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Abstract—As a key technology of intelligent satellite-enabled
services in B5G or 6G networks, deploying Deep Neural Networks
(DNN) models on satellites has been a notable trend, catering to
the daily demand for extensive computing-intensive and latency-
sensitive tasks. The computing resources are strategically deployed
on satellites where sensor data is generated or collected, facilitat-
ing the fine-grained computational inference of DNN-based tasks.
However, no prior study has comprehensively explored the crucial
inference challenges – e.g., the trade-off between the number of
tasks completed and accuracy and partitioning models in multi-exit
models – in the resource-constrained space environment. Effec-
tive scheduling frameworks cater to various streams of inference
tasks are scarce because inference performance may deviate from
the ideal situation due to changes in task system status, such as
task profiles and network state. To this end, we first formulate
a gain-aware in-orbit computing inference problem to strike a
proper trade-off between inference latency and the number of
tasks completed by dynamically selecting optimal early exit points
and model partitioning points. We propose an offline dynamic
programming-based algorithm that provides an effective solution
when comprehensive system details are to be predicted. We have
developed an online learning-based method to schedule inference
tasks with uncertain and dynamic system statuses in real-world sit-
uations. Our evaluation shows that, compared to baseline methods,
the online learning-based algorithm can improve task gain by an
average of 87.3% across various tasks.

Index Terms—Satellite service, satellite networking, task
inference, multi-exit DNN.
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I. INTRODUCTION

CONTINUOUS advancements in space exploration have
fueled the rapid expansion of satellite constellations. Many

popular companies, such as Telesat, Amazon, and SpaceX [1],
have built satellite constellations with a dedicated focus on
achieving goals like Earth Observation (EO) [2]. The appli-
cations periodically collect EO data and provide ubiquitous
coverage during disaster management [3], [4]. In this scenario,
EO applications can employ in-orbit computation to process
sensor-acquired data for real-time processing and reducing the
downlink data volume. For example, a disaster response de-
partment captures EO images and requires rapid image results
from a wildfire to mitigate risks to human lives and property.
Recently, the trend has been to launch nano- or micro-satellites
that use Commercial Off-The-Shelf (COTS) components, which
are limited in power and computation but have a fast turnaround.
The emerging machine learning (ML) algorithms facilitate EO
applications, especially Deep Neural Network (DNN) models.
As such, the framework of in-orbit capture and computational
inference is expected to play a crucial role in the B5G or 6G
networks by providing diverse, efficient inference services.

Due to the characteristics of low orbit, a single Low Earth
Orbit (LEO) satellite can only capture a limited area within
each image and does not cover consecutive regions due to its
high-speed movement relative to the ground (around 8 kmps).
Current LEO satellites, such as Planet’s Dove satellites,1 rely
heavily on multiple satellite collaboration to achieve wide-area
observation coverage. Moreover, from a computing perspective,
the limited computing capability available for each satellite
presents significant challenges when handling highly demanding
yet complex inference tasks. Previous efforts have primarily
focused on offloading onboard tasks to the ground, which is
considered a promising solution [5], [6], [7], [8], [9], [10], [11].
However, this solution often faces significant latency (ranging
from a few hours to days even) due to intermittent connection
with the ground station. These methods can significantly im-
pact performance when inference services exceed a predefined
deadline. For example, degraded performance may lead to de-
cision errors and economic losses for services requiring in-orbit
results analysis for decision-making. Some efforts on satellite
computing [12], [13] demonstrate the feasibility of scheduling

1 https://www.planet.com/our-constellations/
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computing workloads on LEO satellite constellations, and such
architectural optimizations can enhance inference performance.
However, these methods cannot effectively manage diverse and
computationally intensive in-orbit inference services. Therefore,
achieving ubiquitous coverage and efficient computing with
individual satellites is challenging.

To deal with this issue, the promising solution involves a
cooperative paradigm for satellite image capture and computing,
such as DNN partitioning in multi-exit models between Medium
Earth Orbit (MEO) and LEO satellites. Automatic switching be-
tween MEO and LEO satellites occurs based on service require-
ments, ensuring efficient in-orbit service continuity. These satel-
lites in distinct orbits offer unique advantages: MEO satellites
excel at achieving extensive imaging coverage, whereas LEO
satellites specialize in capturing high-resolution images. Com-
pared to collaborations among multiple LEO satellites, MEO
satellites could achieve similar objectives while reducing image
size and conserving computing resources. Additionally, Starlink
demonstrated the feasibility of laser-based Inter-Satellite Links
(ISLs). Planet and Telesat have announced their intentions to
investigate radiofrequency ISL spanning various orbits, from
LEO to MEO satellites [14], [15]. Motivated by integrating
computing capabilities and image capture across satellites in
different orbits, we argue that a cooperative image capture and
computing mechanism is needed to achieve high-performance
inference services. This paper introduces an efficient framework
for cooperative inference involving multiple orbital satellites
in a resource-constrained space environment. To the best of
our knowledge, this is the first work to thoroughly investigate
inference in dynamic, task-driven satellite imaging services. The
approach includes: (a) Partitioning DNN models between one
MEO satellite and multiple LEO satellites; (b) To meet the
demand of current EO tasks, which range from ubiquitous cov-
erage to detailed observation due to specific task requirements,
multiple satellites must collectively perform EO observations,
each handling specific computational tasks; and (c) Due to
the limited computing capabilities of each satellite, the task
owner distributes inference tasks across multiple satellites, each
equipped with COTS hardware.

For the inference task, the task owner processes the initial
portion of the DNNs and delegates the remaining part to other
task executors. Addressing these issues in a demanding comput-
ing environment requires advanced artificial intelligence mech-
anisms, specifically multi-exit models. Multi-exit mechanisms
are introduced to reduce significant computational workloads
by selectively activating optimal early-exit (EE) points and
Model Partitioning (MP) points [16], [17]; otherwise, it leads
to performance degradation of inference services. Determining
each task’s optimal EE and MP points based on current system
conditions remains challenging. The simultaneous management
of EE and MP points adds complexity to the inference system,
especially when dealing with evolving task profiles. We aim
to consider the trade-off between maintaining satisfactory task
accuracy and task completion, which is not trivial. When priori-
tizing high inference performance for each task, some tasks may
fail to meet their deadlines due to prolonged waiting times. When
we focus solely on increasing system throughput, overall infer-
ence performance may not meet time constraints. We propose

an exponential-based task gain function that balances latency
and inference accuracy to address this challenge. The optimal
solution to the problem can maximize task gain by dynamically
selecting the optimal EE points and MP points based on each
model’s characteristics and considering the tasks’ profiling.

On the other hand, analyzing streaming tasks under tight
time constraints poses significant challenges, especially under
extreme conditions [18] such as poor network conditions and
excessive task arrivals. When information on dynamic tasks
(e.g., task arrivals and network state) is known in advance, a Dy-
namic Programming (DP)-based cooperative inference strategy
can efficiently address the optimization problem. However, there
are limitations in real-world applications with uncertain task
information, meaning decision-makers cannot obtain complete
task information. In response to this challenge, we developed
an online algorithm based on Deep Reinforcement Learning
(DRL). This algorithm adjusts adaptive strategies to environ-
mental interactions, including uncertainty and dynamics.

We evaluate the proposed algorithm using a combination of
task-driven simulations and hardware emulation on a general-
purpose EO classification application. The results demonstrate
that, compared to the baseline methods, the proposed method
can significantly improve the defined task gain and task com-
pletion rates while reducing the average task latency. Moreover,
despite the absence of uncertain task information, the proposed
method closely approaches the performance of the DP-based
method with theoretical upper bound performance. The primary
contributions of this work are summarized below:

Problem Formulation: We formulate an optimization problem
for satellite inference services by considering inference task
requirements and model modification, i.e., ubiquitous coverage
and high-resolution satellite imaging. This formulation aims to
balance task latency and accuracy before the deadlines.

Algorithm: We extend the introduced dynamic programming-
based task gain-aware algorithm to obtain an efficient solution
when system dynamics can be predicted accurately [19]. We
propose a Deep Reinforcement Learning (DRL)–based online
algorithm designed to handle dynamic and uncertain system
statuses.

Evaluation: Extensive evaluations through simulations show
the effectiveness of the proposed algorithm in meeting inference
time constraints. Our approach improves the defined task gain
by 87.3% across various task numbers compared to baseline
algorithms. The rest of the work is structured as follows: Af-
ter reviewing the background and related work in Section II,
Section III presents the system model and problem formulation.
Section IV introduces the two algorithms, while Section V
discusses the experimental results. Finally, Section VI concludes
the paper and outlines its limitations.

II. BACKGROUND AND RELATED WORK

A. Background

MEO satellites, positioned at 8,000 km altitude, offer exten-
sive coverage capabilities due to their geostationary positions.
These satellites can monitor large-scale geographical areas con-
tinuously, but their distance from the Earth’s surface results in
lower-resolution imagery [20], [21]. Therefore, MEO satellites
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Fig. 1. Example of satellite service for ubiquitous coverage and high-
resolution satellite imaging.

are commonly used for general monitoring but are less suitable
for high-resolution imaging services. In contrast, LEO satel-
lites, positioned in orbits ranging from hundreds to thousand
kilometers, provide high-resolution images. Their proximity to
Earth enables them to capture fine-grained details, making them
valuable for detailed monitoring. Therefore, as shown in Fig. 1,
the choice of different orbits depends on specific application re-
quirements for high coverage and resolution of satellite images.

Leveraging MEO satellites establishes a stable and efficient
link between MEO and LEO satellites, resulting in expedited
data delivery suitable for time-sensitive applications. The uti-
lization of modern MEO satellites, equipped with long-distance
laser communication components capable of providing data
rates as high as gigabits per second (Gbps), is the fundamental
reason for achieving these elevated data rates [22]. Further-
more, MEO and LEO satellites can maintain connectivity ow-
ing to their intrinsic characteristics, such as extended-duration
vision and communication capabilities [23], [24]. Communi-
cation between these two satellites can be facilitated through
co-frequency band operation, reducing frequency band conver-
sion and enhancing cross-system compatibility. Moreover, their
high-altitude co-orbiting trajectory enables prolonged mutual
visibility, providing extended communication windows [25]. On
the other hand, the rapid advancement of onboard computing
capability is evidenced by significant progress in integrating
increasingly powerful computing capabilities into satellites,
such as platforms like Raspberry Pi and NVIDIA Jetson. For
example, in 2020, the European Space Agency deployed a neural
network-based cloud detector as part of their φ-Sat-1 mission.

This paper considers a potential application as the case study,
where the dynamic utilization of MEO and LEO satellites. Each
of these satellites has unique coverage and imaging capabilities,
ensuring an effective response to the ever-changing demands
of disaster management. In this case, MEO and LEO satellites
have distinct roles during different stages: (1) Getting Ready
and Warning. To prepare for disasters, monitoring large areas for
early signs is essential. MEO satellites are well-suited for this
task due to their broad coverage capabilities; (2) Responding
and Checking the Damage. After a disaster, LEO satellites,
positioned close to Earth, capture high-resolution images that

play a vital role in understanding the extent of damage; (3)
Recovery and Reconstruction. Once the immediate issues are
addressed, the focus shifts to large areas to evaluate the progress
of recovery efforts and their impact on broader regions.

B. Related Work

This work facilitates a cooperative inference stream system
involving multiple satellites, utilizing DNN models by partition-
ing multi-exit models. In this approach, task owners distribute
subsequent inference tasks across different satellites to enhance
inference accuracy and overall system throughput. This section
reviews the related works.

Mega-constellations: Most LEO satellites typically employ a
traditional architecture, where their primary function is trans-
mitting data rather than processing data. However, data trans-
mission between satellites and ground stations faces notable
impediments due to unreliable communication links and in-
termittent connection. This leads to a significantly reduced
transmission rate compared to the onboard data generation rate,
contributing to a substantial increase in the overall latency of
all tasks. Furthermore, mega-constellations utilize inter-satellite
data processing, enabling data exchange and processing between
satellites [26]. This method facilitates satellite computing, where
onboard data processing is vital in enhancing satellite services.

In-orbit Computing: In-orbit computing proposes shifting the
processing tasks to satellites, reducing bandwidth consump-
tion by introducing emerging COTS hardware. This approach
leverages onboard computing resources to provide satellite ser-
vices [12], [13], [27]. For instance, both orbital edge com-
puting [12] and Kodan [13] decrease the number of images
transmitted to Earth by filtering and prioritizing valuable ones.
Orbital edge computing utilizes satellites within a constellation
as computational pipelines that seamlessly distribute computing
workloads. Kodan seeks to train the optimal model for specific
applications by concentrating on the computation of each satel-
lite. However, these approaches fail to address the challenges
posed by diverse and computing-intensive satellite applications.
Recent mega-constellations, such as Starlink and Kuiper, consist
of thousands of satellites with laser ISLs, providing broadband
Internet service with low latency and high-speed transmission.
However, the constrained computing capabilities of satellites
impose a substantial burden on their operations, involving signif-
icant challenges in satisfying the constraints of satellite service.
Therefore, we investigate a novel strategy based on a multi-exit
model and model partitioning by allocating fine-grained com-
putational resources cooperatively among different satellites.

Model Partitioning for Cooperative Task Inference: Col-
laborative inference is developing rapidly, with most existing
research focusing on deep neural network operator accelera-
tion [28], cloud or server-based computing [29], [30], and multi-
device collaboration on the ground [31], [32], [33]. However,
this area of work is orthogonal to the contributions of this work.
Furthermore, previous efforts suggest that model partitioning
can delegate partial computational tasks from task owners to
other edge devices [4], [34], [35]. Notably, Neurosurgeon [36]
presented layer-wise partition strategies to offload computation
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and brought additional speedup for inference. The collaborative
framework JointDNN [37] was designed to optimize resources
on the edges by incorporating both model training and inference.
The synergy between these two aspects contributes to enhanced
efficiency and performance in edge computing environments.
DDNN [38] proposed a distributed computing continuum sys-
tem to minimize the communication data size. Other works
address an optimization problem by selecting the most suitable
DNN depth for model partitioning. Edgent [39] and SPINN [40]
guarantee inference accuracy, while the optimization in [41]
saves energy. In contrast, aiming at the efficient inference of
AI-enabled satellite services, our work pursues a distinct objec-
tive to achieve a trade-off between task accuracy and the number
of completed tasks.

Multi-exit Models for Boosting Task Inference: The models
with multiple branches are denoted as multi-exit models. Multi-
exit models facilitate adaptive inference in conjunction with
model partitioning, achieved by modifying the structure of pre-
trained models. There has been a growing interest in partitioning
multi-exit models as a strategy to enhance DNN performance.
BranchyNet [42] as the first to introduce an inference engine that
enables accurate predictions to exit the backbone network early
through EE points when a certain confidence level is achieved.
eDeepSave [43] aimed to enhance inference performance using
the EE mechanism to prevent interruptions when transitioning
to the mobile network. Edgent [39] introduced a DNN parti-
tioning model that aims to maximize inference accuracy while
adhering to latency constraints. While multi-exit partitioning
models for satellite services seem promising, they are yet to
be fully explored. Therefore, in a more realistic setting with
uncertain task arrivals and the current state of the task, we design
an efficient solution to facilitate decision-making through adap-
tive learning-based scheduling in response to dynamic system
states.

III. PROBLEM DEFINITION

Fig. 2 depicts a time-slotted stream model comprising mul-
tiple LEO satellites and an MEO satellite. LEO satellites fulfill
the roles of capturing and processing data. In addition to these
functions, the MEO satellite also serves as the controller for
executing decision-making tasks. MEO satellites capture and
queue MEO imaging tasks for processing, while LEO satellites
relay information about their imaging tasks to the MEO satellite
for further handling. Pre-trained multi-exit models are deployed
on each satellite to support subsequent inference tasks on each
satellite.

The workflow of the whole inference system involves two
main stages, described as follows:

(1) The satellites receive the task requests, including the
current task requirements, such as task type, data size, and time
constraints. Specifically, MEO imaging tasks are captured by
MEO satellites and queued for processing. LEO satellites trans-
mit information about LEO imaging tasks to an MEO satellite.
Based on the satellite imaging requirements, an MEO satellite
evaluates inference solutions and transmits their decisions to
LEO satellites.

Fig. 2. The workflow of collaborative task stream inference system.

(2) LEO satellites perform imaging tasks by gathering infer-
ence information, processing the initial portion, and forwarding
the remainder to the MEO satellite. MEO satellite manages
these tasks according to the First-Come-First-Served (FCFS)
principle. In MEO imaging tasks, the initial part is processed
on the MEO satellite before the remaining portion needs to
be transmitted to the LEO satellites. When the MEO satellite
finishes processing, LEO satellites receive their results. We
ignore the MEO satellite’s time to deliver the final results for
the LEO imaging tasks [44].

A. Satellite Inference Task Model

Let the nth task in the task-slotted stream be denoted by Tn =
(Sn,Dn,Ln, tAn ), where task requirement type is denoted bySn,
the task size is represented by Dn, the maximum allowable time
constraint is denoted by Ln, and the arrival time is represented
using tAn . The relation between Ln and Dn is proportional,
expressed as Ln = k ×Dn, k ∈ N . In addition, M indicates
the total number of EE points and the number of layers of ith EE
point is denoted asMi. For thenth task,Pn andEn donate the MP
and EE points, respectively, with the constraints 0 ≤ En ≤M ,
0 ≤ Pn ≤MEn

. Table I summarizes the parameters and their
meanings.

According to [37], we tailor the transmission data size and
processing time during handover to specific applications through
profiling. The prediction model demonstrated high accuracy in
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TABLE I
SUMMARY OF SYSTEM PARAMETERS

practical scenarios, ensuring reliability while minimizing exe-
cution costs. Thus, we use a linear regression-based prediction
model for each layer in the multi-exit model, considering both
LEO and MEO satellites, to accurately estimate output data size
and inference time. For this discussion, we focus on the LEO
satellite. Inference time is recorded using a timeline and modeled
by fitting linear functions to the inference times associated
with each model layer. The predicted inference time, fd

i,j(Dn),
corresponds to the input data size Dn at the jth layer of the ith

EE point. This is executed in LEO satellites if d = 0 or MEO
satellites if d = 1. Similarly, the predicted output data size at jth

layer of the ith EE point is denoted as fD
i,j(Dn), where D is 2 by

default.

B. Inter-Satellite Communication Model

Communication of an ISL depends on satisfying the following
three criteria simultaneously [6]: (1) There exists no physical
obstruction between two satellites, and links between satellites
must be positioned in the same direction; (2) Satellites are visible
to each other. In this case, MEO satellites consistently maintain
proximity to LEO satellites; (3) The cooperative satellites remain
connected if their antennas are within a specified pointing angle.
The pitch angle θ of MEO satellite and LEO satellites must
fall within the antenna scanning of LEO satellites, i.e., σmin <
θ < σmax, where σmin and σmax represent the lower and
upper bounds of the antenna scanning range for LEO satellites.
Similarly, the same applies to MEO satellites.

The transmission time of inter-satellite linksLISL
latency consists

of the following two parts: (1) Transmission delay, which is
the time cost to transmit all the data from the first bit, can
be calculated by the size len(D) divided by ISL data rate
w(SL, SM ); (2) Propagation delay, which is the time required
for electromagnetic radiation to travel the distance Q(SL,SM ),
can be expressed as the ratio of the distance to the propagation
rate of the electrical signal, typically approximated as the speed
of light c). Here, the transmission latency of ISL is,

ttrn =
len(D)

w (SL, SM )
+

Q(SL,SM )

c
, (1)

where SL and SM denote the LEO satellite and MEO satel-
lite, respectively. D and Q(SL,SM ) represent the size of data
transmitted and the length of the transmission link between
MEO and LEO satellites, respectively. The data transmission
rate (w(SL, SM )) is calculated as follows:

w (SL, SM ) = B log2

(
1 +

Pr(SL, SM )

kBTsBγ

)
, (2)

whereTs represents the system noise temperature,B is the band-
width, kB represents the Boltzmann’s constant, and γ represents
the Signal-to-Noise Ratio (SNR) margin. Pr(SL, SM ) denotes
the received signal strength. The formula is as follows:

Pr (SL, SM ) = PtGtGr

(
4πQ(SL,SM )fc

c

)−2
, (3)

where transmit power is written asPt,Gt, andGr are the receive
gain and the transmit gain, respectively. fc represents the carrier
frequency.

C. Computational Model

We aim to select the optimal points for EE and MP to meet the
deadline constraints for transmitting task data between satellite
nodes. The entire system can be divided into three distinct stages
based on how En and Pn are chosen: First, when the imaging
task is processed on the LEO satellites, the first stage processing
time for task Tn is tP1

n =
∑Pn

i=1 f
0
En,i

(Dn), or if no processing
occurs, tP1

n = 0; Second, when imaging task is processed on
the LEO satellites, the second stage processing time for task
Tn as tP2

n =
∑MEn

i=Pn+1 f
1
En,i

(Dn), or tP2
n =

∑Pn

i=1 f
1
En,i

(Dn);
Third, when imaging task is processed on the MEO satellite,
the third stage processing time for task Tn is tP3

n = 0, or
tP3
n =

∑MEn

i=Pn+1 f
0
En,i

(Dn). Notably, the transmission data size
between LEO and MEO satellites is denoted by

len(D) = fD
En,Pn

(Dn), (4)

Since the adjacent tasks may come from distinct satellites,
each satellite maintains at most one task queue. Tb and Tn

denote the sequential tasks generated on the same satellite,
where Tb precedes Tn. In this case, the time at the LEO
satellite starts processing the task Tn is tS1

n = max(tAn , t
O1

b ),
the time when LEO satellite starts to transmit the task Tn is
tO1
n = tS1

n + tP1
n , the time when MEO satellite starts inference

the task Tn is tS2
n = max(tO1

n + ttr1n , tO2

b ), the time when the
task Tn is completed is tO2

n = tS2
n + tP2

n . Furthermore, the time
when the LEO satellite finally starts processing the task Tn is
tS3
n = max(tO2

n + ttr2n , tO3

b ), the time when Tn is completed is
tO3
n = tS3

n + tP3
n . Finally, we compute the total inference time

for Tn is TP
n = tO3

n − tAn .

D. Problem Formulation

In the multi-exit DNN model, each EE point corresponds
to a specific level of accuracy associated with different com-
putational loads. Therefore, the accuracy of EE point En is
represented by AEn

, where 0 ≤ AEn
< 1. In this scenario,

AEn
= 0 if and only if En = 0. Feng et al. [45] proposed a
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Fig. 3. Parameter analysis.

function associated with computing cost, introducing a novel
weight parameter to balance inference performance and latency.
This facilitates the selection of a descendant DNN model that
meets the resource-constrained requirements of the satellites.
Similarly, striving to enhance task accuracy while completing
as many tasks as possible, we introduce a novel exponential
function, and the task gain Gn of the task n is expressed as

Gn = �An�+
α

1 + e−β(An−Amin)
, (5)

where the first component of the gain function quantifies the
tasks completed within the task stream by approximating the
inference accuracy. The second component is a sigmoid function
associated with the inference accuracy, which expresses the
user’s satisfaction with the model’s performance. Specifically,
Amin represents the minimum inference accuracy. An is the
accuracy of the inference result, where An ∈ [Amin, 1) ∪ 0,
0 indicates that the task has not been completed successfully.
We introduce two hyperparameters, α and β, both greater than
0, serving as weighting parameters to assess task inference
performance. The first parameterα balances the task completion
outcome against the inference accuracy level. On the other hand,
the second parameter β is employed to regulate the impact of
accuracy variations on the extent of the function value change.
Theoretically, increasing the hyperparameter α magnifies the
influence of the second component on the task gain value.
Similarly, increasing the hyperparameter β makes the effect of
the accuracy difference on the function value more apparent.

Fig. 3(a) illustrates the impact of inference accuracy An on
the function Gn across different β, where 1 + α represents the
maximum gain for performing the task, while 1 + α

2 denotes
the gain when the task is executed with the minimum inference
accuracy. Fig. 3(b) illustrates the function Gn on different α

when β is optimal. Consistent with theoretical analysis, our
results highlight the critical importance of hyperparameter tun-
ing: A low β requires significant improvements in accuracy to
enhance task performance, while a high β enables substantial
task gains with only marginal accuracy improvements; A low
α prioritizes task completion over achieving higher accuracy,
while a highα excessively emphasizes accuracy at the expense of
task completion. Consequently, achieving optimal performance
requires a careful balance between these parameters.

In this paper, we define the task stream, comprising N tasks
within the system, as an optimization problem:

max
En,Pn

N∑
n=1

�An�+
α

1 + e−β(An−Amin)
,

s.t. tS1
1 = tA1 , n ∈ N,

tO3
n � tAn + Ln,

0 � En � M,

0 � Pn � MEn
. (6)

where the initial constraint initializes the first task, while the
subsequent constraint imposes a time limitation on task infer-
ence, the final set of constraints delineates the feasible ranges
for En and Pn.

E. Problem Analysis

This optimization problem aims to efficiently address the
challenge posed by the subsequent task stream, involving the
trade-off between the completed inference task and task la-
tency. This is achieved by implementing efficient partitioning
and cooperative inference techniques for branch DNN models
throughout the inference process. In this scenario, the total
number of combinations of EE and MP points is denoted as
H (h ∈ H).

When selecting the hth combination of these points, we repre-
sent the overall inference time and task gain for the mth task as
Pm
h and Gm

h , respectively. We thus reformulate the problem as
a group knapsack problem involving H items, where each item
must be efficiently accommodated within the knapsack. The hth

item’s volume and value within themth group are represented by
Pm
h and Gm

h , respectively. The overall capacity of the backpack
is determined by the sum of tAM and LM . Consequently, the
formulated problem seeks to maximize the cumulative value of
items that can be accommodated in the backpack. As a result,
the problem addressed in this work is classified as NP-hard.

IV. SOLUTION

A. DP-Based Cooperative Inference Algorithm

Aiming to achieve the maximum task gain by identifying the
optimal EE and MP points for the tasks, this section introduces a
task gain-aware algorithm based on DP. This algorithm consists
of two main parts: task gain-aware decision and optimal point
selection.
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As shown in Algorithm 1, the algorithm begins by calculating
the maximum gain for each task at each time slot and subse-
quently determines the overall maximum gain. In this scenario,
we can anticipate task streaming information, including input
data, arrival time, time limitation, and total task number. Conse-
quently, we redefine the maximum task gain G(i, j) considering
the ith task and the limitation of the jth time slot:

G(i, j) = max
tAi ≤t<j

{G(i− 1, j),G(i− 1, t) + �S(Di, j − t)�

+ α
1

1 + e−β(S(Di,j−t)−A∗i)
}, (7)

where S(D, t) represents the highest accuracy of EE points for
data size D and latency constraint t. Algorithm 1 initializes an
array G(0, t), (1 ≤ t ≤ tAN + LN ). Upon the arrival of the ith

task, if the sum of the previous round’s arrival time and the
latency constraint is less than the current task’s arrival time,
we update G(i− 1, tAi ) to G(i− 1, tAi−1 + Li−1). Simultane-
ously, for each jth time point, we recursively iterate from tAi
to tAi + Li, comparing the maximum task gain of the previous
round G(i− 1, j). This process enables the determination of the
maximum G(i, j).

Following the decision-making process considering task gain,
Algorithm 1 undertakes an exhaustive search of the EE and
MP points to select optimal points simultaneously, meeting both
accuracy and time constraints. Upon the arrival of task Tn, for
each branch in the multi-exit model, we sequentially determine
the optimal MP points and calculate the overall processing
time. Subsequently, we select the MP point associated with the
minimum total processing time as the appropriate choice for
the current task and branch. Additionally, each branch in the
multi-exit model corresponds to a task accuracy An, resulting
in a series ofAn values for the current task and its corresponding
branches. Among these, the maximum An is selected. Finally,
the corresponding EE and MP points, denoted as En and Pn,
are the optimal associations for the current task.

B. Learning-Based Cooperative Inference Algorithm

The proposed cooperative inference strategy based on DP ad-
dresses the problem of when task information can be predicted.
However, real-world applications face certain task information,
such as the decision-maker’s inability to obtain task information
fully. This challenge demands the use of an online algorithm.
Although task stream information is challenging to obtain in
advance, task arrival times follow a Bernoulli process, where
task arrival rate p obeys the normal distribution of data size.

Therefore, the DRL algorithm can be applied to solve it using a
Markov Decision Process (MDP). The MDP can be modeled into
a tuple (S,A, T ,R), where S ,A, T , andR are considered as a
set of states, actions, transition function, and reward functions,
respectively. In the MDP, based on the decision policy P(θ, s),
the agent will take action a ∈ A for each s ∈ S . To maximize the
agent’s long-term reward, constantly adjusting the parameter θ
is crucial.

Fig. 4 illustrates the workflow of the proposed online coopera-
tive inference strategy for decision-making in the MEO satellite,

Fig. 4. The workflow for learning-based online decision-making strategy.

Algorithm 1: DP-Based Cooperative Inference Algorithm.
Input: N : the task number;
M : the number of EE points;
{Mk|k = 1, . . .,M}: the number of layers of the EE points
k;
Dn: Tn’s input data size;
Ln: Tn’s time deadline;
tAn : Tn’s arriving time;
LISL
latency: the inter-satellite transmission rate;

fd
i,j : the predictive model in the work;

Output: Optimal En, Pn

1: Initialize G(0, t) = 0; // Initialization
2: for i = 1 to N do
3: if tAi−1 + Li−1 < tAi then
4: G(i− 1, tAi ) = G(i− 1, Li−1 + tAi−1);
// Update the recursion task gain value.
5: end if
6: for j = tAi to Li + tAi do
7: Update G(i, j) according to (7);
8: end for
9: end for

10: for k = M to 1 do
11: En = k;
12: Cn = minPn=1,...,Mk

{tO3
n − tAn };

// Divide the model EE points in sequence and select the
smallest computing time.

13: if Cn ≤ Ln and An ≥ A∗n then
14: record En, Pn, An;
15: end if
16: end for
17: return En, Pn when An is maximum;

which acts as the system controller. System information is the
starting point for system input, including warning deadlines,
data size, and task queues, and serves as the starting point
for system input. Online algorithms utilize this information
to determine the system’s state and integrate neural networks
and decision components for decision-making. The algorithm’s
output is subsequently transmitted to the environment, where
model inference occurs, followed by further processing based on
both data and algorithmic decisions. The workflow is continuous
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and iterative, with the system promptly addressing the next task
upon completion.

Before making task decisions with the online cooperative
inference strategy, we must first define MDP elements. This
involves determining whether the task can be completed by
considering its arrival time and total processing time, which in-
cludes satellite processing time and task waiting time. The state
information should consist of data size, latency constraints, and
task waiting time, which are essential for determining processing
time. As mentioned in Section III, three factors influence the task
waiting time for each taskTn: (i) the time when the LEO satellite
starts to transmit Tn−1, i.e., tO1

n−1, (ii) the MEO satellite starts to
transmit Tn−1, i.e., tO2

n−1 and (iii) the time when the task stream
of Tn−1 finishes, i.e., tO3

n−1. Consequently, the state is defined as
shown in (8).

sn = (Dn, Ln −max{tO1
n−1 − tAn , 0},

max{tO2
n−1 − tAn , 0},max{tO3

n−1 − tAn , 0}), (8)

where Dn is the data size of the task, and Ln −max{tO1
n−1 −

tAn , 0} denotes the remaining latency limitation for Tn after
subtracting the waiting time for a previous task on the satellites.
max{tO2

n−1 − tAn , 0} and max{tO3
n−1 − tAn , 0}) represents LEO

and MEO satellite overlap processing time for adjacent tasks,
respectively. Next, the EE and MP points are selected from
the model according to the system’s performance, denoted as
a = (En, Pn). Simultaneously, we define the reward as Gn

to maximize the system’s gain, which can be increased by
increasing the reward.

As a DRL algorithm capable of outputting discrete actions
for decision-making, Double-Deep-Q-Network (DDQN) [46]
has demonstrated superior performance in various scenarios and
is utilized in the proposed learning-based algorithm. The highly
complex and dynamic environment of satellite inference services
– combined with multitasking services from LEO and MEO
satellites – presents significant challenges. Therefore, we aim to
improve the performance and adaptability of the DRL algorithm
in such a space environment. To this end, we leverage experience
from similar environments to initialize this algorithm. When
training our learning-based online algorithms, the trained model
parameters are associated with environmental parameters, such
as task arrival rate, communications bandwidth, etc. In a new
environment, we search for model parameters trained in an en-
vironment similar to the current one. These parameters are then
loaded into the neural network for initialization, maximizing the
training efficiency of the model. The environmental parameters
form a multidimensional European space, where we use the
nearest neighbor algorithm to search and identify the trained
model parameters most similar to the current environment.

Furthermore, the balanced experience replay strategy is pro-
posed to effectively accelerate DDQN convergence by inte-
grating prioritized sampling with random sampling, thereby
mitigating the risk of overfitting to noisy data. During the initial
stages of training, the prioritized experience replay strategy
focuses on samples with significant temporal difference errors.
These samples, which often correspond to critical state-action
pairs, significantly impact Q-value updates, thereby expediting

the learning process. As training progresses, the model stabi-
lizes. This adjustment prevents overfitting to noisy data in the
experience pool, encourages better state space exploration, and
ultimately enhances the model’s generalization capability. The
transition from prioritized to random sampling is governed by a
predefined scheduling strategy, which adjusts the weights of the
two sampling methods based on the number of training episodes.

Algorithm 2 describes the details of an online learning-based
algorithm. First, we initialize the weight parameters of the
target action-value function Q′ and action-value function Q,
with θ′ and θ, respectively. The Q function is approximated
using a DNN model, consisting of an input layer that takes
the current state st as input, multiple hidden layers employing
structures such as convolution and fully connected layers to
extract and learn features, and an output layer that produces
the final value for each possible action at. The Q′ function
follows a similar architecture. We utilize a probability ε-greedy
strategy to select an action a for the state st, interacting with the
environment to receive a reward rt and the next state st+1. The
tuple (st, at, rt, st+1) is stored as a data sample in the replay
buffer, using prioritized experience replay based on a binary
tree search [17]. When updating the weight parameters of the
action-value function Q, we input st+1 into Q to obtain the
Q-values for different actions. Then, we choose the action a′

corresponding to the maximum Q-value. Based on st+1 and a′,
we obtain the Q-value Q′(st+1, a

′) from the target action-value
function Q′. The actual value yj is calculated according to (9)
in the following.

yj ={
rj , when episode = e,
rj+γQ′(sj+1, argmaxaQ(sj+1, a; θ), θ

′), otherwise.
(9)

Next, we calculate the loss based on the difference between the
actual and estimated value Q(st, a) and perform backpropaga-
tion to update the weight parameters. Finally, we synchronize θ′

with θ after every N− steps.

C. Complexity Analysis of Proposed Algorithms

The time complexity analysis of the proposed algorithm is
discussed in this section. For the DP-based cooperative inference
algorithm, the computational complexity of the algorithm can be
simplified and expressed asO(Nt2), where t is the average delay
constraint of tasks. Therefore, the proposed strategy’s decision-
making performance depends on the task system’s average delay
constraint and the total number of tasks.

To analyze the computational complexity of the online
learning-based algorithm, we examine two modules: training
and decision-making. Let P denote the maximum number of
episodes during the training process, and Z represent the num-
ber of decision-making processes for each episode. According
to [47], the complexity of the training stage is O(PZ(ε1 + ε2)),
when ε1 is the complexity of parameter updates and gradient de-
cent and ε2 is the complexity of action selection. During training,
the algorithm makes inference decisions due to implementing
reinforcement learning. While the agents execute, they upload
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Algorithm 2: Online Learning-Based Cooperative Infer-
ence Algorithm.

Input: D: empty replay buffer;
Nr: capacity of replay memory;
e: the number of episodes;
p: the number of steps;
Nb: training batch size;
N− steps: target network replacement freq;

Output: target weight parameters θ′;
1: Initialize action-value function Q with random weights

θ;
2: Initialize target action-value function Q′ with weights θ′

= θ with empirical knowledge from similar
environment;

3: Initialize the capacity of replay buffer D;
4: for episode = 1 to e do
5: Initialize s1;
6: for t = 1 to p do
7: With probability ε select a random action at,

Otherwise select at = argmaxaQ(st, a; θ);
8: Executing action at, observe reward rt and next state

st+1;
9: Store tuple (st, at, rt, st+1) in replay buffer D with

balanced experience replay strategy;
10: Set st← st+1;
11: Sample a minibatch of tuples (sj , aj , rj , sj+1) in

replay buffer D with the same strategy;
12: Executing a gradient descent step with loss

(yj −Q(sj , aj ; θ))
2 according to (9);

13: Replace Q′ ← Q after every N− steps;
14: Reset θ′ ← θ;
15: end for
16: end for

historical information, such as the states, actions, and rewards.
Once training is complete, the agent obtains the weights of the
actor network and imports them into the actor network for com-
putational inference decision. According to [48], the complexity
for decision-making is O(PZε2), as DDQN-based algorithms
make decisions only with actor network after training.

V. EVALUATION

In this section, we initially describe the experimental setup
and subsequently conduct a comprehensive analysis of the ex-
perimental results.

A. Evaluation Setup

Simulation Setting: We utilize the StarLink satellite con-
stellation [49] and MEO satellite as benchmarks to simulate
inter-satellite connectivity across different orbits. In the task-slot
workflow model, each MEO satellite coordinates with three LEO
satellites by default. The simulation is implemented in Python,
utilizing the Python package Networkx [50] to establish the
ISL network. The Ka-band, known for its high data transmis-
sion rates and compact device size, is increasingly utilized in

Fig. 5. The AlexNet model comprises 4 EE points in general. However, when
task failure is regarded as a distinct scenario from the outset, the AlexNet model
encompasses 5 EE points.

inter-satellite communications. For instance, NASA’s ISARA
and MarCO missions employed the Ka-band to achieve high-
bandwidth communications [51], demonstrating its potential for
future missions requiring substantial data throughput. Conse-
quently, this work also uses the Ka-band for communications
between MEO and LEO satellites. Additionally, we leverage
LEO satellites’ diverse computing resource capabilities by ad-
justing parameters such as the number and frequency of CPUs.

Moreover, we assume that the input data size is directly pro-
portional to the maximum tolerable latency for each task, sim-
plifying the discussion. Specifically, we express this relationship
as Ln = k ×Dn, where k ∈ N. The default value assigned to
the constant k is 5. The results presented in each figure are based
on 100 consecutive tasks processed by the proposed algorithm
and baseline algorithms. If not specified, the setting above will
be the default in our simulation. The simulation employs the
CIFAR-10 dataset, classifying each image into one of ten classes.
This dataset serves multiple purposes, including model training,
simulating tasks, and evaluating the proposed algorithm. The
evaluated DNN-based inference application focuses on general-
purpose classification, utilizing an 8-layer AlexNet model with
4 EE points. The overview of the considered AlexNet model
is depicted in Fig. 5. In cases where task failure is considered,
the model includes 5 EE points at the beginning. Consequently,
after training, the corresponding inference accuracy for the 5 EE
points is [0, 0.527, 0.623, 0.697, 0.743].

Proposed Algorithms: The task generation is modeled by a
Bernoulli distribution with a rate of p = 0.1, ensuring that at
most one task is generated during each time slot. The input
consists of images to be inferred in the task system, where
the number of images follows a normal distribution within the
range [1, 10]. Each time slot is fixed to be 3 seconds. The
hyperparameters α and β are assigned values of 0.1 and 16,
respectively. The proposed online learning-based algorithm uses
two layers of 20 neurons per layer, and the tanh activation
function is applied. Training is conducted with a discount factor
of 0.9, and the replay memory capacity is set to 106. Table II
shows the detailed setting of algorithm parameters.

Baseline Algorithms for comparison: We assess the perfor-
mance of our proposed algorithm by comparing it with the
following algorithms:

Greedy: The algorithm makes cooperative inference decisions
based on the current information of the task system without
considering the interaction between adjacent tasks.
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Fig. 6. The values of reward and loss during the training of our algorithm and basic DDQN algorithm.

TABLE II
SETTINGS OF ALGORITHM PARAMETERS

Random: The algorithm randomly makes cooperative infer-
ence decisions without incorporating any system information
regarding the task stream.

LEO-all: The algorithm processes all computational tasks in
LEO satellites and selects the optimal EE point for each task
without considering MP points.

MEO-all: Similar to LEO-all, the algorithm sends all compu-
tational tasks to MEO satellites for processing.

DP: The algorithm makes the cooperative inference decisions
by selecting the optimal strategies, which also set the theoreti-
cally upper-performance limit.

Performance Metrics: We consider three key metrics to eval-
uate the proposed algorithm:

Overall Task Gain: The metric, defined by (5), donates the
sum of task gain for all consecutive tasks in the system.

Task Completion Rate: From the user’s perspective, this met-
ric illustrates the effectiveness of decision-making in task com-
pletion. It is determined as the ratio of the number of successfully
completed tasks to the total number of tasks received.

Average Task Latency: This metric reflects the impact of
decision-making on the average task latency. It is calculated
by summing the differences between the completion time of
completed tasks and their arrival time and then dividing this
sum by the number of tasks completed.

B. Convergence Behavior

Fig. 6 illustrates the cumulative reward and loss of the online
approach during training, highlighting the convergence behavior
of the improved DDQN-based algorithm and basic DDQN algo-
rithm. The experimental results demonstrate that our algorithm
converges rapidly and performs better than the basic DDQN

algorithm. This improvement is attributed to the balanced ex-
perience replay strategy, which allows our algorithm to learn
action patterns through interactions with the environment more
efficiently. While the basic DDQN algorithm initially makes
decisions randomly, our approach accelerates learning and ulti-
mately achieves stable cumulative reward and loss values.

C. Impact of Task Arrival Rate

We investigate the effectiveness of each algorithm across
varying task arrival rates, where task arrivals follow Bernoulli
distribution with parameter p. Fig. 7(a) and (b) show that as
the task arrival rate p increases, the over-task gain and the
task completion rate of all algorithms continuously decrease.
In Fig. 7(a), the proposed approach mitigated a 16.5% decline
in the reward sum compared with the Greedy algorithm. Be-
sides, Fig. 7(b) also exhibits that our algorithm mitigates the
25.3The gap between our algorithm and Greedy algorithm’s
task completion rate was small but gradually widened. That
is because, as the task arrival rate p increases, representing a
higher task occurrence, the interaction between adjacent tasks
becomes increasingly vital. This results in a notable rise in the
number of decision failures in the Greedy algorithm. Fig. 7(c)
shows that the average task latency of our algorithm outperforms
other algorithms except the DP-based algorithm. Additionally,
the LEO-all algorithm exhibits the poorest performance, as
the algorithm cannot complete most tasks when all tasks are
assigned to LEO satellites.

D. Impact of Different Task Numbers

Fig. 8 illustrates the performance of each algorithm across dif-
ferent task numbers, highlighting the operational scalability of
the proposed algorithm. The task number has a negligible impact
on our algorithms under the dynamic state of the task stream.
Our algorithms outperform the other baselines in the overall task
gain (i.e., cumulative reward), task completion rate, and average
latency. The online learning-based algorithm ranks second, only
behind the DP-based algorithm, which sets a theoretically upper
bound by obtaining all task system information.

Specifically, as depicted in Fig. 8(a), the cumulative rewards
of all algorithms continue to improve with the number of tasks,
except for the LEO-all baseline algorithm. Compared with the
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Fig. 7. The performance of all algorithms under various task arrival rates p.

Fig. 8. The performance of all algorithms under various task numbers.

Fig. 9. The performance of all algorithms under various ratio k (i.e., various deadline constraint).

Greedy algorithm, Random algorithm, and MEO-all algorithm,
the proposed method enhances the task gain by 47.4% , 151.6%
, and 62.9% , respectively. Our online learning-based algorithm
exhibits a significant improvement over the Greedy algorithm in
cumulative reward despite the algorithm adhering to the optimal
strategy based on the current task system. In Fig. 8(b), our
algorithms show better performance and minimal fluctuations
across different task numbers. Notably, the LEO-all algorithm
exhibits the poorest performance in task completion rate. This
is because when all tasks are executed in LEO satellites, many
tasks experience prolonged waiting times, failing to meet spe-
cific performance requirements. Additionally, in Fig. 8(c), the
learning-based approach performs similarly to the DP-based
approach, remaining well below the maximum tolerance time
for task completion under the default simulation setting. Our
method consistently achieves the proper trade-off between task
accuracy and completion time, adapting to the current task state.

E. Impact of Maximum Deadline

We investigate the effect of different deadlines on the perfor-
mance of all algorithms based on the simulation assumption that
the maximum time deadline for each task isk times the input data
size. Fig. 9 illustrates the superior performance of our algorithms
in terms of sum reward, task completion, and task average
latency. For all algorithms, as the proportion k increases, both
the cumulative reward and task completion consistently improve
while the average task latency steadily decreases. Compared to
the Greedy algorithm, our learning-based algorithm achieves an
average of 3.6% enhancement in sum reward and an average
6.3% enhancement in the task completion rate. As the propor-
tion k increases, the Greedy algorithm gradually approaches
the performance of our algorithm. This curve implies that the
interaction between adjacent tasks diminishes as the task latency
constraint is relaxed. The LEO-all algorithm fails to complete
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Fig. 10. The performance of all algorithms under different model accuracy prediction.

any tasks when the proportion k is lower, and the improvement
remains limited as the proportion k increases because of the
constrained resources of LEO satellites. Fig. 9(c) depicts that
the average latency of our algorithm is lower than that of the
Greedy algorithm. However, the MEO-all algorithm performs
similarly to the Greedy algorithm and significantly outperforms
the Random algorithm. This highlights the advantage of collabo-
ration among space satellites in improving overall performance.

F. Impact of Inference Model

As an extension to the above experiment, we further investi-
gate the impact of the inference model across various algorithms.
To this end, we conduct experiments to evaluate system perfor-
mance under different model accuracy conditions [52], [53]. We
precisely adjust the original accuracy of the model branches on
LEO and MEO satellites by introducing a modeling accuracy
factor, which modifies the model’s accuracy. As illustrated in
Fig. 10, the results clearly show that a decrease in the factor
leads to a reduction in overall task gain and completion rate
and an increase in average task latency across all algorithms.
Despite these changes, our proposed method demonstrates ad-
vantages when model accuracy is affected. On the other hand,
the experimental results indicate that, with a smaller factor, each
algorithm requires lower accuracy and additional time for each
algorithm to address tasks due to inaccuracies in the model,
finally reducing overall system performance. This find also
highlights the importance of selecting higher-accuracy models
for improved system performance.

G. Impact of Run Time Performances

As illustrated in Fig. 11, we analyze the runtime of the
proposed algorithm across varying time slots. Our findings
indicate a significant decrease in run time as the duration of time
slot increases, which is consistent with our previous analysis.
Therefore, exploring the most optimal computational allocation
for each task could be a promising solution to maintain runtime
within a reasonable range, warranting further investigation.

H. Discussion

To address the requirements of ubiquitous coverage and high-
resolution satellite imaging, this work leverages collaborative
inference across different orbital satellites, utilizing emerging

Fig. 11. Run time of proposed algorithms across different time slots.

computational capabilities. While computational bottlenecks
in space systems present significant challenges, ongoing ad-
vancements in onboard computing have made these objectives
increasingly attainable. After two decades or more of operation,
the processing capabilities of onboard processors may approach
twice that of the current state-of-the-art technology. Hence, this
work can be easily extended to support advancements in future
satellite hardware.

When initiated from scratch, the online learning-based co-
operative inference algorithm involves exploration steps, which
may result in performance fluctuations during inference. In prac-
tical scenarios, extensive exploration is considered unnecessary,
as a multitude of samples representing typical cases can be
efficiently pre-populated by satellites. Additionally, using a pre-
trained neural network significantly decreases the overall train-
ing time. The meta-learning approach [54], [55] highlights the
capability to construct a generalized neural network adaptable to
diverse environments with minimal input data, notably stream-
lining the retraining process. After accumulating sufficient sam-
ples from satellites, the ground station employs meta-learning
to generate a base Q-network transmitted to the satellite. This
neural network seamlessly integrates into the satellite, providing
a robust foundation for swift adaptation. Thus, learning time is
substantially reduced compared to initiating the process from
scratch.

VI. CONCLUSION AND FUTURE WORK

This paper introduced an in-orbit task gain-aware computing
cooperative inference problem in a satellite edge computing
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network via multi-exit models. This achieved an adaptive DNN-
based inference strategy for multiple-task streaming services.
The formulated problem aimed to make a trade-off between
the completed inference task and DNN inference accuracy. This
problem is solved by a dynamic programming-based algorithm
when system information is known. We also proposed an online
algorithm for the real-world case with unknown task arrivals
and uncertain network states. We conducted extensive simula-
tions, showing that the proposed algorithms outperform baseline
algorithms regarding vital performance metrics.

In-orbit computing has an exciting future with many open re-
search questions. In future work, we intend to validate our exper-
iments on the onboard satellite constellation testbed and explore
the potential for optimizing DNN inference. Moreover, compu-
tational and communication challenges will remain significant
for satellite-based computer systems. These constraints imposed
by energy limitations and satellite-ground bandwidth dynamics
also present unique limitations on satellite computing. We will
also investigate the energy consumption of satellites on comput-
ing inference performance when satellite resources are available
and propose energy-aware computing inference algorithms.
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