of GenAI

applications. This necessitates a lexible system capable of accommodating a variety of data types with precision.

Traditional message broker systems, while eicient in basic data routing, often struggle to copewith the complexity

and volume of data typical in GenAI environments, limiting their efectiveness in scenarios requiring nuanced

understanding and processing of data content. To address these limitations and reduce the strain on communication

networks, embedding eicient communication mechanisms, such as semantic communication [186, 187], within

message brokers is essential. This integration, particularly leveraging the capabilities of LLMs, can enable

intelligent, automated feature selection that aligns with subscriber needs, enhancing the broker’s ability to

manage data-rich content more efectively [188]. While this approach may not directly minimize latency due to

the inference time required by LLMs, it signiicantly improves the eiciency of data search, match, and mapping

processes, thereby optimizing overall system performance in handling and distributing relevant information.

Following this, message brokers equipped with dynamic prioritization capabilities can intelligently identify

and route high-priority messages by incorporating semantic communication technology. This prioritization

ACM Comput. Surv.



Towards Message Brokers for Generative AI: Survey, Challenges, and Opportunities • 21

allows for the handling of messages based not just on the criteria within the message header, but also on the

content itself, enhancing the relevance and timeliness of information delivery. Although integrating semantic

communication with a broker introduces demands for high scalability, processing power, and memory to manage

large datasets efectively, it is a crucial step towards mitigating network congestion and optimizing the use of

network resources. Moreover, this sophisticated processing capability must be balanced with robust security

features to ensure sensitive data is handled securely, highlighting the need for a comprehensive approach to

upgrade message broker systems for the GenAI era.

In delay-sensitive applications like healthcare, this integration is vital to assigning priorities based on its

deep understanding of data patterns and sensitivities and its subscribers’ speciic needs. For example, in the

healthcare scenario, GenAI can analyze large amounts of medical data to identify urgent cases, alerting healthcare

professionals of critical patient needs or alarming health trends [189]. In a similar fashion, the efective synergy

of LLMs with semantic processing capabilities within message brokers can also be observed in smart city traic

management (Fig.6). Here, the combination of semantic tags from emergency vehicles and real-time traic sensor

data, when processed through an advanced LLM, enables the system to prioritize and analyze critical information

promptly. This GenAI-enhanced approach not only interprets the urgency and context of incoming data but

also predicts and optimizes traic low in response to dynamic urban conditions. By doing so, it ensures that

emergency responses are efective, minimizing delays and improving public safety. Building upon the foundation

laid by traditional ML techniques, GenAI complements these approaches by incorporating advanced natural

language understanding and context-aware processing capabilities. This allows for a more peculiar analysis

and interpretation of complex data sets, enhancing the system’s ability to make informed decisions rapidly and

accurately.

For instance, embedding semantic ontology model in Apache Kafka [190] can enhance its routing and delivery

capabilities, enabling the broker to understand the meaning and context of each message. Additionally, Eclipse

Mosquitto [46], with its support for topic-based message iltering, can be enhanced through semantic communi-

cation by embedding ontologies, semantic tags, or metadata [191] within topics. This enhancement can enable

intelligent and context-aware iltering, allowing the broker to understand and process messages based on their

meaning and relevance. Solace PubSub provides dynamic message routing [118], which can be further enhanced

by embedding semantic communication. By incorporating semantic annotations into messages, the system can

enable context-aware routing, ensuring that messages are directed to the most relevant subscribers based on

their content, meaning, or priority, improving the eiciency of message delivery.

Furthermore, Apache RocketMQ, with its support for message broadcasting and iltering [45], has the potential

to ofer advanced message routing and iltering capabilities by leveraging Natural Language Processing (NLP) for

interpreting messages’ semantic content, allowing for context-sensitive handling [17]. Finally, Anypoint MQ’s

intelligent routing [63] can be enhanced by integrating a knowledge graph that represents relationships between

entities such as topics and subscriptions [192]. This integration enables dynamic routing decisions based on both

content and context.

However, implementing this approach presents several challenges. Some semantic communication techniques

are computationally intensive to meet real-time inference demands [193]. This highlight the need for novel,

distributed, and intelligent resource management methods to enable real-time responsiveness in various applica-

tions. Additionally, semantic communication mechanisms enhance the broker’s ability to process and interpret

content contextually, enabling selective iltering of sensitive data before transmission. Nevertheless, processing

sensitive data requires robust security measures to ensure its protection during processing and transmission

while maintaining user trust.

ACM Comput. Surv.



22 • A. Saleh et al.

4.4 Dynamic Data and Model Management

GenAI-based applications require a data and model management system that not only simpliies the construction

of AI models but also optimizes eiciency and efectiveness. Such a system should minimize the need for

human intervention in selecting ML models, enhancing real-time responsiveness with high model’s accuracy,

and improving real-time inference capabilities when integrated with message brokers. LLMs can expedite the

model selection process and boost the deployment eiciency and precision of AI solutions [194, 195]. Moreover,

integrating GenAI models with message brokers involves managing and directing the related data lows.

For instance, Apache Pulsar [43] with its distributed streaming capabilities, can be enhanced by integrating it

with LLMs to enable autoscaling for eiciently managing large datasets required for training and inference in

GenAI applications.

GenAI models, such as LLMs, frequently process sensitive or personal data, robust security measures are critical.

For example, Google Cloud Pub/Sub [67] incorporates multiple integrated security measures to protect conidential

data being transmitted, including authentication, encryption using Google-managed keys, and advanced Data

Encryption Key (DEK) technology [67]. However, the security of the broker can be further enhanced by employing

GenAI tools to enhance security protocols and improve the automation of key cybersecurity processes [134, 196].

These improvements may include automated reporting, threat intelligence analysis, and malware detection [196],

ensuring further resilience of Google Cloud Pub/Sub security framework.

Amazon Kinesis [70] provides data transmission capabilities through synchronous data replication, checkpoint-

ing mechanisms, and error-handling strategies [70, 125]. However, to further enhance its reliability in GenAI

applications, several improvements can be introduced, such as the integration of AI-driven anomaly detection

to proactively identify and mitigate transmission failures. Additionally, implementing self-healing mechanisms

can enable automatic detection and rerouting of failed data streams. These improvement would make Amazon

Kinesis more robust solution for real-time data transmission for GenAI applications.

Further, Apache Kafka’s [44] robust architecture, equipped with a stream processing feature enables it to

eiciently handle parallel processing tasks for GenAI applications. However, it can be improved by integrating

with predictive analytics and AI-driven methods for dynamically scaling brokers, eiciently partitioning topics,

and determining the optimal number of partitions.

Since processing GenAI models is computationally intensive, with large amounts of real-time data, it needs to

be scalable and distributed to cope with the varying workloads. Running these models locally on edge devices is

often impractical due to hardware limitations. This challenge is particularly signiicant in real-time applications

where high-performance inference is essential. Such integration also must also consider the handling of streaming

data.

Moreover, this integration requires seamless coordination between clients and brokers to exchange information,

such as model architectures. Furthermore, Eicient and intelligent coordination is essential to prevent delays or

data mismatches. Misalignment in understanding the model’s structure between the client and broker can lead to

incorrect deployments, repeated requests, or errors, which can degrade the system’s performance and reliability.

4.5 Training Acceleration

The training of GenAI models requires a signiicant amount of computation and time. By incorporating training

acceleration methods [197] into a message broker system, training time can be reduced, computational resources

saved, and models deployed more rapidly. Message brokers play a pivotal role in this process by enabling the

distribution of training tasks across multiple nodes, which allows for parallel processing of data and computations.

This parallelization accelerates the training process by breaking down complex tasks into smaller, manageable

units that can be processed simultaneously, reducing the overall time required to train and deploy large GenAI

models. It also facilitates faster and more eicient inference for LLMs. Moreover, message brokers monitors

ACM Comput. Surv.



Towards Message Brokers for Generative AI: Survey, Challenges, and Opportunities • 23

resource utilization and reallocates tasks dynamically in real time to balance computational demands across

nodes.

The most common technique of training acceleration is sequence parallelism (SP), in which the prompt

sequence is divided into smaller sub-sequences and processed in parallel [198, 199]. Another method involves

selective activation re-computation, in which only the necessary parts of the GenAI model are recalculated during

training, rather than the entire model [200]. A ine-tuning technique involves adjusting the parameters of an

existing model rather than training a new one from scratch. As a result, training data and computations can be

reduced [201].

Furthermore, tensor parallelism works by splitting the model across multiple GPUs and processing diferent

parts of the model in parallel [202]. The mixed-precision training technique is one of the most efective ways to

enable fast and eicient LLM inference on GPUs [203]. In this technique, the amount of memory required during

training is reduced by using lower-precision data types.

The interaction between GenAI training systems and message brokers can signiicantly accelerate the training

process by utilizing distributed computing and dynamic resource management. However, this approach faces

challenges related to load balancing, data dependencies, and hardware compatibility. In a distributed training,

tasks must be distributed across multiple and heterogeneous nodes and dynamically reallocating tasks to maximize

resource utilization [204]. Intelligent task scheduling algorithms are essential to dynamically distribute tasks

while accounting for node capabilities and workload balance.

In addition, training GenAI models often involves handling large datasets that are divided into chunks and

distributed across nodes. These chunks may have dependencies that need to be maintained to ensure accurate

model training [198, 199]. Message brokers need robust mechanisms to track and manage data dependencies,

ensuring proper sequencing and maintaining data integrity to prevent errors caused by incomplete data handling.

For instance, Apache ActiveMQ provides eicient management and resource allocation capabilities [27],

which can be enhanced through LLMs to analyze historical usage patterns and predict optimal task distribution

dynamically. Similarly, Google Cloud Pub/Sub [67] ensures scalable and reliable message delivery [119], a

capability that can be further augmented by LLMs to predict workload luctuations and proactively scale resources,

ensuring optimal performance during large-scale model training and inference. Moreover, Apache RocketMQ

ofers capabilities for maintaining message order and supporting message tracking [45], which are essential

for tracking and maintaining the dependencies among distributed data chunks during GenAI model training.

Ensuring the correct sequencing of these chunks is critical to maintaining data integrity and preventing errors

that arise from incomplete data processing. To further enhance these capabilities, LLM-powered mechanisms

can be integrated to intelligently manage sequencing and real-time data integrity validation, ensuring accurate

model training.

4.6 Dynamic Model Compression

Integrating GenAI models within message brokers can enhance analytical and predictive capabilities in event pro-

cessing (routing, iltering, matching and prioritizing) based on learned patterns and context in real time, enabling

faster decision-making. However, resource-constrained environments demand eicient resource utilization and

low-latency responses. Integrating GenAI models on resource-constrained nodes in the computing continuum

often requires model compression, especially with high-dimensional models, strenuous computational tasks, and

low latency requirements [4]. In this context, lightweight versions of GenAI models can improve functionality

and performance efectively while minimizing computational requirements [205]. Their ability to be deployed on

edge devices reduces energy consumption can make them suitable for real-time applications and improving user

experience in interactive systems [206, 207]. Achieving this involves adopting innovative model compression

techniques in message broker.

ACM Comput. Surv.



24 • A. Saleh et al.

Message brokers can provide essential capabilities such as scheduling and distributing compression tasks across

multiple nodes, enabling parallel processing. This is particularly beneicial for handling computationally intensive

compression methods that may not be suitable for resource-limited devices. By oloading and distributing these

tasks eiciently, message brokers optimize resource utilization while ensuring minimal latency. Moreover, brokers

continuously monitor the performance of compressed models to ensure consistent reliability and accuracy in

responses.

Among the compression strategies, pruning is prominent, involving the removal of superluous elements

from a model to decrease its size and complexity [208] without a signiicant loss in performance. For GenAI

models, this can involve techniques such as removing weights with smaller gradients or magnitudes, reducing

parameters, and other optimization methods [209, 210]. Another technique is Knowledge Distillation, where a

smaller ’student’ model learns to replicate the functionality of a larger ’teacher’ model [211ś213]. This technique

can reduce GenAI models into smaller, distilled versions, enhancing the performance of the student model and

increasing inference speed [214, 215].

Furthermore, quantization methods are utilized to reduce the precision of model parameters, signiicantly

lowering memory usage and computational needs substantially. This leads to a smaller model size with faster

inference speeds [216]. Another technique is low-rank factorization, which simpliies weight matrices with

lower-rank approximations to reduce model size and computational demands [217].

However, this integration introduces challenges, particularly related to computational intensity and coordina-

tion. Techniques such as pruning, quantization, and knowledge distillation are computationally demanding [218].

Performing these processes locally on resource-limited devices is often impractical due to constraints in processing

power, memory, and storage. Additionally, this process becomes increasingly complex when multiple clients with

diverse requirements interact with the broker simultaneously. These challenges highlight the need for novel,

distributed, and intelligent resource management methods.

For instance, Celery with its support for task scheduling [33], can be enhanced to optimize compression task dis-

tribution across multiple nodes. By implementing an adaptive scheduling mechanism that dynamically considers

resource availability and workload, Celery can optimize compression performance in real time. Similarly, Azure

Storage Queue with its activity monitoring support [71], can be enhanced through AI-based predictive analytics

for monitoring the performance of compressed models and detect any change in the accuracy. IronMQ [72]

provides support for workload oloading issues [127]. This capability can be further enhanced by integrating

LLMs tools to proactively analyze workloads and determine which tasks should be oloaded, ensuring distribution

of computationally intensive processes.

4.7 Dynamic Orchestration

The integration of brokers with GenAI requires efective resource management to address the substantial

computational demands of GenAI models, which can signiicantly inluence the broker’s operational eiciency.

The broker must allocate and manage resources such as CPU, memory, and storage to handle computational

requirements. GenAI models can be computationally intensive during inference or when processing large volumes

of real-time events. To mitigate potential bottlenecks, brokers must ensure an even distribution of computational

tasks across available nodes [3]. Furthermore, GenAI-enabled brokers can intelligently and dynamically allocate

resources based on workload demands and the priority of critical GenAI-related tasks, thereby enhancing system

responsiveness. However, the process of eicient resource usage and allocation requires parallel processing

capability.

Some brokers are equipped with features that can be optimized to support GenAI tasks, signiicantly improving

their eiciency in resource management. For instance, Celery provides capabilities for managing, maintaining,

and scheduling distributed tasks across multiple nodes, thereby enhancing the eiciency of GenAI agents [33].

ACM Comput. Surv.



Towards Message Brokers for Generative AI: Survey, Challenges, and Opportunities • 25

To further optimize its functionality for GenAI workloads, Celery can be enhanced with AI-driven dynamic task

scheduling. This approach would enable intelligent workload distribution based on real-time system performance

metrics, including GPU/TPU availability, memory utilization, and computational demand. Apache ActiveMQ

provides eicient resource allocation [27]. Thus, optimizing Apache ActiveMQ through mechanisms such as

elastic scaling method could be critical to providing intelligent resource allocation to ensure balanced workloads

across diferent nodes. Amazon SQS provides a reliable queue service for handling messages that facilitates

microservices and distributed systems decoupling [58]. Incorporating ML techniques for intelligent workload

distribution across multiple queues can optimize resource allocation and reduce bottlenecks in large-scale GenAI

pipelines.

Further, the robust architecture of Apache Kafka, which uses clusters of brokers to handle data distribution

and partition topics for scalability, makes it excellent for supporting distributed event streaming [44]. To further

enhance its performance, AI-driven algorithms can be integrated to dynamically adjust partitioning strategies

based on real-time workload distribution. This approach would improve resource utilization and make Kafka

more eicient for high-performance GenAI applications. Additionally, Azure Service Bus provides advanced

scheduling features and message orchestration in distributed environments [114, 115]. These functionalities can

be further optimized to support GenAI workloads by integrating AI-driven task scheduling that intelligently

prioritizes GenAI workloads and allocates computational resources based on real-time system performance.

However, the integration of brokers with GenAI requires efective resource management to address the

substantial computational demands of GenAI models. Therefore, there is need for novel, highly distributed,

eicient, and secure resource orchestration methods to support the integration of GenAI within brokers. Such

methods must employ advanced algorithms capable of dynamically monitoring, allocating, and optimizing

resource usage, enabling proactive adjustments to mitigate potential bottlenecks. This may require development

of a self-organizing multi-agent systems that can autonomously adjust their structure in response to changing

workloads, along with semantic-based orchestration techniques for eicient coordination [17]. Furthermore,

robust security mechanisms are essential to ensure secure resource orchestration, particularly in multi-tenant

environments where multiple clients or applications share resources, to prevent misuse and maintain operational

integrity.

4.8 AIOps/MLOps and Monitoring

MLOps, merging DevOps principles with ML, is central to the advancement of ML and AI, streamlining the

lifecycle of GenAI models from development to deployment. A critical feature within this ield is the monitoring

of deployed models, crucial for the uninterrupted and reliable operation of message broker systems. This practice

enables real-time insights into model metrics, resource usage, and system irregularities, creating a proactive

environment for identifying and addressing issues promptly. Furthermore, MLOps facilitates the setting up of

automated alerts and triggers, enhancing responsiveness to anomalies and minimizing downtime [17, 219].

A Continuous Diagnostics and Mitigation (CDM) program plays a vital role in network security by analyzing

network behavior and thwarting unauthorized access, thereby enabling prompt responses and maintaining

network integrity. Beyond autonomous coniguration management and monitoring device availability, CDM

programs conduct continuous health assessments of devices and evaluate their environmental footprint. This

continuous surveillance helps identify potential threats, bolstering processes to enhance security measures.

Furthermore, CDM ensures the protection of sensitive information against unauthorized access or breaches [9].

KubeMQ, which supports multi-stage pipelines [56], can be enhanced through the integration of CDM real-time

performance monitoring to improve data pipeline management within MLOps frameworks. Moreover, HiveMQ

and Amazon Kinesis can contribute to MLOps integration by facilitating real-time monitoring and alert systems

integration, since they support real-time device monitoring [40, 70]. By integrating CDM-driven analysis, these

ACM Comput. Surv.



26 • A. Saleh et al.

Table 7. Opportunities & Challenges for enhancing message brokers’ functionality within GenAI

Opportunities

Corresp-

ondong

Section
Challenges

Semantic Communication to reduce communication

networks strain and streamline the data-rich content

transmission.

Section 4.3
Computationally intensive to do locally.

Processing sensitive data requires robust security measures.

Dynamic Data and Model Management to minimize

the need for human intervention in selecting ML models

and enhance real-time responsiveness accuracy.

Section 4.4

Computationally intensive to do locally.

May require coordination between clients and broker to exchange

information on, e.g., model architectures.

Training Acceleration to reduce training time, save

computational resources, and rapidly deploy models.
Section 4.5

Requires ability to manage load balancing & data dependencies.

Compatibility with hardware coniguration.

Dynamic Model Compression to save resources and

improve response time.
Section 4.6

Computationally intensive to do locally.

May require Coordination between clients and broker to exchange

information on, e.g., model architectures.

Dynamic Orchestration to optimize use

of resources.
Section 4.7

Requires novel, highly distributed, eicient, and secure resource

orchestration methods.

AIOps/MLOps and Monitoring to enhance responsiveness

to anomalies and minimize downtime.
Section 4.8

Computationally intensive to do locally.

Eicient and dynamic prioritization between monitoring and

regular tasks.

brokers can facilitate real-time anomaly detection and predictive maintenance, ensuring that GenAI workloads

remain resilient and secure.

Finally, tracking GenAI model performance can be efectively enhanced through integration CDMwith IBMMQ,

which has robust monitoring and tracing capabilities [57]. Solace PubSub could potentially assist in identifying

and resolving issues related to message routing, delivery, and processing [118]. Integrating CDM can further

enhance these functionalities, facilitating control and modeling activities in MLOps environments.

However, frameworks such as MLOps and CDMwith are resource-hungry [219]. Integrating themwith message

brokers requires careful consideration of, for example, the computation capacity available locally, as well as

the distribution of the related tasks, to avoid the starvation of regular operations. This requires striking an

optimal balance between monitoring and regular tasks to gain performance optimization, lower cost, and energy

eiciency. Additionally, distributed architectures and parallel processing are essential to manage high-intensity

tasks efectively and in a timely manner.

4.9 Summary of message broker enhancement methods

While we have thoroughly explored the possible interplay between existing message broker technologies and their

speciic features to meet GenAI requirements, it is important to emphasize that our assessment of the suitability of

a certain technology for speciic tasks is indicative of their potential in the given context. Selecting any technology

must be informed by a comprehensive analysis of the application and infrastructure topology requirements, data

handling needs, and the particular features of these tools that align with the envisioned objectives. Adopting

this approach can guarantee that the chosen solution not only fulills immediate operational demands but also

possesses the necessary scalability and lexibility for future growth and increased complexity. This consideration is

crucial as we move towards the conclusion of our discussion, underscoring the importance of strategic technology

selection in the dynamic landscape of GenAI-enhanced communication systems. The challenges, opportunities,

and our strategic view on utilizing these technologies, along with the related subsections, are summarized in

Table 7.

ACM Comput. Surv.



Towards Message Brokers for Generative AI: Survey, Challenges, and Opportunities • 27

4.10 Sustainability Considerations for GenAI in Message Broker Systems

Before concluding this paper, it is important to discuss a critical and increasingly visible concern: the environmental

impact of GenAI. The training of LLMs, which serve as the foundation for many GenAI systems, demands

signiicant computational resources and energy. For example, the training of Meta’s LLaMA models required

over two thousand GPUs running for several months, consuming an estimated 2.6 million kWh of electricity and

emitting more than 1,000 tonnes of CO2 equivalentÐcomparable to the annual footprint of dozens of individuals

[220]. Such igures underscore the substantial carbon footprint associated with foundation model development,

particularly as models scale toward hundreds of billions of parameters [221].

In light of this, the integration of GenAI into message broker systems should not disregard sustainability.

Instead of relying solely on large, general-purpose models, future research and system design should increasingly

consider smaller, task-speciic language models that are ine-tuned opportunistically for dedicated broker func-

tionalitiesÐsuch as semantic topic matching, prioritization, anomaly detection, or adaptive routing [222, 223].

These lightweight models require fewer resources to train and deploy [215], but can also ofer faster inference

and reduced latency, which is particularly important in real-time messaging infrastructures.

Complementing this model-level optimization, message brokers themselves can play an instrumental role

in orchestrating GenAI workloads more sustainably. As intermediaries in distributed systems, brokers are

well-positioned to support resource-aware scheduling, energy-eicient routing, and selective activation of

GenAI modules. For instance, brokers could choose when to trigger a lightweight local modelÐfor example,

a specialized LLM ine-tuned for semantic topic classiication or anomaly detectionÐversus delegating more

complex or ambiguous tasks to a centralized, general-purpose LLM. This selective invocation and dynamic

inference oloading can reduce redundant computation and help ensure that high-energy GenAI operations are

reserved for the most impactful use cases, such as multi-modal reasoning or open-ended instruction following.

Such strategies align with broader trends toward energy transparency and sustainability in AI, where leading

organizations have begun reporting the environmental footprint of their models and advocating for lifecycle-aware

metrics [224ś226].

In summary, addressing sustainability in GenAI-enabled message brokering systems requires both architectural

and operational awareness. On one hand, deploying smaller, specialized models tailored to broker-speciic

tasks can help reduce training and inference costs. On the other, intelligent brokers can act as orchestrators of

sustainable AI usage, ensuring that GenAI resources are leveraged efectively, eiciently, and responsibly.

5 Conclusion

In this paper, we have provided a comprehensive overview of contemporary message brokers, delineating their

features, capabilities, and limitations with an eye toward their application within GenAI frameworks. Our analysis

spanned a broad spectrum of criteria and we delved into the inherent limitations of existing message brokers

when confronted with the demands of GenAI applications, prompting a relection on the essential attributes of

an ideal message broker framework designed to seamlessly integrate with GenAI technologies. In addressing

these challenges, we analyzed several requirements to be satisied in order to bolstering the eicacy of message

brokers in facilitating the rapid evolution and deployment of GenAI applications.

Through a comprehensive analysis of the current state, challenges, and forward-looking strategies for message

brokers, this study lays the groundwork for the development of more adaptable and eicient GenAI-enabled

communication systems. Such systems are envisioned to not only distribute data with increasing eiciency but

also to ensure the delivery of high-quality service, manage resources with greater intelligence, and satisfy the

increasing demands of GenAI applications.

Finally, our exploration underscores the critical need for message brokers to evolve in tandemwith technological

advancements and GenAI requirements. By identifying opportunities for improvement, this paper aims to boost

ACM Comput. Surv.



28 • A. Saleh et al.

further research and development eforts focused on creating message broker frameworks that are not only

robust and scalable but also closely aligned to the peculiarities of GenAI-driven data communication.

Acknowledgement

This research is supported by the Research Council of Finland (former Academy of Finland) 6G Flagship Program

(Grant Number: 346208), and by Business Finland through the Neural pub/sub research project (diary number

8754/31/2022) and the Digital Twinning of Personal Area Networks for Optimized Sensing and Communication

research project (diary number 8782/31/2022).

References
[1] OpenAI. ChatGPT. https://chat.openai.com/. ([n. d.]). Last accessed: June 4, 2025.

[2] Yifei Shen, Jiawei Shao, Xinjie Zhang, Zehong Lin, Hao Pan, Dongsheng Li, Jun Zhang, and Khaled B Letaief. 2024. Large language

models empowered autonomous edge ai for connected intelligence. IEEE Communications Magazine (2024).

[3] Sasu Tarkoma, Roberto Morabito, and Jaakko Sauvola. 2023. AI-native Interconnect Framework for Integration of Large Language

Model Technologies in 6G Systems. arXiv preprint arXiv:2311.05842 (2023).

[4] Lina Bariah, Qiyang Zhao, Hang Zou, Yu Tian, Faouzi Bader, and Merouane Debbah. 2023. Large Language Models for Telecom: The

Next Big Thing? arXiv preprint arXiv:2306.10249 (2023).

[5] Henna Kokkonen, Lauri Lovén, Naser Hossein Motlagh, Abhishek Kumar, Juha Partala, Tri Nguyen, Víctor Casamayor Pujol, Panos

Kostakos, Teemu Leppänen, Alfonso González-Gil, et al. 2022. Autonomy and intelligence in the computing continuum: Challenges,

enablers, and future directions for orchestration. arXiv preprint arXiv:2205.01423 (2022).

[6] Naser Hossein Motlagh, Lauri Lovén, Jacky Cao, Xiaoli Liu, Petteri Nurmi, Schahram Dustdar, Sasu Tarkoma, and Xiang Su. 2022. Edge

computing: The computing infrastructure for the smart megacities of the future. Computer 55, 12 (2022), 54ś64.

[7] Yun-Cheng Wang, Jintang Xue, Chengwei Wei, and C-C Jay Kuo. 2023. An Overview on Generative AI at Scale with Edge-Cloud

Computing. (2023).

[8] Schahram Dustdar, Victor Casamayor Pujol, and Praveen Kumar Donta. 2022. On distributed computing continuum systems. IEEE

Transactions on Knowledge and Data Engineering 35, 4 (2022), 4092ś4105.

[9] Donta Praveen Kumar, Murturi Ilir, Casamayor Pujol Victor, Sedlak Boris, and Dustdar Schahram. 2023. Exploring the Potential of

Distributed Computing Continuum Systems. Computers (2023).

[10] Fulya Ozturk and Ayse Meliha Ozdemir. 2019. Content-Based Publish/Subscribe Communication Model between IoT Devices in

Smart City Environment. In 2019 7th International Istanbul Smart Grids and Cities Congress and Fair (ICSG). 189ś193. DOI:http:

//dx.doi.org/10.1109/SGCF.2019.8782370

[11] Rakshit Wadhwa, Apurv Mehra, Pushpendra Singh, and Meenu Singh. 2015. A pub/sub based architecture to support public healthcare

data exchange. In 2015 7th International Conference on Communication Systems and Networks (COMSNETS). 1ś6. DOI:http://dx.doi.org/

10.1109/COMSNETS.2015.7098706

[12] Patrick Th Eugster, Pascal A Felber, Rachid Guerraoui, and Anne-Marie Kermarrec. 2003. The many faces of publish/subscribe. ACM

computing surveys (CSUR) 35, 2 (2003), 114ś131.

[13] Sasu Tarkoma. 2012. Publish/subscribe systems: design and principles. John Wiley & Sons.

[14] Praveen Kumar Donta, Satish Narayana Srirama, Tarachand Amgoth, and Chandra Sekhara Rao Annavarapu. 2022. Survey on recent

advances in IoT application layer protocols and machine learning scope for research directions. Digital Communications and Networks 8,

5 (2022), 727ś744.

[15] Jonathan Hasenburg, Florian Stanek, Florian Tschorsch, and David Bermbach. 2020. Managing latency and excess data dissemination in

fog-based publish/subscribe systems. In 2020 IEEE international conference on fog computing (ICFC). IEEE, 9ś16.

[16] Alessandro EC Redondi, Andrés Arcia-Moret, and Pietro Manzoni. 2019. Towards a scaled IoT pub/sub architecture for 5G networks:

The case of multiaccess edge computing. In 2019 IEEE 5th World Forum on Internet of Things (WF-IoT). IEEE, 436ś441.

[17] Lauri Lovén, Roberto Morabito, Abhishek Kumar, Susanna Pirttikangas, Jukka Riekki, and Sasu Tarkoma. 2023. How Can AI be

Distributed in the Computing Continuum? Introducing the Neural Pub/Sub Paradigm. arXiv preprint arXiv:2309.02058 (2023).

[18] Fatima Zahra Chai, Youssef Fakhri, and Fatima Zahrae Ait Hamou Aadi. 2022. Introduction to Internet of Things’ Communication

Protocols. In Advanced Intelligent Systems for Sustainable Development (AI2SD’2020) Volume 2. Springer, 142ś150.

[19] Vittorio Maniezzo, Marco A Boschetti, and Pietro Manzoni. 2023. Self-adaptive Publish/Subscribe Network Design. In Metaheuristics:

14th International Conference, MIC 2022, Syracuse, Italy, July 11ś14, 2022, Proceedings. Springer, 478ś484.

[20] Filipa Pedrosa and Luís Rodrigues. 2021. Reducing the subscription latency in reliable causal publish-subscribe systems. In Proceedings

of the 36th Annual ACM Symposium on Applied Computing. 203ś212.

[21] Vineet John and Xia Liu. 2017. A survey of distributed message broker queues. arXiv preprint arXiv:1704.00411 (2017).

ACM Comput. Surv.

https://chat.openai.com/
http://dx.doi.org/10.1109/SGCF.2019.8782370
http://dx.doi.org/10.1109/SGCF.2019.8782370
http://dx.doi.org/10.1109/COMSNETS.2015.7098706
http://dx.doi.org/10.1109/COMSNETS.2015.7098706


Towards Message Brokers for Generative AI: Survey, Challenges, and Opportunities • 29

[22] David S Linthicum. 2000. Enterprise application integration. Addison-Wesley Professional.

[23] Mark Perry, Christophe Delporte, Federico Demi, Animesh Ghosh, and Marc Luong. 2001. MQSeries publish/subscribe applications. IBM

Redbooks.

[24] Gregor Hohpe and Bobby Woolf. 2004. Enterprise integration patterns: Designing, building, and deploying messaging solutions. Addison-

Wesley Professional.

[25] Kasun Indrasiri and Sriskandarajah Suhothayan. 2021. Design Patterns for Cloud Native Applications. " O’Reilly Media, Inc.".

[26] Oleg Iakushkin and Valery Grishkin. 2014. Messaging middleware for cloud applications: Extending brokerless approach. In 2014 2nd

2014 2nd International Conference on Emission Electronics (ICEE). IEEE, 1ś4.

[27] The Apache Software Foundation. Apache ActiveMQ. https://activemq.apache.org/. ([n. d.]). Last accessed: June 4, 2025.

[28] Red Hat. Fuse Message Broker. https://access.redhat.com/taxonomy/products/fuse-message-broker. ([n. d.]). Last accessed: June 4,

2025.

[29] Apache Software Foundation. Apache Qpid. https://qpid.apache.org/. ([n. d.]). Last accessed: June 4, 2025.

[30] Rabbit Technologies. RabbitMQ. https://www.rabbitmq.com/. ([n. d.]). Last accessed: June 4, 2025.

[31] Red Hat. HornetQ. https://hornetq.jboss.org/. ([n. d.]). Last accessed: June 4, 2025.

[32] Inc Red Hat. Red Hat AMQ. https://www.redhat.com/en/technologies/jboss-middleware/amq. ([n. d.]). Last accessed: June 4, 2025.

[33] Celery software. Celery. https://docs.celeryq.dev/. ([n. d.]). Last accessed: June 4, 2025.

[34] Red Hat. JBoss Messaging. https://jbossmessaging.jboss.org/. ([n. d.]). Last accessed: June 4, 2025.

[35] Oracle. OpenMQ. https://javaee.github.io/openmq/. ([n. d.]). Last accessed: June 4, 2025.

[36] Inc Philotic. Beanstalk. https://beanstalkd.github.io/. ([n. d.]). Last accessed: June 4, 2025.

[37] Gearman. Gearman. http://gearman.org/. ([n. d.]). Last accessed: June 4, 2025.

[38] Mavimax. Enduro/X. https://www.endurox.org/. ([n. d.]). Last accessed: June 4, 2025.

[39] Paul Fremantle. WSO2. https://wso2.com/. ([n. d.]). Last accessed: June 4, 2025.

[40] HiveMQ. HiveMQ. https://www.hivemq.com/. ([n. d.]). Last accessed: June 4, 2025.

[41] Redis Labs. Redis. https://redis.io/. ([n. d.]). Last accessed: June 4, 2025.

[42] EMQX Technologies. EMQX. https://www.emqx.io/. ([n. d.]). Last accessed: June 4, 2025.

[43] The Apache Software Foundation. Apache Pulsar. https://pulsar.apache.org/. ([n. d.]). Last accessed: June 4, 2025.

[44] Apache Software Foundation. Apache Kafka. https://kafka.apache.org/. ([n. d.]). Last accessed: June 4, 2025.

[45] Alibaba Group. Apache RocketMQ. https://rocketmq.apache.org/. ([n. d.]). Last accessed: June 4, 2025.

[46] Eclipse. Eclipse Mosquitto. https://mosquitto.org/. ([n. d.]). Last accessed: June 4, 2025.

[47] iMatix. Zero MQ. https://zeromq.org/. ([n. d.]). Last accessed: June 4, 2025.

[48] Inc Onyara. Apache NiFi. https://nii.apache.org/. ([n. d.]). Last accessed: June 4, 2025.

[49] ABLY REALTIME LTD. Ably Realtime. https://ably.com/. ([n. d.]). Last accessed: June 4, 2025.

[50] Apache Software Foundation. Apache SamZa. https://samza.apache.org/. ([n. d.]). Last accessed: June 4, 2025.

[51] VerneMQ. VerneMQ. https://vernemq.com/. ([n. d.]). Last accessed: June 4, 2025.

[52] Particular Software. NServiceBus. https://particular.net/nservicebus. ([n. d.]). Last accessed: June 4, 2025.

[53] Twitter. kestrel. https://github.com/twitter-archive/kestrel. ([n. d.]). Last accessed: June 4, 2025.

[54] Bitly. NSQ. https://nsq.io/. ([n. d.]). Last accessed: June 4, 2025.

[55] Synadia Communications. NATS. https://nats.io/. ([n. d.]). Last accessed: June 4, 2025.

[56] KubeMQ. KubeMQ. https://kubemq.io/. ([n. d.]). Last accessed: June 4, 2025.

[57] IBM. IBM MQ. https://www.ibm.com/docs/en/ibm-mq. ([n. d.]). Last accessed: June 4, 2025.

[58] Amazon Web Services (AWS). Amazon SQS. https://aws.amazon.com/sqs/. ([n. d.]). Last accessed: June 4, 2025.

[59] Microsoft. MSMQ. https://learn.microsoft.com/en-us/previous-versions/windows/desktop/msmq/. ([n. d.]). Last accessed: June 4, 2025.

[60] Oracle. Oracle Message Broker. https://docs.oracle.com/cd/E26576_01/doc.312/e24948.pdf. ([n. d.]). Last accessed: June 4, 2025.

[61] TIBCO. TIBCO Rendezvous. https://www.tibco.com/products/tibco-rendezvous. ([n. d.]). Last accessed: June 4, 2025.

[62] TIBCO. TIBCO Enterprise Message Service™. https://www.tibco.com/products/tibco-enterprise-message-service. ([n. d.]). Last

accessed: June 4, 2025.

[63] MuleSoft. Anypoint MQ. https://docs.mulesoft.com/mq/. ([n. d.]). Last accessed: June 4, 2025.

[64] Microsoft. Azure Service Bus. https://learn.microsoft.com/en-us/azure/service-bus-messaging/. ([n. d.]). Last accessed: June 4, 2025.

[65] SAP AG. SAP NetWeaver Process Integration. https://help.sap.com/docs/. ([n. d.]). Last accessed: June 4, 2025.

[66] Craig Betts. Solace. https://solace.com/. ([n. d.]). Last accessed: June 4, 2025.

[67] Google. Google Cloud Pub/Sub. https://cloud.google.com/pubsub. ([n. d.]). Last accessed: June 4, 2025.

[68] Amazon Web Services (AWS). Amazon MQ. https://aws.amazon.com/amazon-mq/. ([n. d.]). Last accessed: June 4, 2025.

[69] Intel. Intel MPI Library. https://www.intel.com/content/www/us/en/developer/tools/oneapi/mpi-library.html. ([n. d.]). Last accessed:

June 4, 2025.

[70] Amazon. Kinesis. https://aws.amazon.com/kinesis/. ([n. d.]). Last accessed: June 4, 2025.

ACM Comput. Surv.

https://activemq.apache.org/
https://access.redhat.com /taxonomy/products/fuse-message-broker
https://qpid.apache.org/
https://www.rabbitmq.com/
https://hornetq.jboss.org/
https://www.redhat.com/en/technologies/jboss-middleware/amq
https://docs.celeryq.dev/
https://jbossmessaging.jboss.org/
https://javaee.github.io/openmq/
https://beanstalkd.github.io/
http://gearman.org/
https://www.endurox.org/
https://wso2.com/
https://www.hivemq.com/
https://redis.io/
https://www.emqx.io/
https://pulsar.apache.org/
https://kafka.apache.org/
https://rocketmq.apache.org/
https://mosquitto.org/
https://zeromq.org/
https://nifi.apache.org/
https://ably.com/
https://samza.apache.org/
https://vernemq.com/
https://particular.net/nservicebus
https://github.com/twitter-archive/kestrel
https://nsq.io/
https://nats.io/
https://kubemq.io/
https://www.ibm.com/docs/en/ibm-mq
https://aws.amazon.com/sqs/
https://learn.microsoft.com/en-us/previous-versions/windows/desktop/msmq/
https://docs.oracle.com/cd/E26576_01/doc.312/e24948.pdf
https://www.tibco.com/products/tibco-rendezvous
https://www.tibco.com/products/tibco-enterprise-message-service
https://docs.mulesoft.com/mq/
https://learn.microsoft.com/en-us/azure/service-bus-messaging/
https://help.sap.com/docs/
https://solace.com/
https://cloud.google.com/pubsub
https://aws.amazon.com/amazon-mq/
https://www.intel.com/content/ www/us/en/developer/tools/oneapi/mpi-library.html
https://aws.amazon.com/kinesis/


30 • A. Saleh et al.

[71] Microsoft. Azure Storage Queue. https://learn.microsoft.com/en-us/azure/storage/queues/. ([n. d.]). Last accessed: June 4, 2025.

[72] Iron.io. IronMQ. http://www.iron.io/mq. ([n. d.]). Last accessed: June 4, 2025.

[73] Red Hat. Fuse Message Broker. https://docs.huihoo.com/fuse/getting_started.pdf. ([n. d.]). Last accessed: June 4, 2025.

[74] Apache Software Foundation. Apache Qpid. https://people.apache.org/~jonathan/Programming-In-Apache-Qpid.html. ([n. d.]). Last

accessed: June 4, 2025.

[75] Rabbit Technologies. RabbitMQ. https://blog.rabbitmq.com/posts/2020/07/disaster-recovery-and-high-availability-101/. ([n. d.]). Last

accessed: June 4, 2025.

[76] Red Hat. HornetQ. https://hornetq.sourceforge.net/docs/hornetq-2.1.2.Final/user-manual/en/html_single/index.html. ([n. d.]). Last

accessed: June 4, 2025.

[77] Red Hat. HornetQ. https://docs.jboss.org/hornetq/2.4.0.Final/docs/user-manual/html/interoperability.html. ([n. d.]). Last accessed:

June 4, 2025.

[78] Inc Red Hat. Red Hat AMQ. https://access.redhat.com/documentation/. ([n. d.]). Last accessed: June 4, 2025.

[79] Red Hat. JBoss Messaging. https://docs.jboss.org/jbossmessaging/docs/usermanual-2.0.0.beta1/html. ([n. d.]). Last accessed: June 4,

2025.

[80] Inc Philotic. Beanstalk. https://raw.githubusercontent.com/beanstalkd/beanstalkd/master/doc/protocol.txt. ([n. d.]). Last accessed: June

4, 2025.

[81] Inc Philotic. Beanstalk. https://github.com/beanstalkd/beanstalkd/wiki/Client-Libraries. ([n. d.]). Last accessed: June 4, 2025.

[82] Mavimax. Enduro/X. https://github.com/endurox-dev/endurox/blob/master/doc/. ([n. d.]). Last accessed: June 4, 2025.

[83] Paul Fremantle. WSO2. https://ei.docs.wso2.com/en/latest/micro-integrator/setup/performance_tuning/tuning_jvm_performance/. ([n.

d.]). Last accessed: June 4, 2025.

[84] Paul Fremantle. WSO2. https://apim.docs.wso2.com/en/4.1.0/install-and-setup/setup/mi-setup/transport_conigurations/coniguring-

transports/. ([n. d.]). Last accessed: June 4, 2025.

[85] Paul Fremantle. WSO2. https://ei.docs.wso2.com/en/latest/micro-integrator/references/mediators/ilter-Mediator/. ([n. d.]). Last

accessed: June 4, 2025.

[86] HiveMQ. HiveMQ. https://docs.hivemq.com/hivemq/. ([n. d.]). Last accessed: June 4, 2025.

[87] Redis Labs. Redis. https://docs.redis.com/latest/rs/security/. ([n. d.]). Last accessed: June 4, 2025.

[88] EMQX Technologies. EMQX. https://www.emqx.com/en/blog/emqx-vs-mosquitto-2023-mqtt-broker-comparison. ([n. d.]). Last

accessed: June 4, 2025.

[89] Eclipse. Eclipse Mosquitto. https://www.emqx.com/en/blog/mosquitto-mqtt-broker-pros-cons-tutorial-and-modern-alternatives. ([n.

d.]). Last accessed: June 4, 2025.

[90] Eclipse. Eclipse Mosquitto. https://projects.eclipse.org/projects/iot.mosquitto. ([n. d.]). Last accessed: June 4, 2025.

[91] iMatix. Zero MQ. https://www.hivemq.com/article/mqtt-vs-zeromq-for-iot/. ([n. d.]). Last accessed: June 4, 2025.

[92] iMatix. Zero MQ. http://wiki.zeromq.org/area:faq. ([n. d.]). Last accessed: June 4, 2025.

[93] Apache Software Foundation. Apache SamZa. https://samza.incubator.apache.org/learn/documentation/0.7.0/comparisons/storm.html.

([n. d.]). Last accessed: June 4, 2025.

[94] Martin Kleppmann. 2019. Apache Samza. (2019).

[95] EMQX Technologies. EMQX. https://www.emqx.com/en/blog/emqx-vs-vernemq-2023-mqtt-broker-comparison. ([n. d.]). Last accessed:

June 4, 2025.

[96] Particular Software. NServiceBus. https://docs.particular.net/nservicebus/. ([n. d.]). Last accessed: June 4, 2025.

[97] Particular Software. NServiceBus. https://docs.particular.net/tutorials/monitoring-setup/. ([n. d.]). Last accessed: June 4, 2025.

[98] Twitter. kestrel. https://github.com/memcached/memcached/blob/master/doc/protocol.txt. ([n. d.]). Last accessed: June 4, 2025.

[99] Synadia Communications. NATS. https://docs.nats.io/. ([n. d.]). Last accessed: June 4, 2025.

[100] Berk Ayaz, Nina Slamnik-Kriještorac, and Johann Marquez-Barja. 2022. Data Management Platform For Smart Orchestration of

Decentralized and Heterogeneous Vehicular Edge Networks. In Proceedings of the 2022 ACM Conference on Information Technology for

Social Good. 118ś124.

[101] IBM. IBM MQ. https://cloud.ibm.com/catalog/services/mq. ([n. d.]). Last accessed: June 4, 2025.

[102] Iron.io. IronMQ. https://blog.iron.io/ibm-mq-vs-ironmq-pros-cons-and-choosing-an-mq/#4. ([n. d.]). Last accessed: June 4, 2025.

[103] IBM. IBM MQ. https://www.ibm.com/. ([n. d.]). Last accessed: June 4, 2025.

[104] Amazon Web Services (AWS). Amazon SQS. https://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/

quotas-messages.html. ([n. d.]). Last accessed: June 4, 2025.

[105] Microsoft. MSMQ. https://techcommunity.microsoft.com/t5/skype-for-business-blog/troubleshooting-microsoft-message-queuing-

issues-on-microsoft/ba-p/619639. ([n. d.]). Last accessed: June 4, 2025.

[106] Oracle. Oracle Message Broker. https://docs.oracle.com/cd/. ([n. d.]). Last accessed: June 4, 2025.

[107] TIBCO. TIBCO Enterprise Message Service™. https://docs.tibco.com/pub/ems/. ([n. d.]). Last accessed: June 4, 2025.

ACM Comput. Surv.

https://learn.microsoft.com/en-us/azure/storage/queues/
http://www.iron.io/mq
https://docs.huihoo.com/fuse/getting_started.pdf
https://people.apache.org/~jonathan/Programming-In-Apache-Qpid.html
https://blog.rabbitmq.com/posts/2020/07/disaster-recovery-and-high-availability-101/
https://hornetq.sourceforge.net/docs/hornetq-2.1.2.Final/user-manual/en/html_single/index.html
https://docs.jboss.org/hornetq/2.4.0.Final/docs/user-manual/html/interoperability.html
https://access.redhat.com/documentation/
https://docs.jboss.org/jbossmessaging/docs/usermanual-2.0.0.beta1/html
https://raw.githubusercontent.com/beanstalkd/beanstalkd/master/doc/protocol.txt
https://github.com/beanstalkd/beanstalkd/wiki/Client-Libraries
https://github.com/endurox-dev/endurox/blob/master/doc/
https://ei.docs.wso2.com/en/latest/micro-integrator/setup/performance_tuning/tuning_jvm_performance/
https://apim.docs.wso2.com/en/4.1.0/install-and-setup/setup/mi-setup/transport_configurations/configuring-transports/
https://apim.docs.wso2.com/en/4.1.0/install-and-setup/setup/mi-setup/transport_configurations/configuring-transports/
https://ei.docs.wso2.com/en/latest/micro-integrator/references/mediators/filter-Mediator/
https://docs.hivemq.com/hivemq/
https://docs.redis.com/latest/rs/security/
https://www.emqx.com/en/blog/emqx-vs-mosquitto-2023-mqtt-broker-comparison
https://www.emqx.com/en/blog/mosquitto-mqtt-broker-pros-cons-tutorial-and-modern-alternatives
https://projects.eclipse.org/projects/iot.mosquitto
https://www.hivemq.com/article/mqtt-vs-zeromq-for-iot/
http://wiki.zeromq.org/area:faq
https://samza.incubator.apache.org/learn/documentation/0.7.0/comparisons/storm.html
https://www.emqx.com/en/blog/emqx-vs-vernemq-2023-mqtt-broker-comparison
https://docs.particular.net/nservicebus/
https://docs.particular.net/tutorials/monitoring-setup/
https://github.com/memcached/memcached/blob/master/doc/protocol.txt
https://docs.nats.io/
https://cloud.ibm.com/catalog/services/mq
https://blog.iron.io/ibm-mq-vs-ironmq-pros-cons-and-choosing-an-mq/#4
https://www.ibm.com/
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/quotas-messages.html
https://docs.aws.amazon.com/AWSSimpleQueueService/latest/SQSDeveloperGuide/quotas-messages.html
https://techcommunity.microsoft.com/t5/skype-for-business-blog/troubleshooting-microsoft-message-queuing-issues-on-microsoft/ba-p/619639
https://techcommunity.microsoft.com/t5/skype-for-business-blog/troubleshooting-microsoft-message-queuing-issues-on-microsoft/ba-p/619639
https://docs.oracle.com/cd/
https://docs.tibco.com/pub/ems/


Towards Message Brokers for Generative AI: Survey, Challenges, and Opportunities • 31

[108] TIBCO. TIBCO Enterprise Message Service™. https://support.tibco.com/s/article/Tibco-KnowledgeArticle-Article-22588. ([n. d.]).

Last accessed: June 4, 2025.

[109] TIBCO. TIBCO Rendezvous. https://www.tibco.com/products/tibco-cloud-events/pricing-plans. ([n. d.]). Last accessed: June 4, 2025.

[110] TIBCO. TIBCO Rendezvous. https://docs.tibco.com/pub/ems/8.6.0/doc/html/GUID-66774B42-2A5F-4221-864E-3331622E1091.html.

([n. d.]). Last accessed: June 4, 2025.

[111] TIBCO. TIBCO Rendezvous. https://docs.tibco.com/pub/rendezvous/. ([n. d.]). Last accessed: June 4, 2025.

[112] MuleSoft. Anypoint MQ. https://www.mulesoft.com/. ([n. d.]). Last accessed: June 4, 2025.

[113] Microsoft. Azure Storage Queue. https://learn.microsoft.com/en-us/azure/service-bus-messaging/service-bus-azure-and-service-bus-

queues-compared-contrasted. ([n. d.]). Last accessed: June 4, 2025.

[114] Microsoft. Azure Service Bus. https://learn.microsoft.com/en-us/dotnet/api/azure.messaging.servicebus.

servicebussender.schedulemessageasync?view=azure-dotnet. ([n. d.]). Last accessed: June 4, 2025.

[115] Microsoft. Azure Service Bus. https://azure.microsoft.com/en-us/products/service-bus. ([n. d.]). Last accessed: June 4, 2025.

[116] SAP AG. SAP NetWeaver Process Integration. https://blogs.sap.com/2014/04/02/message-size-as-source-of-performance-bottleneck/.

([n. d.]). Last accessed: June 4, 2025.

[117] Craig Betts. Solace. https://docs.solace.com/. ([n. d.]). Last accessed: June 4, 2025.

[118] Craig Betts. Solace. https://www.solace.dev/. ([n. d.]). Last accessed: June 4, 2025.

[119] Google. Google Cloud Pub/Sub. https://cloudplatform.googleblog.com/2015/04/big-data-cloud-way.html. ([n. d.]). Last accessed: June

4, 2025.

[120] Amazon Web Services (AWS). Amazon MQ. https://docs.aws.amazon.com/amazon-mq/latest/. ([n. d.]). Last accessed: June 4, 2025.

[121] Intel. Intel MPI Library. https://texas.gs.shi.com/product/32703496/Intel-MPI-Library-for-Windows. ([n. d.]). Last accessed: June 4,

2025.

[122] Intel. Intel MPI Library. https://www.intel.com/content/www/us/en/developer/articles/technical/improve-performance-and-stability-

with-intel-mpi-library-on-ininiband.html. ([n. d.]). Last accessed: June 4, 2025.

[123] Amazon. Kinesis. https://repost.aws/knowledge-center/troubleshoot-kinesis-agent-linux. ([n. d.]). Last accessed: June 4, 2025.

[124] Amazon. Kinesis. https://docs.aws.amazon.com/streams/latest/. ([n. d.]). Last accessed: June 4, 2025.

[125] Amazon. Kinesis. https://docs.aws.amazon.com/kinesisanalytics/latest/dev/error-handling.html. ([n. d.]). Last accessed: June 4, 2025.

[126] Iron.io. IronMQ. https://try.iron.io/pricing-worker-monthly/. ([n. d.]). Last accessed: June 4, 2025.

[127] Iron.io. IronMQ. https://blog.iron.io/apache-kafka-vs-ironmq-whats-best-for-your-business/. ([n. d.]). Last accessed: June 4, 2025.

[128] Oracle. Open Message Queue, Administration Guide, Release 5.0. https://javaee.github.io/glassish/doc/4.0/mq-admin-guide.pdf. ([n.

d.]). 2013.

[129] Oracle. Oracle Message Broker. https://docs.oracle.com/cd/E19316-01/820-6424/aerbz/index.html. ([n. d.]). Last accessed: June 4, 2025.

[130] Oracle. Oracle Message Broker. https://docs.oracle.com/cd/E19879-01/821-0028/aercs/index.html. ([n. d.]). Last accessed: June 4, 2025.

[131] Inc Red Hat. Red Hat AMQ. https://access.redhat.com/documentation/en-us/red_hat_amq/6.1/html/product_introduction/fmbscalable.

([n. d.]). Last accessed: June 4, 2025.

[132] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind Neelakantan, Pranav Shyam,

Girish Sastry, Amanda Askell, et al. 2020. Language models are few-shot learners. Advances in neural information processing systems 33

(2020), 1877ś1901.

[133] Francisco García-Peñalvo and Andrea Vázquez-Ingelmo. 2023. What do we mean by GenAI? A systematic mapping of the evolution,

trends, and techniques involved in Generative AI. (2023).

[134] Maanak Gupta, Charankumar Akiri, Kshitiz Aryal, Eli Parker, and Lopamudra Praharaj. 2023. From ChatGPT to ThreatGPT: Impact of

Generative AI in Cybersecurity and Privacy. IEEE Access 11 (2023), 80218ś80245. DOI:http://dx.doi.org/10.1109/ACCESS.2023.3300381

[135] Khen Bo Kan, Hyunsu Mun, Guohong Cao, and Youngseok Lee. 2024. Mobile-llama: Instruction ine-tuning open-source llm for

network analysis in 5g networks. IEEE Network (2024).

[136] Amirhossein Ghafari, Huong Nguyen, Alaa Saleh, Lauri Lovén, and Ekaterina Gilman. 2024. Traic Accident Prediction and Warning

System: Integration Use Case. In Fourth Workshop on Knowledge-infused Learning (KIL 2024). OpenReview.

[137] Othmane Friha, Mohamed Amine Ferrag, Burak Kantarci, Burak Cakmak, Arda Ozgun, and Nassira Ghoualmi-Zine. 2024. Llm-based

edge intelligence: A comprehensive survey on architectures, applications, security and trustworthiness. IEEE Open Journal of the

Communications Society (2024).

[138] Yudong Huang, Hongyang Du, Xinyuan Zhang, Dusit Niyato, Jiawen Kang, Zehui Xiong, Shuo Wang, and Tao Huang. 2024. Large

language models for networking: Applications, enabling techniques, and challenges. IEEE Network (2024).

[139] Sifan Long, Jingjing Tan, Bomin Mao, Fengxiao Tang, Yangfan Li, Ming Zhao, and Nei Kato. 2025. A Survey on Intelligent Network

Operations and Performance Optimization Based on Large Language Models. IEEE Communications Surveys & Tutorials (2025).

[140] Shengzhe Xu, Christo Kurisummoottil Thomas, Omar Hashash, Nikhil Muralidhar, Walid Saad, and Naren Ramakrishnan. 2024. Large

Multi-Modal Models (LMMs) as Universal Foundation Models for AI-Native Wireless Systems. arXiv preprint arXiv:2402.01748 (2024).

ACM Comput. Surv.

https://support.tibco.com/s/article/Tibco-KnowledgeArticle-Article-22588
https://www.tibco.com/products/tibco-cloud-events/pricing-plans
https://docs.tibco.com/pub/ems/8.6.0/doc/html/GUID-66774B42-2A5F-4221-864E-3331622E1091.html
https://docs.tibco.com/pub/rendezvous/
https://www.mulesoft.com/
https://learn.microsoft.com/en-us/azure/service-bus-messaging/service-bus-azure-and-service-bus-queues-compared-contrasted
https://learn.microsoft.com/en-us/azure/service-bus-messaging/service-bus-azure-and-service-bus-queues-compared-contrasted
https://learn.microsoft.com/en-us/dotnet/api/azure.messaging.servicebus.
servicebussender.schedulemessageasync?view=azure-dotnet
https://azure.microsoft.com/en-us/products/service-bus
https://blogs.sap.com/2014/04/02/message-size-as-source-of-performance-bottleneck/
https://docs.solace.com/
https://www.solace.dev/
https://cloudplatform.googleblog.com/2015/04/big-data-cloud-way.html
https://docs.aws.amazon.com/amazon-mq/latest/
https://texas.gs.shi.com/product/32703496/Intel-MPI-Library-for-Windows
https://www.intel.com/content/www/us/en/developer/articles/technical/improve-performance-and-stability-with-intel-mpi-library-on-infiniband.html
https://www.intel.com/content/www/us/en/developer/articles/technical/improve-performance-and-stability-with-intel-mpi-library-on-infiniband.html
https://repost.aws/knowledge-center/troubleshoot-kinesis-agent-linux
https://docs.aws.amazon.com/streams/latest/
https://docs.aws.amazon.com/kinesisanalytics/latest/dev/error-handling.html
https://try.iron.io/pricing-worker-monthly/
https://blog.iron.io/apache-kafka-vs-ironmq-whats-best-for-your-business/
https://javaee.github.io/glassfish/doc/4.0/mq-admin-guide.pdf
https://docs.oracle.com/cd/E19316-01/820-6424/aerbz/index.html
https://docs.oracle.com/cd/E19879-01/821-0028/aercs/index.html
https://access.redhat.com/documentation/en-us/red_hat_amq/6.1/html/product_introduction/fmbscalable
http://dx.doi.org/10.1109/ACCESS.2023.3300381


32 • A. Saleh et al.

[141] Tao Gong, Chengqi Lyu, Shilong Zhang, Yudong Wang, Miao Zheng, Qian Zhao, Kuikun Liu, Wenwei Zhang, Ping Luo, and Kai Chen.

2023. Multimodal-gpt: A vision and language model for dialogue with humans. arXiv preprint arXiv:2305.04790 (2023).

[142] Jean-Baptiste Alayrac, Jef Donahue, Pauline Luc, Antoine Miech, Iain Barr, Yana Hasson, Karel Lenc, Arthur Mensch, Katherine

Millican, Malcolm Reynolds, et al. 2022. Flamingo: a visual language model for few-shot learning. Advances in Neural Information

Processing Systems 35 (2022), 23716ś23736.

[143] Yongliang Shen, Kaitao Song, Xu Tan, Dongsheng Li, Weiming Lu, and Yueting Zhuang. 2023. Hugginggpt: Solving ai tasks with

chatgpt and its friends in huggingface. arXiv preprint arXiv:2303.17580 (2023).

[144] Rongjie Huang, Mingze Li, Dongchao Yang, Jiatong Shi, Xuankai Chang, Zhenhui Ye, Yuning Wu, Zhiqing Hong, Jiawei Huang, Jinglin

Liu, et al. 2023. Audiogpt: Understanding and generating speech, music, sound, and talking head. arXiv preprint arXiv:2304.12995 (2023).

[145] OpenAI. 2023. GPT-4 Technical Report. (2023). arXiv:cs.CL/2303.08774

[146] Chenfei Wu, Shengming Yin, Weizhen Qi, Xiaodong Wang, Zecheng Tang, and Nan Duan. 2023. Visual chatgpt: Talking, drawing and

editing with visual foundation models. arXiv preprint arXiv:2303.04671 (2023).

[147] Zhiheng Xi, Wenxiang Chen, Xin Guo, Wei He, Yiwen Ding, Boyang Hong, Ming Zhang, Junzhe Wang, Senjie Jin, Enyu Zhou, et al.

2023. The rise and potential of large language model based agents: A survey. arXiv preprint arXiv:2309.07864 (2023).

[148] Lei Wang, Chen Ma, Xueyang Feng, Zeyu Zhang, Hao Yang, Jingsen Zhang, Zhiyuan Chen, Jiakai Tang, Xu Chen, Yankai Lin, et al.

2023. A survey on large language model based autonomous agents. arXiv preprint arXiv:2308.11432 (2023).

[149] Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou, et al. 2022. Chain-of-thought

prompting elicits reasoning in large language models. Advances in Neural Information Processing Systems 35 (2022), 24824ś24837.

[150] Shunyu Yao, Jefrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and Yuan Cao. 2022. React: Synergizing reasoning

and acting in language models. arXiv preprint arXiv:2210.03629 (2022).

[151] Noah Shinn, Federico Cassano, Ashwin Gopinath, Karthik R Narasimhan, and Shunyu Yao. 2023. Relexion: Language agents with

verbal reinforcement learning. In Thirty-seventh Conference on Neural Information Processing Systems.

[152] openai. ChatGPT. https://chat.openai.com/. ([n. d.]). Last accessed: June 4, 2025.

[153] Dhruv Shah, Błażej Osiński, Sergey Levine, et al. 2023. Lm-nav: Robotic navigation with large pre-trained models of language, vision,

and action. In Conference on Robot Learning. PMLR, 492ś504.

[154] Yao Mu, Qinglong Zhang, Mengkang Hu, Wenhai Wang, Mingyu Ding, Jun Jin, Bin Wang, Jifeng Dai, Yu Qiao, and Ping Luo. 2023.

Embodiedgpt: Vision-language pre-training via embodied chain of thought. arXiv preprint arXiv:2305.15021 (2023).

[155] Cheng Qian, Chi Han, Yi R Fung, Yujia Qin, Zhiyuan Liu, and Heng Ji. 2023. CREATOR: Disentangling Abstract and Concrete Reasonings

of Large Language Models through Tool Creation. arXiv preprint arXiv:2305.14318 (2023).

[156] Xinyun Chen, Maxwell Lin, Nathanael Schärli, and Denny Zhou. 2023. Teaching large language models to self-debug. arXiv preprint

arXiv:2304.05128 (2023).

[157] Jihong Park, Sumudu Samarakoon, Mehdi Bennis, and Mérouane Debbah. 2019. Wireless network intelligence at the edge. Proc. IEEE

107, 11 (2019), 2204ś2239.

[158] Lauri Lovén, Teemu Leppänen, Ella Peltonen, Juha Partala, Erkki Harjula, Pawani Porambage, Mika Ylianttila, and Jukka Riekki. 2019.

EdgeAI: A vision for distributed, edge-native artiicial intelligence in future 6G networks. 6G Wireless Summit, March 24-26, 2019 Levi,

Finland (2019).

[159] Shuiguang Deng, Hailiang Zhao, Weijia Fang, Jianwei Yin, Schahram Dustdar, and Albert Y Zomaya. 2020. Edge intelligence: The

conluence of edge computing and artiicial intelligence. IEEE Internet of Things Journal 7, 8 (2020), 7457ś7469.

[160] Philipp Schoenegger, Peter S Park, Ezra Karger, Sean Trott, and Philip E Tetlock. 2024. Ai-augmented predictions: Llm assistants

improve human forecasting accuracy. ACM Transactions on Interactive Intelligent Systems (2024).

[161] Laifa Tao, Haifei Liu, Guoao Ning, Wenyan Cao, Bohao Huang, and Chen Lu. 2025. LLM-based framework for bearing fault diagnosis.

Mechanical Systems and Signal Processing 224 (2025), 112127.

[162] Adewumi Emmanuel Ojuolape and Shanfeng Hu. 2024. Explainable Fault Diagnosis of Control Systems Using Large Language Models.

In 2024 IEEE Conference on Control Technology and Applications (CCTA). IEEE, 491ś498.

[163] Thomas KF Chiu. 2023. The impact of Generative AI (GenAI) on practices, policies and research direction in education: A case of

ChatGPT and Midjourney. Interactive Learning Environments (2023), 1ś17.

[164] OpenAI. GPT-4 System Card. https://cdn.openai.com/papers/gpt-4-system-card.pdf. ([n. d.]). Last accessed: June 4, 2025.

[165] Abdulkadir Celik and Ahmed M Eltawil. 2024. At the Dawn of Generative AI Era: A Tutorial-cum-Survey On New Frontiers in 6G

Wireless Intelligence. IEEE Open Journal of the Communications Society (2024).

[166] Aishwarya Vijayan. 2023. A prompt engineering approach for structured data extraction from unstructured text using conversational

llms. In Proceedings of the 2023 6th International Conference on Algorithms, Computing and Artiicial Intelligence. 183ś189.

[167] Jeevana Priya Inala, Chenglong Wang, Steven Drucker, Gonzalo Ramos, Victor Dibia, Nathalie Riche, Dave Brown, Dan Marshall, and

Jianfeng Gao. 2024. Data Analysis in the Era of Generative AI. arXiv preprint arXiv:2409.18475 (2024).

[168] Ming Jin, Qingsong Wen, Yuxuan Liang, Chaoli Zhang, Siqiao Xue, Xue Wang, James Zhang, Yi Wang, Haifeng Chen, Xiaoli Li, et al.

2023. Large models for time series and spatio-temporal data: A survey and outlook. arXiv preprint arXiv:2310.10196 (2023).

ACM Comput. Surv.

https://arxiv.org/abs/cs.CL/2303.08774
https://chat.openai.com/
https://cdn.openai.com/papers/gpt-4-system-card.pdf


Towards Message Brokers for Generative AI: Survey, Challenges, and Opportunities • 33

[169] Ching Chang, Wei-Yao Wang, Wen-Chih Peng, and Tien-Fu Chen. 2025. LLM4TS: Aligning Pre-Trained LLMs as Data-Eicient

Time-Series Forecasters. ACM Trans. Intell. Syst. Technol. (Feb. 2025). DOI:http://dx.doi.org/10.1145/3719207 Just Accepted.

[170] Juan Morales-García, Antonio Llanes, Francisco Arcas-Túnez, and Fernando Terroso-Sáenz. 2024. Developing Time Series Forecasting

Models with Generative Large Language Models. ACM Trans. Intell. Syst. Technol. (May 2024). DOI:http://dx.doi.org/10.1145/3663485

Just Accepted.

[171] Xiyuan Zhang, Ranak Roy Chowdhury, Rajesh K Gupta, and Jingbo Shang. 2024. Large Language Models for Time Series: A Survey.

arXiv preprint arXiv:2402.01801 (2024).

[172] Hao Xue and Flora D Salim. 2023. Promptcast: A new prompt-based learning paradigm for time series forecasting. IEEE Transactions

on Knowledge and Data Engineering (2023).

[173] Junhao Zheng, Shengjie Qiu, Chengming Shi, and Qianli Ma. 2025. Towards Lifelong Learning of Large Language Models: A Survey.

ACM Comput. Surv. 57, 8, Article 193 (March 2025), 35 pages. DOI:http://dx.doi.org/10.1145/3716629

[174] Uday Kamath, Kevin Keenan, Garrett Somers, and Sarah Sorenson. 2024. Multimodal LLMs. In Large Language Models: A Deep Dive:

Bridging Theory and Practice. Springer, 375ś421.

[175] Qingyun Wu, Gagan Bansal, Jieyu Zhang, Yiran Wu, Beibin Li, Erkang Zhu, Li Jiang, Xiaoyun Zhang, Shaokun Zhang, Jiale Liu, et al.

AutoGen: Enabling Next-Gen LLM Applications via Multi-Agent Conversation. In ICLR 2024 Workshop on Large Language Model (LLM)

Agents.

[176] LangChain. 2025. LangChain web site. (2025). https://www.langchain.com Accessed: 2025-01-03.

[177] Talha Zeeshan, Abhishek Kumar, Susanna Pirttikangas, and Sasu Tarkoma. 2025. Large Language Model Based Multi-Agent System

Augmented Complex Event Processing Pipeline for Internet of Multimedia Things. arXiv preprint arXiv:2501.00906 (2025).

[178] Vipula Rawte, Amit Sheth, and Amitava Das. 2023. A survey of hallucination in large foundation models. arXiv preprint arXiv:2309.05922

(2023).

[179] Junseong Bang, Byung-Tak Lee, and Pangun Park. 2023. Examination of Ethical Principles for LLM-Based Recommendations in

Conversational AI. In 2023 International Conference on Platform Technology and Service (PlatCon). IEEE, 109ś113.

[180] Lei Huang, Weijiang Yu, Weitao Ma, Weihong Zhong, Zhangyin Feng, Haotian Wang, Qianglong Chen, Weihua Peng, Xiaocheng Feng,

Bing Qin, et al. 2023. A survey on hallucination in large language models: Principles, taxonomy, challenges, and open questions. ACM

Transactions on Information Systems (2023).

[181] Zixuan Zhou, Xuefei Ning, Ke Hong, Tianyu Fu, Jiaming Xu, Shiyao Li, Yuming Lou, Luning Wang, Zhihang Yuan, Xiuhong Li, et al.

2024. A survey on eicient inference for large language models. arXiv preprint arXiv:2404.14294 (2024).

[182] Mengwei Xu, Dongqi Cai, Wangsong Yin, ShangguangWang, Xin Jin, and Xuanzhe Liu. 2025. Resource-eicient Algorithms and Systems

of Foundation Models: A Survey. ACM Comput. Surv. 57, 5, Article 110 (Jan. 2025), 39 pages. DOI:http://dx.doi.org/10.1145/3706418

[183] Mohammad Rubyet Islam. 2024. Generative AI, Cybersecurity, and Ethics. John Wiley & Sons.

[184] Nitin Naik. 2017. Choice of efective messaging protocols for IoT systems: MQTT, CoAP, AMQP and HTTP. In 2017 IEEE international

systems engineering symposium (ISSE). IEEE, 1ś7.

[185] Bonan Min, Hayley Ross, Elior Sulem, Amir Pouran Ben Veyseh, Thien Huu Nguyen, Oscar Sainz, Eneko Agirre, Ilana Heintz, and Dan

Roth. 2023. Recent advances in natural language processing via large pre-trained language models: A survey. Comput. Surveys 56, 2

(2023), 1ś40.

[186] Le Xia, Yao Sun, Chengsi Liang, Lei Zhang, Muhammad Ali Imran, and Dusit Niyato. 2023. Generative AI for semantic communication:

Architecture, challenges, and outlook. arXiv preprint arXiv:2308.15483 (2023).

[187] Peiwen Jiang, Chao-Kai Wen, Xinping Yi, Xiao Li, Shi Jin, and Jun Zhang. 2023. Semantic Communications using Foundation Models:

Design Approaches and Open Issues. arXiv preprint arXiv:2309.13315 (2023).

[188] Praveen Kumar Donta, Boris Sedlak, Victor Casamayor Pujol, and Schahram Dustdar. 2023. Governance and sustainability of distributed

continuum systems: a big data approach. Journal of Big Data 10, 1 (2023), 1ś31.

[189] David Oniani, Jordan Hilsman, Yifan Peng, Ronald K Poropatich, COL Pamplin, LTC Legault, Yanshan Wang, et al. 2023. From Military

to Healthcare: Adopting and Expanding Ethical Principles for Generative Artiicial Intelligence. arXiv preprint arXiv:2308.02448 (2023).

[190] Shorouk Alaa El Din Talha. 2020. A Semantic Based Annotation Technique for the Internet of Things. In 2020 the 3rd International

Conference on Computing and Big Data. 42ś47.

[191] John F Sowa. 2000. Ontology, metadata, and semiotics. In International conference on conceptual structures. Springer, 55ś81.

[192] Jiachen Chen, Haoyuan Xu, Yanyong Zhang, and Dipankar Raychaudhuri. 2017. Graph-pubsub: An eicient pub/sub architecture with

graph-based information relationship. In Proceedings of the Fifth ACM/IEEE Workshop on Hot Topics in Web Systems and Technologies.

1ś6.

[193] Wanting Yang, Zi Qin Liew, Wei Yang Bryan Lim, Zehui Xiong, Dusit Niyato, Xuefen Chi, Xianbin Cao, and Khaled B Letaief. 2022.

Semantic communication meets edge intelligence. IEEE Wireless Communications 29, 5 (2022), 28ś35.

[194] Lei Zhang, Yuge Zhang, Kan Ren, Dongsheng Li, and Yuqing Yang. 2023. MLCopilot: Unleashing the Power of Large Language Models

in Solving Machine Learning Tasks. arXiv preprint arXiv:2304.14979 (2023).

ACM Comput. Surv.

http://dx.doi.org/10.1145/3719207
http://dx.doi.org/10.1145/3663485
http://dx.doi.org/10.1145/3716629
https://www.langchain.com
http://dx.doi.org/10.1145/3706418


34 • A. Saleh et al.

[195] Yifei Shen, Jiawei Shao, Xinjie Zhang, Zehong Lin, Hao Pan, Dongsheng Li, Jun Zhang, and Khaled B Letaief. 2023. Large language

models empowered autonomous edge AI for connected intelligence. arXiv preprint arXiv:2307.02779 (2023).

[196] Yagmur Yigit, William J Buchanan, Madjid G Tehrani, and Leandros Maglaras. 2024. Review of generative ai methods in cybersecurity.

arXiv preprint arXiv:2403.08701 (2024).

[197] Shenggui Li, Hongxin Liu, Zhengda Bian, Jiarui Fang, Haichen Huang, Yuliang Liu, Boxiang Wang, and Yang You. 2023. Colossal-ai: A

uniied deep learning system for large-scale parallel training. In Proceedings of the 52nd International Conference on Parallel Processing.

766ś775.

[198] Zeyu Zhang and Haiying Shen. 2024. CSPS: A Communication-Eicient Sequence-Parallelism based Serving System for Transformer

based Models with Long Prompts. arXiv preprint arXiv:2409.15104 (2024).

[199] Jiarui Fang and Shangchun Zhao. 2024. A Uniied Sequence Parallelism Approach for Long Context Generative AI. arXiv preprint

arXiv:2405.07719 (2024).

[200] Vijay Anand Korthikanti, Jared Casper, Sangkug Lym, Lawrence McAfee, Michael Andersch, Mohammad Shoeybi, and Bryan Catanzaro.

2023. Reducing activation recomputation in large transformer models. Proceedings of Machine Learning and Systems 5 (2023).

[201] Venkatesh Balavadhani Parthasarathy, Ahtsham Zafar, Aafaq Khan, and Arsalan Shahid. 2024. The ultimate guide to ine-tuning

llms from basics to breakthroughs: An exhaustive review of technologies, research, best practices, applied research challenges and

opportunities. arXiv preprint arXiv:2408.13296 (2024).

[202] Kazuki Fujii, Kohei Watanabe, and Rio Yokota. 2024. Accelerating Large Language Model Training with 4D Parallelism and Memory

Consumption Estimator. arXiv preprint arXiv:2411.06465 (2024).

[203] Jinhao Li, Shiyao Li, Jiaming Xu, Shan Huang, Yaoxiu Lian, Jun Liu, Yu Wang, and Guohao Dai. 2023. Enabling Fast 2-bit LLM on

GPUs: Memory Alignment, Sparse Outlier, and Asynchronous Dequantization. arXiv preprint arXiv:2311.16442 (2023).

[204] Fei Yang, Shuang Peng, Ning Sun, Fangyu Wang, Yuanyuan Wang, Fu Wu, Jiezhong Qiu, and Aimin Pan. 2024. Holmes: Towards

distributed training across clusters with heterogeneous nic environment. In Proceedings of the 53rd International Conference on Parallel

Processing. 514ś523.

[205] Sai Krishna Revanth Vuruma, Ashley Margetts, Jianhai Su, Faez Ahmed, and Biplav Srivastava. 2024. From Cloud to Edge: Rethinking

Generative AI for Low-Resource Design Challenges. arXiv preprint arXiv:2402.12702 (2024).

[206] Fali Wang, Zhiwei Zhang, Xianren Zhang, Zongyu Wu, Tzuhao Mo, Qiuhao Lu, Wanjing Wang, Rui Li, Junjie Xu, Xianfeng Tang, et al.

2024. A comprehensive survey of small language models in the era of large language models: Techniques, enhancements, applications,

collaboration with llms, and trustworthiness. arXiv preprint arXiv:2411.03350 (2024).

[207] Savitha Viswanadh Kandala, Pramuka Medaranga, and Ambuj Varshney. 2024. TinyLLM: A Framework for Training and Deploying

Language Models at the Edge Computers. arXiv preprint arXiv:2412.15304 (2024).

[208] Yuang Jiang, Shiqiang Wang, Victor Valls, Bong Jun Ko, Wei-Han Lee, Kin K Leung, and Leandros Tassiulas. 2022. Model pruning

enables eicient federated learning on edge devices. IEEE Transactions on Neural Networks and Learning Systems (2022).

[209] Mingjie Sun, Zhuang Liu, Anna Bair, and J Zico Kolter. 2023. A simple and efective pruning approach for large language models. arXiv

preprint arXiv:2306.11695 (2023).

[210] Xinyin Ma, Gongfan Fang, and Xinchao Wang. 2023. Llm-pruner: On the structural pruning of large language models. Advances in

neural information processing systems 36 (2023), 21702ś21720.

[211] Chuanpeng Yang, Yao Zhu, Wang Lu, Yidong Wang, Qian Chen, Chenlong Gao, Bingjie Yan, and Yiqiang Chen. 2024. Survey on

Knowledge Distillation for Large Language Models: Methods, Evaluation, and Application. ACM Trans. Intell. Syst. Technol. (Oct. 2024).

DOI:http://dx.doi.org/10.1145/3699518 Just Accepted.

[212] Xunyu Zhu, Jian Li, Yong Liu, Can Ma, and Weiping Wang. 2023. A survey on model compression for large language models. arXiv

preprint arXiv:2308.07633 (2023).

[213] Antonio Polino, Razvan Pascanu, and Dan Alistarh. 2018. Model compression via distillation and quantization. arXiv preprint

arXiv:1802.05668 (2018).

[214] Yuxian Gu, Li Dong, FuruWei, and Minlie Huang. 2023. Knowledge distillation of large language models. arXiv preprint arXiv:2306.08543

(2023).

[215] Cheng-Yu Hsieh, Chun-Liang Li, Chih-Kuan Yeh, Hootan Nakhost, Yasuhisa Fujii, Alexander Ratner, Ranjay Krishna, Chen-Yu Lee, and

Tomas Pister. 2023. Distilling step-by-step! outperforming larger language models with less training data and smaller model sizes.

arXiv preprint arXiv:2305.02301 (2023).

[216] Zechun Liu, Barlas Oguz, Changsheng Zhao, Ernie Chang, Pierre Stock, Yashar Mehdad, Yangyang Shi, Raghuraman Krishnamoorthi,

and Vikas Chandra. 2023. Llm-qat: Data-free quantization aware training for large language models. arXiv preprint arXiv:2305.17888

(2023).

[217] Yen-Chang Hsu, Ting Hua, Sungen Chang, Qian Lou, Yilin Shen, and Hongxia Jin. 2022. Language model compression with weighted

low-rank factorization. arXiv preprint arXiv:2207.00112 (2022).

[218] Arnav Chavan, Raghav Magazine, Shubham Kushwaha, Mérouane Debbah, and Deepak Gupta. 2024. Faster and Lighter LLMs: A

Survey on Current Challenges and Way Forward. arXiv preprint arXiv:2402.01799 (2024).

ACM Comput. Surv.

http://dx.doi.org/10.1145/3699518


Towards Message Brokers for Generative AI: Survey, Challenges, and Opportunities • 35

[219] Dominik Kreuzberger, Niklas Kühl, and Sebastian Hirschl. 2023. Machine learning operations (mlops): Overview, deinition, and

architecture. IEEE access 11 (2023), 31866ś31879.

[220] Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay Bashlykov, Soumya Batra, Prajjwal

Bhargava, Shruti Bhosale, et al. 2023. Llama 2: Open foundation and ine-tuned chat models. arXiv preprint arXiv:2307.09288 (2023).

[221] Alexandra Sasha Luccioni, Sylvain Viguier, and Anne-Laure Ligozat. 2023. Estimating the carbon footprint of bloom, a 176b parameter

language model. Journal of Machine Learning Research 24, 253 (2023), 1ś15.

[222] Xiaoxi Li, Jiajie Jin, Yujia Zhou, Yuyao Zhang, Peitian Zhang, Yutao Zhu, and Zhicheng Dou. 2024. From matching to generation: A

survey on generative information retrieval. ACM Transactions on Information Systems (2024).

[223] Qiong Wu, Zhaoxi Ke, Yiyi Zhou, Xiaoshuai Sun, and Rongrong Ji. 2024. Routing experts: Learning to route dynamic experts in

multi-modal large language models. arXiv preprint arXiv:2407.14093 (2024).

[224] David Patterson, Joseph Gonzalez, Quoc Le, Chen Liang, Lluis-Miquel Munguia, Daniel Rothchild, David So, Maud Texier, and Jef

Dean. 2021. Carbon emissions and large neural network training. arXiv preprint arXiv:2104.10350 (2021).

[225] Jesse Dodge, Taylor Prewitt, Remi Tachet des Combes, Erika Odmark, Roy Schwartz, Emma Strubell, Alexandra Sasha Luccioni, Noah A

Smith, Nicole DeCario, and Will Buchanan. 2022. Measuring the carbon intensity of AI in cloud instances. In Proceedings of the 2022

ACM Conference on Fairness, Accountability, and Transparency. 1877ś1894.

[226] Carole-Jean Wu, Ramya Raghavendra, Udit Gupta, Bilge Acun, Newsha Ardalani, Kiwan Maeng, Gloria Chang, Fiona Aga, Jinshi

Huang, Charles Bai, et al. 2022. Sustainable ai: Environmental implications, challenges and opportunities. Proceedings of Machine

Learning and Systems 4 (2022), 795ś813.

Received 8 March 2024; revised 25 March 2025; accepted 31 May 2025

ACM Comput. Surv.


	Abstract
	1 Introduction
	2 The Pub/Sub Paradigm
	2.1 Message broker development
	2.2 Broker vs. Brokerless Messaging Architecture

	3 Survey of Message Brokers
	3.1 Open Source Message Brokers
	3.2 Proprietary Message Brokers
	3.3 Summary on Message Brokers

	4 Message brokers and GenAI
	4.1 GenAI for message brokers
	4.2 GenAI on message brokers
	4.3 Semantic Communication
	4.4 Dynamic Data and Model Management
	4.5 Training Acceleration
	4.6 Dynamic Model Compression
	4.7 Dynamic Orchestration
	4.8 AIOps/MLOps and Monitoring
	4.9 Summary of message broker enhancement methods
	4.10 Sustainability Considerations for GenAI in Message Broker Systems

	5 Conclusion
	References

