
IEEE Internet ComputingPublished by the IEEE Computer SocietyMay/June 2025 31

Earth observation (EO), edge computing, and artificial intelligence (AI) are rapidly 
advancing technologies with diverse applications and benefits. Integrating edge 
computing and AI with EO enables the preprocessing and analysis of EO data near its 
source, supporting efficient decision-making and in-orbit information interpretation. 
In this context, this article provides a review of the current state of edge AI in EO 
applications, summarizes the key challenges, including data sample limitations, 
computing resource constraints, catastrophic forgetting, and difficulties with 
satellite–ground coordination. Also, we explore possible solutions and techniques 
such as including generalization under small sample conditions, lightweight model 
design and training (e.g., pruning, quantization, distillation), continuous learning 
for multiple tasks, and satellite–ground continuum systems (e.g., federated learning 
and resource-constrained inference). Finally, we outline possible future research 
directions to address the challenges using edge AI for EO scenarios.

Earth Observation (EO) aims to monitor Earth’s 
surface through various remote sensing (RS) 
technologies, improving the ability to better un-

derstand RS data. EO research has been successfully 
applied across diverse domains. Today, an increasing 
number of satellites equipped with various sensors are 
launched to perform EO tasks. These advancements 
generate massive volumes of high-resolution, large-
scale imagery every day, enabling a wide range of ap-
plications. However, effectively processing such vast 
data is challenging.

On another side, artificial intelligence (AI) has 
proven highly effective in supporting onboard applica-
tions, such as intelligent interpretation and real-time 
dynamic tracking. Deep learning (DL) techniques have 

been successfully employed to reduce transmission 
bandwidth, processing time, and resource consump-
tion in EO applications, as shown in Table 1, including 
disaster monitoring, precision agriculture, and so on. 
For example, the integration of lightweight models on 
Huawei Ascend 310 processors reduced flood map-
ping latency from 3 h to only 8 min while maintaining 
accuracy. There is a growing interest in developing 
faster, more accurate, and more compact intelligent 
algorithms to meet evolving needs. One of the key 
strengths of DL lies in its ability to train models with 
robust feature self-learning and generalization capa-
bilities. Numerous DL models for data interpretation 
have been proposed and widely adopted. However, 
their high complexity and reliance on large-scale data 
present significant challenges, especially considering 
the massive data volume and strict timeliness require-
ments inherent to EO analysis. Also, DL-based appli-
cations typically depend on the substantial computing 
power of hardware systems. Deploying DL models on 
resource-constrained satellites to achieve intelligent 
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operations remains a major challenge for advancing 
intelligent technology.

Therefore, addressing the dynamic nature of tasks 
and meeting stringent task requirements are critical. 
Developing AI techniques for EO scenarios can greatly 
facilitate efficient information acquisition and decision- 
making. Nevertheless, several key challenges remain:

	❯ Limited sample availability: Unlike visual images, 
EO data often suffer from a scarcity of effective 
samples. Satellite scenes typically encompass 
complex backgrounds and diverse target catego-
ries; however, the number of labeled and usable 
samples remains limited. This issue is particular-
ly severe for newly appeared or altered targets, 
leading to a significant class imbalance in data 
distribution.

	❯ Computing resource constraints: EO data fre-
quently cover vast areas, ranging from several 
kilometers to hundreds of kilometers, with indi-
vidual datasets reaching sizes of several giga-
bytes. This creates substantial storage demands 
for satellite systems. Additionally, modern DL 
models, characterized by increasing complexity, 
demand substantial computational resources. 
Therefore, addressing the tradeoff between mod-
el complexity and power consumption is critical.

	❯ Catastrophic forgetting: In EO data analysis, 
new tasks and categories continually emerge. 
Existing algorithms frequently demonstrate lim-
ited generalization capability when processing 
sequentially introduced data, leading to cata-
strophic forgetting of previously learned knowl-
edge. Addressing this issue requires the de-
velopment of continuous learning methods to 
maintain high accuracy and performance over 
time, remains an urgent and critical challenge.

	❯ Satellite–ground bottleneck: The challenge lies 
in bridging the computational and communica-
tion gaps between satellite-based and ground-
based systems. Satellites typically operate under 
constraints such as limited onboard computing 
resources, energy consumption, and bandwidth, 
making real-time data processing and trans-
mission to ground stations difficult. In contrast, 
ground systems often face latency issues when re-
ceiving and processing data from space platforms, 
particularly when handling large-scale EO data.

	❯ Reliability challenges in spaceborne AI: Despite 
AI’s potential in satellite systems, its reliability re-
mains critically challenged by radiation-induced 
faults, hardware degradation, and algorithmic 
vulnerabilities. Issues that are further aggravated 
by extreme environmental conditions and strin-
gent operational demands.

To address these challenges, we explore how Edge 
AI can benefit EO. For instance, Edge AI has been 
shown to enhance the quality of low-light satellite 
images.2 This article examines various advantages of 
incorporating Edge AI into EO, as summarized in Fig-
ure 1. The figure outlines the challenges, current AI 
research in EO, and typical applications, aiming to ad-
vance AI-driven EO development. From top to bottom, 
it illustrates the challenges, corresponding solutions, 
and potential applications. We provide a detailed anal-
ysis of the challenges and solutions, concluding with 
future research directions.

GENERALIZATION IN SMALL  
SAMPLE SCENARIOS

The performance improvement achieved by DL al-
gorithms is based on large amounts of training data. 
However, DL algorithms often face the challenge of 

TABLE 1.  Representative use-cases of edge AI in Earth observation.

Use Case Description Edge AI Model Used Benefits 

Disaster monitoring Real-time wildfire or flood detection 
from satellite imagery

Lightweight CNN, 
YOLOv5

Low-latency alerts, local 
decision-making

Precision agriculture Crop health monitoring and yield 
estimation using multispectral data

MobileNet, Vision 
Transformer

Reduced data transfer, on-site 
analysis

Urban change 
detection

Tracking construction and land use 
changes over time

Siamese CNN, UNet Efficient spatiotemporal 
analysis

Maritime surveillance Detecting illegal ships or oil spills 
from satellite data

Object detection models Near real-time monitoring over 
vast ocean areas

Environmental 
monitoring

Air/water quality estimation using 
satellite data + ground IoT integration

Hybrid models
(MLP SensorFusion) .+

Decentralized sensing and 
processing
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small sample sizes. Existing solutions can be catego-
rized into two classes. The first exploits the inherent 
characteristics of images to address data volume re-
quirements. The second involves knowledge reuse, 
which incorporates prior knowledge through strat-
egies. These methods support the learning of new 
object categories, thus reducing the dependence on 
large data volumes and enabling intelligent interpre-
tation. Table 2 summarizes the comparison of sample 
generalization methods.

Sample Generalization
Sample generation focuses on the automatic genera-
tion of EO data and utilizes the generated dataset to 
meet the training requirements. Traditional methods 
typically involve transformations such as translation, 
rotation, and filtering. However, these methods often 
rely on manual design and expert selection. This de-
pendence limits their ability to generate new semantic 
information about ground objects, resulting in insuf-
ficient diversity in generated data. To address these 
limitations, two advanced approaches have gained 
attention: simulation-based and DL-based sample 
generation.

Simulation-Based Generation
This approach focuses on simulating and construct-
ing specific ground objects for EO tasks, by leveraging 
simulation modeling platforms to generate synthetic 

data. Simulation-based generation eliminates the ac-
quisition costs with traditional EO image data and al-
lows flexible adjustment of ground object and imaging 
parameters (e.g., illumination, height, field of view) to 
meet specific task requirements.

Simulation-based sample generation primarily ad-
dresses two key data interpretation tasks: synthetic 
aperture radar (SAR) images and visible light images. 
SAR-based data simulation framework integrates com-
puter-aided design modeling with simulation imaging. 
Specifically, this simulation incorporates noise and ter-
rain information into the imaging process, effectively 
generating realistic simulated data. For visible light sce-
narios, where EO images often feature high resolution 
and complex background, a more practical approach 
to reducing modeling costs is to simulate detection 
targets at the instance level. This instance-based mod-
eling strategy efficiently captures target-specific char-
acteristics while maintaining scalability.

DL-Based Generation
DL-based generation leverages deep neural networks 
to approximate the distribution characteristics of 
EO data. This approach involves modeling and learn-
ing of the joint statistical distribution of EO data, en-
abling the trained model to generate new samples at 
either the feature level or image level. Most DL-based 
generation algorithms utilize generative adversarial 
networks.

FIGURE 1.  The architecture for EO satellites comprises three main components: challenges (top), solutions (middle), and sup-

porting applications (bottom).
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Knowledge Reuse
Knowledge reuse involves the automatic extraction 
and modeling of relevant knowledge from an existing 
data domain which is then generalized to a target data 
domain. This approach aims to enhance the model’s 
generalization accuracy in the target domain, even 
with limited sample availability. Based on the relation-
ship between the two data domains, this method is 
categorized into three classes: transfer learning, met-
ric learning, and meta learning.

Transfer Learning
Transfer learning exploits the similarities between data, 
tasks, and models to transfer knowledge learned from 
a source domain to a target domain. This approach 

aims to reduce the data dependency of models in the 
target domain. Based on the employed reuse strategy, 
transfer learning is classified into model reuse-based 
and feature mapping-based transfer learning. Model 
reuse-based method focuses on reusing pretrained 
models from the source domain. By selectively lever-
aging the structure and parameters of these models, it 
seeks to optimal solutions within the hypothesis space 
while reducing the requirement for training. Fine- 
tuning is the most typical method used in this ap-
proach. Furthermore, this method focuses on design-
ing an optimal mapping space between source and 
target domains. The objective is to ensure that the fea-
tures of each ground object type in the two domains 
exhibit high similarity within the mapping space while 
maintaining strong discriminability for learning tasks.

TABLE 2.  Comparative Study of different methods via sample generalization, lightweight model design, and multitask continu-

ous learning methods.

Principle Method Advantages Disadvantages 

Comparison of different sample generalization methods

Sample 
generalization

Traditional method High efficiency

Select the generation method in combination 
with expert experience;
limited generation of sample information 
abundance

Simulation-based Customize the image content Professional knowledge is needed.

DL-based Automated generation Model training is unstable.

Knowledge 
reuse

Transfer learning High precision Requirement of dataset is strict.

Metric learning High universality
Dual-source input has strict requirements for 
computing and storage.

Meta learning High speed and universality
Generalization performance relies on an 
auxiliary dataset rich in category information.

Comparison of lightweight model design and optimization methods

Model design Lightweight model
Balance model size and 
accuracy effectively

Based on human priors or massive machine 
search

Model 
optimization

Model pruning
Enable hardware-agnostic 
and fine-grained reduction of 
model space complexity

Due to the complexity of training, aggressive 
pruning may impair the model’s feature 
representation capacity.

Model quantization
Offer broad model 
applicability and enable 
substantial compression

Rely on specific underlying hardware support

Comparison of multitask continuous learning methods

Sample 
reproduction

Storage of old samples Balance training data
Increasing the sample storage space and limiting 
the application scenarios

Pseudo-sample 
generation

Liberate data from 
constraints

Training is complicated, and the generative 
model tends to converge poorly. 

Model 
structure 
expansion

Optimization constraint Simple to implement
Task relevance is required, and the network 
capacity is easily saturated. 

Parameter isolation Task adaptation Additional parameter storage
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Metric Learning
This method relies on distance metrics to define sim-
ilarity and dissimilarity relationships between objects. 
Metric learning utilizes convolutional neural net-
works to learn mapping functions that ensure high in-
tra-class similarity and low inter-class similarity within 
the mapped feature space. During testing, the similari-
ty between test data and labeled samples is evaluated 
in the mapped feature space, generating classification 
confidence scores for various ground objects. The pri-
mary advantage of this method lies in the strong gen-
eralization capability. This method adapts to interpre-
tation tasks involving diverse ground objects without 
requiring retraining, making them highly versatile.

Meta Learning
Meta learning enhances model learning efficiency 
through experience accumulation by training models 
across multiple few-shot tasks and focusing on the 
acquisition of transferable knowledge. This approach 
endows models with human-like analogical reason-
ing capabilities, enabling rapid adaptation to novel 
land-cover categories with limited training samples. 
By leveraging training across a wide range of catego-
ries, meta learning produces a meta model with strong 
generalization capabilities, enabling quick adaptation 
to the small sample interpretation needs. However, 
the training depends datasets often lack annotated 
ground object categories, limiting the generalization 
performance. Additionally, the computational effi-
ciency remains low, further hindering the practical 
applications.

LIGHTWEIGHT MODEL DESIGN 
AND OPTIMIZATION

EO images exhibit unique characteristics, including 
extensive spatial coverage, complex target elements, 
and diverse image modalities. These attributes require 
more advanced DL models to effectively capture im-
age features. For instance, target elements occupy 
larger pixel area. This requires processing larger imag-
es to encompass these targets and employing deeper 
models to extract relevant classification information. 
Furthermore, EO image processing typically involves 
multimodal data, including SAR images, hyperspectral 
images, and digital surface models. Managing large-
scale and complex scenarios typically requires the 
integration of multimodal data. This approach inher-
ently increases the number of model parameters due 
to multichannel inputs and often involves coordinat-
ing multiple models. This section focuses primarily on 
lightweight model design and training.

Unlike satellite flight controllers, which are con-
sidered critical components, commercial off-the-
shelf hardware typically offers lower reliability and 
computational capacity compared to ground-based 
systems. For example, according to BUPT-1 satellite, 
a Raspberry Pi provides approximately 7 W of com-
putational power, whereas the Atlas chip achieves 
around 13 W. Moreover, depending on the solar panel 
area and sunlight availability, a CubeSat can harvest 
between 1 W and 150 W of energy at most. Conse-
quently, the onboard AI models must be carefully de-
signed to minimize the number of model parameters 
and maximize operational speed, while maintaining 
high performance as much as possible. Model de-
sign methods can generally be categorized into two 
approaches: model pruning and model quantization. 
Table 2 summarizes the comparison of lightweight 
model design and optimization methods.

Model Pruning
Model pruning addresses onboard resource con-
straints by reducing spatial complexity and enabling 
deployment on low power devices. Usually, as the 
pruning granularity increases, the degree of model 
lightweighting also increases. Large-granularity prun-
ing algorithm is particularly well-suited for deploying 
models on satellite-borne systems. For instance, Zhu 
et al.3 proposed a two-stage target detection meth-
od utilizing convolution kernel pruning. The method 
employs the sum of the absolute values of convolu-
tion kernel weights as the pruning criterion, ranking 
them in ascending order before conducting pruning. 
By streamlining the network structure, this approach 
enhances inference speed.

Model Quantization
Model quantization is a lightweight model design 
technique that compresses neural networks by re-
ducing the bit width used to represent weights. Mod-
el quantization assumes that such high precision is 
unnecessary and instead replaces 32-b FLOPs with 
low-precision alternatives. Model quantization is 
typically classified into binary quantization, ternary 
quantization, and multivalue quantization, based on 
the number of bits used to store weights after quan-
tization: 1) Binary quantization reduces 32-b FLOPs 
weights to two values (e.g., 0/1 or –1/1), compressing 
the model size to 1/32 of the original. 2) Ternary quan-
tization introduces a third value (–1, 0, 1), minimizing 
performance loss without increasing computation-
al complexity. 3) Multivalue quantization represents 
weights with higher precision than binary or ternary 
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quantization (e.g., 8-bit or 16-bit quantization), achiev-
ing performance closer to that of the original network. 
Model quantization reduces model size, memory us-
age, and hardware power consumption by lowering the 
model precision. However, quantization often leads to 
accuracy degradation. Consequently, current research 
focuses on achieving substantial model compression 
while maintaining accuracy.

EO applications primarily enhance the training 
process by leveraging the characteristics of multiscale 
targets and multimodal data. For EO images with mul-
tiscale features, feature learning is achieved by fusing 
feature maps from different stages. The output of each 
feature is typically supervised by an auxiliary objective 
function, which does not increase the computational 
cost during the inference but significantly improves 
performance. For EO images with multiple modali-
ties, the training process for each modality is typically 
constrained by incorporating a regularization penalty 
term, which balances the speed of feature learning 
and prevents both under-fitting and over-fitting.

Knowledge distillation involves two network mod-
els: the student and the teacher network. The student 
network, typically a lightweight model, is designed to 
have a smaller size and limited computational capacity. 
In contrast, the teacher network is a pretrained, high- 
precision model. The goal of knowledge distillation is 
to improve the performance of the student network 
by transferring knowledge from the teacher network. 
During the training of student network, in addition to us-
ing labeled training data as supervision (as in traditional 
methods), the extracted knowledge serves as an auxilia-
ry supervisory signal to guide the training process.

Knowledge distillation must account for the large-
scale variations and irregular shapes of target objects. 
Effective distillation architectures address these chal-
lenges by extracting multiscale features from different 
stages of the teacher network and capturing shape- 
related features through its input representations. Ad-
ditionally, self-distillation techniques have emerged 
as promising approaches, where the student network 
leverages its internal layers for guidance. Shallow lay-
ers can learn contextual attention information from 
deeper layers, while deeper layers can capture seman-
tic attention information from shallower layers. These 
techniques are particularly beneficial for improving 
student networks in EO applications.

CONTINUOUS LEARNING FOR 
MULTIPLE TASKS

Current deep neural network models are typically stat-
ic, which are designed for specific tasks and cannot 
expand over time. When new data becomes available, 

these models cannot update without compromising 
its performance on the original task, leading to cata-
strophic forgetting. For instance, in detection and rec-
ognition tasks, it is common to train separate models 
for different targets, or even create distinct models 
for various subtypes. This approach is not only com-
plex but also inefficient. As EO images can be updated 
daily, static models struggle to incorporate new data 
timely, thereby limiting their adaptability. To illustrate 
the challenge of catastrophic forgetting, we refer to 
empirical results reported by Rebuffi et al.,4 where se-
quential training on the CIFAR-100 dataset caused the 
model’s accuracy on earlier tasks to drop from 70% to 
below 30% without any continual learning strategies. 
This demonstrates the severity of performance degra-
dation in continuous learning settings, which similarly 
impacts real-world satellite learning scenarios.

Multitask continuous learning addresses the chal-
lenge from an infinite stream of data, aiming at extend-
ing acquired knowledge to future tasks. The samples 
from different stages of the data stream correspond 
to distinct tasks. During the training stage, the data-
set includes only samples from the current task, with 
previous task samples being unavailable. During the 
inference stage, the model must maintain high predic-
tion accuracy for both the previous and current tasks. 
Existing methods are primarily categorized into two 
approaches: sample reproduction and model struc-
ture expansion. Table 2 summarizes the comparison of 
multitask continual learning methods.

Sample Reproduction
Sample reproduction mitigates catastrophic forgetting 
by storing samples from previous tasks or generating 
pseudosamples using generative models. During the 
training of new tasks, these stored or generated sam-
ples are replayed to balance the training data across 
tasks, thereby alleviating the forgetting issue.

Extensive research has been conducted on sample 
reproduction methods to address catastrophic forget-
ting. Rebuffi et al.5 proposed to select samples that 
best approximate the class-wise mean in the learned 
feature space, which are then stored in a memory pool 
for subsequent training. To prevent the storage pool 
from overflowing as the number of tasks grows, sam-
ples from previous tasks are reselected based on the 
same criteria after completing the current task’s train-
ing. However, this method results in prediction bias, 
due to the significant imbalance between new and old 
task samples, where the model is more likely to predict 
inputs as belonging to new tasks. To mitigate this, Li et 
al.6 adopted knowledge distillation by using the previ-
ous model’s output on current task samples as a soft 
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label for the prior tasks, thereby reducing forgetting 
and improving knowledge transfer. However, maintain-
ing a memory pool of representative samples signifi-
cantly increases memory overhead.

Model Structure Expansion
To address the challenge of unavailable historical 
data from prior tasks, a model structure extension 
approach has been proposed. This method involves 
constraining parameter update strategies or isolating 
model parameters, effectively partitioning the model 
into subsets dedicated to specific tasks. This method 
enhances task adaptability and mitigates catastrophic 
forgetting without relying on historical data.

The earliest approaches relied on the distribution 
of parameters from previous models as prior knowl-
edge. However, due to the vast number of model pa-
rameters, these approaches were highly complex. To 
address this, Rusu et al.7 proposed progressive neural 
networks, which utilize lateral connections to reuse 
resources. The new parameters are added for learn-
ing the current task while preserving the weights of 
parameters associated with previous tasks. Within a 
fixed network architecture, parameter isolation can be 
achieved by identifying parameters used for previous 
tasks and masking them during training for the current 
task. Currently, model structure expansion remains in 
the early exploratory stages for EO applications.

SATELLITE–GROUND CONTINUUM
Figure 2 illustrates the satellite–ground continuum 
system supporting inference and federated learning.

Satellite–Ground Inference
Recently, orbital edge computing architecture has 
been proposed to overcome the limitations of the 
“bent-pipe” architecture, where EO data must be trans-
mitted to the ground for processing. The core concept 
is to distribute computing tasks across satellites in 
low-Earth orbit (LEO) constellation, effectively recon-
structing the computing pipeline. Kodan8 focused 
on computations performed on a single satellite. By 
discarding irrelevant satellite images early, Kodan re-
duces the data volume transmitted to Earth. Serval9 
concentrated on the management of computing tasks 
between satellites and ground stations using fixed DL 
models. By leveraging the predictability of satellite or-
bits, Serval separates computing tasks between satel-
lites and ground stations to minimize the end-to-end 
request latency. Earth +10 leveraged images across 
an entire satellite constellation to enhance imagery 
compression, enabling more images, especially those 

of the same area, to be downloaded to the ground effi-
ciently. However, existing studies often neglect the re-
liability of key system variables such as computational 
capabilities and energy constraints. These resource 
limitations are key contributors to computational bot-
tlenecks in EO systems. Furthermore, the stringent 
size and weight restrictions of satellites impose addi-
tional limitations on processing speed and operational 
efficiency. To address these dual challenges of energy 
and computational constraints, TargetFuse11 proposed 
an end-to-end satellite–ground collaborative infer-
ence framework. This approach not only enhances in-
ference accuracy but also explicitly accounts for the 
inherent limitations of satellite-based systems.

Federated Learning
Within a distributed learning architecture, a satellite–
ground federated learning system is proposed, where 
LEO satellites perform local model training while col-
lectively contributing to a global model through peri-
odic parameter aggregation. In this architecture, LEO 
satellites function as edge devices that communicate 
with ground stations acting as parameter servers. This 
approach enables interconnection across large-scale 
constellations, reduces the high communication costs 

(a)

(b)

FIGURE 2.  Satellite–ground continuum. (a) Inference. (b) 

Satellite–ground federated learning.
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of satellite networks, and effectively protects satellite 
data privacy.

Previous works have primarily focused on address-
ing challenges arising from satellite heterogeneity, 
particularly the latency and staleness issues inherent 
in synchronous or asynchronous federated learning al-
gorithms. For instance, So et al.12 proposed an adaptive 
aggregation buffer to maintain parameter freshness, 
improving system accuracy. To mitigate inefficiencies 
in collaborative training and slow model convergence, 
Zheng et al.13 introduced a substructure scheme that 
enables heterogeneous local model training, consid-
ering different computing, memory, and communi-
cation constraints of LEO satellites. Shi et al.14 devel-
oped a framework tailored for LEO mega-constellation 
networks, significantly reducing the reliance on low 
data-rate and intermittent satellite–ground links. 
Moreover, neural quantization has been explored to 
reduce communication costs by eliminating redun-
dant gradient information during training. Yang et al.15 
proposed a precision-aware federated quantization 
training algorithm that supports in-orbit satellite train-
ing under dynamic satellite–ground connections.

AI RELIABILITY
AI has demonstrated great potential in resource-con-
strained and dynamic satellite environments. Never-
theless, the reliability of AI models deployed on sat-
ellite presents significant challenges. Factors such 
as transient faults caused by radiation or electromag-
netic interference, hardware degradation due to harsh 
environmental conditions, limited computational 
resources, and the inherent sensitivity of DL models 
to minor perturbations can severely affect system per-
formance,16, 17 These issues are further exacerbated by 
the massive data volumes and stringent timeliness 
requirements typical of EO applications. Therefore, en-
suring the reliability of AI systems in orbit is essential 
in achieving consistent and trustworthy operations.

To address these challenges, several mitigation 
strategies have been explored. Redundancy tech-
niques, such as Triple Modular Redundancy,18 allow 
critical operations to be duplicated to enhance fault 
tolerance. Developing fault-tolerant models through 
robust training with adversarial or corrupted data, as 
well as employing ensemble methods, improves resil-
ience against errors.19 Furthermore, lightweight error 
detection techniques, including checksums, hashing, 
and anomaly detection modules, are favored due to 
their minimal computational overhead, making them 
suitable for onboard deployment.20 These approaches 
aim to enhance the robustness of AI systems operat-
ing in constrained and hostile environments.

PROSPECTS AND CHALLENGES
Edge AI has advanced significantly in the past decade, 
including in EO applications; however, it still faces 
challenges in real-world scenarios.

Small Sample Learning
Current small sample learning research typically as-
sumes limited, fully labeled data supplemented by am-
ple unlabeled samples. Many methods, such as those 
based on feature mapping or deep generative transfer 
learning, often rely on such unlabeled data. Yet in prac-
tice, especially for new target categories in EO applica-
tions, gathering even unlabeled data can be challeng-
ing. Furthermore, data acquisition and labeling remain 
nontrivial. Considering the complexities of satellite 
data collection and the need for rapid decision-mak-
ing in edge AI for RS tasks, investigating single-sample 
or even zero-sample approaches offers a promising re-
search avenue.

Lightweight Multitask Models
Current approaches to designing and training light-
weight EO models typically focus on one specialized 
task or a single functional component. However, as 
the volume of EO data increases and the demand for 
diverse applications grows, multitask processing for 
remote sensing image interpretation has emerged as a 
critical research frontier. Consequently, there is an ur-
gent need to develop lightweight models that extend 
from single to multiple functionalities and from single 
to multiple tasks.

Introducing Domain Expert 
Knowledge
The diverse imaging modes in EO, combined with im-
balanced foregrounds and backgrounds and densely 
distributed ground targets, pose major challenges 
for multitask continuous learning, often leading to 
catastrophic forgetting. Incorporating domain expert 
knowledge helps the model differentiate critical pa-
rameters more effectively. By leveraging such exper-
tise, the importance of each task can be prioritized, 
enhancing the penalty for altering key parameters. 
This approach both constrains and guides the contin-
uous learning process, ultimately mitigating or even 
preventing catastrophic forgetting.

In-Orbit Fusion of Multisource Data
The integration of complementary information from 
multisource data, including visible light, hyperspec-
tral, and SAR sensor data, has emerged as a key trend 
in extracting more detailed and accurate information 
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about terrestrial targets and objects. In EO applica-
tions, different sensor types provide EO data with dis-
tinct characteristics, offering varying strengths and 
limitations in terms of resolution, spectral information, 
and temporal coverage. Research in multisource infor-
mation fusion and multimodal DL algorithms focuses 
on leveraging these diverse data sources to enhance 
information extraction. By combining advanced fu-
sion algorithms with DL techniques, it is possible to 
achieve more precise data interpretation and intelli-
gent decision-making for EO tasks.

Enhancing AI Reliability
While existing mitigation strategies offer promising 
solutions, further research is needed to develop adap-
tive reliability techniques that dynamically respond to 
changing environmental and operational conditions. 
Co-designing AI models with fault-aware hardware 
architectures represents a promising direction for 
achieving system-wide resilience. Moreover, incorpo-
rating self-healing mechanisms and online learning 
capabilities could enable AI systems to autonomously 
detect, adapt to, and recover from faults during de-
ployment. Continued advancements in these areas 
will be crucial for the future deployment of robust, reli-
able, and intelligent systems.

CONCLUSION
Integration of EO applications with edge AI is essen-
tial for advancing technology and expanding its appli-
cation scenarios. This article reviews the theoretical 
foundations and recent advancements in intelligent 
EO, focusing on technical frameworks and research 
outcomes. These efforts aim to address key challeng-
es in the field. Moreover, the development and integra-
tion of these technologies will play a critical role in the 
future EO research.
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