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Abstract—Artificial Intelligence of Things (AIoT) utilizes a
combination of computing, storage, and networking resources to
provide highly reliable and low-latency information services to
the industrial production processes. However, with the increasing
integration of numerous smart terminals into real-time sensing,
autonomous decision-making, and precision manufacturing exe-
cution systems, the current task scheduling pattern appears to be
insufficient to meet the latency requirements of computationally
intensive tasks. To address the above challenge, this paper
presents a collaborative edge-terminal task offloading scheme.
First, the Task Backlog and Multi-slot Scheduling (TBMS) prob-
lem is converted from a long-term offloading problem to a single
timeslot scheduling problem by Lyapunov optimization. Then, to
simplify the problem, the single timeslot problem is decomposed
into three subproblems: the local resource allocation problem,
the server resource allocation problem, and the indicator weight
selection problem. The two resource allocation problems are
proved to be convex, which have been solved by using the
Bisection method and the Karush-Kuhn-Tucker (KKT) method,
respectively. For the indicator weight selection problem, we pro-
posed the enhanced jumping spider optimization algorithm that
integrates the elite opposition-based learning strategy. Extensive
experiments show that the proposed algorithm can alleviate the
computing pressure of the terminal device. Compared with the
traditional methods, the offload system cost is effectively reduced
by at least 58.8% and the average execution success rate is
increased by at least 6%.

Index Terms—artificial intelligence of things; edge-terminal
collaboration; resource allocation; long-term task offloading;
Lyapunov optimization.
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I. INTRODUCTION

THe Artificial Intelligence of Things (AIoT) has brought
about transformational advances in industrial operational

processes through the precise integration of Artificial Intelli-
gence (AI), edge computing, and information and communica-
tion technology [1], [2]. By adopting the ‘power + computing’
network framework, AIoT is enhancing business collaboration,
promoting safe and stable industrial operation, and optimizing
intelligent management [3], [4]. With the further integration of
massive smart terminals into real-time sensing, autonomous
decision-making, and precise manufacturing execution sys-
tems, and the popularity of Computation Power Networks
(CPNs), AIoT significantly enriches the information process-
ing capabilities and intelligence of industry. Constrained by the
limited computational capabilities and battery life, Terminal
Devices (TDs) face the significant burden from the rapid
expansion of demand for fault detection, load forecasting, in-
telligent inspection, remote control and other computationally
intensive tasks [5]. Consequently, there is an urgent need to ad-
vance the precision management of computational resources.
By leveraging the edge-terminal collaboration to dynamically
and automatically coordinate computational, storage and com-
munication resources, the capabilities of AIoT services will be
significantly enhanced, leading to more efficient, reliable, and
environmentally sustainable industrial production processes.

While edge-terminal collaborative computing technology
facilitates the rapid execution of terminal tasks and promotes
the development of AIoT, several challenges remain unre-
solved in industrial production process [6]. Resource allocation
and offloading decisions are inherently dynamic and complex,
requiring the comprehensive evaluation of task requirements,
device computational capabilities, network conditions, and
other influencing factors [7]. The edge computing environ-
ment, characterized by numerous heterogeneous devices and
platforms, further complicates seamless offloading. In addi-
tion, most efficient task offloading algorithms have extremely
high computational complexity and cannot be deployed on
resource-constrained terminals [8]. The computational offload-
ing algorithms executed on these terminals are inefficient,
which compromises the success rates and real-time perfor-
mance of time-sensitive tasks. Therefore, the complex inter-
play between network states, computational resources and de-
vice characteristics poses significant challenges for effectively
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planning of long-term task scheduling and seamless offloading.
Various schemes for resource allocation and task offloading

have been proposed [9], [10]. Resource allocation methods
based on game theory simulate the offloading process by
analyzing the resource competition between terminal devices
and solving the optimal offloading decisions. The complexity
of these methods is influenced by the task volume and the
number of channels, making them more suitable for small-
scale scenarios. With the development of Artificial Intelligence
(AI), resource allocation based on Deep Learning (DL) has
attracted considerable attention [11], [12]. These approaches
rely on extensive training to achieve optimal offloading deci-
sions, resulting in significant computational overhead due to
their complexity. To achieve low-latency and energy-efficient
computing services, task offloading methods based on swarm
intelligence randomly or strategically alter individual behavior
to achieve collective offloading optimization [13]. However,
existing solutions have slow convergence rates, which cannot
provide high-quality computing services.

To address the long-term task backlog problem in terminal
device, we proposed a Lyapunov-based Collaborative Offload-
ing Decision scheme for Edge-Terminal (CODET). The main
contributions of this work are as follows:

1) The Task Backlog and Multi-slot Scheduling (TBMS)
problem is defined. An upper bound on its drift func-
tion is derived, verifying the TBMS problem is trans-
formable. The TBMS is converted from the long-term
scheduling problem to the single timeslot offloading
problem using Lyapunov optimization. To facilitate a
fast solution, the timeslot problem is decomposed into
three subproblems: local resource allocation, server re-
source allocation, and indicator weight optimization.

2) The CODET scheme based on task priority is proposed
to obtain the optimal allocation solution. To reduce
the complexity of the subproblem, it is proven that
the two computational resource allocation subproblems
are convex, and they are solved using the Bisection
method and the Karush-Kuhn-Tucker (KKT) method,
respectively. The enhanced jumping spider optimization
algorithm is proposed to optimize the indicator weight.

3) Extensive simulations have shown that the CODET can
effectively balance the computation delay and energy
consumption, alleviate the offloading pressure on the
local terminal. The average system cost is reduced by at
least 58.8% and the average task execution success rate
is increased by at least 6% compared to the traditional
methods.

The remainder of this paper is organized as follows. Re-
lated work is reviewed in Section II. The network model
is formulated in Section III. In Section IV, the design of
the computation offloading scheme is presented in detail.
Simulation results and analysis are discussed in Section V.
Finally, conclusions are given in Section VI.

II. RELATED WORKS

Luo et al. [14] proposed the Game theory-based compu-
tation offloading methods [14], equilibrium solutions can be

obtained to reduce computational complexity. To minimize the
delay and energy consumption of peer-to-peer offloading of
multiple satellites, Zhang et al. [15] introduced the online dis-
tributed computational offloading scheme based on Lyapunov
to further improve the resource utilisation. Teymoori et al. [16]
described the offloading decision process as a stochastic game
model, using reinforcement learning to find Nash equilibria,
thereby reducing mutual interference during channel access.
Zhang et al. [17] proposed a mixed integer nonlinear program-
ming (MINLP) based task offloading and resource allocation
decision making method to minimize vehicle task latency.
However, such approaches require significant computational
resources and time. Computation offloading methods based
on reinforcement learning or deep learning [18], with neural
networks at their core, rely on extensive data training and
autonomous learning to provide efficient resource allocation
decisions and improve computation offloading efficiency. Qu
et al. [19] combined multiple parallel deep neural networks
with Q-learning to quickly obtain optimal offloading strategies
from dynamic environments. Tang et al. [20] introduced a
distributed algorithm combining Long Short-Term Memory
networks, DQN, and DDQN to minimize task dropout rates
and reduce average delay. Su et al. [21] proposed a reliable
offloading re-decision algorithm based on deep reinforcement
learning to maximise the comprehensive utility. However,
these approaches are characterized by high complexity and
slow learning speeds.

Computation offloading methods based on swarm intelli-
gence [22], [23] are often used to address multi-objective
optimization problems such as computation offloading and
resource allocation. This approach significantly reduces energy
consumption and delay during the computation offloading
process. Bi et al. [24] formulated and solved a nonlinear
constrained optimization problem, achieving joint optimiza-
tion of computation offloading and resource allocation within
data centers. Yuan et al. [25] established a fine-grained task
offloading model, predicting tasks based on user preferences,
and proposed an online offloading algorithm based on particle
swarm optimization, extending the battery life of intelligent
mobile devices. Zhang et al. [26] presented an energy-aware
offloading scheme, combining iterative search algorithms to
find optimal solutions, resulting in lower energy consump-
tion and delay. These approaches effectively address energy
consumption and delay optimization issues in computation
offloading in complex environments but do not consider long-
term queue backlog issues.

For addressing long-term optimization problems in compu-
tation offloading within dynamic load, Gao et al. [27] intro-
duced a prediction-based offloading and resource allocation
scheme, constrained to maintain queue stability, significantly
reducing average energy consumption. Dai et al. [28] tackled
long-term migration cost issues, with the goal of minimiz-
ing offloading energy consumption. They used the Lyapunov
method to transform the objective problem and employed a
critic algorithm to find the optimal offloading strategy. Peng
et al. [29] proposed an online resource coordination allocation
scheme that allows computation offloading designs to adapt
well to real-time dynamic networks. Guo et al. [30] presented
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Fig. 1. Edge-Terminal Collaborative Computing Architecture

a Lyapunov optimization-based solution method, addressing
the coupling of energy constraints and offloading ratio vari-
ables in multi-user partial computation offloading. Tong et
al. [31] introduced a Lyapunov online energy optimization
algorithm that effectively balances system queue backlog and
energy consumption. Jiang et al. [32] constructed an energy-
deficit queue and, combined with Lyapunov, solved the online
joint offloading and resource allocation problem. Bi et al.
[33] designed an online computation offloading algorithm to
enhance network data processing capabilities and improve
computational performance in computing networks. In cases
where computational resources are abundant, computation
offloading is relatively simple, as computational tasks are sent
directly to servers for processing. However, when computa-
tional resources are limited and task backlog is significant,
factors such as network connectivity among multiple servers
and balancing computational resources and storage capacities
among them need to be considered, making the computation
offloading process more complex.

III. SYSTEM MODEL

A. Network Model

AIoT is widely used in intelligent transport systems, smart
grids, intelligent manufacturing and various other industrial
scenarios that require real-time control. Fig. 1 illustrates
the collaborative computing network model between termi-
nal device and MEC server in AIoT. On the terminal side,
there are 𝑁 industrial devices equipped with communication
capabilities and limited computing capabilities, denoted as
N = {1, 2, . . . , 𝑁}. On the edge side, there are 𝑀 MEC servers
with communication capabilities and amounts of computing
resources to assist with computational work, represented as
M = {0, 1, . . . , 𝑀}. It generates task offloading decisions by
collecting task and queue status information from all terminal
devices in its coverage area.

Industrial device’s tasks are uploaded to the MEC servers
for collaborative computing through wireless communication.
The information transmission process utilizes Orthogonal Fre-
quency Division Multiple Access (OFDMA) strategy. The
entire spectrum is divided into 𝐾 orthogonal carriers of 𝑊
bandwidth, where K = {1, 2, ..., 𝐾}. At time 𝑡, the uplink
transmission 𝑟 𝑖𝑛,𝑚 (𝑡) for 𝑛𝑡ℎ industrial terminal offload task
𝑖 to MEC server 𝑚 can be expressed as follows:

𝑟 𝑖𝑛,𝑚 (𝑡) = 𝑊 log2

(
1 +

𝑤
𝑖,𝑘
𝑛,𝑚 (𝑡)𝑝𝑛 (𝑡)ℎ𝑘𝑛,𝑚 (𝑡)

𝑁0

)
, (1)

where 𝑤
𝑖,𝑘
𝑛,𝑚 (𝑡) ∈ {0, 1} is channel selection variable.

𝑤
𝑖,𝑘
𝑛,𝑚 (𝑡) = 1 denotes that 𝑛𝑡ℎ terminal offload task 𝑖 to MEC

server 𝑚 using sub-carrier 𝑘 for uplink transmission. 𝑝𝑛 (𝑡)
represents transmit of the 𝑛𝑡ℎ terminal at time 𝑡. ℎ𝑘𝑛,𝑚 (𝑡) is
channel gain for sub-carrier 𝑘 . 𝑁0 represents Additive White
Gaussian Noise (AWGN).

B. Task Queuing Model

During system operation, the time domain is discretized into
several time slots of equal length, which can be represented
by the set T = {1, 2, . . . , 𝑇}. 𝑁 industrial terminals generate
𝐼 tasks in time 𝑡, which can be represented by the set
I = {1, 2, ..., 𝐼}, where the 𝑖𝑡ℎ task is defined as 𝐴𝑖 (𝑡) ≜(
𝑆𝑖 (𝑡), 𝐶𝑖 (𝑡), 𝑇𝑚𝑎𝑥𝑖

(𝑡), 𝐸𝑎𝑣𝑒
𝑖
(𝑡)

)
. Where 𝑆𝑖 (𝑡) represents data

size of task 𝑖. 𝐶𝑖 (𝑡) represents computational resources re-
quired for the task. 𝑇𝑚𝑎𝑥

𝑖
(𝑡) and 𝐸𝑎𝑣𝑒

𝑖
(𝑡) respectively represent

maximum tolerable delay and normalized energy consumption
value of task 𝑖. A task is classified as failed task if its
processing delay exceeds maximum delay limit. Within each
time slot of a discrete-time system, tasks are generated with
randomness. It is assumed that the tasks arriving in each
time slot of the industrial terminal obey independence and
the amount of task data follows a Gamma distribution within
a certain range [34].
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We consider a multiple concurrency scenario where there
are multiple industrial devices in the same Local Area Network
(LAN). These devices have the potential to generate tasks
within each time slot. To ensure that the task can complete the
computation within the maximum delay constraint, the task is
offloaded to the edge server for execution. The task volume
𝐶𝑙𝑛 (𝑡) for locally executing tasks and the task volume 𝐶𝑒𝑚 (𝑡)
for edge server executing tasks at time slot 𝑡 are as follows:

𝐶𝑒𝑚 (𝑡) =
𝐼∑︁
𝑖=1

𝑥𝑖 (𝑡)𝐶𝑖 (𝑡), 𝑥𝑖 (𝑡) = 1, (2)

𝐶𝑙𝑛 (𝑡) =
𝐼∑︁
𝑖=1

𝑥𝑖 (𝑡)𝐶𝑖 (𝑡), 𝑥𝑖 (𝑡) = 0, (3)

where 𝑥𝑖 (𝑡) ∈ {0, 1} represents the decision of whether the
𝑖𝑡ℎ task generated by the 𝑛𝑡ℎ terminal at time slot 𝑡 is to
be offloaded to the terminal server. 𝑥𝑖 (𝑡) = 0 indicates local
execution, while 1 indicates offloading to the edge server.

Due to the limitations of computational resources, each
terminal devices performs some of its computational tasks on
its local server and offloads some of its computational tasks
to the associated edge server. The edge server has a greater
computational capacity than is required by the tasks, but the
smaller capacity of the TD causes the tasks to queue in the
local task buffer. Assuming that the local buffer has sufficient
capacity, the length of the task backlog in the local task buffer
of TD 𝑛 ∈ N at the beginning of time slot 𝑡 is denoted as
𝑄𝑛 (𝑡). This value can be dynamically updated by the following
equations:

𝑄𝑛 (𝑡 + 1) = 𝑄𝑛 (𝑡) + 𝐶𝑙𝑛 (𝑡) − 𝐷𝑛 (𝑡), (4)

𝐷𝑛 (𝑡) =


𝑇𝑤𝑙

𝑛,𝑖
(𝑡)∑𝐽

𝑗=1 𝑓
𝑙
𝑛, 𝑗
(𝑡 − 1)

+
(
𝜏 − 𝑇𝑤𝑙

𝑛,𝑖
(𝑡)

) ∑𝐼
𝑖=1 𝑓

𝑙
𝑛,𝑖
(𝑡), 𝜏 ≥ 𝑇𝑤𝑙

𝑛,𝑖
(𝑡)

𝜏 𝑓
𝑙,𝑚𝑎𝑥
𝑛 (𝑡), 𝜏 < 𝑇𝑤𝑙

𝑛,𝑖
(𝑡),

(5)
where 𝐶𝑙𝑛 (𝑡) represents the computational resources of tasks
that have been determined to be locally computed in time
slot 𝑡. 𝐷𝑛 (𝑡) represents the computational resources of tasks
that have been processed by 𝑛𝑡ℎ TD. 𝑓 𝑙

𝑛,𝑖
(𝑡) is the local

computational resource that has been allocated by 𝑛𝑡ℎ TD
for task 𝑖 in time slot 𝑡. 𝑓

𝑙,𝑚𝑎𝑥
𝑛 (𝑡) denotes the maximum

computational capacity of 𝑛𝑡ℎ TD, which is expressed in terms
of the number of CPU cycles per second. 𝑇𝑤𝑙

𝑛,𝑖
(𝑡) represents

the waiting latency for the task 𝑖 to be locally computed, which
will be discussed in detail later. In a time slot 𝑡, if there is a
backlog in the task queue, the local task 𝐶𝑙𝑛 (𝑡) must wait for
the completion of the backlog task 𝑄𝑛 (𝑡) before it is executed.
If there is no backlog in the task queue 𝑄𝑛 (𝑡) = 0 and
𝑇𝑤𝑙

𝑛,𝑖
(𝑡) = 0, the local task can be executed immediately. In

the event that the queuing delay of the local time slot exceeds
the length of the local time slot, all computational resources
within the local time slot are allocated to the processing of
the backlogged tasks, resulting in 𝐷𝑛 (𝑡) = 𝜏 𝑓 𝑙,𝑚𝑎𝑥𝑛 (𝑡).

C. Delay and Energy Consumption Model

1) Delay Model: The delay associated with local computa-
tion task 𝑖, denoted as 𝑇 𝑙

𝑛,𝑖
(𝑡), consists of both computation

delay 𝑇𝑐𝑙
𝑛,𝑖
(𝑡) and queue delay 𝑇𝑤𝑙

𝑛,𝑖
(𝑡). The formula for

calculating delay of tasks processed locally is as follows:

𝑇𝑐𝑙𝑛,𝑖 (𝑡) =
𝐶𝑖 (𝑡)
𝑓 𝑙
𝑛,𝑖
(𝑡)
, (6)

𝑇𝑤𝑙𝑛,𝑖 (𝑡) =
{

𝑄𝑛 (𝑡 )
𝑓
𝑙,𝑚𝑎𝑥
𝑛

, 𝑄𝑛 (𝑡) ≥ 𝜏 𝑓 𝑙,𝑚𝑎𝑥𝑛

0, 𝑄𝑛 (𝑡) < 𝜏 𝑓 𝑙,𝑚𝑎𝑥𝑛 ,
(7)

𝑇 𝑙𝑛,𝑖 (𝑡) = 𝑇𝑐𝑙𝑛,𝑖 (𝑡) + 𝑇𝑤𝑙𝑛,𝑖 (𝑡). (8)

Task computation results typically have a smaller size than
data uploaded, resulting in negligible downlink transmission
delay of task results. The processing delay 𝑇𝑒

𝑚,𝑖
(𝑡) for task 𝑖

computed on the MEC server includes the uplink transmission
delay 𝑇𝑡𝑒

𝑚,𝑖
(𝑡) and the computation delay 𝑇𝑐𝑒

𝑚,𝑖
(𝑡).

𝑇𝑐𝑒𝑚,𝑖 (𝑡) =
𝐶𝑖 (𝑡)
𝑓 𝑒
𝑚,𝑖
(𝑡) , (9)

𝑇𝑡𝑒𝑚,𝑖 (𝑡) =
𝑆𝑖 (𝑡)
𝑟 𝑖𝑛,𝑚 (t)

, (10)

𝑇𝑒𝑚,𝑖 (𝑡) = 𝑇𝑡𝑒𝑚,𝑖 (𝑡) + 𝑇𝑐𝑒𝑚,𝑖 (𝑡), (11)

where 𝑓 𝑒
𝑚,𝑖
(𝑡) is the computational resource allocated by server

𝑚 at time 𝑡 for task 𝑖. The total processing delay 𝑇𝑖 (𝑡) for the
task can be represented as

𝑇𝑖 (𝑡) = 𝑥𝑖 (𝑡)𝑇𝑒𝑚,𝑖 (𝑡) + (1 − 𝑥𝑖 (𝑡))𝑇 𝑙𝑛,𝑖 (𝑡). (12)

2) Energy Consumption Model: When tasks are processed
locally, the energy consumption associated with task process-
ing is primarily associated with the compute process.

CPU power consists of dynamic power, short-circuit power
and leakage current, of which dynamic power is dominant
[35]. Therefore, we only consider the dynamic power of the
mobile execution. In CMOS circuits, the energy consumption
per operation is proportional to the supply voltage of the chip.

𝐸 𝑙𝑛,𝑖 (𝑡) = 𝜅𝑛𝐶𝑖 (𝑡) 𝑓 𝑙𝑛,𝑖 (𝑡)2, (13)

where 𝜅𝑛 is usually taken as 10−27 and represents the effective
switching capacitance determined by the chip architecture of
the 𝑛𝑡ℎ TD [36]. The focus of our study is on the analysis of
the offloading system cost from the perspective of the TD.
Therefore, the energy consumption 𝐸𝑒

𝑚,𝑖
(𝑡) when a task is

offloaded to the edge server includes the uplink transmission
energy consumption and excludes the consumption of the edge
server when processing the task. The formula for calculating
the energy consumption 𝐸𝑒

𝑚,𝑖
(𝑡) when tasks are offloaded to

the server is
𝐸𝑒𝑚,𝑖 (𝑡) = 𝑝𝑛 (𝑡)𝑇𝑡𝑒𝑚,𝑖 (𝑡). (14)

The total energy consumption 𝐸𝑖 (𝑡) for task computation
can be expressed as

𝐸𝑖 (𝑡) = 𝑥𝑖 (𝑡)𝐸𝑒𝑚,𝑖 (𝑡) + (1 − 𝑥𝑖 (𝑡))𝐸 𝑙𝑛,𝑖 (𝑡). (15)
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D. Formulation of the Objective Problem

Task offload aims to balance both task reactivity and long-
term endurance of the TD. Therefore, the offload system cost
function for TD task 𝑖 is defined as the indicator weighting
sum of delay and energy consumption, represented by 𝑣𝑖 (𝑡).

𝑣𝑖 (𝑡) = 𝛼𝑖 (𝑡)
𝑇𝑖 (𝑡)

𝑇𝑚𝑎𝑥
𝑖
(𝑡) + (1 − 𝛼𝑖 (𝑡))

𝐸𝑖 (𝑡)
𝐸𝑎𝑣𝑒
𝑖
(𝑡) , (16)

where 𝛼𝑖 (𝑡) takes values in the range [0, 1] and represents
the weighted of task 𝑖 for delay and energy consumption. If
𝛼𝑖 (𝑡) is closer to 0, it means that offloading tends to reduce
the processing energy consumption, and vice versa, it means
that it is more important to optimise the processing delay. The
offload system cost for all TD is

𝑣(𝑡) =
𝐼∑︁
𝑖=1

𝑣𝑖 (𝑡). (17)

The optimization objective of our work is to reduce the
long-term average system cost of the task, denoted as 𝑣(𝑡), as
mentioned in Task Backlog and Multi-slot Scheduling (TBMS)
problem 𝑷1.

𝑷1 min
𝑥,𝛼, 𝑓 𝑙 , 𝑓 𝑒

lim
𝑇→∞

1
𝑇

𝑇−1∑︁
𝑡=0

E{𝑣(𝑡)}

s.t. C1 : 𝛼𝑖 (𝑡) ∈ [0, 1]

C2 : 𝑇𝑖 (𝑡) ≤ 𝑇𝑚𝑎𝑥𝑖 (𝑡)

C3 : 0 <
𝐼∑︁
𝑖=1

𝑓 𝑙𝑛,𝑖 (𝑡) ≤ 𝑓 𝑙,𝑚𝑎𝑥𝑛

C4 : 0 <
𝐼∑︁
𝑖=1

𝑓 𝑒𝑚,𝑖 (𝑡) ≤ 𝑓 𝑒,𝑚𝑎𝑥𝑚

C5 : 𝑥𝑖 (𝑡) ∈ {0, 1}

C6 : 𝑤𝑖,𝑘𝑛,𝑚 (𝑡) ∈ {0, 1},
𝐾∑︁
𝑘=1

𝑤𝑖,𝑘𝑛,𝑚 (𝑡) ≤ 1

C7 : lim
𝑇→∞

1
𝑇

𝑇−1∑︁
𝑡=0

𝑁∑︁
𝑛=1

E {𝑄𝑛 (𝑡)} < ∞,

(18)

where 𝐶1 represent the weighting of delay and energy con-
sumption, which have values in the range [0,1]. 𝐶2 represents
the maximum allowable completion delay and energy con-
sumption for tasks. 𝐶3 represent the computational resource
constraints allocated to TD locally and to the MEC server.𝐶4
represents that the total computational resources used by all
tasks offloaded to server 𝑚 cannot exceed 𝑓

𝑒,𝑚𝑎𝑥
𝑚 . 𝐶5 and

𝐶6 indicate that offload association and channel selection are
binary variables. During the decision-making process, each TD
can only select one server and one channel. 𝐶7 represents that
task backlog for all TDs is stable.

IV. SCHEME DESIGN

A. Question Conversion

Aiming at the issue of variable coupling in long-term edge
collaborative offloading, the proposal of a objective problem

transformation scheme based on Lyapunov theory has been put
forward. Therefore, this approach can convert the long-term
optimization problem into a time slot optimization problem.
The backlog vector at time slot 𝑡 is defined as 𝜃 (𝑡) =

{𝑄1 (𝑡), . . . , 𝑄𝑛 (𝑡), . . . , 𝑄𝑁 (𝑡)}, and the Lyapunov function is
defined as:

𝐿 (𝜃 (𝑡)) = 1
2

𝑁∑︁
𝑛=1

𝑄𝑛 (𝑡)2, (19)

where the function 𝐿 (𝜃 (𝑡)) is an optimization function con-
trolling the queue state. Clearly, the value of 𝐿 (𝜃 (𝑡)) will
increase significantly when the queue experiences congestion.
Therefore, the Lyapunov drift function is defined as:

Δ𝐿 (𝜃 (𝑡)) = E{𝐿 (𝜃 (𝑡 + 1)) − 𝐿 (𝜃 (𝑡))}. (20)

Associating target problem 𝑷1 with queue state optimization
for joint optimization, resulting in problem 𝑷2.

𝑷2 min
𝑥,𝛼, 𝑓 𝑙 , 𝑓 𝑒

Δ𝐿 (𝜃 (𝑡)) +𝑉E{𝑣(𝑡)}

𝑠.𝑡.𝐶1 − 𝐶7,
(21)

where 𝑉 is a non-negative weight constant.
Theorem 1: For any indicator weighting sum 𝑉 , task states,

and offloading decisions, there exists an upper bound on the
sum of drift and penalty functions.

Δ𝐿 (𝜃 (𝑡)) +𝑉E{𝑣(𝑡)} ≤

𝐵 −
𝑁∑︁
𝑛=1

𝑄𝑛 (𝑡)E {𝐷𝑛 (𝑡) − 𝐶𝑛 (𝑡)} +𝑉E{𝑣(𝑡)},

𝐵 = 0.5
𝑁∑︁
𝑛=1

[
𝐷max
𝑛 (𝑡)2 + [

𝐼∑︁
𝑖=1

𝐶𝑖 (𝑡)]2
]
,

(22)

where 𝐵 is a constant.

Proof: The following can be derived according to Eq. (4).

𝑄𝑛 (𝑡 + 1)2 =
[
𝑄𝑛 (𝑡) − 𝐷𝑛 (𝑡) + 𝐶𝑙𝑛 (𝑡)

]2

= 𝑄𝑛 (𝑡)2 + 𝐷𝑛 (𝑡)2 + 𝐶𝑙𝑛 (𝑡)2 + 2𝑄𝑛 (𝑡)𝐶𝑙𝑛 (𝑡)
− 2𝑄𝑛 (𝑡)𝐷𝑙𝑛 (𝑡) − 2𝐶𝑛 (𝑡)𝐷𝑛 (𝑡)

≤ 𝑄𝑛 (𝑡)2 + 𝐷𝑛 (𝑡)2 + 𝐶𝑙𝑛 (𝑡)2

− 2𝑄𝑛 (𝑡)
[
𝐷𝑛 (𝑡) − 𝐶𝑙𝑛 (𝑡)

]
≤ 𝑄𝑛 (𝑡)2 + 𝐷𝑚𝑎𝑥𝑛 (𝑡)2 +

(
𝐼∑︁
𝑖=1

𝐶𝑖 (𝑡)
)2

−2𝑄𝑛 (𝑡)
[
𝐷𝑛 (𝑡) − 𝐶𝑙𝑛 (𝑡)

]
.

(23)

So,

𝐿 (𝜃 (𝑡 + 1))−𝐿 (𝜃 (𝑡)) ≤ 1
2

𝑁∑︁
𝑛=1

𝐷𝑚𝑎𝑥𝑛 (𝑡)2 +
(
𝐼∑︁
𝑖=1

𝐶𝑖 (𝑡)
]2ª®¬

−
𝑁∑︁
𝑛=1

𝑄𝑛 (𝑡)
[
𝐷𝑛 (𝑡) − 𝐶𝑙𝑛 (𝑡)

]
,

(24)
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Δ𝐿 (𝜃 (𝑡)) ≤ 1
2

𝑁∑︁
𝑛=1

𝐷𝑚𝑎𝑥𝑛 (𝑡)2 +
(
𝐼∑︁
𝑖=1

𝐶𝑖 (𝑡)
)2

−
𝑁∑︁
𝑛=1

𝑄𝑛 (𝑡)E
[
𝐷𝑛 (𝑡) − 𝐶𝑙𝑛 (𝑡)

]
= 𝐵 −

𝑁∑︁
𝑛=1

𝑄𝑛 (𝑡)E
[
𝐷𝑛 (𝑡) − 𝐶𝑙𝑛 (𝑡)

]
.

(25)

Neglecting the upper bound constant term 𝐵, the objective
problem 𝑷2 is transformed into 𝑷3.

𝑷3 min
𝑥,𝛼, 𝑓 𝑙 , 𝑓 𝑒

𝑉𝑣(𝑡) −
𝑁∑︁
𝑛=1

𝑄𝑛 (𝑡)
[
𝐷𝑛 (𝑡) − 𝐶𝑙𝑛 (𝑡)

]
s.t. 𝐶1 − 𝐶6.

(26)

B. Resource Allocation of Terminal Devices

Building upon the 𝑷3 problem, the correlation variable 𝑥
are set as constants, with computational resource allocation
being the sole consideration. When only considering the 𝐶4
constraint, the objective problem 𝑷3 is transformed into the
TD computational resource allocation problem 𝑷4.

𝑷4 min
𝑓 𝑙

𝐼∑︁
𝑖=1
𝑉

[
𝛼𝑖 (𝑡)

𝐶𝑖 (𝑡)
𝑇𝑚𝑎𝑥
𝑖
(𝑡) 𝑓 𝑙

𝑛,𝑖
(𝑡)

+ (1 − 𝛼𝑖 (𝑡))
𝜅𝑛𝐶𝑖 (𝑡) 𝑓 𝑙𝑛,𝑖 (𝑡)2

𝐸𝑎𝑣𝑒
𝑖
(𝑡)

]
−

𝑁∑︁
𝑛=1

𝑄𝑛 (𝑡)
[
𝐷𝑛 (𝑡) − 𝐶𝑙𝑛 (𝑡)

]
s.t. 𝐶3.

(27)

To ensure that tasks can be completed within their maximum
tolerable delay, the TD computational resource allocation
needs to satisfy

𝐶𝑖 (𝑡)/ 𝑓 𝑙𝑛,𝑖 (𝑡) ≤
⌈
𝑇𝑚𝑎𝑥𝑖 (𝑡) − 𝑇𝑤𝑙𝑛,𝑖 (𝑡)

⌉
. (28)

The lower bound of local computational resources is defined
as

𝑓
𝑙,𝑚𝑖𝑛
𝑛,𝑖

(𝑡) = 𝐶𝑖 (𝑡)/
[
𝑇𝑚𝑎𝑥𝑖 (𝑡) − 𝑇𝑤𝑙𝑛,𝑖 (𝑡)

]
. (29)

The prior weighted 𝛼𝑖 (𝑡) of delay and energy consumption
is taken as the lower bound for the new weighted and is fed
back into the subsequent iterations of the indicator weighted
optimization algorithm. The TD decisions are independent of
each other. By optimizing the computational resource alloca-
tion decision for each TD, the solution to the objective problem
𝑷4 can be achieved. Local task backlogs impact computational
resource allocation decisions. Therefore, we discuss the TD
computational resource allocation separately under 𝑄𝑛 (𝑡) = 0
and 𝑄𝑛 (𝑡) ≠ 0.

1) 𝑄𝑛 (𝑡) = 0: When there are no backlogged tasks in the
local queue, the computational resource allocation objective

Algorithm 1 Pseudo code of RALD
Input: 𝐶𝑖 (𝑡), 𝑄𝑛 (𝑡), 𝛼𝑖 (𝑡), 𝜅𝑛, 𝜀2, previous time slot task-

related information, , 𝑥𝑖 (𝑡);
Output: 𝑓

𝑙,∗
𝑛,𝑖
(𝑡), 𝑥𝑖 (𝑡);

1: Calculate 𝑇𝑤𝑙
𝑛,𝑖
(𝑡) and 𝑓

𝑙,𝑚𝑖𝑛
𝑛,𝑖

(𝑡) based on Eq.(7) and
Eq.(29);

2: 𝑙𝑒 𝑓 𝑡 = 𝑓
𝑙,𝑚𝑖𝑛
𝑛,𝑖

(𝑡), 𝑟𝑖𝑔ℎ𝑡 = 𝑓
𝑙,𝑚𝑎𝑥
𝑛 ;

3: if 𝑓 𝑙,𝑚𝑖𝑛
𝑛,𝑖

(𝑡) > 𝑓
𝑙,𝑚𝑎𝑥
𝑛 then

4: The task 𝑖 is offloaded to the MEC server;
5: 𝑓

𝑙,∗
𝑛,𝑖

= 0, 𝑥𝑖 (𝑡) = 1;
6: else
7: if 𝑄𝑛 (𝑡) = 0 then
8: Calculate 𝑓

𝑙,∗
𝑛,𝑖
(𝑡) according to Eq.(32) and Eq.(33);

9: else
10: while 𝑟𝑖𝑔ℎ𝑡 − 𝑙𝑒 𝑓 𝑡 > 𝜀2 do
11: 𝑚𝑖𝑑 = 0.5(𝑙𝑒 𝑓 𝑡 + 𝑟𝑖𝑔ℎ𝑡);
12: if 𝐹2 (𝑚𝑖𝑑) ≤ 𝐹2 (𝑟𝑖𝑔ℎ𝑡) then
13: 𝑟𝑖𝑔ℎ𝑡 = 𝑚𝑖𝑑;
14: else
15: 𝑙𝑒 𝑓 𝑡 = 𝑚𝑖𝑑;
16: end if
17: end while
18: 𝑓

𝑙,∗
𝑛,𝑖

= 𝑚𝑖𝑑;
19: end if
20: end if

function 𝐹1

(
𝑓 𝑙
𝑛,𝑖
(𝑡)

)
and its first derivative 𝐹′1

(
𝑓 𝑙
𝑛,𝑖
(𝑡)

)
for

each TD are written as follows.

𝐹1

(
𝑓 𝑙𝑛,𝑖 (𝑡)

)
=V

[
𝛼𝑖 (𝑡)

𝐶𝑖 (𝑡)
𝑇𝑚𝑎𝑥
𝑖
(𝑡) 𝑓 𝑙

𝑛,𝑖
(𝑡)

+ (1 − 𝛼𝑖 (𝑡))
𝜅𝑛𝐶𝑖 (𝑡) 𝑓 𝑙𝑛,𝑖 (𝑡)2

𝐸𝑎𝑣𝑒
𝑖
(𝑡)

]
,

(30)

𝐹′1

(
𝑓 𝑙𝑛,𝑖 (𝑡)

)
= − V

[
𝛼𝑖 (𝑡)

𝐶𝑖 (𝑡)
𝑇𝑚𝑎𝑥
𝑖
(𝑡) 𝑓 𝑙

𝑛,𝑖
(𝑡)2

+2 (1 − 𝛼𝑖 (𝑡))
𝜅𝑛𝐶𝑖 (𝑡) 𝑓 𝑙𝑛,𝑖 (𝑡)
𝐸𝑎𝑣𝑒
𝑖
(𝑡)

]
.

(31)

The zero points of the first-order derivative function are as
follows.

𝑓̂ 𝑙
𝑛,𝑖
(𝑡) = 3

√︄
𝛼𝑖 (𝑡)𝐸𝑎𝑣𝑒𝑖

(𝑡)
2 (1 − 𝛼𝑖 (𝑡)) 𝜅𝑛𝑇𝑚𝑎𝑥𝑖

(𝑡) . (32)

Proof: When 𝑓 𝑙
𝑛,𝑖
(𝑡) > 𝑓̂ 𝑙

𝑛,𝑖
(𝑡), the function is monoton-

ically increasing. When 𝑓 𝑙
𝑛,𝑖
(𝑡) < 𝑓̂ 𝑙

𝑛,𝑖
(𝑡), the function is

monotonically decreasing. Thus, 𝑓̂ 𝑙
𝑛,𝑖
(𝑡) is the local minimum

point of 𝐹1

(
𝑓 𝑙
𝑛,𝑖
(𝑡)

)
. The optimal allocation decision for local

computing resources is denoted as 𝑓 𝑙
,∗
𝑛,𝑖
(𝑡).

𝑓
𝑙,∗
𝑛,𝑖
(𝑡) =


𝑓
𝑙,𝑚𝑖𝑛
𝑛,𝑖

(𝑡) 𝑓̂ 𝑙
𝑛,𝑖
(𝑡) ≤ 𝑓

𝑙,𝑚𝑖𝑛
𝑛,𝑖

(𝑡)
𝑓 𝑙
𝑛,𝑖
(𝑡) 𝑓

𝑙,𝑚𝑖𝑛
𝑛,𝑖

(𝑡) < 𝑓̂ 𝑙
𝑛,𝑖
(𝑡) < 𝑓

𝑙,𝑚𝑎𝑥
𝑛

𝑓
𝑙,𝑚𝑎𝑥
𝑛,𝑖

𝑓
𝑙,𝑚𝑎𝑥
𝑛 ≤ 𝑓̂ 𝑙

𝑛,𝑖
(𝑡).

(33)
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2) 𝑄𝑛 (𝑡) ≠ 0: When there is a task backlog in the local
queue, combining with Eq.(5), the computational resource
allocation objective function 𝐹2

(
𝑓 𝑙
𝑛,𝑖
(𝑡)

)
and its second deriva-

tive 𝐹′′2
(
𝑓 𝑙
𝑛,𝑖
(𝑡)

)
are interpreted for each TD as follows:

𝐹2

(
𝑓 𝑙𝑛,𝑖 (𝑡)

)
=V

[
𝛼𝑖 (𝑡)

𝐶𝑖 (𝑡)
𝑇𝑚𝑎𝑥
𝑖
(𝑡) 𝑓 𝑙

𝑛,𝑖
(𝑡)

+ (1 − 𝛼𝑖 (𝑡))
𝜅𝑛𝐶𝑖 (𝑡) 𝑓 𝑙𝑛,𝑖 (𝑡)2

𝐸𝑎𝑣𝑒
𝑖
(𝑡)

]
−𝑄𝑛 (𝑡)

[
𝐷𝑛 (𝑡) − 𝐶𝑙𝑛 (𝑡)

]
,

(34)

𝐹′′2

(
𝑓 𝑙𝑛,𝑖 (𝑡)

)
=𝑉

[
𝛼𝑖 (𝑡)

2𝐶𝑖 (𝑡)
𝑇𝑚𝑎𝑥
𝑖
(𝑡) 𝑓 𝑙

𝑛,𝑖
(𝑡)3

+2 (1 − 𝛼𝑖 (𝑡))
𝜅𝑛𝐶𝑖 (𝑡)
𝐸𝑎𝑣𝑒
𝑖
(𝑡)

]
.

(35)

Because function 𝐹2

(
𝑓 𝑙
𝑛,𝑖
(𝑡)

)
is first-order differentiable,

and its second-order derivative is greater than zero, it is a
convex function. The function must have a minimum point
within the range of

[
𝑓
𝑙,𝑚𝑖𝑛
𝑛,𝑖

(𝑡), 𝑓 𝑙,𝑚𝑎𝑥𝑛

]
, and the Bisection

method is employed to find the optimal resource allocation
decision within the interval. The pseudo code of the Resource
Allocation of Local Device (RALD) is described in Algorithm
1.

C. Resource Allocation of MEC Servers

When considering only constraints 𝐶5 and 𝐶6, the objective
problem 𝑷3 is transformed into the MEC server computational
resource allocation problem 𝑷5.

𝑷5 min
𝑓 𝑒

𝐼∑︁
𝑖=1
𝑉𝛼𝑖 (𝑡)

𝑥𝑖 (𝑡)𝐶𝑖 (𝑡)
𝑇𝑚𝑎𝑥
𝑖
(𝑡) 𝑓 𝑒

𝑚,𝑖
(𝑡)

s.t. 𝐶4.

(36)

The computational resource allocation function of server 𝑚
for the 𝑖𝑡ℎ task within it is explained as Eq. (37). The total
number of tasks that are offloaded to the MEC server is 𝑆
(𝑆 ≤ 𝐼), and the set is 𝑆𝑚 = {1, . . . , 𝑖, . . . , 𝑆}.

𝐹3

(
𝑓 𝑒𝑚,𝑖 (𝑡)

)
= 𝑉𝛼𝑖 (𝑡)

𝐶𝑖 (𝑡)
𝑇𝑚𝑎𝑥
𝑖
(𝑡) 𝑓 𝑒

𝑚,𝑖
(𝑡) . (37)

Theorem 2: 𝐹3

(
𝑓 𝑒
𝑚,𝑖
(𝑡)

)
is a strictly convex function.

Proof: The Hessian matrix of 𝐹3

(
𝑓 𝑒
𝑚,𝑖
(𝑡)

)
can be stated as

𝐻 =



𝜕2𝐹
(
𝑓 𝑒
𝑚,1

)
𝜕

(
𝑓 𝑒
𝑚,1

)2 · · ·
𝜕2𝐹

(
𝑓 𝑒
𝑚,1

)
𝜕

(
𝑓 𝑒
𝑚,1

)
𝜕

(
𝑓 𝑒
𝑚,𝑆

)
...

. . .
...

𝜕2𝐹
(
𝑓 𝑒
𝑚,𝑆

)
𝜕

(
𝑓 𝑒
𝑚,1

)
𝜕

(
𝑓 𝑒
𝑚,𝑆

) · · ·
𝜕2𝐹

(
𝑓 𝑒
𝑚,𝑆

)
𝜕

(
𝑓 𝑒
𝑚,𝑆

)2


. (38)

When satisfying ∀𝑆 ∈ 𝑆𝑚, 𝑖 ≠ 𝑆, the second-order deriva-
tives and mixed second-order partial derivatives of 𝐹3

(
𝑓 𝑒
𝑚,𝑖

)
are expressed as

𝜕2𝐹3

(
𝑓 𝑒𝑚,𝑖 (𝑡)

)
/𝜕

(
𝑓 𝑒𝑚,𝑖 (𝑡)

)2
=

2𝑉𝛼𝑖 (𝑡)𝐶𝑖 (𝑡)/𝑇𝑚𝑎𝑥𝑖 (𝑡)
(
𝑓 𝑒𝑚,𝑖 (𝑡)

)3
> 0,

(39)

𝜕2𝐹3

(
𝑓 𝑒𝑚,𝑖 (𝑡)

)
/𝜕 ( 𝑓 𝑒𝑚,𝑖 (𝑡))𝜕

(
𝑓 𝑒𝑚,𝑠 (𝑡)

)
= 0, (40)

So, 𝐹3

(
𝑓 𝑒
𝑚,𝑖
(𝑡)

)
is a strictly convex function because of the

eigenvalues of matrix 𝐻 are all greater than zero.
The 𝐾𝐾𝑇 conditions are employed to solve problem 𝑷5.

The Lagrangian function can be represented using Eq.(41).

𝐹

(
𝑓 𝑒𝑚,𝑖 , 𝜆

)
=
𝐶𝑖

𝑓 𝑒
𝑚,𝑖

+ 𝜆
(
𝑆∑︁
𝑖=1

𝑓 𝑒𝑚,𝑖 − 𝑓 𝑒,𝑚𝑎𝑥𝑚

)
, (41)

where 𝜆 is non-negative Lagrange multiplier. For ∀𝑖 ∈ 𝑆𝑚, the
𝐾𝐾𝑇 conditions can be expressed as

− 𝐶𝑖(
𝑓 𝑒
𝑚,𝑖

)2 + 𝜆 = 0, (42)

𝜆(
𝑆∑︁
𝑖=1

𝑓 𝑒𝑚,𝑖 − 𝑓 𝑒,𝑚𝑎𝑥𝑚 ) = 0, (43)

𝜆 ≥ 0, (44)
𝑆∑︁
𝑖=1

𝑓 𝑒𝑚,𝑖 − 𝑓 𝑒,𝑚𝑎𝑥𝑚 ≤ 0. (45)

The update formulas for 𝜆 is represented as

𝜆(𝑡 + 1) = max

{
𝜀1, 𝜆(𝑡) + 𝛿1 (𝑡)

(
𝑆∑︁
𝑖=1

𝑓 𝑒𝑚,𝑖 − 𝑓 𝑒,𝑚𝑎𝑥𝑚

)}
. (46)

The pseudo code of the Resource Allocation of MEC Server
(RAES) is described in Algorithm 2.

Algorithm 2 : Pseudo code of 𝑅𝐴𝐸𝑆
Input: 𝑓

𝑒,𝑚𝑎𝑥
𝑚 , 𝜆, 𝛿1 (𝑡), 𝜀1, 𝑆𝑚;

Output: { 𝑓 𝑒
𝑚,𝑖
(𝑡) |∀𝑖 ∈ 𝑆𝑚};

1: while 𝑓
𝑒,𝑚𝑎𝑥
𝑚 −∑𝑆

𝑖=1 𝑓
𝑒
𝑚,𝑖
(𝑡) > 𝜀1 do

2: Calculate the allocated computational resources 𝑓 𝑒
𝑚,𝑖
(𝑡)

for task 𝑖 by Eq.(42);
3: Update 𝜆 according to Eq.(46);
4: end while

D. Optimization Problem of Indicator Weights

Tasks partial are offloaded from the TD can reduce TD
task backlog. Assuming computational resource allocation and
offloading decisions are known, the original problem is then
transformed into the weighted optimization problem of delay
and energy consumption. An Enhanced Jumping Spider Opti-
mization (EJSO) algorithm is proposed to adjust the indicator
weights in each time slot, enabling the efficient utilization of
global resources.
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The jumping spider optimization algorithm consists of
predation strategy, searching strategy, and pheromone update
strategy. It simulates the jumping, pursuing, and foraging
behaviors of jumping spiders during their hunting process to
conduct optimization, while using pheromone to evaluate the
current optimization credibility.

Assuming the population consists of 𝐼 jumping spiders
(task), each of the jumping spiders searches for optimal
positions in the D-dimensional space. The initial position set
of jumping spider population is denoted as 𝑃0 (𝑡).

𝑃0 (𝑡) =


𝑃0

1,1 𝑃0
1,2 · · · 𝑃0

1,𝐷
𝑃0

2,1 𝑃0
2,2 · · · 𝑃0

2,𝐷
...

... 𝑃0
𝑖,𝑑

...

𝑃0
𝐼,1 𝑃0

𝐼,2 · · · 𝑃0
𝐼,𝐷


. (47)

The elite opposition-based learning strategy is introduced
to generate the optimal solutions for the algorithm. The
fundamental idea behind the backward strategy is to introduce
a reverse learning mechanism on top of the current solutions
to generate reverse points. This strategy optimizes the search
region of the traditional algorithm’s solutions and avoids
densely distributed randomly generated solutions. For any
jumping spider 𝑖 ∈ I in population, its reverse solution is
defined as 𝑅𝑖 .

𝑅𝑖 = 𝑙𝑖 + 𝑢𝑖 − 𝑃𝑖 , (48)

where 𝑙𝑖 and 𝑢𝑖 are respectively the lower and upper bounds
of the indicator weights for task 𝑖 in time slot 𝑡.

The generation of reverse solutions is advantageous for
increasing the diversity of the solutions within the population.
However, the generation of reverse solutions can be somewhat
blind and may not effectively explore the search space of the
current solutions. To address this issue, elite individuals are
identified based on their fitness values using reverse solutions.

Furthermore, the objective fitness value for the EJSO algo-
rithm is set as Eq.(26). The fitness values of inverse solution
is represented as 𝐹 (𝑅𝑖). When

𝐹 (𝑅𝑖) ≤ 𝐹 (𝑃𝑖), (49)

the reverse solution is recognized as elite and retained. 𝐹 (𝑃𝑖)
is the fitness value of current optimal solution for task 𝑖.

The pseudocode of the EJSO algorithm is described in Al-
gorithm 3. Firstly, generates initial position of jumping spider
population. Secondly, jumping spiders choose predation, leap-
ing, or searching behavior strategies based on probabilities and
update their positions accordingly. Thirdly, jumping spiders
use a pheromone formula to evaluate position selection, and if
the pheromone is too low, they perform position updates. Next,
each individual calculates its current iteration’s position utility
value and retains the best utility value and its corresponding
individual position among all individuals. Finally, the reverse
solution is generated by the elite opposition-based learning
strategy and the fitness values of the reverse solution and
the current optimal solution are compared. The algorithm
continues to perform the above process until the end of
iterations, resulting in the optimal indicator weights 𝛼∗

𝑖
(𝑡).

Algorithm 3 : Pseudo code of EJSO

Input: 𝑃0 (𝑡), 𝜇𝑚𝑎𝑥 ;
Output: 𝑃∗

𝑖
(𝜇), 𝑣∗ (𝜇);

1: Randomly generating initial positions;
2: Record the lower and upper bounds of the position 𝑙𝑖 and
𝑢𝑖;

3: Calculate the fitness value set {𝐹 (𝑃0
𝑖,𝑑
)} of all initial

positions by Eq.(26) and recording the best and worst
fitness value along with their corresponding positions
𝑃𝑏
𝑖
(𝜇), 𝐹𝑚𝑖𝑛, 𝑃𝑤

𝑖
(𝜇), and 𝐹𝑚𝑎𝑥 ;

4: for 𝜇← 1 to 𝜇𝑚𝑎𝑥 do
5: if 𝑟𝑎𝑛𝑑𝑜𝑚 < 0.5 then
6: if 𝑟𝑎𝑛𝑑𝑜𝑚 < 0.5 then
7: 𝑃𝑖 (𝜇 + 1) = 1

2 [𝑃𝑖 (𝜇) − 𝑃𝑟 (𝜇)];
8: else
9: 𝑃𝑖 (𝜇 + 1) = 𝑃𝑖 (𝜇) tan(𝛾) − 𝑔𝑃2

𝑖
(𝜇)

2[𝑣0 cos(𝛾) ]2 ;
10: end if
11: else
12: if 𝑟𝑎𝑛𝑑𝑜𝑚 < 0.5 then
13: 𝑃𝑖 (𝜇 + 1) = 𝑃𝑏

𝑖
(𝜇) + 𝑤𝑎𝑙𝑘 (0.5 − 𝜀);

14: else
15: 𝑃𝑖 (𝜇 + 1) = 𝑃𝑏

𝑖
(𝜇) + 𝜀[𝑃𝑏

𝑖
(𝜇) − 𝑃𝑤

𝑖
(𝜇)];

16: end if
17: end if
18: 𝑝ℎ𝑒𝑟 (𝑖) = 𝐹max−𝐹 (𝑃𝑖 (𝜇+1) )

𝐹max−𝐹min
;

19: if 𝑝ℎ𝑒𝑟 (𝑖) < 0.3 then
20: 𝑃𝑖 (𝜇 + 1) = 𝑃𝑏

𝑖
(𝜇) + 1

2 [𝑃𝑟1 (𝜇) − (−1)𝜔𝑃𝑟2 (𝜇)];
21: end if
22: Calculate the fitness value 𝐹 (𝑃𝑖 (𝜇 + 1));
23: if 𝐹 (𝑃𝑖 (𝜇 + 1)) < 𝐹𝑚𝑖𝑛 then
24: 𝑃∗

𝑖
(𝜇) = 𝑃𝑖 (𝜇 + 1), 𝐹𝑚𝑖𝑛 = 𝐹 (𝑃𝑖 (𝜇 + 1));

25: end if
26: The fitness value of 𝑅𝑖 is generated by by Eq.(48) ;
27: if 𝐹 (𝑅𝑖) < 𝐹𝑚𝑖𝑛 then
28: 𝑃∗

𝑖
(𝜇) = 𝑅𝑖 , 𝐹𝑚𝑖𝑛 = 𝐹 (𝑅𝑖);

29: end if
30: Update 𝑃𝑏

𝑖
(𝜇), 𝐹𝑚𝑖𝑛, 𝑃𝑤

𝑖
(𝜇), and 𝐹𝑚𝑎𝑥 ;

31: end for
32: 𝑣∗ (𝜇) = 𝐹𝑚𝑖𝑛; Update 𝑃∗

𝑖
(𝜇), 𝑣∗ (𝜇);

E. Integrated Offloading Decision Scheme

Assuming constant computational resource allocation indi-
cator weights, the original problem is transformed into a time-
slot-based problem of selecting the appropriate MEC server for
TD computational tasks.

A method for integrated offloading decision based on task
requirement ranking is proposed. This method obtains ap-
proximate optimal offloading association and channel selection
decisions based on task urgency. The task requirement of 𝑛𝑡ℎ

TD in timeslot 𝑡 is defined as 𝑟𝑒𝑞𝑖 (𝑡).

𝑟𝑒𝑞𝑖 (𝑡) =
𝐶𝑖 (𝑡)

𝑇𝑚𝑎𝑥
𝑖
(𝑡) − 𝑇𝑤𝑙

𝑛,𝑖
(𝑡)
. (50)

The longer the task queuing delay, the smaller the remaining
processing delay 𝑇𝑚𝑎𝑥

𝑖
(𝑡) −𝑇𝑤𝑙

𝑛,𝑖
(𝑡) indicating a more urgent

demand for task completion. The task information of the
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devices and the status of many devices and edge servers are
transmitted to the base station, and the base station server
collects the task information of all TDs in the current time
slot and classifies them according to the task requirements.

When the MEC server 𝑚 is assigned a task, the calculated
pseudo remaining computational resource 𝑓̂ 𝑒𝑚 is stated as

𝑓̂ 𝑒𝑚 = 𝑓 𝑒,𝑚𝑎𝑥𝑚 −
𝐼∑︁
𝑖=1

𝑥𝑖 (𝑡)𝑟𝑒𝑞𝑖 (𝑡). (51)

In the subsequent task selection process, the TD task selects
the MEC server with the highest value of 𝑓̂𝑚 from the current
set of all MEC servers’ pseudo remaining computational
resources

{
𝑓̂ 𝑒𝑚 | 𝑚 ∈ M

}
. If multiple MEC server have the

same 𝑓̂ 𝑒𝑚 value, the MEC server selects the closest edge server
for task computation to reduce transmission delay. During
the channel selection process for TD, the interference on the
shared channel 𝑘 is represented as 𝛾𝑘 .

𝛾𝑘 =

𝐼∑︁
𝑖=1

𝑤𝑖,𝑘𝑛,𝑚 (𝑡)𝑝𝑛 (𝑡)ℎ𝑘𝑛,𝑚 (𝑡). (52)

The higher the task requirement, the higher the priority for
TD to select channels. TD sequentially choose channels from
low to high based on the current channel interference level{
𝛾𝑘 | 𝑘 ∈ K

}
to ensure better transmission quality. The pseudo

code of the CODET is described in Algorithm 4.
Complexity analysis: Algorithm 4 comprises three sub-

algorithms: Algorithm 1, Algorithm 2, and Algorithm 3.
Specifically, Algorithm 1 employs a bisection method with

computational complexity of 𝑂 (log
𝑓
𝑙,𝑚𝑎𝑥
𝑛 − 𝑓 𝑙,𝑚𝑖𝑛

𝑛,𝑖

𝜀2
). Algorithm

2 contains a single nested loop with complexity 𝑂 ( 𝑓
𝑒,𝑚𝑎𝑥
𝑚

𝜀1
· 𝑆).

Algorithm 3 contains one nested loop with complexity of
𝑂 (𝜇𝑚𝑎𝑥). Considering that each device executes these algo-
rithms independently for 𝑁 devices and 𝐼 tasks per device,
the total computational complexity of Algorithm 4 can be
expressed as

𝑂 (𝐼 · (log
𝑓
𝑙,𝑚𝑎𝑥
𝑛 − 𝑓 𝑙,𝑚𝑖𝑛

𝑛,𝑖

𝜀2
+ 𝑓

𝑒,𝑚𝑎𝑥
𝑚

𝜀1
· 𝑆) + 𝜇𝑚𝑎𝑥).

It is worth noting that 𝑓
𝑙,𝑚𝑎𝑥
𝑛 , 𝑓

𝑒,𝑚𝑎𝑥
𝑚 , 𝜀1, and 𝜀2 are

constants independent of the algorithm input size, then their
values do not change as the problem size grows, 𝑓 𝑙,𝑚𝑖𝑛𝑛 = 0.
Furthermore, the total number of computational tasks 𝐼 differs
between time slots, as does the number of tasks 𝑆 be allocated
to the server, 𝑆 ≤ 𝐼. The complexity of Algorithm 4 reduces
to

𝑂 (𝐼 · (log
𝑓
𝑙,𝑚𝑎𝑥
𝑛

𝜀2
+ 𝑓

𝑒,𝑚𝑎𝑥
𝑚

𝜀1
· 𝑆) + 𝜇𝑚𝑎𝑥).

Within the time slot, the logarithmic term log 𝑓
𝑙,𝑚𝑎𝑥
𝑛

𝜀2
and

𝑓
𝑒,𝑚𝑎𝑥
𝑚

𝜀1
are constants. The complexity of Algorithm 4 reduces

to 𝑂 (𝐼2). Algorithm 4 has moderate complexity, does not
involve a large number of computationally intensive operations
and can be used to perform online resource allocation tasks
on resource-constrained terminal devices.

Algorithm 4 : Pseudo code of CODET
Input: 𝐶𝑖 (𝑡), 𝐴0 (𝑡), 𝑓 𝑒,𝑚𝑎𝑥𝑚 , 𝜆, 𝛿1 (𝑡), 𝜀1, 𝐼, 𝑆𝑚, 𝑄𝑛 (𝑡), 𝜅𝑛,

𝜀2, 𝜇𝑚𝑎𝑥 ;
Output: {𝑥𝑖 (𝑡)}, {𝛼𝑖 (𝑡)}, 𝑓 𝑙,∗𝑛,𝑖 (𝑡), 𝑓 𝑒𝑚,𝑖 (𝑡), 𝑣(𝑡);

1: Collects the task information of all TDs and the status of
all devices and edge servers in the current time slot 𝑡.

2: Generated {𝑥𝑖 (𝑡), 𝑥𝑖 (𝑡) = {0, 2}} randomly, 𝑣(𝑡) = 𝑖𝑛 𝑓 ;
3: for 𝑖 ← 1 to 𝐼 do
4: Obtain 𝑓

𝑙,∗
𝑛,𝑖
(𝑡) and 𝑥𝑖 (𝑡) according to Algorithm 1;

5: Calculate the task requirement according to Eq.(50);
6: if 𝑥𝑖 (𝑡) ≠ 1 then
7: 𝑥𝑖 (𝑡) = {0, 2} randomly;
8: end if
9: if 𝑥𝑖 (𝑡) = 1 𝑜𝑟 𝑥𝑖 (𝑡) = 2 then

10: Calculate the remaining computational resource 𝑓̂ 𝑒𝑚
by Eq.(51) and sort them;

11: Select the channel according to Eq.(52);
12: Execute Algorithm 2 to obtain 𝑓 𝑒

𝑚,𝑖
(𝑡);

13: end if
14: end for
15: Execute Algorithm 3 to obtain 𝑃∗

𝑖
(𝜇) and 𝑣∗ (𝜇);

16: if 𝑣∗ (𝜇) < 𝑣(𝑡) then
17: 𝑣(𝑡) = 𝑣∗ (𝜇);
18: end if
19: Record the corresponding {𝑥𝑖 (𝑡)} and {𝑃∗

𝑖
(𝜇)}, {𝛼𝑖 (𝑡)} =

{𝑃∗
𝑖
(𝜇)};

V. SIMULATION EXPERIMENTS AND
PERFORMANCE ANALYSIS

A. Simulation Parameter Setting

MATLAB 2021 is validated for stability and effectiveness of
our solutions. It is assumed that there are 𝑀 = 3 edge servers
and 𝑁 = 20 devices within a cellular network coverage area
of 3000×3000m. The amount of task data per time slot of the
TDs obeys a Gamma Distribution (mean 𝜐, variance 𝜎2) [37].
There are 𝐾 = 10 subchannels for uplink task transmission
with a bandwidth of 5 MHz per sub-channel. The channel
gain is 128.1 + 37.6 log10 𝑑𝑛,𝑚, where 𝑑𝑛,𝑚 is the distance
(in kilometers) from 𝑛𝑡ℎ device to server 𝑚. Other parameter
settings can be found in TABLE I [38].

TABLE I
SIMULATION EXPERIMENT PARAMETER SETTINGS

Parameter Name Parameter Value
Servers Computational Capability 𝑓

𝑒,𝑚𝑎𝑥
𝑚 30 × 109 cycles /s

Device Computational Capability 𝑓
𝑙,𝑚𝑎𝑥
𝑛 [0.5, 2] × 109 cycles /s

Maximum Delay of Tasks 𝑇𝑛,𝑚𝑎𝑥 (𝑡 ) [1, 1.5]𝑠
Normalized Energy Consumption 𝐸𝑛,𝑎𝑣𝑒 (𝑡 ) 2J

Channel Noise 𝑁0 10−7w
Device Transmit Power 𝑝𝑛 (𝑡 ) 0.5w

Device Effective Switching Capacitance 𝜅𝑛 10−27

Lyapunov Optimization Weights 𝑉 106

Total Number of Time Slot 𝑇 200𝜏

The CODET is compared with four different mechanisms.
Deep Reinforcement learning-based Online Offloading

(DROO) [39] and Lyapunov-guided Deep Reinforcement
learning (DRL)-based Online Offloading (LyDROO) [40]: The
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Fig. 2. The impact of different factors on the task backlog
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Fig. 3. The impact of EJSO on the average system cost

two schemes optimally adapt task offloading decisions and
resource allocations to the time-varying channel conditions.

Only Energy Consumption (OE): This scheme aims to min-
imize energy consumption and adheres to our mechanisms for
offloading correlation, channel selection, and computational
resource allocation.

Only Delay (OD): This scheme aims to minimize delay and
adheres to our mechanisms for offloading correlation, channel
selection, and computational resource allocation.

B. Simulation Results Analysis

1) Task Backlog Analysis: Fig. 2 shows the impact of
various factors on the task backlog. As time progresses, the
number of tasks in the backlog increases across time slots. Fur-
thermore, the backlog becomes more significant as the number
of tasks and data volumes increase. The two algorithms of
always processing tasks locally or always offloading tasks to
the MEC server lead to a significant increase in queuing delay

or transmission delay, which results in a significant accumula-
tion of tasks, especially under high workload conditions. In
turn, this causes a significant increase in both latency and
energy consumption, often exceeding acceptable thresholds
by orders of magnitude. Therefore, there is a strong demand
for a dynamic task offloading approach for computationally
resource-constrained terminal devices to effectively alleviate
the task backlog problem.

2) The Impact of EJSO on The Average System Cost: With
the number of tasks randomly distributed in [1, 3] and the
amount of task data follows a Gamma distribution with a mean
𝜐 = 6Mbit and a variance 𝜎2 = 1, Fig. 3 shows the impact
of EJSO on the average system cost. It is obvious that the
average system cost of both local and server processing tasks
decreases after improving indicator weights 𝛼 with the EJSO.
By optimizing the initial solution and behavioral strategy,
EJSO can better balance delay and energy consumption to
reduce system cost.
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Fig. 4. The impact of time slots on system cost
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Fig. 5. The impact of the tasks number of per device on system cost
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Fig. 6. The impact of the total number of tasks on system cost

3) System Cost Analysis: Fig. 4, Fig. 5 and Fig. 6 show
the impact of different factors on system cost. The system
cost increases with time slots, the amount of task data, the
tasks number of per device and the total number of tasks. It
is obvious that the system cost increases with the amount of
task data for a certain number of tasks. This is because the
computing resources that need to be shared by the terminal
increase with the number of tasks. The delays and energy
consumption of transmission and computation for each task are
increased, resulting in an increase in system cost. As shown in
Fig. 4 (c) and Fig. 6 (c), when the number of tasks is certain,
the amount of data increases while the energy consumption

decreases. This is because our system cost considers local
delay and energy consumption. For realism, we design a
long transmission distance, the transmission delay is much
greater than local computation delay. For a certain bandwidth,
the transmission time and transmission energy consumption
of task offloaded increase with the amount of task data,
so the data-heavy tasks tend to be computed locally. The
computational energy consumption is much less than the
transmission energy consumption, leading to a slight reduction
in the total energy consumption. However, the computation
delay increases significantly with the average queue length,
leading to an increase in the system cost with the amount of
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Fig. 7. The execution success rate
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Fig. 8. Average Execution Success Rate
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Fig. 9. System cost
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Fig. 11. Energy consumption

task data.

4) Execution Success Rate Analysis: Fig. 7 shows the
impact of different factors on execution success rate of each
terminal device when the number of tasks generated per time
slot is randomly distributed as [2, 3]. It is clear that as the total
number of tasks and the time slots increase, execution success
rate tend to stabilize. But execution success rate decreases with
the amount of data increased. The average task size is under
mean 𝜐 = 7Mbit, and the task execution success rate can reach
more than 90%. This is because the increase in the number
of tasks and the amount of data leads to strong competition
for channel and computational resources, which reduces the
success rate of the tasks.

5) Comparative Experiment: With the number of tasks
randomly distributed in [1, 3] and the amount of task data
follows a Gamma distribution with a mean 𝜐 = 6Mbit and a
variance 𝜎2 = 1, Fig.8 shows the average execution success
rate for five offloading schemes. It is clear that the average
execution success rate of each scheme tends to stabilize with
time slots. The average execution success rate of CODET is
the highest, being 4.51% higher than that of the suboptimal
scheme. Compared to Fig. 2, the proposed algorithm can effec-
tively reduce the terminal device’s task backlog and improve
the rate at which tasks are successfully executed. Because
it takes relatively long to transmit data to the edge server,
tasks are more likely to be processed locally than offloaded
in order to meet latency constraints. Compared to Fig. 7, the
task execution success rate of the proposed algorithm remains

above 99%. This indicates that the system may not be able
to process or offload all tasks within the deadline when there
are too many tasks on the local device per time slot. Although
our algorithm dynamically adjusts offloading decisions based
on task urgency and resource availability, the number of tasks
generated by each device per time slot should be randomly
distributed within the range [1, 3]. Beyond this range, the
system is unable to maintain a 99% task completion rate.

Fig. 9 presents the average system cost for five offloading
schemes. It is clear that the average system cost of each
scheme tends to stabilize with time slots. The system cost
of CODET is the lowest, being at least 57.13% lower than
the system cost of the suboptimal scheme. The reason is that
the unreasonable indicator weights decisions and offloading
association decisions of the other schemes increased latency
and reduced task success rate. While CODET uses EJSO
to optimize the indicator weights, which effectively balances
delay and energy consumption. This approach reduces system
cost and ensures task success rates.

As shown in Fig. 8-11, the CODET algorithm is superior in
all performance metrics. It’s worth mentioning that although
better in terms of latency or energy consumption, the OE
and OD schemes have a much lower task execution success
rate than the proposed scheme, with a significantly higher
average system cost. This is because the CODET approach
considers task delay and energy consumption, while also
making full use of the computational resources of the edge
servers to assist with local task completion. The approach has

This article has been accepted for publication in IEEE Transactions on Services Computing. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TSC.2025.3592386

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Universitaetsbibliothek der TU Wien. Downloaded on August 05,2025 at 10:02:02 UTC from IEEE Xplore.  Restrictions apply. 



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 13

low computational complexity and can arrive at an allocation
scheme quickly.

Of course, for time-sensitive tasks, the transmission delay
alone may make offloading infeasible, thus limiting the ef-
fectiveness of any offloading-based strategy. When the MEC
server becomes a bottleneck due to limited computing re-
sources or high contention from multiple users, the perfor-
mance gain of our algorithm diminishes compared to ideal sce-
narios. These analyses help us to identify the practical scope
of our method. It performs best in environments with moderate
to high resources and heterogeneous task requirements. This
is particularly true when local computation capacity is limited,
but the MEC server offers sufficient processing power.

Extensive experiments have further validated the limited
energy and time overhead of the proposed algorithm, makes
it potentially suitable for deployment on energy-constrained
devices and base stations.

VI. CONCLUSION
To improve the long-term task execution success rate of

AIoT, the multi-slot edge-terminal collaborative computing
offloading scheme is proposed. In our scheme, the long-
term offloading optimization problem is simplified to the
single-slot partial offloading optimization problem by using
the Lyapunov optimization. Through numerous simulation
experiments, the system cost increases with the time slots,
the amount of data, the tasks number of per device and the
total number of tasks. We found that by indicator weights
𝛼𝑖 (𝑡), CODET can effectively balance the computation delay
and energy consumption, reduce the system offload costs, and
improve the AIoT service quality. When the total number
of tasks and the time slots increase, the execution success
rate tends to stabilize. Numerical statistics show that CODET
performs well in terms of the terminal task queue, average
task execution success rate, and average system offloading
cost. The complexity analysis and extensive experiments are
provided to show that the algorithm has low time and energy
overhead, making it suitable for implementation on devices
with limited resources.
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