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Abstract—As a cutting-edge technology of low-altitude
Artificial Intelligence of Things (AIoT), autonomous aerial vehicle
object detection significantly enhances the surveillance services
capabilities of low-altitude AIoT. However, the difficulty of object
detection is exacerbated by the high proportion of small and
obscure objects in the captured images. To address the mentioned
challenges, we present an efficient multiband infrared small
object detection approach for low-altitude intelligent surveil-
lance services. First, we propose the multiband infrared image
fusion algorithm based on cascade-GAN (MIF-CGAN), which
produces fused images with high information entropy and high
contrast. Then, the Transformer-based multiscale dense small
object detection (MsDSOD) algorithm is proposed. The algorithm
consists of the global–local object detection (G-LOD) network, the
object dense area extraction (O-DAE) module, and the weighted
boxes fusion (WBF) module. It extracts small objects features at
different scales from infrared images and fuses the global and
local detection results to accurately identify small objects in dense
scenes. Furthermore, compared to the traditional algorithms,
the mean average precision (mAP) of MsDSOD is improved by
0.80% and the average precision in small object detection (APs)
is improved by 0.72%. The proposed algorithm is optimally
suited to deal with complex scenes with dense small objects and
background occlusion.
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I. INTRODUCTION

TYPICAL of emerging productivity, the low-altitude
Artificial Intelligence of Things (AIoT) seamlessly inte-

grates Internet of Thing (IoT), artificial intelligence (AI),
cloud computing, and other cutting-edge information tech-
nologies [1]. It has been widely used in a range of
applications, from agricultural monitoring and urban planning
to traffic management, disaster rescue, and environmental
protection [2]. As the core of low-altitude AIoT, autonomous
aerial vehicle (AAV) is steadily advancing toward the peak of
fully autonomous awareness and control. Through the lever-
aging of object detection, AAVs have acquired the ability to
independently sense and understand surrounding environment.
Object detection is essential to enhance the autonomous of
AAVs in situational awareness, obstacle avoidance, and object
tracking. Nevertheless, the complexity of object detection tasks
is combined to the constraints of AAV computational capabil-
ities, the limited bandwidth of air-to-ground communication
networks, and the inherent characteristics of AAV-captured
images [3]. Efficient dense small object detection techniques
improve the speed and precision of AAV perception, which
is becoming prerequisite for the autonomy and intelligence of
the low-altitude AIoT.

AAV-captured images are characterized by nonuniform
spatial distributions and high proportion of small objects,
with occlusion and overlap among dense objects. In contrast
to ground-based images, AAV-captured image boasts a wide
field of view providing a wealth of contextual information.
Increasing scene complexity and object diversity leads to
more noise interference in object detection task. Then, images
captured at wide ranges often appear as punctiform features
with a small percentage of effective information, and are
particularly difficult to detect accurately due to factors, such
as mutual overlap of densely objects, background occlusion,
or the light changes [4]. In addition, AAVs have limited
computing capability and energy to support high-resolution
object detection algorithms. The above makes dense small
object detection of low-altitude AIoT a challenging mission.

As a common sensing method, AAV-borne infrared ther-
mography has a wide imaging range and all-weather
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detection [5]. However, the nature of infrared imaging typi-
cally produces images without discernible shape, color, and
texture cues. To make matters worse, the relatively large pixel
sizes and low spatial resolutions inherent in infrared imaging
sensors result in blurred boundaries between objects and
their surroundings. In addition, complex background clutter
and ubiquitous random noise increase the difficulty of AAV
infrared small object detection.

To address the above challenges, conventional infrared
small object detection methods rely on suppressing extraneous
background information, eliminating clutter and noise [6], or
enhancing object information through contrast enhancement [7].
While these approaches perform well in relatively homogenous
detection scenarios, they fall short when faced with the real-
world environments characterized by complex backgrounds. In
contrast, deep learning techniques avoid the need for manually
generated features, instead relying on neural networks to
automatically extract relevant features directly from original
images [8]. The method improves model precision by using
large amounts of training data, and accelerates the model
training and detection process by using an end-to-end learning
approach. However, small objects in dense scenes are unevenly
distributed and lack obvious features, such as shape and texture.
This makes it difficult for existing methods to accurately detect
dense small objects in infrared images.

Therefore, to improve the object detection accuracy of
AAVs, we propose a multiscale dense small object detection
(MsDSOD) approach based on AAV-borne multiband infrared
sensing. The main contributions of this article can be summa-
rized as follows.

1) This article presents a fusion-based dense small object
detection framework, including multiband infrared
image fusion algorithm based on cascade-GAN (MIF-
CGAN) and MsDSOD. The MIF-CGAN on the AAV
generates composite infrared images with enriched fea-
ture representations, which are transmitted to the ground
computing center. Then, the MsDSOD detects small
objects in the fused images. This framework signifi-
cantly improves the accuracy of AAV-based small object
detection.

2) To enhance the quality of AAV-borne infrared images,
we present the MIF-CGAN. This approach combines
a denoising generative adversarial network (DnGAN)
and a fusion generative adversarial network (FuGAN),
exploiting the complementary information provided by
each band to significantly improve the feature extraction
performance.

3) To improve the precision of densely small object
detection, the transformer-based MsDSOD algorithm is
proposed. The algorithm consists of global–local object
detection (G-LOD) network, object dense area extraction
(O-DAE) module, and weighted boxes fusion (WBF)
module. The integration of global contextual information
with local detail improves the accuracy of dense small
object identification.

4) Compared with GAN-FM, the average gradient (AG) of
MIF-CGAN is improved by 4.78%. And compared to
SCSDet, the mean average precision (mAP) of MsDSOD
is improved by 0.80%, and the average precision in

small object detection (APs) is improved by 0.72%.
The proposed algorithm is optimally suited to deal with
complex scenes for dense small objects and background
occlusion.

The remainder of this article is organized as follows. In
Section II, related works are introduced. In Section III, the
system model is given. In Section IV, multiband infrared
image fusion network based on Cascade-GAN is given. In
Section V, the Transformer-based multiscale dense small target
detection algorithm is given. In Section VI, the performance
metrics are analyzed by experiments. Finally, Section VII
concludes this article.

II. RELATED WORKS

In recent years, scholars from both domestic and inter-
national communities have conducted in-depth explorations
on related technologies, such as image fusion and object
detection. Ma et al. [9] introduced generative adversarial
networks (GANs) into the image fusion field for the first
time, and utilized the adversarial game between generator
and discriminator to generate high-quality fused images.
Wang et al. [10] proposed a self-supervised fusion model
based on comparison learning self-supervised fusion model,
which guides the backbone network to generate the fused
image by estimating the feature compensation map of the
infrared image. Yang et al. [11] designed a dual-stream
bootstrap filtering network, which extracts the image features
in the way of two independent data streams, preserving more
background and detail information. Zhao et al. [12] proposed
a multimodal image fusion network, the correlation-driven
feature decomposition fusion, which optimizes the extraction
and fusion of cross-modal features through specific techniques,
significantly improves the quality of the fused images. In
order to make the generator capture comprehensive spatial
information, Li et al. [13] integrated a multiscale attention
mechanism in the generator and discriminator of GAN, so that
the fusion network pays more attention to the typical regions
of the source image to reconstruct the fusion map. However,
fused multiband infrared images still have different degrees
of defects, such as missing texture detail information, low
contrast, and poor signal-to-noise ratio.

Deep learning techniques have become a mainstream
method in the field of object detection. The backbone is
a feature extractor for the object detection task and out-
puts a feature map of the image. Li et al. [14] proposed
lightweight large selective kernel network (LSKNet) to fully
utilize the a priori knowledge in small object scenarios
and dynamically adjust the spatial sensing field, which
improves the detection precision and at the same time reduces
the number of parameters and computation of the model.
Du et al. [15] proposed a global context-enhanced adaptive
sparse convolutional network for efficient and low-latency
object detection on computationally resource-constrained AAV
platforms. Neck [16] mixes and combines image features
to pass image features from the backbone to the prediction
layer. However, in areas of the infrared image where objects
are small and densely distributed, the object information is
limited and there is mutual occlusion, which still increases the
difficulty of detection.
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Fig. 1. Fusion-based dense small object detection architecture.

Currently, object detection frameworks are mainly cate-
gorized into single-stage detection and two-stage detection.
The most representative single-stage detectors are the YOLO
series [17], [18], [19]. Detection transformer (DETR) [20]
based on Transformer achieves end-to-end detection through
Hungarian bisection matching, eliminating manual operations,
such as nonmaximal suppression. Ye et al. [21] proposed a
Cascade-DETR approach to object detection, which improves
the localization precision and calibration confidence of generic
object detection. Xu et al. [22] proposed a dynamic prior
along with the coarse-to-fine assigner, which effectively solves
the label allocation problem in directional tiny object detec-
tion and improves the detection precision of tiny objects.
Tian et al. [23] implemented a pixel-by-pixel object detection
algorithm based on a fully convolutional network, which
utilizes the idea of centrality to suppress low-quality prediction
frames, and also achieves better detection results. The two-
stage detector first detects each prediction frame by generating
region suggestions and then refining them. The most represen-
tative of two-stage detection is the R-CNN family, including
Fast R-CNN [24], Faster R-CNN [25], Cascade R-CNN [26],
and Cascade Mask R-CNN [27].

III. SYSTEM MODEL

Due to the limited computational capabilities of AAVs,
high-precision object recognition algorithms cannot be
deployed directly on board. This manuscript presents a
fusion-based framework for dense detection of small objects,
consisting of MIF-CGAN and MsDSOD. The MIF-CGAN
component operates onboard the AAV, denoising and fusing
multiple infrared images [near-infrared (NIR), mid-infrared
(MIR), and long-infrared (LIR)] acquired from the same per-
spective to produce composite infrared images with enriched
feature representations, which are then transmitted to a
ground-based computing center. This fusion-based approach

minimizes the need to transmit large amounts of raw
infrared data, significantly reducing the communication burden
between the AAV and the ground. The MsDSOD component
runs in the cloud computing center, detecting densely packed
small objects in the fused images and either presenting the
results to the user or transmitting them back to the AAV. This
two-component approach significantly improves the accuracy
of AAV-based small object detection.

Since multiband infrared images all have their own charac-
teristics, we use the AAV-borne sensor to acquire NIR, MIR
and LIR images of the same scene. As shown in Fig. 1, to
enhance the image quality, we propose the MIF-CGAN, which
comprises DnGAN and FuGAN. The DnGAN is used to filter
out noise from multiband infrared images of the same scene.
The denoised image is inputted into FuGAN, which produce a
fused image with distinguished features, thereby enhancing the
image signal-to-noise ratio. This holistic approach exploits the
complementary information provided by each band, increasing
the effectiveness and detail of subsequent target detection
analysis.

To improve the precision of infrared object detection, we
propose an MsDSOD method. The method comprises G-LOD,
O-DAE, super-lightweight super-resolution (s-LWSR), and
WBF. G-LOD is used to detect the global objects of the
input images. Subsequently, O-DAE extracts the dense regions
of the objects. s-LWSR is used to super-resolve cropped
local images. G-LOD is then used once more to obtain local
detection results, which are combined with the global detection
results in WBF to achieve the final detection results and the
desired level of precision.

IV. MULTIBAND INFRARED IMAGE FUSION METHOD

BASED ON CASCADE-GAN

In order to improve the quality of infrared images, the MIF
CGAN network is proposed, as shown in Fig. 2. The denoised
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Fig. 2. MIIF-CGAN network.

images generated by DnGAN are used to guide the game-
adversarial training of FuGAN to obtain high-quality fused
images.

A. Network Structure of DnGAN

Stage 1-1: NIR, MIR, and LIR images are taken as inputs,
and the denoised multiband infrared images are generated
by the game confrontation between the generator and the
discriminator of DnGAN.

To express more clearly, we propose a formalized rep-
resentation of the fusion process. Given a pair of aligned
multi-infrared image INIR, IMIR, and ILIR, the goal is to
synthesize a fused image Ifused

fe(NIR) = {φ1
N, . . . , φm

N , . . . , φM
N } (1)

fe(MIR) = {φ1
M, . . . , φm

M, . . . , φM
M } (2)

fe(LIR) = {φ1
L, . . . , φm

L , . . . , φM
L } (3)

where fe(·) denotes the extraction function learned by the
encoder. φN , φM , and φL represent the feature maps extracted
from multi-infrared image INIR, IMIR, and ILIR, respectively.
M is the number of feature maps. The corresponding extracted
features of the corresponding images are fused

{φ1
f , . . . , φM

f } = {fφ
(
φ1

N, φ1
M, φ1

L

)
, . . . , fφ

(
φM

N , φM
M , φM

L

)} (4)

where φf represents the fused feature maps. fφ denotes the
fusion process. As reconstruction is the inverse process of
extraction, we employ a decoder to learn the inverse transfor-
mation of fe(·). fd(·) is the reconstruction process. The fused
image is generated as

Ifused = fd
(
φ1

f , . . . , φM
f

)
. (5)

DnGAN is used to denoise the input image. The generator
GDn consists of an encoder and a decoder. In the encoder,
the receptive field of the convolutional kernel is expanded by
upsampling and downsampling, so that the model can make
full use of the context information to realize the secondary
extraction of image features. Denoised images is reconstructed
in the decoder. The network structure parameters specific to
the generator GDn are shown in Table I.

As shown in Fig. 3, the encoder of the GDn consists of
four convolutional layers. Each layer of the network comprises
a 3 × 3 convolutional kernel and a rectified linear unit
(ReLU). The stacked 3 × 3 convolutional kernels require a
few parameters, which can reduce the complexity of the model

TABLE I
NETWORK STRUCTURE PARAMETERS OF GDn

Fig. 3. Encoder and decoder of the generator GDn in DnGAN.

while ensuring speed of training. Moreover, DenseNet [28] is
directly connected between the convolutional layers to reuse
the original features. This can reduce the loss of features
and avoid the disappearance of gradients. The decoder is also
composed of four convolutional layers

Yi,j =
∑
u,v

Hi−u,j−vXu,v + b. (6)

To avoid gradient explosion or disappearance, batch nor-
malization (BN) is applied to each convolutional layer. BN
increases the robustness of the system by normalizing the input
data to achieve constraints on the search space of the system
parameters. The input batch data X = {x1, . . . , xi, . . . , xK} are
taken to be the mean value μ. Find the variance σ 2 of the batch
data from the resulting μ. The representation of the network is
changed due to the transformation of the normalized xi from
the original data distribution to the normal distribution. To
achieve better scale transformation and bias, BN introduces
two new parameters that can be obtained by learning through
model training: 1) the translation factor ξ and 2) the scale
factor η

yi = η
xi − μ√
σ 2 + ε

+ ξ. (7)
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Fig. 4. Discriminator DDn model of DnGAN.

The decoder also employs a ReLU activation function in
each neural network to speed up convergence

ReLU(x) =
{

x, x ≥ 0
0, x < 0.

(8)

As shown in the above equation, the function outputs zero
for negative input values, effectively inhibiting the activation
of the corresponding neuron. This selective activation of neu-
rons contributes to a simplified network architecture, leading to
substantial computational efficiency. The convolutional kernel
stride for all encoders and decoders is set to 1. As shown in
Fig. 4, the discriminator DDn consists of three convolutional
layers and a fully connected layer. Each convolutional layer is
set with 3 × 3 convolutional kernels, BN, and ReLU.

B. Loss Functions for DnGAN

1) Loss Function of GDn: The loss function LGd of GDn

consists of the reconstruction loss and the perceptual loss. The
reconstruction loss LGdmse is defined as the mean-squared error
(MSE) between the denoised image generated by DnGAN and
the noiseless image

LGd = LGdmse + LGdper (9)

LGdmse(x, x̃) = 1

hw

h∑
i=1

w∑
j=1

[
GDn(x)i,j − x̃i,j

]2 (10)

where x represents the input noisy image, and x̃ represents
the noiseless image. GDn(x) represents the denoised image
generated by GDn, where i and j denote the rows and columns
of features, respectively. h and w represent the height and
width of the image.

The clarity of the denoised image is improved by the
perceptual loss. The infrared images INIR, IMIR, and ILIR in
three bands are convolved with a single channel 1 × 1 to obtain
the source image features F. Similarly, the denoised result I1
is obtained after convolution of the denoised images Idenosied.
The final loss LGdper is calculated using the L2 paradigm

F = conv[concat(INIR, IMIR, ILIR)] (11)

I1 = conv(Idenosied) (12)

LGdper(F, I1) = 1

HpWp

∥∥ϕp(F) − ϕp(I1)
∥∥2

2 (13)

where p denotes the pth layer of the network. Hp and
Wp represent the height and width of the input features,
respectively. ϕp(F) and ϕp(I1) indicate the output features
obtained through the pth layer of the network. ‖ · ‖2

2 denotes
the L2 paradigm.

TABLE II
NETWORK STRUCTURE PARAMETERS OF GFn

2) Loss Function of DDn: The loss function LDd of DDn

comprises decision losses of the denoised image and noiseless
image, denoted by LDdx and LDdx̃, respectively

LDdx = 1

2N

N∑
i=1

{[
Px

(
GDn

(
xn)) − a1

]2

+[
Px̃

(
GDn

(
xn)) − a2

]2
}

(14)

LDdx̃ = 1

2N

N∑
i=1

{[
Px

(
x̃n) − a3

]2 + [
Px̃

(
x̃n) − a4

]2
}

(15)

where N is the number of input images. Px represents the
probability that DDn judges the input as a denoised image, and
Px̃ represents the probability of being judged as a noiseless
image. GDn(xn) denotes the nth denoised image generated by
GDn. a1 and a2 are probability labels. When the input is a
denoised image, Px → 1 and Px̃ → 0 are expected. Thus, a1
is set to 1, and a2 is set to 0. Similarly, a3 is set to 0, and a4
is set to 1.

C. Network Structure of FuGAN

Stage 1-2: The denoised multiband image generated by
DnGAN is fed into FuGAN through three channels to obtain
a high quality multiband fused image. FuGAN achieves high-
quality fusion images through the adversarial game between
the generator GFu and the discriminator DFu. The generator
GFu consists of an encoder and a decoder. The network
structure parameters specific to the generator GFn are shown
in Table II.

As shown in Fig. 5, the encoder of GFu consists of four
convolutional layers and two convolutional block attention
modules (CBAMs). The flow of information between networks
is enhanced by the establishment of jump links. Like decoder
of GDu, each convolutional layer is set with 3 × 3 convolu-
tional kernels, BN, and ReLU.

The CBAM is inserted after the first and third convolu-
tional layers to establish skip connections. CBAM enables the
network model to focus on information that is more critical to
the task at hand and reduces the focus on other information,
thereby increasing the efficiency of the entire network. CBAM
consists of two parts: 1) channel attention module (CAM)
and 2) spatial attention module (SAM). The features output
from the convolutional layer are first compressed by CAM
in spatial dimension to obtain a 1-D channel attention map.
The features output from the convolutional layer are multiplied
with the channel attention map and input to the SAM. This
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Fig. 5. Generator GFu model of FuGAN.

Fig. 6. Discriminator DFu model of FuGAN.

part compresses the channel to obtain a 2-D spatial attention
map, which is multiplied with the input data to obtain the final
weighted result

f ′ = Mc(f ) ⊗ f (16)

f ′′ = Ms
(
f ′) ⊗ f ′ (17)

where f represents the features output from the convolutional
layer, f ′ represents the features output from the CAM layer,
and f ′′ represents the features output from the SAM layer. Mc

represents the 1-D channel attention map, and Ms represents
the 2-D spatial attention map.

As shown in Fig. 6, the discriminator DFu is designed
as a multiclassifier. It consists of four convolutional layers
and one fully connected layer. Based on the image features
extracted by the convolutional layers, the fully connected layer
discriminates the input to obtain a probability vector for image
fusion. Each layer is composed of a 3 × 3 convolutional
kernel, ReLU, and BN. The stride of all convolutional layers
is set to 1, and the padding method is SAME.

D. Loss Functions for FuGAN

1) Loss Function of GFu: The loss function LGf of GFu

consists of adversarial loss LGfadv, perceptual loss LGfper, and
structural similarity index (SSIM) loss LGfssim

LGf = LGfadv + LGfper + LGfssim (18)

LGfadv = 1

3N

N∑
n=1

{[
DFu

(
In
fused

)
[0] − e

]2 (19)

+ [
DFu

(
In
fused

)
[1] − e

]2 + [
DFu

(
In
fused

)
[2] − e

]2
}

where e is the probability that the fused image matches the
source image. The goal of GFu is to make DFu indistinguish-
able between the fused image and the source image, hence e
is set to 1. In

fused indicates the nth fused image input to DFu.
As the discriminator is a multiclassifier, the output is a 1 × 3
probability vector. The three terms of this vector represent
the probabilities that the fusion image is NIR, MIR, and
LIR image, expressed by DFu(·)[0], DFu(·)[1], and DFu(·)[2],
respectively.

The perceptual loss LGfper can motivate FFu to generate
fused images with high information entropy, which is defined
in the same way as LGdper in DnGAN. The SSIM loss
LGfssim can constrain the correlation, luminance distortion, and
contrast distortion of the fusion image

I2 = conv(Ifused) (20)

LGfper(F, I2) = 1

HpWp

∥∥ϕp(F) − ϕp(I2)
∥∥2

2 (21)

SSIM = 1

3
SSIM(Ifused, INIR) (22)

+ 1

3
SSIM(Ifused, IMIR) + 1

3
SSIM(Ifused, ILIR)

LGfssim = 1 − SSIM. (23)

2) Loss Function of DFu: DFu is a multiclassifier which
adopts the least squares loss function LDf . And LDf comprises
four decision losses for NIR, MIR, LIR images, and fusion
images, denoted by LDfNIR, LDfMIR, LDfLIR, and LDfFused,
respectively

LDf = LDfNIR + LDfMIR + LDfLIR + LDfFused. (24)

Considering the output of the discriminator is a 1 × 3 vector
DFu(·), so that PNIR = DFu(·)[0], PMIR = DFu(·)[1], PLIR =
DFu(·)[2]. The corresponding LDfNIR loss, LDfMIR loss, and
LDfLIR loss are defined as

LDfNIR = 1

3N

N∑
n=1

{[
DFu

(
In
fused

)
[0] − b1

]2 (25)

+ [
DFu

(
In
fused

)
[1] − b2

]2 + [
DFu

(
In
fused

)
[2] − b3

]2
}

LDfMIR = 1

3N

N∑
n=1

{[
DFu

(
In
fused

)
[0] − b4

]2 (26)

+ [
DFu

(
In
fused

)
[1] − b5

]2 + [
DFu

(
In
fused

)
[2] − b6

]2
}

LDfLIR = 1

3N

N∑
n=1

{[
DFu

(
In
fused

)
[0] − b7

]2 (27)

+ [
DFu

(
In
fused

)
[1] − b8

]2 + [
DFu

(
In
fused

)
[2] − b9

]2
}

LDf Fused = 1

3N

N∑
n=1

{[
DFu

(
In
fused

)
[0] − b10

]2 (28)

+ [
DFu

(
In
fused

)
[1] − b11

]2 + [
DFu

(
In
fused

)
[2] − b12

]2
}

where In
fused represents the nth NIR image. b1, b2, and b3 are

probability labels. The generative network is expected to out-
put images that are independently and identically distributed
across the training samples. When the input is an NIR image,
it is expected that PNIR → 1, and PMIR, PLIR → 0, so, b1
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Fig. 7. Multiscale infrared dense small object detection architecture.

Fig. 8. Global–local object detection network.

is set to 1, and b2 and b3 are set to 0. Similarly, when In
fused

represents the nth MIR image, b5 is set to 1, and b4 and b6
are set to 0. If In

fused represents the nth LIR image. b9 is set
to 1, and b7 and b8 are set to 0. And in (28), b11, b12, and
b13 are all set to 0. In other words, from the viewpoint of the
discriminator, the fused images are the same degree of pseudo-
NIR image, pseudo-MIR image, and pseudo-LIR image.

V. MULTISCALE INFRARED DENSE SMALL OBJECT

DETECTION METHOD BASED ON TRANSFORMER

As shown in Fig. 7, the fused image is fed into the
G-LOD network to extract global information. The O-DAE
algorithm is defined to specify the boundary of the object
detection region. The input fused image is cropped according
to the boundary. s-LWSR improves image resolution. The
output is then analyzed locally by G-LOD for detection. The
WBF combines global and local predictions to achieve high-
precision detection.

A. G-LOD

Stage 2-1: The fused image is fed into the G-LOD network
to get global detection results T(J) (category, bounding box).

The G-LOD network consists of CSPResNet101, recursive
feature pyramid (RFP), Transformer encoder, and feedforward
networks (FFNs), as shown in Fig. 8. CSPResNet101 was
chosen as the backbone network of G-LOD [29]. The RFP
was added to the Neck to ensure reasonable full utilization
of multiscale features. The prediction frame information is
extracted from the multilayer feature map by the RoIAlign,

Fig. 9. Structure of CSPResNet101 and RFP.

which is then combined with positional data relating to
candidate regions before being fed into the detection head for
training. As Transformer is capable of end-to-end detection, it
was used to extract the input detection header of the candidate
region. To ensure the detection precision, a Bipartite Graph
Matchings was used to force constraints on the detection
range, effectively avoiding operations, such as nonmaximum
suppression (NMS) within the detection model.

To improve the detection accuracy of dense small objects,
we introduce the classical backbone network ResNet101,
which relies on the residual learning mechanism to ensure
the training performance of the deeper network by copy-
ing the features of the shallow network to the deeper
network for effective feature extraction. To achieve richer
gradient combinations, the cross stage partial network
(CSPNet) is used to combine with ResNet101 to form
CSPResNet101.

The structure of CSPResNet101 and RFP is shown in
Fig. 9. The backbone network CSPResNet101 is used to
extract features from the input image and map the fea-
tures to the RFP to produce a multilevel feature map.
By setting additional feedback connections in the RFP, the
semantically information-rich high-level features are brought
back to the lower level feature layers of the backbone
network to enhance the feature extraction performance of the
backbone network and achieve accelerated training of the
network.

Region proposal network (RPN) uses the global feature map
to determine whether a object is present in a candidate region.
Binary class labels are assigned to each candidate region by
generating anchor frame coverage images at different scales. A
candidate region is assigned a positive label if its Intersection
over Union (IoU) overlap with the real frame is above a
certain threshold. This label of 1 means that the candidate
region is a object region; 0 means that it is not a object
region.

The position of the candidate region is defined
as [PE(X):PE(Y):PE(w):PE(h)], where [:] denotes the
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connection, (X, Y) ∈ [0, 1]2 is the coordinates of the upper
left corner of the prediction box, and (w, h) ∈ [0, 1]2 is the
width and height of the prediction box

PE(X)2i = sin
(

X/100002i
)

(29)

PE(X)2i+1 = cos
(

X/100002i+1
)
. (30)

After the feature information of the candidate regions is
input to the Transformer encoder, it is aggregated by the self-
attention mechanism and finally reaches the shared FFN. The
FFN consists of a 3-layer perceptron with ReLU activation
and a linear layer that predicts the category labels of each
candidate region (including the “no object”) and bounding box.
The bounding box of global detection result is denoted as
Bl = {cl

k, bl
k}, where l denotes the original image, k is the

prediction frame code, c is the object category, and b is the
prediction frame location information.

This section uses the Hungarian loss for training super-
vision of the detection head. ȳ = {ȳi}Mu=1 denotes the
set of true objects and ŷ = {ŷi}Nu=1 denotes the set of
predictions

LHungarian
(
ȳ, ŷ

) =
N∑
i=1

[
Li,δ̂(i)

class + �{ŷ 
=∅}Li,δ̂(i)
box

]
. (31)

In general M < N because there are cases where the

prediction frame corresponds to no object. Li,δ̂(i)
class and Li,δ̂(i)

box
are the classification loss and bounding box regression loss,
respectively, and δ̂ is the matching loss between ȳ and ŷ,
denoted as follows:

δ̂ = argmin
δ∈SN

N∑
i=1

Lmatch
(
ȳi, ŷδ(i)

)
(32)

where δ ∈ SN is the set of N prediction frames and Lmatch
is the pairwise matching loss.

B. O-DAE

Stage 2-2: The global detection results of G-LOD network
are input to O-DAE module, and the clustering score is used
to obtain the region with denser small objects, and then the
region is adaptively adjusted to determine the final cropping
region.

The O-DAE module can adaptively crop out dense object
regions in the image for G-LOD to achieve fine detection. The
pseudocode for the O-DAE is shown in Algorithm 1.

The aggregate score model is used to measure the denseness
of the area where the bounding box Bl = {cl

k, bl
k} obtained in

the global detection is located

G(X, Y) =
{∑

k 1, if (X, Y) in bl
k

0, otherwise
(33)

Eq = {(X, Y) | for 	(G(X, Y)) > 
} (34)

where (X, Y) represents the coordinates of the adaptive region.

 is the score threshold. The aggregate score is used as a
screening condition for dense regions, and screening high-
scoring coordinates as an input for adaptive region selection
not only ensures credible zoomed-in regions, but also speeds

Algorithm 1 O-DAE Algorithm
Input: The detection result T(J) (category, bounding box

Bl = {cl
k, bl

k});
Output: The final cropped local image set J′;

1: Calculate the density of the area where the bounding box
Bl = {cl

k, bl
k} is located by Eq. (33);

2: if G(X, Y) > 
 then
3: Get the coordinate set Eq;
4: end if
5: The source image J is divided into subregion images set

{J1, J2, . . . , Jλ, . . . , Jυ} according to the Eq;
6: for λ = 1:υ do
7: Obtain the boundaries of the subregion Jλ;
8: Calculate the center coordinates (X0, Y0) of the subre-

gion Jλ by Eq. (35);
9: Calculate the scale standard s and width to height ratio

r by Eq. (36)-(37);
10: Crop the subregion images J′

λ according to Eq. (40)-
(41);

11: end for
12: return The final cropped local image set J′ =

{J′
1, J′

2, · · · , J′
λ, · · · , J′

υ};

up the selection. The set of high-resolution coordinates Eq

and the set of coordinates of the boundary of the prediction
frame Z are fed into the adaptive region selection based
on density-based spatial clustering of applications with noise
(DBSCAN).

Each coordinate in Eq is assigned to a specific class, the
boundaries of the subregion can be easily obtained, and the
intercepted subregion contains the global box of all targets,
which can avoid object truncation. As a result, each subregion
has a different size. The source image J is divided into
subregion images set {J1, J2, . . . , Jλ, . . . , Jυ}.

Due to the different scales of the subregions, they cannot be
fed directly to the local detector. In order to maintain the scale
and proportion of the subregions within a preset range, the
subregion adaptive scaling method is proposed. The bounding
box of the subregion images Jλ is (X1, X2, Y1, Y2). (X1, Y1) are
the coordinates of the upper left corner of the bounding box,
(X2, Y2) stands for the coordinates of the lower right corner
of the bounding box, the center coordinates are (X0, Y0), S
indicates the standard size, and r denotes the width to height
ratio

(X0, Y0) =
(

X1 + X2

2
,

Y1 + Y2

2

)
(35)

S = √
(X2 − X1)(Y2 − Y1) (36)

r = Y2 − Y1

X2 − X1
. (37)

When S ≥ S′, r ∈ [rmin, rmax]

hλ = max

(
S′, X2 − X1

2
, Y2 − Y1

)
(38)

wλ = max

(
S′, Y2 − Y1

2
, X2 − X1

)
(39)
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(
Xλ

1 , Yλ
1

) =
(

X0 − wλ

2
, Y0 − hλ

2

)
(40)

(
Xλ

2 , Yλ
2

) =
(

X0 + wλ

2
, Y0 + hλ

2

)
(41)

where (Xλ
1 , Yλ

1 ) and (Xλ
2 , Yλ

2 ) denote the new coordinates of the
upper left corner and the lower right corner of the bounding
box of the final cropped subregion image J′

λ, respectively.
hλ and wλ denote the final cropped height and width of
the bounding box. Final cropped local image set J′ =
{J′

1, J′
2, . . . , J′

λ, . . . , J′
υ} is output.

We did a sampling statistic on all the datasets and its
distribution presents are characterized by nonuniform spatial
distributions and a high proportion of small objects, with
occlusion and overlap between dense objects. Due to the
uneven spatial distribution of the dataset, very empty areas
do not have much identification value. Therefore, we set the
score threshold at 2 (
 = 2) to ensure that there is an
identification object in the region. Of course, there are very
limited instances of complete overlapping or obscuration in
the dataset. Although the proposed algorithm can distinguish
the object to some extent, it is still unable to do anything for
very dense cases. So we have to discard the very dense parts,
detection area should not be too small. Therefore, we set the
standard size at 5 (S′ = 5) based on statistics and empirical
values. To ensure that the image input to the neural network
is square or tends to be square, the aspect ratio of the cropped
image should not be too large or too small, so it is set between
[0.5, 2] (rmin = 0.5, rmax = 2).

C. s-LWSR

Stage 2-3: The cropped local images J′ are fed into the
s-LWSR network to increase the resolution of the image
for more detailed detection information and higher detection
accuracy.

After the image has been scaled, the size has reached
the acceptance standard of the detector. However, due to a
series of processing operations, the cropped image inevitably
suffers from blurring of image quality, loss of image details,
and degradation of resolution. To address the above prob-
lems, we employ the highly efficient s-LWSR network [30],
which is based on the a priori knowledge of the image, to
recover the lost object edge information of the cropped image
so as to obtain a high-resolution image and provide more
semantic information to the object detector. Since the adaptive
selection algorithm intercepts subregions of different sizes,
super-resolution processing for large subregions is obviously
unnecessary. So

Js =
{

super
(
J′
λ

)
, if sλ ≤ Ssr

J′
λ, otherwise

(42)

where Js is a recovered high-resolution image. The cropped
image of J′ is input to s-LWSR. The local images are
processed with super-resolution and fed into the G-LOD local
fine detection network.

Stage 2-4: The recovered high-resolution images Js are fed
into the G-LOD network for secondary fine detection of the
object and local detection results T(Js) are obtained.

Algorithm 2 MsDSOD Algorithm
Input: The fused image with multi-band infrared features

generated by MIF-CGAN;
Output: the final detection result;

1: for l = 1:L do
2: Get the global detection result T(J) and the bounding

box Bl = {cl
k, bl

k} by G-LOD network;
3: Calculate the final cropped local image set J′ =

{J′
1, J′

2, · · · , J′
λ, · · · , J′

υ} by Algorithm 1;
4: for λ = 1:υ do
5: if sλ ≤ Ssr then
6: Enhanced image resolution of J′

λ through s-LWSR
network;

7: end if
8: Get the local detection result T(Js) by G-LOD

network;
9: end for

10: Calculate the final detection result Bf by Eq.(43);
11: end for
12: return The final detection result Bf ;

D. WBF

Stage 2-5: Both local and global detection results are fed
into the WBF module for result fusion to output the final object
detection results

Bf = merge
(
T(J), T

(
Js)) (43)

where Bf indicates the final detection result, J denotes the
source image, and Js denotes the local super-resolution image
generated by the O-DAE network. T(·) indicates network
detection result, and merge(·) represents WBF [31]. The
pseudocode for the MsDSOD is shown in Algorithm 2.

VI. SIMULATION EXPERIMENTS AND ANALYSIS

OF RESULTS

A. Environment Configuration

The experimental environment is Intel Xeon Gold 5218R
CPU, 32G DDR4*8 RAM, NVIDIA GeForce RTX3090
GPU. The operating system is Window 10, the programming
language is Python, and the deep learning framework is
TensorFlow-gpu 1.14.0. Training is conducted for 300 epochs
using the Adam optimizer with 0.0001 learning rate and 2
Batchsize and the average is taken.

1) Multiband Infrared Image Dataset: The Multispectral
dataset [32] is used as the training and testing data for the
multiband image fusion simulation experiments, as shown in
Fig. 10. The dataset includes 7512 sets of images in different
scenes. Each set of images is divided into four categories:
1) RGB; 2) NIR; 3) MIR; and 4) LIR. It contains a variety of
scenes in university environments, such as cars, bicycles, and
pedestrians in road scenes, and buildings in natural scenes.
The training set is divided into 3740 sets for day and 3772 sets
for night. In this article, the selected image experienced scene
alignment and scaling processing.
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Fig. 10. Multispectral dataset. (a) NIR. (b) MIR. (c) LIR.

Fig. 11. Dataset of MsDSOD.

2) Infrared Small Object Detection Dataset: The MsDSOD
simulation experiments utilized the infrared small object
detection dataset in aerial photography, as shown in Fig. 11.
The dataset collects 11 045 infrared image data under the
overhead angle of surveillance, which contains rich infrared
small objects: pedestrians, cars, buses, bicycles, cyclists, and
trucks. The label files are converted to json format to construct
the MS COCO format dataset. We selected 8837 images as
training set, 1104 images as validation set, and 1104 images
as test set.

B. Evaluation Indicators

To evaluate the performance of the MIF-CGAN algorithm,
the fusion algorithm will be quantitatively evaluated using the
objective evaluation criteria, which mainly include Entropy
(EN), AG, standard deviation (SD), SSIM, peak signal-to-
noise ratio (PSNR), and gradient-based fusion performance
QAB/F . The metrics for measuring object detection algorithms
contain precision (P), recall (R), mAP, and F1 score (F1).

EN is the amount of information carried by each image
feature in the image grayscale distribution

EN =
255∑
t=0

pt log2 pt (44)

where pt denotes the proportion of pixels with gray value t in
the image. AG is the clarity of the fused image

AG = 1

(W − 1)(H − 1)

W−1∑
w=1

H−1∑
h=1√

[R(w + 1, h) − R(w, h)]2 + [R(w, h + 1) + R(w, h)]2

2

(45)

where W and H denote the width and height of the image,
respectively, and R(w, h) denotes the pixel value located
at (w, h).

SD is the degree of dispersion of the gray value of an image
pixel with respect to the mean value

u = 1

WH

W∑
w=1

H∑
h=1

R(w, h) (46)

SD =
√√√√ 1

WH

W∑
w=1

H∑
h=1

(R(w, h) − u)2 (47)

where u denotes the mean value.
SSIM is the similarity of two images in terms of brightness,

contrast, and structure

SSIM = [l(X, R)]α[c(X, R)]β [s(X, R)]γ (48)

where X represents the source image, R represents the fused
image, l(X, R), c(X, R), and s(X, R) are the formulas for lumi-
nance similarity, contrast similarity, and structural similarity,
respectively, and α, β, and γ are the weighting coefficients,
which are generally taken to be 1.

PSNR is an objective measure of the difference in noise
level between two images

MSE = 1

WH

W−1∑
w=1

H−1∑
h=0

[X(w, h) − R(w, h)]2 (49)

PSNR = 10 log10

(
MAXI

MSE

)2

= 20 log10

(
MAXI√

MSE

)
(50)

where X(w, h) and R(w, h) denote the pixel values of the two
images at (w, h), MSE denotes the mean-square error of the
two images, and MAXI denotes the maximum value of the
image pixels that can be taken.

QAB/F is the extent to which the salient information of the
input is represented in the fused image [33].

C. Results and Analysis of Ablation Experiments

1) MIF-CGAN: In this ablation experiment, we only
removed the attention modules from the second and fifth
layers of the FuGAN generator. The experiment verifies the
effect of the CAM and the SAM. Then, we only removed
DnGAN to verify the effectiveness of the cascade structure for
image fusion quality improvement. NIR, MIR, and LIR are fed
into FuGAN after connecting them along the channels. The
experimental results are shown in Table V. MIF-CGAN has
significant improvement in EN, AG, SD, and QAB/F compared
to both Ablation1 and Ablation2. This indicates that attention
modules in the MIF-CGAN can capture more image features
and enhance the resolution of the fused image and DnGAN
effectively improves the clarity and information richness of
the fused images.

2) MsDSOD: We design five sets of ablation experiments
to verify the effectiveness of each module of MsDSOD,
and the results are shown in Table III. The network of
Group V is the MsDSOD. Compared to Group I, the
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TABLE III
RESULTS OF MSDSOD ABLATION EXPERIMENTS

TABLE IV
COMPARISON EXPERIMENT OF MIF-CGAN

TABLE V
RESULTS OF MIF-CGAN ABLATION EXPERIMENTS

CSPResNet101 of Group II improves the average detection
precision by 6.44%. This shows that the deeper network
structure of CSPResNet101 effectively extracts image features.
Compared to Group II, the RFP of Group III improves the
average precision by 11.91% and the small object detection
precision by 19.49%. This is due to the fact that the proposed
algorithm introduces an RFP structure RFP, which avoids the
loss of small target information through multiscale feature
fusion. Compared to Group III, the Transformer Encoder of
Group IV effectively improves the average detection precision
as well as the small object detection precision. This is due
to the fact that the proposed algorithm discards the decoder
structure of the Transformer and connects the shared feed-
forward network directly after the encoder, which is used to
determine the class and location of the target. Compared to
Group IV, the average precision of MsDSOD is improved by
3.78%, the small object detection precision is improved by
5.29%, and the large object detection precision is improved
by 7.27%. It can be seen that the O-DAE module effectively
improves the detection precision.

D. Results and Analysis of Comparative Experiments

1) MIF-CGAN: This algorithm is compared to eight image
fusion algorithms, such as DenseFuse, FusionGAN, and
DDcGAN. We evaluate the fusion effect of each algorithm
in terms of subjective qualitative analysis and objective quan-
titative analysis. In Table IV and Fig. 12, AG and SD of

MIF-CGAN improve 4.78% and 1.13% over the subopti-
mal algorithms, respectively, and outperform most of the
algorithms in EN, PSNR, and QAB/F . This indicates that MIF-
CGAN is able to obtain more sufficient visual information
from the source image.

The algorithm generates rich fused images with less noise,
strong contrast, High clarity. The proposed algorithm achieves
suboptimal results in PSNR and QAB/F , after FusionGAN and
GAN-FM, indicating that the difference between the fused
image and the source image is large. This indicates that
Cascade-GAN is able to obtain sufficient visual information
from the source image with good visual perception. The SSIM
of MIF-CGAN is lower. Because the source images and the
fused images are very different in terms of brightness, contrast,
and structural information. It is these differences that make the
structure of the fused image clearer and solve the problem of
low contrast and poor visual effect in infrared images. From
the above, it can be seen that the proposed algorithm is able to
fully obtain the target and texture detail information from the
source image, and produce a fused image with high signal-to-
noise ratio and high information entropy, which will be helpful
for the subsequent target detection tasks.

Although the proposed algorithm performs well in EN, AG,
and SD, it performs poorly in Parameters, FLOPs, and Time.
This is due to the fact that the proposed algorithm consists
of two GANs, the denoising network and the fusion network.
Macroscopically, the training speed is much slower than that
of a GAN such as FusionGAN. Although the introduction
of the BN module with residual network structure speeds
up the training speed of the proposed network to some
extent, it is still slower than that of a GAN. This approach
improves the network extraction capability and also increases
the computational resources.

The effect of the MIF-CGAN algorithm is shown in Fig. 13.
Columns (a)–(c) are the source images of NIR, MIR, and
LIR, Columns (d)–(k) are the fusion images generated by the
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Fig. 12. Quantitative comparisons of the metrics. (a) EN. (b) AG. (c) SD. (d) SSIM. (e) PSNR. (f) QAB/F .

Fig. 13. Comparison of fusion effect. (a) NIR. (b) MIR. (c) LIR. (d) DenseFuse. (e) FusionGAN. (f) DDcGAN. (g) RFN-Nest. (h) CSF. (i) GAN-FM.
(j) GANMcC. (k) TarDAL. (l) Ours.

comparison algorithm, and the last column is the fusion image
generated by MIF-CGAN. From the overall visual perception,
the fusion effects of DDcGAN, FusionGAN, RFN-Next, and
GANMcC are all very blurred.Among them, the fused image
of FusionGAN is more in favor of MIR and LIR, and the
image object boundary is blurred. The background texture of
bicycles, leaves, windows, etc. is basically lost, and the noise
interference is serious. The DDcGAN fused image produces
artifacts. the boundary of the pedestrian target is missing,
and the background sharpening is serious, which will cause
serious interference in the execution of the subsequent target
detection task. RFN-Nest and GANMcC extract the basic
texture information of NIR, but the contrast is low. The fused

images of DenseFuse, CSF, and GAN-FM are clearer overall,
but the boundary is blurred and the object is not bright enough
in the pedestrian object area. Comparison reveals that the
fused images generated by our algorithm have clearer object
boundaries and texture details, more appropriate contrast, and
more prominent object features, which are more useful for
subsequent object detection.

2) MsDSOD: To verify the improvement of our MsDSOD
algorithm for infrared dense small object detection precision,
several YOLO variants and their improvements are used as
comparison algorithms. The experimental results are shown
in Tables VI and VII. Table VI lists the accuracy of various
types of algorithms with different labels. In order to show
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TABLE VI
AVERAGE PRECISION OF COMPARATIVE EXPERIMENTS

TABLE VII
COMPARISON EXPERIMENT OF MSDSOD

(a) (b) (c)

Fig. 14. Confusion matrix. (a) YOLOv5n. (b) YOLOv8n. (c) MsDSOD.

the classification results of our algorithms in more detail, the
confusion matrix figure of the MsDSOD algorithms is also
attached as shown in Fig. 14. Compared to the confusion
matrix of other two algorithms, the proposed algorithm has
better detection accuracy and lower probability of confusion
between categories.

In Table VI, mAP, AP50, AP75, and APs of MsDSOD are the
highest. Compared to SCSDet, the mAP improves by 0.80%.
Compared to YOLOv9s, the mAP improves by 1.44%. When
IoU threshold is 0.5, AP50 of MsDSOD reaches 93.6. When
IoU threshold is 0.75, AP75 of MsDSOD reaches 70.0. AP of
MsDSOD is the higher for detecting objects of different sizes.
APs of MsDSOD improves by 0.72% over SCSDet, and by

8.16% over Cascade R-CNN in small object detection. This is
due to the fact that the proposed algorithm employs a two-step
detection approach to locally detect dense target regions and
identify dense small targets more accurately.

In medium-sized object detection, APM of MsDSOD is
not far from the highest of AS-YOLOv5, APL of MsDSOD
reduces by 1.36% compared to YOLOv9s. This is because in
convolutional neural networks, deep feature maps usually have
a higher degree of abstraction and are suitable for recognizing
complex patterns or large objects. Shallow feature maps retain
more original visual information in them and are more suitable
for detecting fine features, such as edges and textures. The
backbone network CSPResNet101 is introduced, which relies
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Fig. 15. Object detection effect in different scenarios. (a) High proportion of small object. (b) Object occlusion. (c) Significant noise interference.

on the residual learning mechanism to ensure the training
performance of the deeper network by copying the features of
the shallow network to the deeper network for effective feature
extraction. The proposed algorithm relies too much on shallow
features for prediction and thus performs poorly when dealing
with large targets.

Table VII shows the comparison results of various algo-
rithms in terms of metrics, such as accuracy, parameters, and
energy cost. Same as mAP, F1 is also the highest and AR is
not much different from the highest value of AS-YOLOv5.
Our algorithm is not superior in Parameters, FLOPs, FPS,
and Energy cost. The best in these aspects is the YOLOv5n
algorithm. Since MsDSOD aims at accuracy in detecting small
targets and is deployed in a cloud data center, it has not been
designed for light weight and recognition speed in order to
be mounted on AAV. The detection effect of MsDSOD is
shown in Fig. 15. MsDSOD can detect small objects in high
proportion of small objects scenes, objects with occlusions
scenes, and significant noise interference scenes.

The object detection architecture we have constructed is
that the image fusion algorithm is deployed on AAVs, and
the object detection algorithm is deployed on the cloud
center. Deploying algorithms on AAVs requires considera-
tion of several aspects, including computational resources,
energy consumption, and real-time performance. Therefore,
we consider using dedicated hardware, such as FPGAs, GPUs,
and ASICs to accelerate computation. Meanwhile, we use
techniques, such as model pruning, quantization, and knowl-
edge distillation to reduce the number of parameters and
the computational complexity of the model. However, the
accuracy of supervised learning models tends to decrease
rapidly after pruning and compression. That is why our MIF-
CGAN uses GANs. Although the proposed methods involve
some additional training effort, they can maintain fusion
accuracy, making the use of the proposed algorithms on AAVs
more efficient and reliable.

VII. CONCLUSION

To improve the precision of object detection in AAVs,
we propose a multiband infrared image fusion and dense
small object detection method. An MIF-CGAN network is

proposed, which exploits the complementary information pro-
vided by each band, increasing the effectiveness and detail
of subsequent target detection analysis. The Transformer-
based MsDSOD network disentangles tiny objects embedded
in densely regions at multiple scales. The performance of the
proposed method is significant compared to conventional algo-
rithms. Specifically, the MIF-CGAN has obvious advantages
in EN, AG, and SD metrics. MsDSOD consistently increases
detection precision across different object dimensions, and
excels in scenarios characterized by complex configurations
of dense small objects and instances of object occlusion.
The simulation experiments of the two proposed algorithms
have shown positive results. Our future research focuses on
deploying the algorithms on AAVs for real-world validation.
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