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Abstract—Federated Learning (FL) allows multiple clients to
collaboratively train machine learning models without the need
to share their local private data. As a result, it can effectively
address the issue of data fragmentation. Nevertheless, insufficient
evaluation of individual contributions and the lack of protections
for both the intellectual property rights (IPR) of models and
client privacy can greatly reduce clients’ motivations in federated
training. To address these challenges, this paper introduces
the Traceable Contribution Evaluation and Model Ownership
Protection (TraCemop) framework for federated learning, which
allows each client to swiftly assess the contributions of others
in each round, with integrated support for the traceability of
evaluation results. To safeguard the intellectual property of
models, a collective watermark is embedded in the global model.
Additionally, a secure mechanism for verifying model ownership
is also available in case of disputes. Security analysis indicates
that TraCemop is capable of resisting data reconstruction attacks
as well as various types of model copyright infringements. Finally,
we evaluate the proposed framework using two commonly-
used datasets, and the experimental results show a significant
improvement in the efficiency of contribution evaluation com-
pared to existing methods. Meanwhile, IPR infringement tests
on TraCemop reveal that the proposed framework is resilient
against malicious efforts to monopolize model ownership.

Index Terms—Federated learning, Watermark, Contribution
evaluation, Model IPR, Blockchain.
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FEDERATED learning, as a paradigm within distributed
machine learning, has garnered considerable interest ow-

ing to its capacity to guarantee data privacy. By complet-
ing the model’s training process locally and only sharing
model updates, FL prevents the privacy risks associated with
centralized data storage, offering a high quality solution for
the joint training of high precision models among multiple
institutions. Up till now, Federated learning has been widely
used in various fields such as healthcare services and smart
city [1], [2]. In contrast to ordinary Machine Learning (ML),
FL boasts the distinct advantage of gathering a vast array
of users, who consistently contribute valuable training data
and computing resources toward global model updates. These
collective efforts are pivotal in achieving FL models with
high performance. Hence, sustaining the engagement of clients
(participants) in FL training has great significance. Regret-
tably, two escalating challenges—1) inequitable evaluation of
participant contribution and 2) model IPR infringement—pose
substantial obstacles to enhancing participants’ motivations in
FL.

The first challenge arises from profit distribution. A well-
performed global model relies on the participation of high
quality clients. These clients expect rewards that match their
contributions when the trained global model generates rev-
enue. Therefore, it is necessary to assess each participant’s
contribution to reflect the value of their local models to the
global model. Currently, participant contribution in FL is
mostly assessed by the Shapley value [3], [4]. However, the
high computational complexity of the Shapley value impedes
assessment efficiency, which can diminish the contributors’
willingness and thereby weaken their commitment to FL
training. Consequently, it is imperative to establish an efficient
and objective contribution assessment mechanism for fairness
in the FL training process.

Moreover, another important challenge is posed by the unau-
thorized copying and misuse of the well-trained FL model,
which is derived from participants’ available resources such
as substantial computational power and large-scale datasets.
To address this issue, the watermarking technique provides
an effective solution for IPR protection in FL. In particular,
the white-box watermarking technique implicitly embeds the
private information of the model owner into the model, which
enables the model owners to access the suspicious models in
the white-box manner to claim model copyright [5], [6]. Due
to direct access to model parameters, white-box watermark-
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ing provides a more direct assertion for IPR in the model
competition, neural network model markets, and business
environments pursuing transparency and trustworthiness. Ad-
ditionally, adopting white-box watermarking helps enterprises
avoid unnecessary legal disputes. Nevertheless, during the
verification process, the watermark embedding matrix of the
model owner can be exposed. This vulnerability allows a
malicious adversary to launch an ownership query against the
rightful owner to obtain the watermark embedding matrix. The
malicious adversary can then falsely claim ownership of the
model and deploy the model as a service to extort money. Most
existing schemes presume the trustworthiness of the model
ownership verifier. However, in practical applications, the veri-
fier is often not completely trusted. Consequently, ensuring the
security of ownership verification remains an open challenge
in FL. Besides, the model owners are concerned not only with
the ownership of the suspect model but also with the benefit
distribution if the model belongs to them. This requires support
from the contributions of clients during the training phase.
Consequently, obtaining the contribution of clients according
to the results of model IPR claims is widely open.

In response to the aforementioned challenges, this paper
proposes a solution, named TraCemop, to address fairness
and IPR violation issues in Horizontal Federated Learning
(HFL). TraCemop measures the quality of local models using
artificial samples generated by Differentially Private Genera-
tive Adversarial Network (DPGAN) [7] for rapid and accurate
contribution assessment. In addition, it employs white-box wa-
termarking to protect IPR and incorporates a secure ownership
verification mechanism based on two-party secure computation
to maintain the confidentiality of the watermark embedding
matrix. To simultaneously achieve model ownership verifi-
cation and contribution queries, our approach supports the
direct retrieval of participants’ contribution information from
the watermark. Upon confirming the owner of the model,
the watermark can be utilized to retrieve the contributions
of each FL participant in the training phase, providing proof
for the subsequent benefits allocation. To avoid performance
degradation due to the limited redundancy in model parameters
when directly embedding contribution information, TraCemop
leverages blockchain to record contributions from each train-
ing round. The watermark is used for the storage and retrieval
of contribution values, establishing a unique binding between
the model and the corresponding contribution information.
Experimental results validate the effectiveness and rationale
of TraCemop. Specifically, the key advantages of TraCemop
are as follows:

• Efficient and well-founded contribution evaluation:
TraCemop reduces the assessment time for FL partici-
pants’ contribution while providing an approximate eval-
uation distribution comparable to existing schemes.

• Secure model copyright protection: TraCemop resists
watermark obfuscation and removal attacks, supporting
model ownership verification without revealing the wa-
termark embedding matrix.

• Preservation of model performance: TraCemop mini-
mizes the impact of watermark embedding on model

accuracy through a new regularization term.
• Enhanced information capacity: TraCemop stores infor-

mation on the blockchain rather than embedding it di-
rectly into the watermark, thus effectively and indirectly
increasing the amount of information attributed to the
watermark.

The remainder of this paper is organized as follows: Section
II reviews related work relevant to the challenges addressed
by our framework. Section III introduces the basic techniques
utilized in this work. Section IV presents the system model,
threat model and design goals. In Section V, we detail the
TraCemop framework and analyze its security properties in
Section VI. Extensive experiments are conducted to evaluate
the performance of the proposed framework in Section VII.
Finally, Section VIII concludes the paper and outlines future
research directions. Besides, we use “client” and “participant”
interchangeably in this paper.

II. RELATED WORK

In this section, we review some existing works in Federated
Learning (FL).

A. Privacy-Preserving Federated Learning

Federated learning enables participants to collaboratively
train a global model without divulging their raw data. How-
ever, during training, participants still share model parameters
directly with the aggregation server, making them vulnerable
to model inversion attacks, which can lead to data leakage.
To tackle these privacy concerns, researchers have developed
privacy-preserving techniques to prevent information leakage
during FL model training. In 2017, Bonawitz et al. [8]
introduced a secure aggregation protocol using Secure Multi-
Party Computation (SMPC) to protect participant gradients.
Following this, Phong et al. [9] proposed an FL scheme based
on Homomorphic Encryption (HE) to prevent servers from
inferring client data from model gradients. In 2020, Lu et al.
[10] designed an FL scheme using Local Differential Privacy
(LDP) within vehicular networks, where participants obfuscate
their local models with Laplace noise during aggregation.
However, the noise introduced from LDP can degrade the
accuracy of the global model. In 2022, Ma et al. [11] proposed
a Byzantine-tolerated aggregation scheme that measures cosine
similarity between participants and employs a two-trapdoor
Paillier cryptosystem. However, this work converts the float-
point gradients to integers to fit the Paillier algorithm, leading
to precision loss in the global model.

B. Contribution Evaluation in Federated Learning

To achieve high-performance FL models, an incentive mech-
anism is necessary to motivate participants to contribute re-
sources. The contribution of each participant is crucial for
establishing a fair incentive mechanism, making contribution
evaluation a key issue in FL. In 2018, Campen et al. [12]
first applied the Shapley value to estimate the participant
contributions in HFL, establishing it as a mainstream solu-
tion in contribution evaluation [13]. In 2019, Wang et al.
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[3] proposed an incentive mechanism that robustly measures
participant contributions in Vertical Federated Learning (VFL),
allocating profits based on the importance of data features.
In 2023, Jia et al. [4] addressed the challenge of improving
computational efficiency while maintaining accurate Shapley
value estimation. However, the high computational complexity
of Shapley values increases the training cost, limiting its
practical application.

C. Watermarking Methods in Machine Learning

Developing high-performance ML models often requires
substantial computing resources, whereas stealing these mod-
els remains relatively straightforward. To protect the model
IPR, digital watermarking has been applied to ML models
and can be broadly categorized into white-box and black-box
watermarking methods.

White-box Watermarking. In 2017, Uchida et al. [5]
proposed the first white-box watermarking scheme using a pro-
jection matrix. Building upon this, researchers have explored
various white-box techniques to establish model ownership
claims [14]. Since white-box watermarking requires full access
to model parameters for embedding and verification, it is
particularly suited for scenarios pursuing transparency and
credibility, such as model trading markets and competitions
[15].

Black-box Watermarking. Inspired by backdoor attacks,
researchers introduced black-box watermarking [16], [17].
This method achieves copyright protection by encoding an
exceptional input-output relationship on a trigger set. Model
owners can verify ownership by querying the model with
the trigger set and checking the corresponding outputs. Since
black-box watermarking relies on input-output patterns rather
than direct access to model parameters, it has been widely
applied to various ML models, including classification and
self-supervised learning [18].

D. Watermarking Methods in Federated Learning

With the growing demand for distributed training, federated
learning (FL) has made significant progress. However, this
advancement has also led to increasing concerns regarding
IPR infringement [19]. Consequently, there is an urgent need
to protect the copyright of FL models. Broadly, existing FL
watermarking methods can be categorized into independent
and joint watermarking approaches.

Independent Watermarking. In this approach, each client
in the FL network embeds a unique watermark to inde-
pendently assert model ownership [20]. Li et al. [6] first
introduced the independent watermarking scheme FedIPR that
combined both white-box and black-box approaches in FL. In
FedIPR, each client can claim ownership using their respective
watermarks. However, due to variations in the distribution of
embedded watermarks across different clients, some embedded
watermarks may become invalid. Besides, malicious clients
can collude to introduce backdoors into the model. To address
these challenges, Wu et al. [21] proposed a multi-party entan-
gled watermark algorithm to enhance watermark embedding
effectiveness. Furthermore, Luo et al. [22] proposed FedFP

to defend against ownership collusion attacks in FL. This
method constructs client-embedded watermarks using an anti-
collusion code, providing a mechanism to detect collusion. In
2024, Zhang et al. [23] proposed FedMark to improve the
capacity of white-box watermarking in FL. By incorporating
a Bloom filter, FedMark minimizes the impact of watermark
embedding on model parameters, thereby enhancing efficiency
and significantly increasing watermark capacity.

Joint Watermarking. The joint watermarking method em-
beds a unified IPR proof into the global model to reduce the
impact of multiple copyrights on model performance. In 2023,
Wu et al. [24] designed a two-stage watermark verification
algorithm, that employs black-box watermarking to resist free-
rider attacks, while using a white-box watermark as the final
proof of model ownership. Yan et al. [25] proposed a joint
watermark framework for cross-soil FL, utilizing a watermark
generation adversarial network (WMGAN) to integrate pri-
vate client watermarks into a single joint watermark, thereby
facilitating seamless integration and verification. Similarly,
Yang et al. [26] applied black-box watermarking for secure
watermark embedding in FL. More recently, in 2025, Shao
et al. [27] introduced FedTracker, an FL model copyright
protection framework designed to enable ownership verifica-
tion and traceability through a dual-layer protection mecha-
nism. This scheme incorporated a continuous learning-based
watermark embedding algorithm that preserved model utility
while embedding watermarks. Additionally, it introduced a
novel fingerprint similarity score to better distinguish different
fingerprints.

However, to the best of our knowledge, none of the existing
white-box-based schemes adequately address privacy leakage
during ownership verification, which remains a critical open
issue in FL copyright claims.

III. PRELIMINARIES

A. Horizontal Federated Learning

Horizontal Federated Learning (HFL) allows participants
to jointly train a global model with enhanced generalization
ability while preserving the confidentiality of their private data.
Similar to traditional machine learning, the goal of HFL is to
determine an optimal set of model parameters ω that maximize
the model’s prediction accuracy on its main task. To review
HFL, we consider the classic algorithm FedAvg [28]. Assume
there are K participants Ui ∈ {Ui}Ki=1, where each participant
Ui owns a local dataset Di. The specific implementation of
HFL is outlined below.

• Local Training: Each participant Ui trains their local
model using the dataset Di. FedAvg employs stochastic
gradient descent (SGD) algorithm, an iterative optimiza-
tion method, to minimize the loss function Eo(ω

t
i, Di).

Specifically, each client calculates the gradient gωt
i

of ωt
i

and updates the local model parameters as follows:

ωt+1
i = ωt

i − αgωt
i

where α is the learning rate. After E-epoch training,
participant Ui sends the updated model parameters ωt+1

i

to the server for aggregation.
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Fig. 1. The workflow of TraCemop, where a framework that integrates model IPR protection and contribution evaluation of models is proposed. The
initialization phase includes steps (1)-(2): TA generates private/public key pairs for clients, and clients negotiate a watermark for protecting model IPR.
The training phase encompasses steps (3)-(6): Clients train local models using their private data. After each round of local training, clients evaluate their
contributions, which are stored on the blockchain during model aggregation. Clients download the model updates after model aggregation and execute the
next local training round until the model converges. Step (7) involves copyright verification: The watermark is extracted from the trained model and compared
with the original watermark to claim ownership. Furthermore, the watermark can be used to query contribution records from the blockchain.

• Model Updates: The server aggregates these local model
parameters to obtain the global model parameters ωt+1

as follows:

ωt+1 =

K∑
i=1

piω
t+1
i

where pi is the parameter weight of Ui. Finally, the server
sends ωt+1 to each participant for the next round of
training until the global model converges.

B. Contribution in FL

Within an FL framework, assessing the contribution of each
client accurately is essential for fostering participant enthusi-
asm. The contributions not only quantify the enhancement of
clients to the model performance but also directly impact the
fairness of reward allocation. As outlined in [29], an excellent
contribution evaluation mechanism should fulfill the following
requirements:

• Fairness: It should ensure fair measurement of each
participant’s contribution, and judge all the efforts of
participants appropriately.

• Efficiency: The mechanism should be computationally
efficient, particularly in large-scale FL scenarios.

• Scalability: It should dynamically adjust to clients join-
ing and leaving the training process.

Additionally, it is critical to clarify that low-contribution
clients are not malicious clients necessarily. Factors such as
data quality, device performance, or network conditions can
objectively lead to a participant with a lower contribution.

C. Homomorphic Encryption

Homomorphic Encryption (HE) allows any party to per-
form linear operations on encrypted data without decrypting
it first. HE can be categorized into partially homomorphic
encryption (PHE) and fully homomorphic encryption (FHE).
PHE supports either additive or multiplicative homomorphism,
while FHE supports both. The ability of FHE to perform
addition and multiplication on encrypted data enables complex
mathematical computations without decryption. In this paper,
we exploit FHE to guarantee the data security during the
communication [30].

In general, an FHE scheme typically consists of four com-
ponents.

• FHE.KeyGen(1λ) → (pk, sk) : Given the security
parameters λ, this probabilistic polynomial time (PPT)
algorithm generates a public/private key pair {pk, sk}.

• FHE.Encpk(m) → ct : This encryption algorithm takes
the public key pk and a plaintext m as inputs, and outputs
the ciphertext ct.

• FHE.Decsk(ct) → m : Input the private key sk and
the ciphertext ct, this decryption algorithm returns the
plaintext m.

• FHE.Eval(ct1, ct2, fo) → ct′: Given two ciphertexts
ct1 and ct2, along with a linear operation function
fo, this algorithm outputs the linear operation results
ct′ = fo(ct1, ct2) such that FHE.Decsk(ct

′) =
fo(FHE.Decsk(ct1), FHE.Decsk(ct2)).

By incorporating Single Instruction Multiple Data (SIMD)
technology, FHE supports the encryption and homomorphic
operations on vectors of plaintexts, significantly enhancing
computational efficiency.
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D. White-box-based Watermark

White-box watermarking has emerged as a promising ap-
proach to safeguarding the IPR of FL models [5]. This method
allows the model owner to assert their ownership of the model
by verifying whether a watermark, containing their private
information, is embedded in the suspect model. According to
the classical white-box watermarking scheme [5], it can be
formalized into two main procedures: watermark embedding
and watermark extraction.

In the watermark embedding procedure, the model owner
embeds a secret T -bit vector w ∈ {0, 1}T as the watermark
into the model using a predefined watermark embedding ma-
trix X. This is achieved by adding a regularization term Er to
the original loss function during the training phase. X contains
the secret information required to extract the watermark and
therefore should be kept confidential by the model owner.

In the event of an intellectual property dispute, the owner
can initiate the watermark extraction procedure to verify model
ownership. The owner extracts the embedded information w
from the model parameters by the watermark embedding
matrix X, and compares it with the original watermark.
Ownership is determined based on the similarity between the
original watermark and the extracted watermark.

E. Secure Two-Party Computation (S2PC)

S2PC enables two participants to securely compute a func-
tion without revealing any additional information beyond their
own inputs and outputs. In this work, we implement the secure
model copyright verification using Additive Secret Sharing
(ASS) secure two-party computation protocol [31]. Here, a
semi-honest adversary with computational limits attempts to
obtain additional information from the messages exchanged
during the protocol’s execution. The basic semantics of ASS-
based S2PC are described as follows:

1) Additive Secret Sharing: Consider two participants U0

and U1, who possess two secret values x0 and x1, respectively,
where both are l-bit integers in the ring Z2l . x0 is split into two
random values x0

0 and x0
1 such that x0

0 + x0
1 ≡ x0

(
mod 2l

)
.

Similarly, x1 is also randomly split. Each participant Ui shares
xi
1−i with the other participant for secure computation.
2) Addition over ASS: Ui can obtain the shares of z =

x0 + x1 by calculating zi = x0
i + x1

i locally.
3) Multiplication over ASS: To facilitate multiplication on

additive secret shares, Beaver introduced the technique of
Beaver triples. Using the Beaver triples, the multiplication
result can be obtained in additive share form with only one
round of interaction. The methodology for generating Beaver
triples is extensively discussed in [31]. The efficient implemen-
tation of multiplication computations using the Beaver triples
proceeds as follows.
U0 and U1 jointly generate a Beaver triple (a, b, c), where

a, b, c ∈ Z2l and c = a · b. The symbol “·” denotes multiplica-
tion. Ui can compute its partial multiplication result

(
x0 · x1

)
i

using the Beaver triple and its additive secret shares, defined
as follows:(

x0 · x1
)
i
= i · d · e+ d · x1−i

i + e·xi
i + ci

TABLE I
NOTATIONS AND DESCRIPTION

Notation Description
ASi the artificial sample set generated by DPGAN of Ui

asi the artificial samples released to the other clients
β a hyperparameter to control the impact of regularization term

ctωt
i

the ciphertext of ωt
i

ctωt+1 the ciphertext of ωt+1

cji the raw contribution value of Uj to Ui

coni the normalized contribution value of Ui

Di the private dataset of Ui

E(·) the total loss function
Eo(·) the raw loss function
Er(·) the watermarking regularization term
H(·) the Hamming distance
K the number of clients in FL
L the length of θ

Mi(·) the local learning objective of Ui

N the number of asi
pi the aggregation weight of ωi

sk, pk the private/public key pairs of homomorphic encryption
T the bit length of w

{Ui}Ki=1 the client set
w the watermark
ŵ the watermark extracted from model
X the watermark embedding matrix
λ the security parameter
ω the global model parameters
ωt

i the model parameters of Ui in round t
θ the specific layer of ω with watermark
[·]i the i-th element of a vector
[·]i,j the element in the i-th row and the j-th column of a matrix

where di = xi
i − ai, ei = x1−i

i − ai, d = di + d1−i, and e =
ei + e1−i. The multiplication on x0 and x1 can be converted
into the addition of the shares held by U0 and U1 through
ASS. U0 and U1 can obtain the final multiplication result by
summing (x0 · x1)i together.

IV. SYSTEM OVERVIEW

In this section, we focus on the system model and the
threat model of TraCemop. Additionally, we discuss the design
goals of the proposed framework. The basic notations are
shown in TABLE I. Note that in this paper, we use non-
bold lowercase symbols to represent the scalar variables, and
use bold lowercase and bold uppercase symbols to represent
vectors and matrices unless otherwise specified.

A. System Model

The system model consists of five entities: Trusted Author-
ity, Aggregation Server, Blockchain, Clients, and the model
user.

• Trusted Authority (TA). The TA is responsible for gener-
ating homomorphic encryption key pairs for clients.

• Aggregation Server (AS). The AS aggregates the local
models from the clients to form the global model.

• Blockchain (BC). The BC serves as a storage center
for the contribution values from each training round.
Clients can retrieve their contribution values from the
BC by the watermark for profit allocation1. We design

1This paper primarily focuses on the evaluation of clients’ contributions.
The aspect of profit distribution is beyond the scope of this paper and will
not be discussed.
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and deploy a smart contract on the BC for secure and
traceable contribution values storage and query, defined
in Algorithm 2.

• Clients. Clients (participants) have more interest in mod-
els with superior generalization ability. They collaborate
to jointly train a global model using their local data while
seeking information from others without compromising
their training data.

• Model User. The model users do not participate directly
in the model training, and they acquire the trained model
with a watermark w to meet their needs or generate
business profit. These models may be obtained through
legal purchase or illegal theft. During the model copyright
proof phase, the model user acts as the “verifier” and
leads the entire verification process.

B. Threat Model

For convenience, we define the threat model to analyze
the potential security threats: TA and BC are assumed to
be trustworthy and execute their duties without infringing
upon users’ privacy. The AS is considered to be honest-but-
curious. It performs aggregation honestly but may attempt to
obtain additional privacy information, such as local model
parameters from clients. The model user is honest-but-curious,
who collaborates in the model copyright verification but tries
to seek information on the watermark embedding matrix. We
consider two types of clients with different behaviors in the
face of the privacy-preserving issue and the model IPR issue:

• Privacy-Preserving Issue: In this issue, we consider
the clients to be honest-but-curious. During the training
phase, data security is the main concern. In this situation,
the clients are honest-but-curious, aiming to obtain train-
ing data or model parameters from other clients while
adhering to the rules.

• Model IPR Issue: In this issue, we consider there exist
malicious clients in our framework. All clients aim to
obtain a high-performance model through FL, which is
the result of collective effort. Therefore, all clients should
share the IPR of the model. However, some malicious
clients attempt to monopolize the model. They generate
an illegitimate watermark, and attempt to gain exclusive
control of the model by removing or obfuscating legit-
imate watermarks while embedding his/her illegitimate
watermark.

Potential threats from these entities are described below:

• Illegal model possession. A model user might attempt to
retain the watermark embedding matrix during extraction,
intending to unlawfully claim ownership of the model.

• Data reconstruction attack. During the training phase, the
AS may infer a client’s local data by analyzing the model
parameters or gradients uploaded by the client.

• Watermark removal or obfuscation attacks. This attack
is initiated by malicious clients targeting model IPR
issues. The adversary may attempt to falsify or remove
the watermark to make unauthorized claims of model
ownership.

WmkEmbConEva

Training

Smart Contract

Suspect 

model

Verification

Ownership Verification

Store Query

 
1

K

i i
con

=
w

w  
1

K

i i
con

=

X

Blockchain

Fig. 2. The algorithmic procedures of TraCemop.

C. Design Goals

Based on the system model and threat model described
above, TraCemop aims to achieve the following design goals:

• Privacy preservation: TraCemop should protect partici-
pants’ training data from data inference attacks during
aggregation. Additionally, it should safeguard the water-
mark embedding matrix of the owner during the IPR
verification phase.

• Efficient contribution evaluation: The framework should
ensure that contribution evaluation is conducted effi-
ciently.

• Robust watermark: The embedded watermark should
remain robust against attacks, including removal and
obfuscation attempts.

V. THE PROPOSED FRAMEWORK

In this section, we begin with an overview of TraCemop,
followed by a detailed description of its fundamental compo-
nents.

A. Overview

The workflow of TraCemop is illustrated in Fig. 1. A
concrete example of TraCemop is the smart healthcare system.
Assume some healthcare institutions, such as hospitals, can
collaboratively train an FL model for medical data analysis us-
ing our framework without sharing their data. During training,
TraCemop provides a mechanism to assess the contribution of
each hospital, and records the contribution on the blockchain,
serving as the criterion for subsequent benefit allocation.
Moreover, a negotiated watermark is embedded into the model.
The watermark serves as critical evidence of model owner-
ship and acts as the index to contributions recorded on the
blockchain. Consequently, after verifying model ownership,
specific contributions from each hospital can be retrieved from
the blockchain, enabling precise and fair profit distribution
based on their actual contributions. Algorithm 1 depicts the
proposed scheme, which consists of two phases: initialization
and training. A detailed description of them is as follows.
Besides, the algorithmic procedures involved in the approach
are illustrated in Fig. 2.
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Algorithm 1: TraCemop
Input: ωi, coni (i = 1, 2, ...,K), Di, local model

learning rate α
Output: ω

1 The TA generates sk and pk, and sends them to clients
in secure channel

2 The AS transmits ω0 to all clients
3 {Ui}Ki=1 negotiates (w,X) by their (wi,Xi)
4 for each round do
5 for each client Ui do
6 for each local epoch do
7 Ui calculates main task loss and

watermarking regularization term:
8

Eo(ω
t
i)←Mi(ω

t
i, Di)

Er(θ
t
i)←WmkEmb(w,X,θt

i)

9 Ui calculates the total loss:
10

E(ωt
i) = Eo(ω

t
i) + βEr(θ

t
i)

11 Update the local model ωi with regard to
the total loss:

12

ωt+1
i ← ωt

i − α · ∇E(ωt
i)

13 end
14 end
15 {coni}Ki=1 ←ConEva(Di,Mi(ω

t
i))

16 Ui encrypts ωt
i by pk

17 Ui transmits ctωt
i

to the AS
18 The AS updates the global model:
19

ctωt+1 =

K∑
i=1

conictωt
i

20 The AS sends ctωt+1 to clients
21 Ui decrypts ctωt+1 by sk to get ωt+1

22 end

1) Initialization: The TA generates a key pair sk/pk for
homomorphic encryption and sends them to the clients through
a secure channel. The AS initializes the global model M(ω0)
and publishes it to the clients. All clients negotiate a T -bit
watermark and the watermark embedding matrix (w,X), and
broadcast w to the AS. Finally, the AS uploads the watermark
and a state value st = 0 to the BC, and the BC performs the
Login function in Algorithm 2. Specifically, the BC allocates
a storage area for the current training and uses the watermark
w as the data storage address to record the contribution
values for each training round according to the smart contract.
This achieves watermark-based storage of contribution values,
while preventing malicious tampering of records and ensuring
traceability for all contribution records.

2) Training: Ui trains the local model Mi(ωi, Di) using
local dataset and embeds the watermark (w,X) into it. The
process of Watermark Embedding is illustrated in Section

Algorithm 2: Smart Contract
Data: state value st ∈ {0, 1, 2}, contribution values

{cont
i}Ki=1 in t-th round, watermark w, current

round t
Result: response res

1 Function Login(st, w):
2 conAddr← w
3 if conAddr is empty then
4 Create con listw = [] in conAddr
5 return 1
6 end
7 else
8 return 0
9 end

10 Function Store(st, w, {cont
i}Ki=1, t):

11 conAddr← w
12 In conAddr, con listw.append({cont

i}Ki=1)
13 return 1
14 Function Query(st, w):
15 conAddr← w
16 que list← con listw =

[{con1
i }Ki=1, {con2

i }Ki=1, . . . , {cont
i}Ki=1] in

conAddr
17 return que list
18

19 Main (st, w, {cont
i}Ki=1, t):

20 while 1 do
21 The BC receives message from the AS
22 if st==0 then
23 res← Login(st, w)
24 end
25 if st==1 then
26 res← Store(st, w, {cont

i}Ki=1)
27 end
28 if st==2 then
29 res← Query(st, w)
30 end
31 return res
32 end

V-C. The objective of local training is to minimize the total
loss E(ωi), which includes the main task loss Eo(ωi) and the
regularization term Er(θi) for the embedded watermark:

E(ωi) = Eo(ωi) + βEr(θi)

where β is a hyperparameter.
After local training, clients perform Contribution Eval-

uation to estimate their contribution level and submit the
assessment results to the AS. Subsequently, the AS transmits
the contribution values to the BC for storage. After the
training, the client can query the contribution values for the
training task by executing the Query function in the smart
contract.

Clients encrypt the local model parameters with pk and
transmit them to the AS. The AS updates the global model
by aggregating the local model weighted by the contribution
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values2. The AS then sends the updated global model to the
clients, who update their local models by decrypting the global
model parameters with sk. The training process continues until
the global model converges.

B. Contribution Evaluation

At the end of each local training phase, clients present
artificial samples derived from their local datasets to other par-
ticipants. These samples are employed to assess the predictive
capabilities of the other participants’ models. The algorithm
is divided into three stages: sample generation, contribution
initialization, and contribution normalization. Contribution
Evaluation is shown in Algorithm 3.

1) Sample Generation: Participants use their local datasets
to generate artificial samples through a well-trained Differen-
tially Private Generative Adversarial Network (DPGAN) [7].
The generated sample set from each client is proportional to
the class distribution in its local dataset, ensuring consistent
data distribution across the artificial samples. They label these
artificial samples locally.

2) Contribution Initialization: Each participant randomly
selects N artificial samples and releases them to other clients.
Upon receiving these artificial samples, each participant labels
them using their own model. Subsequently, each participant
collects the predicted results for its artificial samples from
other participants and determines the majority vote for each
sample. This majority vote is deemed as the correct label for
the sample. Accordingly, participants can determine the correct
label set for the selected N artificial samples and calculate the
raw contribution value cji for others as follows:

cji = cori/N

where cji is Ui’s raw contribution value calculated by Uj ,
and cori is the number of correct predictions. Finally, the
participants send all their cji to the AS.

3) Contribution Normalization: The server computes the
normalized contribution value as follows:

coni =

∑
j ̸=i c

j
i

K−1∑K
i=1

∑
j ̸=i c

j
i

K−1

where coni represents the normalized contribution of Ui.
This value reflects the engagement of participants in model
training and is used as a weight for model parameters during
aggregation. The AS submits the contribution values {cont

i}Ki=1

of this round t, the joint watermark w, and a state value st=1
to the BC. Then, the {cont

i}Ki=1 is stored in the corresponding
address w by the function Store in the smart contract. The
blockchain inherently possesses tamper-resistant and traceable
characteristics. Therefore, storing contribution values on BC
ensures the traceability of contribution in each training round
and prevents tampering with the contribution information. The
AS confirms that the response res from BC is 1. If not, the AS
retries the upload of {cont

i}Ki=1 until res = 1.

2Our contribution assessment mechanism objectively quantifies the data
quality among participants, serving as weights for model aggregation and
facilitating corresponding model adjustments and optimization.

Algorithm 3: Contribution Evaluation—ConEva(·)
Input: ωt

i, Di, Mi(·)
Output: {coni}Ki=1

/* Sample generation */
1 Ui generates their own artificial sample set ASami

through DPGAN
2 Ui labels all samples in ASami with Mi(ω

t
i, ASami)

/* Contribution initialization */
3 for i in 1, 2, . . . ,K do
4 {Uj}Kj ̸=i releases a portion of their artificial

samples asj ⊆ ASamj to Ui

5 Ui labels these samples with Mi(ω
t
i, asj), and

sends the results to the corresponding owners
6 end
7 for j in 1, 2, . . . ,K do
8 Uj calculates the raw contribution value cji for

{Ui}Ki ̸=j from the labeling results, and sends
{cji}Ki=1 to the AS

9 end
/* Contribution normalization */

10 for i in 1, 2, . . . ,K do
11 The AS computes the average of {cji}Kj ̸=i of Ui:
12

avgi =

∑K
j=1,j ̸=i c

j
i

K − 1

13 end
14 The AS forms the normalized contribution {coni}Ki=1

of each client
15 for i in 1, 2, . . . ,K do
16

coni =
avgi∑K
j=1 avgj

17 end

C. Ownership Protection

The declaration of model IPR is achieved by embedding
a watermark into the model. The workflow of the ownership
protection mechanism is outlined as follows.

1) Watermark Consultation: Since the FL model is col-
laboratively trained by clients, the IPR of the model should
be jointly held by all participants. Therefore, participants
need to collaboratively negotiate a legal watermark and the
corresponding watermark embedding matrix. Specifically, each
client Ui ∈ {1, 2, . . . ,K} generates a T -bit local watermark
wi ∈ {0, 1}T , and a watermark embedding matrix Xi.
Each client shares (wi,Xi) to other clients through a secure
channel. Upon receiving the watermark information from other
clients, each client locally computes the legal watermark
information (w,X) as follows:

w =

(
K∑
i=1

wi

)
mod 2
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Algorithm 4: Watermark Embedding—WmkEmb(·)
Input: Mi(·), ωi, θi Di, (w,X)
Output: The local model Mi(ω) with a watermark B

embedded
1 for each round do
2 Ui trains Mi(ωi) with Di, and computes original

loss Eo(ωi) of the main task
3 Ui computes the watermark loss Er(θi), where
4

Er(θ) =

{
0.5 · δ (wt − yt)

2 |wt − yt| < δ
δ · |wt − yt| − 0.5 · δ2 otherwise

Optimize the total loss E(ωi) = Eo(ωi)+βEr(θi)
5 Update model parameters ωi

6 end

X =

K∑
i=1

Xi

where

w = (w0,w1, . . . ,wT−1) , wt ∈ {0, 1}

X = [x0,x1, . . . ,xT−1]
′
=

 x01 · · · x0L

...
. . .

...
x(T−1)1 · · · x(T−1)L


.

Here, w is the watermark, and X is the watermark embedding
matrix. Model owners should keep X confidential as it serves
as the credential for model ownership verification.

The size of X is T × L, where L is related to the layer
θ containing the watermark. In TraCemop, the watermark is
embedded into the first convolutional layer to mitigate the
impacts of model pruning and fine-tuning on the embedded
watermark.

2) Watermark Embedding: During the training phase, par-
ticipants embed the target watermark w into their local model
by adding a regularization term that measures the similarity
between the target watermark w and the extracted watermark
ŵ. The regularization term Er(θ) in TraCemop is L1-smooth
and is defined as follows.

Er(θ) =

{
0.5 · δ (wt − yt)

2 |wt − yt| < δ
δ · |wt − yt| − 0.5 · δ2 otherwise.

In the regularization term, yt = σ (⟨Xt,θ⟩), where ⟨·⟩ is the
inner product, Xt is the t-th row of X, and σ (·) is the sigmoid
function defined as σ(x) = 1

1+e−x . δ is a hyperparameter
that controls the similarity between wt and yt. The primary
goal of iterative optimization of the regularization term is to
ensure that the influence of the watermark embedding matrix
on the model parameters eventually converges to the target
watermark. This process ultimately facilitates the effective
embedding of the watermark into the model. The watermark
embedding process is detailed in Algorithm 4.

D. Ownership Verification

Model owners can assert their ownership of potentially
stolen models by evaluating the similarity between the wa-
termark retrieved from the model parameters and the original
watermark. According to the ownership verification phase in
[6], the model owner provides its watermark embedding matrix
X to the model user, who then extracts the watermark ŵ from
the model as follows:

ŵt = s(⟨Xt, θ̂⟩).

Here, s(·) is a step function:

s(x) =

{
1 x ≥ 0
0 x < 0.

Subsequently, the model user supplies the original watermark
w and compares it with the extracted watermark ŵ to verify
ownership. The white-box watermark ownership verification
can be directly determined by watermark detection rate ηs,
which is defined as follows:

ηs = H(w, ŵ)/T.

If ηs is larger than the given threshold thwm, which is
set to 0.8 in this paper, the model is confirmed to belong
to the provider of X. However, in the standard ownership
verification process, X would be exposed to the model user,
potentially leading to privacy concerns. To prevent this, TraCe-
mop incorporates a privacy-preserving copyright verification
mechanism based on Secure Two-Party Computation (S2PC).
In this approach, the provider of X is referred to as the
“prover”, while the model user assumes the role of the
“verifier”. The prover must demonstrate to the verifier that
he/she is indeed the legitimate owner of the model. To ensure
the effectiveness and credibility of the verification process,
the model IPR verification should be led by the model user
and the verification results are ultimately obtained by the
model user. This not only guarantees the high trust of the
model user in the verification process but also mitigates the
risk of potential cheating by the prover. In particular, the
model owner and the model user generate L Beaver triples
(a,b, c), where a = [a1, a2, . . . , aL], b = [b1, b2, . . . , bL],
c = [c1, c2, . . . , cL], and [c]i = [a]i·[b]i. They perform additive
secret sharing on their respective X and θ and then conduct
the watermark extraction computations on these shared values.
As a result, the model user securely obtains the extraction
outcome without any leakage of X and θ. The specific steps
of this privacy-preserving ownership verification are detailed
in Algorithm 5, where the provider of X is referred to as the
“prover”. This algorithm guarantees that neither X nor θ is
exposed during the ownership verification process.

VI. ANALYSIS

We first validate the correctness of the watermark extraction
phase employed by S2PC and examine the security properties
of TraCemop. Furthermore, we provide an informal analysis to
demonstrate the privacy-preserving aspects of the ownership
verification phase. Finally, we analyze the complexity of
TraCemop.
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Algorithm 5: Ownership Verification
Input: X, θ, w
Output: ηs

1 Model user and prover agree on L Beaver triples
(a,b, c), where the size of a and b is the same as θ

2 Model user randomly divides its θ into two shares θ1

and θ2, where θ = θ1 + θ2

3 Prover randomly divides its X into X1 and X2, where
X = X1 +X2

4 Prover sends the share X2 to model user. Similarly,
model user sends the share θ1 to the prover
/* Parameter negotiation */
// Prover:

5 e1 = θ1 − b1

6 for i in each row of X1 do
7 [I1]i = [X1]i − a1
8 end
// Model user:

9 e2 = θ2 − b2

10 for i in each row of X2 do
11 [I2]i = [X2]i − a2
12 end
13 The prover and model user jointly calculate I and e by

the following formula:
14 I = I1 + I2
15 e = e1 + e2

/* Partial calculation */
// Prover:

16 for i in each row of X do
17 [PC1]i =∑|θ1|

j=1([I]i,j · [e]j+[I]i,j · [b1]j+[a1]j · [e]j+[c1]j)

18 end
// Model user:

19 for i in each row of X do
20 [PC2]i =

∑|θ2|
j=1([I]i,j · [b2]j + [a2]j · [e]j + [c2]j)

21 end
/* Watermark extraction */

22 The prover sends PC1 to the model user
// Model user:

23 Xθmul = X · θ = PC1 + PC2

24 for i in the row of Xθmul do
25 ŵi = s([Xθmul]i)
26 end
27 Compare the extracted watermark

ŵ = (ŵ0, ŵ1, . . . , ˆwT−1) with the target watermark
w = (w0,w1, . . . ,wT−1) by calculating the
Hamming distance H(w, ŵ)

28 Calculate the watermark detection rate
ηs = H(w, ŵ)/T

A. Correctness

Theorem 1. During the IPR verification, the embedded wa-
termark can be correctly extracted by S2PC.

Proof. The detailed proof is given in Appendix A of the
supplemental material, available online.

B. Rationality Analysis

In Section III, we establish fairness as a key criterion
for assessing the reasonableness of contribution evaluations.
In this paper, our contribution assessment is grounded in
the prediction accuracy achieved by local models during the
training process. We provide proof of the fairness of the
contribution evaluation mechanism in TraCemop.

Theorem 2. In TraCemop, the contribution evaluation mech-
anism is fair and can effectively measure the contribution of
each client.

Proof. The detailed proof is given in Appendix B of the
supplemental material, available online.

C. Formal Security Analysis

A public-key cryptosystem σ = (Gen,En,Dec) is Indis-
tinguishability under Chosen Plaintext Attack (IND-CPA) if
a probabilistic polynomial-time (PPT) adversary A cannot
distinguish between two messages of equivalent length m1

and m2 captured from the message domain M .

Definition 1 (IND-CPA Security). Let σ be operations
in a homomorphic encryption scheme. We define a game
ExprCPA[A] parameterized by coin ∈ {0, 1} and a probabilis-
tic polynomial-time adversary A. The game played by A is as
follows:

ExprCPA[A](1k) :(sk, pk)← Gen(1k)

(m1,m2)← A(1k, pk)
ct = Enpk(mcoin)

coin′ ← A(ct)
return coin′.

The encryption scheme is considered to be IND-CPA secure
if, for any A, the advantage

AdvCPA[A](k) =
∣∣Pr[ExprCPA[A](1k) = 1 | coin = 0]

−Pr[ExprCPA[A](1k) = 1 | coin = 1]
∣∣

is negligible.

In TraCemop, data security during transmission is ensured
using the CKKS homomorphic encryption scheme [30], which
is proven secure under IND-CPA [32]. We demonstrate that
TraCemop can guarantee the data security through the follow-
ing theorem.

Theorem 3. In TraCemop, assuming that the AS and the
client are honest-but-curious and that no collusion occurs
between them, the data encrypted by CKKS is secure during
transmission.

Proof. The detailed proof is given in Appendix C of the
supplemental material, available online.

D. Informal Security Analysis

1) Resistance to Data Reconstruction Attack: During the
training process, all the transmitted model parameters ω are
encrypted by pk. According to Theorem 2, the transmitted
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information is secure, so that the adversary is unable to access
plaintext model parameters, preventing them from reconstruct-
ing the participant’s training data Di based solely on the model
parameters. Consequently, TraCemop effectively mitigates the
risk of data reconstruction attacks.

2) Resistance to Watermark Removal Attack: Throughout
the training phase, all model parameters are encrypted during
transmission, preventing adversaries from directly accessing
the model parameters and thwarting any attempts to remove
the embedded joint watermark w. The malicious client may
attempt to collude with each other, abstaining from embedding
the watermark w during local training, thereby reducing its
presence in the global model. However, the joint watermark
w embedded by honest clients will still be integrated into the
global model, guiding the model toward maintaining the wa-
termark during global aggregation. Consequently, watermark
removal attacks are ineffective in TraCemop.

3) Resistance to Watermark Obfuscation Attack: Adver-
saries may seek to gain exclusive control over the model by
embedding a new watermark to obscure the legitimate one.
However, since most participants will embed the legitimate
watermark w, the influence of the malicious watermark is
diminished during the aggregation phase. Such an attack is
unlikely to succeed unless more than half of the participants
collude to embed an identical malicious watermark.

Furthermore, during ownership verification, the watermark
detection rate ηs between the extracted watermark ŵ and
the original watermark w must meet a specified threshold
thwm. This ensures that the legitimate watermark is accepted
while the malicious watermark is rejected. In Section VII,
we demonstrate the robustness of our framework against
obfuscation attacks. Extensive experimental results illustrated
in Fig. 8 show that TraCemop can effectively distinguish the
legitimate and malicious watermark under the threshold thwm.

4) Privacy-preserving Model Ownership Verification: In
TraCemop, the copyright proof requires the model owner to
provide secret shares of X to facilitate watermark extraction.
At this stage, the model user cannot reconstruct X from the
secret shares, preventing the leakage of X. Moreover, the
extraction process involves computing the dot product between
X and θ. Although the model user obtains the final result X·θ,
they cannot derive any information about X. This is because
numerous studies have shown that under the semi-honest threat
model, adversaries cannot recover vector information from the
dot product result if the number of unknown variables far
exceeds the number of linear equations [33]. In our framework,
the number of elements in X is much larger than the length
of w, preventing the model user from inferring information
about X from ŵ.

E. Complexity Analysis
1) Computation Overhead: We discuss the computational

complexity of TraCemop, focusing on each client Ui and the
AS during the training phase. The analysis is as follows.

• Client: O(K ·N +K+1). The computation cost of each
client Ui consists of three parts.

– Label K · N artificial samples in the contribution
initialization stage, which takes O(K ·N).

– Calculate K − 1 cji for other clients in the contribu-
tion normalization stage, which takes O(K).

– Encrypt model parameters ωt and obtains the CKKS
ciphertext ctωt during the global model updates
phase, which takes O(1).

Overall, the computation overhead of Ui is O(K · N +
K + 1).

• AS: O(K). The computation overhead of AS falls into
two parts.

– Compute the average of the raw contribution values
of each client in the contribution normalization stage,
which takes O(K). Besides, it should normalize the
contribution values for all clients, which takes O(K).

– Aggregate the K model into the global model during
the aggregation phase, which takes O(K).

Overall, the computation overhead of AS is O(K).
2) Communication Overhead: We present the analysis of

the communication overhead for Ui, AS, and BC, as follows.
• Client: O(K · N + 1). The communication overhead of

Ui can be divided into three parts.
– Receive (K − 1) · N artificial samples from other

clients, which takes O(K ·N).
– Send (K−1) ·N predicted results to the correspond-

ing owners, which takes O(K ·N).
– Upload the encrypted model parameters to AS, which

takes O(1).
Overall, the communication overhead of Ui is O(K ·N+
1).

• AS: O(K2+K+1). The communication overhead of AS
falls into four parts.

– Receive the raw contribution value {coni}Ki=1 list
from K clients, which takes O(K2).

– Upload the normalized contribution to BC, which
takes O(1).

– Receive K encrypted model parameters {ctωt}K1 ,
which takes O(K)

– Send the ciphertext of updated model parameters
ctωt+1 to K clients, which takes O(K)

Overall, the communication overhead of AS is O(K2 +
K + 1).

• BC: O(1). The communication overhead of BC is re-
ceiving the normalized contribution from AS, which takes
O(1).

VII. PERFORMANCE EVALUATION

In this section, we conduct experiments to evaluate the
performance of TraCemop. We compare our contribution eval-
uation mechanism against a Shapley-based scheme to demon-
strate its accuracy and efficiency. Additionally, we assess the
efficacy and robustness of IPR protection within TraCemop.

A. Experiment Settings

• Evaluation Environment. We implement TraCemop us-
ing Python 3.7 and conduct experiments on a desktop
equipped with an Intel i7-10700 8-Core processor, 32GB
of RAM, and the Windows 10 operating system. The
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TABLE II
CONTRIBUTION DISTRIBUTION

Number of clients Scheme Client 1 Client 2 Client 3 Client 4 Client 5 Client 6 Cosine Similarity

3
Shapley-Based [34] 0.369 0.344 0.286 / / /

99.987%
TraCemop 0.363 0.343 0.293 / / /

4
Shapley-Based [34] 0.253 0.251 0.258 0.240 / /

99.977%
TraCemop 0.260 0.251 0.259 0.232 / /

5
Shapley-Based [34] 0.205 0.204 0.176 0.192 0.223 /

99.889%
TraCemop 0.202 0.204 0.190 0.196 0.208 /

6
Shapley-Based [34] 0.164 0.167 0.165 0.150 0.183 0.171

99.735%
TraCemop 0.165 0.159 0.168 0.174 0.170 0.163

TABLE III
ACCURACY OF DIFFERENT SCHEMES

Model Dataset

10 Clients 100 Clients

10% 20% 30% 10% 20% 30%

Ours FedAvg Ours FedAvg Ours FedAvg Ours FedAvg Ours FedAvg Ours FedAvg

CNN MNIST 92.3% 92.7% 90.2% 91.6% 90.5 89.8% 92.9% 13.2% 91% 89.2% 90.7% 19.7%

AlexNet Cifar10 96.3% 92.8% 88.4% 88.8% 87.1% 86.6% 95.5% 96.1% 88.2% 87.1% 78.6% 72.9%
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Fig. 3. The running time of contribution evaluation in logarithmic scale.

training is conducted in Paddle and PyTorch. Besides, the
blockchain is deployed on a virtual machine equipped
with two Cores, 4GB of RAM, and the Centos 7.0
operating system.

• Model. In all experiments, we use the AlexNet and a
Convolutional Neural Network (CNN) as the network
architecture in our framework. The CNN model consists
of two convolutional layers, each followed by a pooling
layer, and concludes with two fully-connected layers.
The Stochastic Gradient Descent (SGD) optimizer is
employed with a learning rate of 0.01, and the mini-batch
size is set to 64.

• Datasets. The experiments are conducted on three well-
known datasets including MNIST, FashionMNIST and
Cifar10. MNIST and FashionMNIST contains 60,000

training samples and 10,000 test samples, categorized into
10 classes. Cifar10 consists of 50,000 colored images
for training and 10,000 for testing. In this paper, we
focus on low-quality data clients. Since the impacts of
Non-Independent and Identically Distributed (Non-IID)
and low-quality data clients on model performance are
difficult to distinguish, we consider only the Independent
and Identically Distributed (IID) setting to ensure a clear
clarification of experimental results. The extension to
Non-IID scenarios will be addressed in future work.

• Baselines. To verify the utility of our contribution eval-
uation mechanism, we choose the scheme proposed by
Ghorbani et al. [34] as the baseline. To explore the
aggregation performance of TraCemop, we select FedAvg
[28] as the baseline. For the watermarking performance,
we present two baselines for comparison. The first is
the scheme proposed by Uchida et al. [5], the first
white-box watermarking scheme in machine learning.
The second baseline is FedIPR [6]. which is a copyright
protection solution combining white-box and black-box
watermarking in the FL scenario.

• Evaluation Metrics. We use cosine similarity as the
metric to assess the utility of the contribution evalu-
ation mechanism. To evaluate the performance of the
TraCemop, we calculate the loss and accuracy on the
aforementioned training and testing set as the metric. To
assess the robustness of our watermarking method, we
use the similarity between the original watermark and the
extracted watermark, named watermark detection rate as
an indicator.

• Federated Learning Settings. We simulate a horizontal
federated learning scenario with default number of clients
to 100. The clients upload their local models during each
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Fig. 4. The training loss of FedAvg and TraCemop with different ratio of low-quality data clients in FL system.

communication round. The server then aggregates these
models by taking the contribution values of clients as the
aggregation weight.

• Blockchain Settings. We implement the blockchain on
FISCO BCOS and write the smart contract in Solidity.
The blockchain consists of four default nodes and uses
the Practical Byzantine Fault Tolerance (PBFT) algorithm
for consensus.

• Watermark Settings. The watermark is embedded into the
first convolutional layer, with the hyperparameter β set to
10.

• WLAN Settings. The model owner and model user are
simulated on two desktops within the same region, with
an average network delay of 31.83 ms and a bandwidth
of 18.3 Mbps.

• Encryption Parameters. TenSEAL is used for simulating
the homomorphic encryption, with the CKKS algorithm
[30]. The basic encryption settings are as follows:

– Algorithm: CKKS
– Polynomial modulus degree = 8192
– Coefficient modulus degree = 218
– Coeff modulus size: 200 (60 + 40 + 40 + 60) bits
– Amplification factor = pow (2.0, 40)

B. Utility and Efficiency

To evaluate the utility of the contribution assessment in
TraCemop, we conduct a comparative analysis of the contri-
bution evaluation results across different numbers of clients,
contrasting our approach with the Shapley-based scheme [34].
Cosine similarity is employed to measure the similarity of
contribution evaluation results, as presented in TABLE II.
When the total number of clients increases from 3 to 6,
the similarity of the contribution evaluation results between
TraCemop and the Shapley-based scheme remains consistently
high, with the lowest recorded similarity being 99.74%. This
high degree of similarity indicates that our framework provides
an accurate contribution assessment.

Additionally, we assess the contribution evaluation time of
TraCemop and the Shapley-based scheme [34] across various
numbers of clients to gauge the efficiency of the proposed
framework. As depicted in Fig. 3, the computation time
for our framework remains minimal as the total number of
clients increases, whereas the Shapley-based scheme exhibits
exponential growth in computation time. The time required for

contribution evaluation is relatively similar between the two
schemes when there are 3 clients. However, as the number
of clients increases to 6, the Shapley-based scheme requires
up to 15155.99 seconds to complete the evaluation, while our
framework completes it in just 4.13 seconds.

Overall, our framework demonstrates a comparable contri-
bution distribution to the existing approach while requiring
significantly less computation time. Hence, the contribution
evaluation criteria proposed in TraCemop are both reasonable
and efficient.

C. Aggregation Robustness

TraCemop leverages contribution evaluation scores from
each training round as weights for model aggregation, aiming
to mitigate the impact of clients with low-quality data on the
global model. To assess the effectiveness of this method, we
use FedAvg [28] as a baseline and evaluate model performance
in the presence of clients with low-quality data by comparing
training loss and accuracy. During the training phase, we set
the low-quality client ratio at 10%, 20% as well as 30%, whose
training data is covered by the Gaussian noise with a mean of
0 and a variance of 256. As depicted in Fig. 4 and TABLE
III, our aggregation method is more stable than FedAvg.
In particular, when the proportion of low-quality clients is
10% and 30% in the 100 clients setting, the training loss
of FedAvg stabilizes around 2.23, whereas the training loss
obtained using our aggregation method stabilizes at 0.231 and
0.694, respectively. Furthermore, the accuracy of TraCemop
on the test set is substantially higher than that of FedAvg.
This disparity arises because the presence of clients with poor
data quality significantly impairs the training performance of
FedAvg, often leading to non-convergence results. In contrast,
TraCemop effectively identifies clients with poor data quality
and dynamically adjusts their aggregation weights, thereby
reducing their impact on the global model and ensuring stable
convergence. Therefore, the aggregation method proposed in
TraCemop demonstrates robust performance against the pertur-
bations caused by low-quality data, maintaining the integrity
and accuracy of the global model.

D. Comparison

To assess the impact of the watermark embedding on the
main task of the model, we evaluate the convergence and ac-
curacy of TraCemop and compare them with the scheme in [5]
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TABLE IV
ACCURACY OF DIFFERENT SCHEMES

Model Dataset
10 Clients 50 Clients 80 Clients 100 Clients

Ours Uchida et al. FedIPR Ours Uchida et al. FedIPR Ours Uchida et al. FedIPR Ours Uchida et al. FedIPR

CNN
MNIST 99.1% 98.7% 98.8% 98.5% 98.7% 98.5% 98.8% 98% 99.1% 97.2% 97.4% 96.8%

FashionMNIST 84.2% 83.8% 84.3% 82.6% 82.1% 82% 77.9% 78.1% 78.2% 75.5% 74.6% 75.3%

AlexNet Cifar10 97.1% 97.7% 96.4% 99.1% 96.7% 97.6% 98.7% 98.3% 97.9% 98.3% 97.4% 98.5%
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Fig. 5. The loss of different watermarking schemes on MNIST with CNN.
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Fig. 6. The loss of different watermarking schemes on FashionMNIST with CNN.
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Fig. 7. The loss of different watermarking schemes on Cifar10 with AlexNet.

and [6]. As illustrated in Fig. 5, Fig. 6, and Fig. 7, TraCemop
demonstrates quicker convergence compared to [5], which is
attributed to the use of smooth-L1 as the regularization term
in our framework. This term ensures a constant convergence
rate, especially when the embedded watermark significantly
deviates from the target watermark, leading to faster and more
stable convergence during the early stages of training. Upon
completion of the training, TraCemop achieves minimum loss
across all training datasets compared to [5] and [6]. Taking
MNIST dataset for example, it is observed that our scheme
could achieve a mean loss of 0.043 for different client ratios,
which are significantly better than the baselines. Additionally,
as shown in TABLE IV, TraCemop attains prediction accuracy
of 98.35% on MNIST, 80.05% on FashionMNIST, and 98.3%

on Cifar10 on average across different client ratio, making
0.2%, 0.4% and 0.775% improvements over those datasets in
[6]. This improvement is due to our watermark embedding
regularization term, which tends to zero once the embedded
watermark is effectively classified as the target watermark
using a step function. At this point, the model shifts its focus
to optimizing the main task, resulting in enhanced overall per-
formance. Thus, compared to [5] and [6], TraCemop not only
achieves precise watermark embedding but also preserves high
model accuracy, demonstrating its effectiveness in balancing
watermarking with model performance.
E. Watermark Robustness

In an FL system comprising 100 clients, we conduct an
analysis of the watermark detection rate of TraCemop under
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Fig. 8. The watermark detection rate of different bit length of watermark on different datasets.

watermark obfuscation attacks to demonstrate its robustness.
We evaluate the watermark detection rate for different wa-
termark lengths when the proportion of malicious clients in
the system is 10%, 20%, and 30%. As shown in Fig. 8,
the detection rate of the legitimate watermark remains at or
above 0.9, with the worst-case scenario being 0.87, which
still exceeds the preset threshold thwm = 0.8. Conversely,
the detection rate of malicious watermarks decreases sharply
as the bit length increases, remaining below 0.75 when the
watermark length exceeds 256 bits. This disparity makes it
easier for the model ownership verifier to detect and reject
the IPR verification requests involving malicious watermarks.
Moreover, on FashionMNIST dataset, the minimum differ-
ences between the detection rate for malicious watermarks
and that for the legitimate watermark of CNN and AlexNet
are 0.1484375 and 0.1640625 respectively with a bit length of
128. This gap becomes even more pronounced on the MNIST,
and continues to widen as the watermark bit length increases
on these two datasets. Consequently, the presence of malicious
watermarks does not interfere with the legitimate watermark,
ensuring that TraCemop maintains strong robustness against
watermark obfuscation attacks.

F. Communication Efficiency

Compared with existing watermarking schemes, TraCemop
introduces additional interaction rounds to ensure privacy-
preserving verification. We further analyze the impact of
this increased communication overhead on the efficiency of
the verification process. The simulation, conducted on two
desktops with identical configurations, reveals that the com-
munication time accounts for no more than 18.6% of the
total verification time, as shown in Fig. 9. Although each
additional 100 bits of watermark increases the overall running
time by approximately one second, requiring a total of 4.373
seconds at 350 bits, the secure verification mechanism added
by TraCemop does not significantly contribute to the overall
running overhead. Given the privacy protection it offers,
this communication overhead is considered to be acceptable.
Therefore, TraCemop successfully balances efficiency and
security in ownership verification.

G. Blockchain Efficiency

We assume the BC platform is an open-source system
capable of serving various FL training tasks. To ensure that
the consensus process for each FL task does not impact the
training efficiency, we test the efficiency of BC. Specifically,

100 128 200 256 300 350
Bit-length(bit)

0

1

2

3

4

Ti
m

e 
C

on
su

m
pt

io
n 

of
 S

2P
C

(S
ec

)

1.4850

1.8290

2.6200

3.3050

3.8670

4.3730

0.2463 0.2894
0.4636

0.6173 0.6967
0.8029

Total Time Consumption
Communication Time Consumption

Fig. 9. The running time of ownership verification.

TABLE V
THE BLOCKCHAIN EFFICIENCY

Indicators Training Time (s) Consensus Time (s) TPS

Value 66.07 6.11 221.73

we initiate 2,000 contribution storage requests, where the data
stored in the BC is in a key-value structure, with the key being
the watermark w and the value being the contribution values
{cont

i}Ki=1 for each round. The average consensus time and
Transactions Per Second (TPS) are presented in TABLE V.
Since FL training and BC are two independently operating
systems, the AS can continue to the next training round after
uploading the contribution values to the BC. Therefore, as long
as the response of contribution storage from BC arrives at the
corresponding AS before the end of the next training round, it
will not affect the training efficiency. To this end, we measure
the average time of one training round and compare it with the
average consensus time. As shown in TABLE V, the average
time of one training round is 66.07 seconds, significantly
greater than the average consensus time of 6.11 seconds. Thus,
storing contributions on the blockchain via the smart contract
does not impact the efficiency of FL training. Additionally,
the average TPS of the entire BC system is 221.73, indicating
that up to 221 concurrent FL tasks can receive the response
of storage request within 1 second, demonstrating that BC is
in high performance.
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VIII. LIMITATIONS AND FUTURE WORK

In this work, we address the challenges of contribution
evaluation and model IPR infringement in FL. However,
several limitations remain, presenting opportunities for future
research.

First, although white-box watermarking provides credible
IPR verification, it relies on full access to model parameters.
If a model user refuses to cooperate with the model owner,
verification becomes infeasible. While Side Channel Analysis
(SCA) offers a solution for extracting model parameters under
black-box access to a suspect model [35], obtaining full
parameter access remains a fundamental challenge for white-
box watermarking. Future research could explore effective
methods to verify white-box-based model ownership in a
black-box manner.

Second, our approach assumes that all FL participants share
model copyright equally. However, this assumption overlooks
potential IPR disparities arising from varying client contri-
butions. In future work, we aim to investigate dynamic IPR
allocation mechanisms that proportionally distribute ownership
based on each client’s contribution to the global model.

IX. CONCLUSION

In this paper, we have proposed a federated learning frame-
work called TraCemop, which achieves efficient contribution
evaluation and IPR protection. The framework employs ho-
momorphic encryption to protect clients’ model parameters in
transmission and aggregation. During the verification of model
copyright, the S2PC mechanism in TraCemop safeguards the
watermark embedding matrix of the model owner. In addi-
tion, we have integrated blockchain technology to ensure the
transparent recording of contribution evaluation results from
each round. Our security analysis demonstrated that TraCemop
effectively protects the privacy of federated learning partici-
pants during both the training process and model ownership
verification. Experimental results across different datasets con-
firmed that TraCemop is efficient and reliable in assessing
user contributions, while also demonstrating resilience against
different model ownership attacks.
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