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Abstract—Mobile edge computing (MEC) pushes cloud com-
puting capabilities to the network edge, which provides real-time
processing and caching flexibility for service-based applications.
Conventionally, the individual node solution is insufficient to
tackle the increasing computation workload and provide diverse
services, especially for unpredictable spatiotemporal service re-
quest patterns. To address this, we first propose a hierarchi-
cal collaborative computing (HCC) framework to serve users’
demands by reaping sufficient computing capability in Cloud,
ubiquitous service area in edge layer, and idle resources in
device layer. To better unleash the benefits of HCC and pur-
sue long-term performance, we investigate heterogeneity-aware
resource management by collaborative service placement, task
scheduling, and resource allocation both in-node and cross-node.
We then propose an online optimization framework that first
decouples the decisions across different slots. For each instant
mixed integer non-linear programming problem, we introduce
the surrogate Lagrangian relaxation method to reduce complexity
and design hybrid numerical techniques to solve the subproblems.
Theoretical analysis and extensive simulation results demonstrate
the efficiency of the HCC framework in decreasing system cost
on devices, and our proposed algorithms can effectively utilize
the resources in the collaborative space to achieve the trade-off
between system cost minimization and service placement cost
stability.

Index Terms—Heterogeneity-aware resources management,
hierarchical collaborative computing, long-term performance,
MEC, online framework.

I. INTRODUCTION

IN the past decade, wireless communications and network-
ing have made tremendous advancements to adapt to the

ever-growing number of mobile devices and mobile Internet
traffic. The breakthroughs provide a high-rate and highly
reliable air interface to run computing services ranging from
real-time video streaming to surveillance at the remote cloud
data centre [1]. However, the long propagation distance from
the terminal devices (TDs) to the remote cloud centre remains
a key bottleneck to fulfill the increasing expectations towards
immersive quality of experience (QoE) for advanced appli-
cations, like augmented reality and autonomous driving. By
transferring mobile computing, network control, and storage
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from the centralized cloud to the network edge, mobile edge
computing (MEC) has become an integral component of the
beyond fifth generation (5G) to offer low latency, context
awareness, and mobility support [2]. Nonetheless, with a re-
markable increase in data and heterogeneous service requests,
any individual edge server (ES) with limited computation and
storage capacity faces great challenges in satisfying the quality
of service (QoS) requirements. Therefore, collaborative edge
computing (CEC) has emerged as an attractive solution to
enable scalable and resource-optimized operation, and support
advanced applications in MEC systems [3].

The two state-of-the-art CEC frameworks have different ar-
chitectures, which are suitable for different application scenar-
ios. In horizontal collaboration, densely deployed base stations
(BSs) support resource-limited ESs within specific geographic
regions forming a federated resource pool to share placed ser-
vices and collaboratively serve TDs’ demands [4]. Benefiting
from the expanded coverage and resources, TDs connected to
any ES can instantly access the ubiquitous computing power
and services, thereby enhancing service quality. Differently,
vertical collaboration involves the layers with heterogeneous
resource scales, such as the device layer, edge computing layer,
and cloud layer [5]. Specifically, the cloud supports large-scale
centralized computing, the edge provides agile data access
and real-time computing, and the TDs achieve ubiquitous
perception and local computing. Therefore, vertical collabo-
ration facilitates meeting the demands of diverse applications
regarding latency, service quality, operator profit, and other
aspects by unified network resource management.

Practical MEC networks are typically characterized by
large-scale deployment, variations in workload distribution
over time and space, diverse application types, and different
QoS requirements. These factors present significant chal-
lenges, including insufficient resource utilization, unsatisfac-
tory service delays, and limited scalability in traditional CEC
systems. Therefore, relying solely on collaborative computing,
either horizontally or vertically, is inadequate. To this end, a
hierarchical collaborative computing (HCC) solution becomes
essential to pursue the enlarged and multi-level computing
power, by reaping the specific benefits in different layers.
Nonetheless, the widely distributed heterogeneous resources,
in terms of locations, memory, and computing capabilities,
increase the complexity of network management. Moreover,
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the rapid service response for complicated applications or
real-time inference tasks, such as industrial robotics, voice
assistants, and ad-targeting, requires the related libraries and
well-trained models to be deployed in advance. However,
constrained resources of individual ES naturally raise the
problem of service placement, i.e., where to place each service
and to reap the benefits of resources in the collaboration space.
In addition, service placement determines which type of task to
process, thus affecting task scheduling and resource allocation.
Therefore, optimally placing services, scheduling tasks, and
managing network resources are intractable but significantly
crucial for improving overall system performance.

The problem of optimally placing services has been studied
in several works such as [6], [7], yet customized service
provisioning in the HCC framework still faces great chal-
lenges. One is the spatial coupling in the network caused
by diverse services and heterogeneous network infrastructure.
For each service request, the service demand and commu-
nication/computation resources become highly coupled. For
example, self-driving requires more computing resources to
achieve rapid response, while augmented reality requires a
larger throughput for immersive experience. For each com-
puting node, resource sharing leads to the coupling among
multiple TDs. Therefore, HCC requires collaborative resource
management, both in-node and cross-node, thus leading to
a complex interaction setting and making the optimization
problem thorny. The other challenge mainly lies in the tem-
poral coupling, in which the time-based interests, e.g., rush
hour traffic routing services, and channel conditions are time-
varying and non-stationary, thus making the most of strategies
that operate in static CEC scenarios impractical [8]–[11].

Motivated by the above considerations, we investigate the
following problems: how to manage heterogeneous distributed
resources uniformly? How can we efficiently distribute diverse
service requests to the collaborative space without future
information while maintaining asymptotical optimality? The
problems are challenging and have not been well investigated
hitherto. In this paper, we propose an HCC-assisted MEC
system, which encompasses horizontal collaboration in both
the device and edge layers for expanded service areas, and
vertical end-edge-cloud collaboration for providing multi-level
computing power. The systematic framework is illustrated in
Fig. 1, in which the heterogeneous resource abstraction and
hierarchical resource management are invoked for efficient
resource utilization and QoS-guaranteed service provisioning.

Considering the diverse service demands are usually
unknown/non-stationary and change spatially and temporally,
we formulate the problem as a multi-stage stochastic optimiza-
tion problem to minimize the long-term sum system cost of
all TDs, subject to the time-averaged service placement cost
of BSs, task delay requirements and hybrid resource capacity.
The Lyapunov optimization and the Markov decision process
(MDP) based approaches were proposed for dynamic resource
allocation in the stochastic network [12]. However, the MDP-
based method may exhibit the curse of dimensionality when
the system enlarges. Aiming to minimize the system cost of
TDs and ensure the long-term service placement cost budget of
BSs, the Lyapunov optimization theory is more suitable since it
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Fig. 1. The systematic framework of hierarchical collaborative MEC system.

can effectively incorporate long-term constraints into real-time
optimizations, and make online decisions without requiring
any a priori future information. Based on this, we develop an
online optimization framework, OJSTR, to transform the time-
averaged optimization problem into a queue stability prob-
lem. Then, a decoupled framework and hybrid-method-based
iterative algorithms are proposed to jointly obtain service
placement, task scheduling, and resource allocation decisions.
The main contributions of this paper are summarized as
follows.

• To provide satisfactory service for stochastical service
requests cost-efficiently, we investigate a long-term joint
service placement, task scheduling, uplink transmission
power, and computational resources optimization problem
in HCC systems, under the predefined long-term service
placement cost budget on BSs and resource constraints
in multiple dimensions.

• We propose an online optimization framework, which
first applies the Lyapunov optimization technique for time
decoupling and performance-cost trade-off. Then, to solve
per-slot offline problems in low computational effort, we
develop a two-loop optimization framework based on the
surrogate Lagrangian relaxation method, where the outer
loop obtains the proper Lagrangian multipliers and the
inner loop solves two separable subproblems.

• We invoke dynamic programming algorithm for the ser-
vice placement subproblem and a bilevel optimization
framework for hierarchical task scheduling and resource
allocation. We design a heuristic matching game for
upper-level task scheduling. We devise a bi-section search
algorithm and convex optimization method for lower-
level resource allocation in edge collaboration and device
collaboration, respectively.

• Numerical results demonstrate that the OJSTR can un-
leash the potential of the HCC system, and provide high-
quality services cost-efficiently as well as guarantee the
long-term budget. Moreover, it outperforms the other
three benchmark schemes regarding different matrices.

The remainder of the paper is organized as follows. In
Section II, we present a brief overview of the related literature.
In Section III, we give the system model and formulate a
long-term system cost minimization problem. In Section IV
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and Section V, we develop an online optimization framework
and its theoretical analysis. In Section VI, we provide exten-
sive simulations and contrastive analysis. Finally, Section VII
concludes this paper.

II. RELATED WORK

With a remarkable increase in data and heterogeneous
service requests generated by massive devices, collaborative
edge computing and efficient resource management schemes
have been widely investigated in recent years to alleviate the
dilemma of computing restrictions of the MEC system with a
single resource-constrained MEC server.

A group of existing works paid plenty of attention to vertical
collaboration. For example, the authors in [13] studied the
service caching problem in cloud-assisted MEC networks, in
which the cloud is constituted as a powerful resort for a single
resource-limited edge server. However, the architecture ex-
hibits high communication overhead during the task offloading
process between the TDs and the ES or cloud. To tackle this
issue, the idle resources within the close vicinity TDs can
be harvested by leveraging the Device-to-Device (D2D) com-
munication technique [14]. Benefiting from this, collaboration
among TDs was considered in [15], in which the computation
tasks can be offloaded to the nearby TDs and the ES. In
MEC systems, the authors in [8], [9], [16]–[18] investigated
the D2D-assisted CEC, while limited to vertical end-edge
collaboration or end-edge-cloud collaboration, engaging only
single/independent ES. Therefore, apart from extending the
MEC’s capacity to other computing layers, densely deployed
BSs can cooperate horizontally to enhance the service supply
capability of the edge layer.

In the CEC framework, resource management schemes have
been widely studied to ensure QoS demands and save system
costs. For the D2D-assisted MEC system, the authors in
[16], [17] studied the joint optimization of task scheduling(or
partitioning) and the computing resources allocation to reduce
the system delay. In addition, the authors in [18] further
considered the bandwidth resources in the wireless access
network. Differently, the authors in [8], [9] focused on the
trade-off between performance and cost consumption by joint
task offloading and heterogeneous resource allocation. Further-
more, the authors in [19] considered the service placement
optimization problem in edge-cloud cooperation networks to
minimize the task processing delay, while ignoring the service
placement cost and system energy consumption. In addition,
several works have focused on D2D-assisted heterogeneous
collaborative edge caching [10], [20] and cache-enabled MEC
networks [21] that combine D2D communication and edge
collaboration. However, different from these works that pay
more attention to storage resources, service placement requires
various resource types for storing application services and
performing atomic functionalities, thus making the above
studies not applicable to the diverse service provisioning
scenarios. Moreover, although several works designed efficient
task offloading and service placement schemes in horizontal
collaborative MEC systems [22], cloud-assisted MEC net-
works [6], [23], and D2D-assisted MEC networks [24], the

efficient service provisioning in HCC-assisted MEC systems
is typically challenging and still has not been well addressed.

Considering the time-varying and non-stationary environ-
ment, some of the existing works investigated dynamic re-
source management in CEC. For example, the authors in [25]
investigated the computation offloading schemes in dynamic
D2D-assisted communication architectures, and proposed an
attention communication deep reinforcement learning algo-
rithm to deal with a partially observable environment. The
authors in [19] proposed a collaborative service placement,
task scheduling, computing resource, and transmission rate
allocation for the scenario with edge-cloud and edge-edge
cooperation to minimize the total task processing delay while
guaranteeing long-term task queuing stability. Nevertheless,
collaborative service placement, task scheduling, and resource
management in hierarchical collaborative MEC systems are
still challenging and have not been well investigated hitherto.

III. SYSTEM MODEL

In this section, we describe the service placement, task
scheduling, delay and cost model in the HCC system. The
main symbols are summarized in Table I.

As depicted in Fig. 1, we consider a network G = (M ∪
N ∪ {c} , E), where M = {1, 2, . . . ,M} denotes the set
of geographically distributed BSs equipped with ESs, N =
{1, 2, . . . , N} denotes the set of TDs, c is the remote cloud,
and E = {ei,j , i, j ∈ S, i ̸= j} is the set of links between
BSs. Each ES m ∈ M is characterized by the tuple of
resources in multiple dimension {Wm, Fm}, where Wm and
Fm denote the maximum storage capacity and CPU computing
capacity, respectively. Assume the system involves diverse
services, exemplified by online gaming and voice assistants,
that are indexed by K = {1, 2, . . . ,K}. To simplify the system
model, we assume the tasks in a specific service type are
similar in request parameters [6], [7]. Each service k ∈ K
is characterized by the tuple {wk, dk, ck, τk}, where wk is
the occupied storage capacity (bits), dk is the data size of
the service request (bits), ck is the required number of CPU
cycles, and τk is the delay upper bound.

Without loss of generality, each TD runs a wide spectrum
of applications in a stochastic manner since TDs may gain or
lose interest in some services. To better describe the time-
varying nature, we assume the system runs within a finite
time horizon, which is discretized into equal length time slots
T = {1, 2, . . . , T}. Each TD n ∈ N is characterized by
the tuple

{
Pn, Fn, {Kn(t)}Tt=1

}
, where Pn is the maximum

transmission power, Fn is the total CPU computing capacity,
and Kn(t) ∈ K is the requested service type at time slot
t. Moreover, we assume the geographically closed TDs are
randomly moving within the coverage of different BSs. The
location of TD and BS are denoted as ln and lm, respectively,
and if ||ln − lm|| < Rm,m ∈ M, we suppose TD n is
within the communication coverage of BS m, where Rm is
the covering radius of m. Similarly, if ||ln − li|| < Ri, i ∈ N ,
we suppose TD n is within the communication coverage of
TD i, where Ri is the D2D communication range of the TD
i. To ease representation, we denote Ωm and Ωn as the set of
TDs covered by BS m and TD n, respectively.
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TABLE I
IMPORTANT NOTATIONS IN OUR MODEL

Symbol Definition
M The set of BSs integrating ESs, m ∈ M.
N The set of TDs, n ∈ N .
K The set of services, k ∈ K.
E The set of wired links between BSs, ei,j ∈ E , i, j ∈ S.

wi,j The bandwidth of outgoing link ei,j .
Wm, Fm Maximum storage and computing capacity of BS m.
Pn, Fn Maximum transmission power and computing capacity of n.
Kn Requested service type of TD n.
wk The occupied storage capacity of service k.
dk Data size of the service request of service k.
ck Required CPU cycles number of service k.
τk Delay upper bound of service k.
C̃ Time averaged budget of service placement budget.
Cm Service placement cost for the ES m.
αk,m Indicator of the service k is placed on m or not.
βn,u Indicator of the task of TD n is scheduled to node u or not.
pn The allocated transmission power of TD n.
fn,u The allocated computing resource of u for TD n.
Dn,u Total delay for processing task of TD n on node u.
En,o The transmission energy consumption for TD n.
En,c The computing energy consumption for TD n.

A. Services placement

Since the device layer can only support small-scale comput-
ing and the TD may experience significant energy consumption
in serving multiple applications, device collaboration requires
the helper TD to possess the same service requests. Therefore,
we mainly focus on the service placement at the edge layer.

To specify the placement of all services, we define a bi-
nary variable αk,m(t) as the placement indicator. Specifically,
αk,m(t) = 1 indicates that the service k ∈ K hosts on BS
m ∈ M at time slot t. Although services can be dynamically
placed among all BSs to deliver a higher QoS, the switching
cost consumed by fetching services from the nearby BSs or
cloud centre and cache updates cannot be ignored. To this end,
we denote the service placement cost on ES m as

Cm(t) =

K∑
k=1

(1− αk,m(t− 1))αk,m(t)cm,k, (1)

where cm,k is the cost of service k placing on BS m. In
addition, (1− αk,m(t− 1))αk,m(t) = 1 indicates that the
service replacement occurs on BS m at time slot t. Considering
the service provider generally operates within a long-term cost
budget [26], we introduce the time-averaged service placement
cost budget C̃ over the whole period of T time slots as

C1 : lim
T→∞

1

T

T∑
t=1

M∑
m=1

Cm(t) < C̃. (2)

B. Hierarchical task scheduling

HCC supports arrival service requests to be executed across
different layers. Therefore, whether and where to offload di-
verse tasks should be determined jointly by taking into account
the service availability, achieved performance, and the required
cost. Let U = {M∪N ∪ c} denote the set of computing
nodes in collaboration space with the size of |U| =M+N+1.
Define a binary variable βn,u(t), n ∈ N , u ∈ U as the task
scheduling indicator, and βn,u(t) = 1 indicates that the service

request of TD n is executed on the computing node u. In this
paper, we assume each task is atomic and cannot be separated
into subtasks. Therefore, each task can only be scheduled to
one of the nodes in U for task processing, thus we have

C2 :

{
βn,u(t) ∈ {0, 1},∀n ∈ N , u ∈ U ,∑

u∈U βn,u = 1,∀n ∈ N .
(3)

In particular, βn,n(t) = 1 represents that the service request
of TD n will be processed locally.

Moreover, scheduling the service request of TD n to ES m
requires the corresponding service has been placed on m, i.e.,
αKn(t),m(t) = 1. Therefore, it also should be ensured that

C3 : βn,m(t) ≤ αKn(t),m(t),m ∈ M. (4)

C. Delay model
In device collaboration plane, each TD has its own service

requests and may still have the potential to help others. Each
TD adopts the Frequency Division Duplexing (FDD) technique
to support transmitting and receiving tasks simultaneously [9].
To reduce communication interference, we adopt orthogonal
frequency division multiple-access (OFDMA) and overlay
D2D communication techniques for uplink transmission.

1) Device collaboration: We assume D2D transmission is
completed in “one hop,” which means the helper TD will not
continue to offload after receiving the task. If βn,i = 1, i ∈ N\
n, the transmission delay, experienced by TD n to offloading
packets to the helper TD i via uplink, can be expressed as

DD2D
n,i,o =

dKn(t)

rn,i(t)
, (5)

where

rn,i(t) = Bn,i log2

(
1 +

pnhn,i(t)

σ2

)
, (6)

is the achieved uplink transmission rate. Specifically, Bn,i is
the allocated bandwidth, pn is the transmission power of TD
n, hn,i(t) is the channel gain between TD n and its helper,
and σ2 is the noise power. Noticeably, if the TD executes the
task locally, we have DD2D

n,n,o = 0.
2) Edge collaboration: Service requests scheduled to the

edge layer can be processed on the associated BS in “one
hop” or a non-local BS along the routing path [27]. Therefore,
if βn,i = 1, i ∈ M, the transmission delay experienced
by TD n is constituted by the uplink transmission delay
and the backhaul delay. Specifically, the experienced uplink
transmission delay for TD n is given by

DMEC
n,i,o =

dKn
(t)

rn,mn(t)
, (7)

where rn,mn
is the communication rate between TD n and

its connected BS mn. The consumed backhaul delay of TD n
from the connected BS mn to the computing node i can be
represented as

DMEC
n,i,b =

∑
ej,k∈Pmn,i

dKn(t)

wj,k
, (8)

where wj,k, j, k ∈ S is the bandwidth of outgoing link ej,k ∈
E and Pmn,i is the shortest routing path from the connected
BS mn to target BS i.
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3) Total delay: Considering the computing resources can
be shared for processing the offloaded tasks in parallel, the
processing delay for TD n on node u can be calculated as

Dn,u,c =
cKn(t)

fn,u(t)
, (9)

where fn,u(t) is the allocated computing resource for TD n.
According to the aforementioned definitions, the total delay

under different task schedule decisions is given by

Dn,u =

{
DD2D

n,u,o +Dn,u,c, u ∈ N ,

DMEC
n,u,o +DMEC

n,u,b +Dn,u,c, u ∈ M.
(10)

D. Cost Model

Considering the energy-limited TDs and instances tenanting
from the cloud, we aim to reduce the system cost on devices
for the service provisioning in HCC systems, which mainly
includes energy consumption cost and cloud tenancy cost.

1) Device energy consumption: In the HCC system, the
energy consumption on TDs consists of transmission energy
consumption for offloading service requests and computing
energy consumption for providing computing services. Specif-
ically, for TD n, they can be calculated as

En,o = pn

( ∑
m∈M

βn,mD
MEC
n,m,o +

∑
i∈N

βn,iD
D2D
n,i,o

)
, (11)

and

En,c =
∑
i∈N

βi,n(t)κf
2
i,ncKn

(t), (12)

respectively. κ > 0 is the energy efficiency parameter deter-
mined by the structure of devices [6].

2) Cloud tenancy cost: If no BSs or TDs can provide
satisfactory services, cloud computing is viewed as a last
resort, while accessing services unavoidably causes a high
tenancy cost. In this paper, we adopt on-demand instances
as the representative of cloud service provision that charged
proportionally to the usage of computation resources without
upfront fees or long-term commitments [28].

3) Total cost: Based on the above definition, the overall
cost for each TD n can be calculated as

Ψn(t) = ψnEn(t) + ψcβn,c(t)f̃n(t), (13)

where ψn is the price for unit energy of TD n, ψc is the
price of on-demand instances, En = En,o + En,c is the total
energy consumption on TD n, and f̃n(t) =

cKn (t)
τKn (t) is the

tenanted computing resources from cloud to ensure the lowest
requirements of service quality.

E. problem formulation

Our aim is to minimize the total cost of the TDs and
provide satisfactory services over a long time span by jointly
optimizing the service placement, task scheduling, uplink
transmission power, and computing resource allocation. We
must also ensure the resource capacity in multiple dimensions

and the long-term service placement cost budget. We thus
formulate the problem as

(P0) : min
α,β,p,f

lim
T→∞

1

T

T∑
t=1

N∑
n=1

Ψn(t) (14)

s.t. C1− C3, (14a)
K∑

k=1

αk,m(t)wk ≤Wm,m ∈ M, (14b)

αk,m(t) = {0, 1},∀k,m, (14c)
U∑

u=1

βn,u(t)Dn,u ≤ τKn(t), u ∈ M∪N (14d)

N∑
n=1

βn,u(t)fn,u(t) ≤ Fu, u ∈ M∪N , (14e)

0 ≤ pn ≤ Pn,∀n, (14f)

where constraint (14b) guarantees the hosted services on each
BS cannot exceed its storage capacity; constraint (14d) ensures
the task deadline for each TD; constraint (14e) ensures the
computing resources allocated for all served TDs by the node
u must not exceed its computation capacity Fu; constraint
(14f) is the transmission power constraint for all TDs.

IV. LYPAPUNOV OPTIMIZATION MODEL
TRANSFORMATION

To make our model more realistic and expandable, we
assume there is no prior statistical information about the
system dynamics. Moreover, optimizing the time-averaged
sum cost minimization problem with the long-term placement
cost constraint is difficult. To address these issues, we adopt
Lyapunov optimization technology to convert problem (P0)
into a series of per-slot queue stability control problems.
Firstly, we define a virtual queue Q(t) to measure the exceeded
cost of service placement by the end of time slot t. Its updated
equation can be represented as

Q(t+ 1) = max
{
Q(t)− C̃ + C(t), 0

}
, (15)

where C(t) =
∑M

m=1 Cm(t) is the total service placement
cost at time slot t. We assume the initial queue length is 0,
i.e., Q(0) = 0. It can be implied that the larger value of Q(t)
means the consumed placement cost has far exceeded the long-
term budget. To ensure the inequality (2) holds, we have:

Lemma 1. The constraint C1 will always be satisfied when the
virtual queue is mean rate stable, i.e., lim

T→∞
1
T E {Q(T )} = 0.

Proof. Please see the detailed proof in the Appendix A.

To make the virtual queue stable, we first invoke the
quadratic Lyapunov function and define it as

L (Q(t)) =
1

2
Q(t)2. (16)

Then, we define the conditional Lyapunov drift over one slot
as

∆(Q(t)) = E {L (Q(t+ 1))− L (Q(t)) |Q(t)} , (17)
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which is the expected change of the Lyapunov function from
one slot to the next with the given queue state. Intuitively,
minimizing ∆(Q(t)) would push the virtual cost queue to a
lower congestion region. Correspondingly, the original prob-
lem has been decomposed into a series of per-slot optimization
problems. Aiming to coordinate the system cost consumption
while guaranteeing queue stability, we use a drift-plus-penalty
function according to Lyapunov optimization theory [29]:

∆(Q(t)) + V

N∑
n=1

Ψn, (18)

where V ≥ 0 is a control parameter to adjust the attention
on the service placement cost queue backlogs and the system
cost consumption. Moreover, the function (18) can provide the
following performance guarantee:

Theorem 1. For arbitrary queue backlogs Q(t) over all
possible control strategies, the drift-plus-penalty function has
the following upper bound:

B +

N∑
n=1

V E {Ψn|Q(t)}+Q(t)E
{
C(t)− C̃|Q(t)

}
, (19)

where B = 1
2

(
C2

max + C̃2
)

is a finite constant.

Proof. The detailed proof is shown in Appendix B.

With Theorem 1, minimizing the drift-plus-penalty function
is equivalent to minimizing the right side of (19). Hence, after
removing the constant that is not concerned with the control
decision, the optimal solution can be obtained at each time
slot by optimizing the following problem

(P1) : min
α,β,p,f

Q(t)C(t) +

N∑
n=1

VΨn(t) (20)

s.t. C2, C3, (14b)− (14f). (20a)

V. JOINT OPTIMIZATION ALGORITHM DESIGN

The per-slot deterministic problem (P1) is a mixed integer
non-linear programming (MINLP) problem, which jointly de-
termines the binary decisions of service placement and task
scheduling, and the system resource allocation decisions. The
commonly used integer programming algorithms, such as the
cutting plane and branch and bound methods, typically require
prohibitively high computational complexity. To address this
challenge, we propose an efficient solution framework based
on hybrid optimization methods, as depicted in Fig. 2. First,
we introduce a surrogate Lagrangian relaxation method to
reduce computational requirements and develop a two-loop
optimization framework, as discussed in Section V-A. The
inner loop optimizes the Lagrangian relaxation problem for
given Lagrangian multipliers, and the outer loop performs
multipliers update via a novel surrogate subgradient method.
Moreover, the service placement subproblem and the joint task
scheduling and resource allocation subproblem are solved via
dynamic programming in Section V-B and a bilevel optimiza-
tion algorithm in Section V-C, respectively. By solving the
subproblems in two loops iteratively until it converges, the
near-optimal solution can thus be obtained.

The original optimization problem (P0)

Upper level

Lyapunov optimization technology

Per-slot offline  problem (P1)

Surrogate Lagrangian Relaxation Method

Lagrange relaxation problem (LR)  Lagrangian dual problem (LD)

Service placement (P2) 

Dynamic programming

Joint optimize task scheduling and 

resource allocation (P3) 

bilevel optimization framework

Lower level

Task scheduling 

Candidate pruning

Heuristic matching game

MEC computing Device computing

Resource allocation(P4) Resource allocation(P5)

Bi-section search 

fp,

Interior point method

fp,

fp,,,

( )P3

Fig. 2. The schematics of the proposed OJSTR.

A. Surrogate Lagrangian Relaxation Method

For problem (P1), service placement α is coupled with the
task scheduling β in constraint C3. Therefore, Lagrangian
relaxation with separability support can be leveraged to obtain
a near-optimal solution in a computationally efficient manner.
To simplify the representation in C3, we invoke a binary
constant θkn = {0, 1} to indicate that if the TD n requests
service k, thus we have αKn(t),m =

∑K
k=1 θ

k
nαk,m. To dualize

and penalize C3 into the objective function with Lagrangian
multiplier µ = {µn,m}, the Lagrangian function becomes

L(α,β,p, f ,µ) = Q(t)C(t) +

N∑
n=1

VΨn

+

M∑
m=1

N∑
n=1

µn,m

(
βn,m −

K∑
k=1

θknαk,m

)
.

(21)

Then, the Lagrange relaxation of (P1) is given by

(LR) : z(µ) = min
α,β,p,f

L(α,β,p, f ,µ) (22)

s.t. C2, (14b)− (14f). (22a)

Obviously, the relaxed (LR) can be rewritten as two individual
subproblems, i.e., one is the service placement subproblem,
and the other is the joint optimization of task scheduling and
resource allocation subproblem. Given the multipliers, these
subproblems are easier than (P1), and can be solved in a
computationally efficient manner by our proposed methods in
Sections V-B and V-C. The resolution of the original problem
is thus performed through a two-level iterative approach,
where the low level consists of solving individual subproblems
and the high level performs Lagrange multipliers update.

Moreover, the Lagrangian dual problem is described as

(LD) : max
µ≥0

z(µ). (23)

Since the dual function is the pointwise infimum of a family
of affine functions of µ, it is always concave regardless of the
characteristics of the original problem [30]. Additionally, since
the original problem is mixed-integer, the dual function is non-
smooth [31]. Therefore, the problem (LD) is convex and non-
smooth. To solve it, the subgradient method is the most widely
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used, which requires the relaxed subproblems to be fully opti-
mized. This is time-consuming, especially as the problem size
increases. Correspondingly, the surrogate subgradient method
is developed, which only needs an approximate optimization
for one subproblem to obtain a proper surrogate subgradient
[32]. However, its convergence proof requires the optimal dual
value, which is generally impractical. Inspired by [31], we
adopt the surrogate Lagrangian relaxation method to guarantee
convergence without requiring the optimal dual value, which
selects stepsizes in a way that distances between Lagrange
multipliers at consecutive iterations decrease. Specifically, the
multipliers are updated by

µi+1
m,n =

[
µi
m,n + sig̃m,n(

K∑
k=1

θinα
i
k,m, β

i
m,n)

]+
,∀s. (24)

Here, i is the iterate number and g̃m,n is the surrogate sub-
gradient direction by performing an approximate optimization
of (LR). si is the stepsize, which is updated by

si = δi
si−1∥g̃m,n(α

i−1
m,n, β

i−1
m,n)∥

∥g̃m,n(αi
m,n, β

i
m,n)∥

, 0 < δi < 1. (25)

To ensure that the multipliers converge to optimal dual value
µ∗, the stepsize parameter δi can be updated as [31]

δi = 1− 1

Mip
, p = 1− 1

ir
, (26)

where M ≥ 1 and 0 ≤ r ≤ 1. With the novel stepsizing
formula, we adopt the approximate optimization of (LR) in
an interleaved manner, where one subproblem is solved at a
time to update multipliers. The main procedure is summarized
in Algorithm 1, in which Flag is used for marking the
subproblem that is required to be optimized in each iteration
to obtain a surrogate subgradient.

Proposition 1. With the stepsizing formula (25) and the δk
update formula (26), the Lagrange multipliers in guaranteed
to converge within limited iterations.

Proof. The detailed proof is shown in Appendix C.

B. Service Placement Subproblem

With the Lagrangian multipliers, the service placement
subproblem can be rearranged into the following concise form

(P2) : min
α

M∑
m=1

K∑
k=1

σm,kαk,m −
M∑

m=1

N∑
n=1

µn,m

K∑
k=1

θknαk,m

(27)
s.t. (14b), (14c), (27a)

where σm,k = Q(t) (1− αk,m(t− 1)) cm,k is a constant that
does not affect the placement decision-making. Moreover, the
problem (P2) can be further separated into M individual sub-
problems. For each BS m, its optimization objective function
can be reformulated as

max
αm

K∑
k=1

(
N∑

n=1

µn,mθ
k
n − σm,k

)
αk,m (28)

Algorithm 1 Per-slot optimization algorithm
Input: The current virtual queue state Q and service place-

ment scheme α(t− 1).
Output: The near-optimal service placement α, task schedul-

ing β, and resource allocation p, f .
1: Initialization: Lagrangian multipliers µ0, step size s0,

subproblem record Flag = True.
2: By optimizing problem (LR) with µ0, obtain

{
α0,β0

}
and surrogate subgradient g̃(α0,β0).

3: Iterate number i = 1.
4: repeat
5: Update stepsize-setting parameters δi by using (26).
6: Given δi,αi,βi, update step size si by using (25).
7: For the given si,αi,βi, update lagrangian multiplier

µi+1 by using (24).
8: if Flag = True then
9: Given multipliers µi+1, solve the service place-

ment subproblem (P2) by the dynamic programming
method and obtain αi+1

10: Update Flag = False.
11: else
12: Given multipliers µi+1, solve the joint opti-

mization subproblem of task scheduling and re-
source allocation (P3) by Algorithm 2, and obtain
βi+1,pi+1, f i+1.

13: Update Flag = True.
14: end if
15: Calculate the objective function value Obj(i).
16: i = i+ 1.
17: until i > I or |Obj(i)−Obj(i− 1)| ≤ Tth1

Intuitively, the problem can be reduced from a 0-1 knapsack
problem, corresponding to placing K services on the BS
m at a maximized total profit, subject to the total storage
constraint Wm, where the placement cost of service k is
represented as

∑N
n=1 µn,mθ

k
n − σm,k. To solve the problem

effectively, we adopt the dynamic programming method, and
the detail process is omitted for page limits. By leveraging
primal decomposition and the dynamic programming method,
the computational complexity of solving service placement
sub-problems for all BSs is Os = O(K

∑
m∈MWm).

C. Joint Task Scheduling and Resource Allocation Subproblem

From (LR), the other relaxed part is the joint task scheduling
and resource allocation optimization subproblem, which can
be formulated as

(P3) : min
β,p,f

N∑
n=1

V ψn (En,o + En,c) + V ψcβn,c(t)f̃n(t)

+

N∑
n=1

M∑
m=1

µn,mβn,m (29)

s.t. C2, (14d)− (14f), (29a)

in which the control strategy includes both binary-valued
β and the continuous-valued p, f . By analyzing (P3), we
observe that the resource allocation problem can be efficiently
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solved once the task scheduling is determined. Meanwhile, the
performance of schedule decisions can be evaluated accurately
only when the optimal resource allocation scheme is obtained.
Hence, the problem can be transformed into a bilevel optimiza-
tion problem [33], in which the task scheduling is regarded
as the upper optimization problem to minimize total cost,
and the resource allocation optimization problem is optimized
at the lower level to minimize the total energy cost. By
fully considering the dependency, we propose a matching
game-based bilevel optimization algorithm, which involves a
matching theory-based heuristic method for the upper level,
and a hybrid resource allocation algorithm for the lower level.
The details are presented in Algorithm 2.

1) Heuristic matching-based task scheduling: Resource al-
location decisions made in lower-level are only related to
βn,u, u ∈ N ∪ M. With resource allocation p, f and La-
grangian multiplier µ, the objective function of the optimiza-
tion problem in the upper level can thus be transformed into

(̃P3) : min
β

N∑
n=1

σn (En,o + En,c) +

N∑
n=1

M∑
m=1

µn,mβn,m

+ σn,cf̃n(t)

(
1−

∑
u∈N∪M

βn,u

)
, (30)

where σn = V ψn and σn,c = V ψc are constants. For each
TD, the cardinality of the candidate set is M + N , and the
overall scheduling decision space is (M + N)n. However,
constrained by the service availability, communication ranges,
delay requirements, and resource capacity, several candidates
are not available. Hence, candidate pruning is necessary to
accelerate the task scheduling in the initialization phase.

Remark 1. For each TD n, all computing nodes i in the
following set Fn is feasible for task scheduling

Fn =

{
fmin
n,i ≤ Fi and τKn

≥ dKn

rmax
n,i

, i ∈ Ωn ∪ {n} ,
fmin
n,i ≤ Fi and τKn

≥ Dmin
m,n,t, i ∈ Ωm,

(31)
where fmin

n,i is the minimum computing resources required
by TD n and varies among computing modes. rmax

n,i is the
maximum transmission rate of TD n to the helper TD i. Dmin

m,n,t

is the minimum transmission delay for TD n to the ES m.

Proof. The detailed proof is shown in Appendix D.

Nevertheless, obtaining the optimal solution via exhaustive
search is still impractical due to the unacceptable computa-
tional complexity. To find an effective and low-complexity
solution, we model task scheduling as a many-to-one matching
problem, where each TD is scheduled to at most one node, and
each node can serve many TDs. However, different from the
traditional marriage matching problem where each player has
a strict preference list over the players in the opposite set,
the resource sharing on computing nodes causes the dynamic
preference order to vary with the matching state, which makes
the matching problem with peer effects becomes more com-
plex [34]. Although the swap matching game for pursuing a
two-side exchange-stable matching state was proposed to cope
with the dilemma, the corresponding computation complexity

will significantly increase due to the frequent and redundant
swap operations and resource allocation optimization nested in
it. To this end, we propose a heuristic matching-based method.

First, we define the total cost consumption of each TD as
the utility function to measure the preference of the TDs over
the nodes in the opposite set, which is given by

UFn(Ξ) =


σnpnD

D2D
n,u,o + σuκf

2
u,ncKn(t), u ∈ N ,

σnpnD
MEC
n,u,o + µn,u, u ∈ M,

σn,cf̃n, u = ∅.
(32)

Ξ is a many-to-one matching function from the set N to the
unordered set of M∪N ∪{∅}, where Ξ(n) = u means TD n
is matched to the node u, and Ξ(n) = ∅ means TD n will be
scheduled to the center cloud. To decrease the overall system
cost, the preference list for each TD should be constructed by
sorting utilities in Fn according to the following properties:

u ≻n u
′ ⇔ UFn(u,Φ) < UFn(u

′,Ξ′), (33)

which indicates that TD n prefers u = Ξ(n) than u′ = Ξ′(n).
Next, we discuss the process of the initialization and update

of preference lists as outlined below.
Initialization (line 4-7 of Algorithm 2): Given the high cloud

outsourcing cost, we aim to accomplish more tasks in edge
layer and device layer. Therefore, we adopt the lower bound
of computing resources, i.e. fmin

n,u in Remark 1, for preference
calculation. It can be represented as

fn,u =


cKn

τKn
, u ∈ Fn ∩ {n} ,
cKn

τKn−
dKn
rmax
n,i

, u ∈ Fn ∩N \ {n} ,

cKn

τKn−Dmin
m,n,t

, u ∈ Fn ∩M,

(34)

where rmax
n,i = Bn,i log2

(
1 +

Pnhn,i

σ2

)
and Dmin

m,n,t =
dKn

rmax
n,mn

+

DMEC
n,i,b . Then, the utility can be obtained according to (32),

and the preference lists for all TDs can be constructed.
Update (line 9-13 of Algorithm 2): For cost minimization,

each TD should be scheduled to the node at the top of its
preference list. However, the computing resources of TDs that
match with the same node are coupled with each other. Hence,
TDs should be scheduled in a judicious order to decrease
the total system cost and cope with the peer effects. For this
purpose, we develop two ordering schemes for task scheduling.

• Lowest Cost First (LCF): Aiming to minimize energy
consumption on TDs, the TD with the lowest utility
among all preference lists will always be scheduled first.

• Shortest Feasible set First (SFF): Note that the tasks
with large transmission data size, CPU requirements,
and strict delay requirements require more resources,
thus enabling limited feasible sets and undertaking the
risk of high outsourcing costs. Therefore, scheduling the
TD with the shortest feasible set can effectively reduce
cloud outsourcing costs. For the TDs with the same
cardinality of the feasible set, the TD with the lowest
cost consumption will be scheduled preferentially.

After selecting the scheduled TD n and the desired node u,
the matching state will be updated by Ξ(n) = u and TD n will
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Algorithm 2 Matching game-based bilevel optimization

Input: The current Lagrangian multiplier µ in (̃P3).
Output: The current task scheduling β and resource alloca-

tion solution p, f .
1: Ξ(n) = ∅,∀n ∈ N , unmatched TD set Num = N .
2: repeat
3: Initialization:
4: for n ∈ Num do
5: Generate feasible candidate mode Fn based on (31).
6: Calculate the utility for each feasible candidate and

build preference list according to (32)-(34).
7: end for
8: Update:
9: Remove the TDs with empty preference list from Num.

10: Select the scheduled TD n according to LCF or SFF.
11: Schedule TD n to the first node u in its preference list.
12: Update matching state Ξ(n) = u and remove the

scheduled TD from Num.
13: Update the remaining computing resources of u based

on (35), Theorem 2, and 3.
14: until Num = ∅
15: Convert the matching state Ξ into task scheduling β, and

obtain the optimal resource allocation p∗, f∗.

be removed from the unmatched TD set Num. Considering the
TDs that matched with node u are coupled with each other,
the resource allocation f∗n,u in the lower level can be obtained
by the methods proposed in Section V-C2. At the jth iteration,
the remaining computing resources of u is updated as

F j
u = Fu −

∑
n∈Uu

f∗n,u, (35)

Then, the feasible sets and preference lists of all remaining
TDs should be updated according to (31)-(34). Repeating the
steps mentioned above until the unmatched TD set Num is
empty, the task scheduling and resource allocation decisions
can be obtained according to the final matching state Ξ.

For the heuristic matching game at the upper level, the
complexity mainly lies in the preference list construction,
which needs at most N+M operations for each TD. Moreover,
the maximum number of iterations needed for the matching
is N − 1. Hence, the complexity of the algorithm can be
expressed as Ot = O((N − 1)(N +M)).

2) Resource allocation in edge collaboration: According
to the task scheduling β, the TDs with βn,u = 1, u ∈ M, that
adopt edge collaborative computing, can be further divided
into M individual groups. Let Um denote the set of TDs
that offload their computing tasks to ES m. Based on the
aforementioned parameters definition, the resource allocation
optimization problem of the mth group is formulated as

(P4) : min
p,f

|Um|∑
n=1

σn
pndKn

Bn log2

(
1 +

pnhn,mn

δ2

) (36)

s.t. (14d)− (14f), (36a)

where σn = V ψn is a constant and varies among TDs.

Lemma 2. The optimal solution exists iff. constraint (14d)
preserves equality.

Proof. The objective function of problem (P4) is monoton-
ically increasing with p. On the premise of ensuring (14d)
and (14f), the optimal solution can be obtained by gradually
decreasing p. Assume (p, f) as the optimal solution, which
preserves the total delay strictly less than the threshold τKn

.
Keep decreasing p until (14d) tends to be equal, the new power
allocation guarantees all constraints, while making the function
value smaller than p. Therefore, it is a better solution than the
optimal (p, f), which contradicts the assumption. Therefore,
there always exists a better solution for any (p, f) that makes
(14d) unequal.

With Lemma 2, the optimal f∗n,m can be rewritten as

f∗n,m =
cKn(t)

τKn(t) −DMEC
n,m,b −DMEC

n,o (p∗n)
, (37)

which is a decreasing function of p∗n. Then, by substituting
(37) into (14e) and removing (14d), the problem (P4) is
reduced into the optimization of p. According to the constraint
(14f) and (37), the lower bound of the fn,m can be expressed
as f̌n,m = fn,m(Pn). Therefore, it can be inferred that
problem (P4) has feasible solution iff

∑|Um|
n=1 f̌n,m ≤ Fm,

which guarantees all constraints are satisfied. In the following,
we further discuss two cases.

Case 1: If
∑|Um|

n=1 f̌n,m = Fm, the optimal solution of TD
n ∈ Um can be represented as (Pn, f̌n,m).

Case 2: If
∑|Um|

n=1 f̌n,m < Fm, we have the following
lemma:

Lemma 3. The optimal solution exists only when the con-
straint (14e) preserves equality.

Proof. Assume (p, f) as the optimal solution when (14e) is at
inequality and all constraints are met strictly. Increasing the
allocated computing resources for some of the TDs until (14e)
tends to be equal leading to lower power allocation. Hence, a
better objective function value will be obtained.

Based on the analyses above, (P4) can be reorganised as

P̃4 : min
p

|Um|∑
n=1

σn
pndKn

Bn log2

(
1 +

pnhn,mn

δ2

) (38)

s.t.
|Um|∑
n=1

fn,m(pn) = Fm, (38a)

0 ≤ pn ≤ Pn, n ∈ Um. (38b)

Theorem 2. By leveraging the Karush-Kuhn-Tucker (KKT)
conditions for the problem P̃4, the close-formed local optimal
solution can be derived as

p∗n = min
{
max

{
ζ−1
n (λ∗m/σn), 0

}
, Pn

}
, (39)

where λ∗m is an unique optimum that satisfies

|Um|∑
n=1

fn,m(p∗n) = Fm. (40)
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Proof. The detailed proof and the expression of ζn are shown
in Appendix E.

According to Theorem 2, the optimal λ∗m can be ef-
ficiently obtained from λm ∈ (0, λ̂) by leveraging a bi-
section search, where λ̂ is a sufficiently large value. Given
λ∗m, the optimal power allocation can be directly obtained
by calculating (39). To achieve the precision threshold Tth2,
the method needs O

(
log2(

λ̂
Tth2

)
)

number of iterations to be
coverage. Within each iteration, the computational complexity
can be represented as O(|Um|), which mainly lies in evaluating
(40). Therefore, the complexity of solving (P4) is less than
Oe = O

(
MN

(
log2(

λ̂
Tth2

)
))

.
3) Resource allocation in device collaboration: Given task

scheduling decision β, the TDs with βn,u = 1, u ∈ N adopt
device collaborative computing. All TDs can be divided into N
individual groups served by different TDs, and each of them is
constituted by the TDs with a specific type of service request.
Denote Ui as the TD set served by the helper TD i, and the
resource allocation optimization problem in the ith group is
formulated as

(P5) : min
p,f

|Ui|∑
n=1

σn
pndKn

Bn log2

(
1 +

pnhn,i

δ2

) + σiκf
2
n,icKn

(41)

s.t. (14d)− (14f). (41a)

Lemma 4. The optimal solution exists iff. constraint (14d)
preserves equality.

Proof. The objective function (41) is monotonically increasing
with pn and fn,i. Assume (p, f) as the optimal solution
to preserve the total delay strictly less than the threshold
τKn

. Decreasing the value of any variable while ensuring
all constraints are met will obtain a lower objective function
value. Therefore, there always exists a better solution for any
(p, f) that makes (41a) unequal.

With Lemma 4, the optimal resource allocation for n with
βn,n = 1 can be derived as p∗n = 0, f∗n,i =

cKn

τKn
, and the power

allocation for ∀n ∈ Ui \ {i} can be expressed as

p∗n =
δ2

hn,i

(
2

dKn
vnBn − 1

)
, (42)

where vn = τKn
− cKn

fn,i
is a concave function of fn,i. By

substituting pn into problem (P5), the original problem is
reduced into the following form:

(̃P5) : min
f

|Ui|∑
n=1

σnvn
δ2

hn,i

(
2

dKn
vnBn − 1

)
+ σiκf

2
n,icKn (43)

s.t. 0 <

|Ui|∑
n=1

fn,i ≤ Fi, (43a)

δ2

hn,i

(
2

dKn
vnBn − 1

)
≤ Pn, n ∈ Ui. (43b)

Constraint (43b) can be further derived into

fn,i ≥
cKn

τKn
−DD2D

n,i,o (Pn)
, (44)

where DD2D
n,i,o (Pn) =

dKn

Bn log2(1+Pnhn,i/δ2)
.

Theorem 3. Problem (̃P5) is a convex optimization problem.

Proof. The detailed proof is shown in Appendix F.

Based on Theorem 3, problem (̃P5) can be solved by adopt-
ing the interior point method as the CVX solver. According to
[30] and [35], the complexity of the interior point method can
be approximated by O(

√
a(a+ b)b2), where a is the number

of inequality constraints, and b is the variable dimension. Let
I denote the number of iterations required for solving each
subproblem (̃P5), the complexity of solving (41) can thus be
approximated by Od = O(NI

(√
N + 1(2N + 1)N2)

)
.

D. Performance Analysis

1) Complexity analysis: The OJSTR algorithm with two
nested loops is operated in an iteration manner. Specifically,
complexity in the outer loop mainly lies in the update of the
Lagrangian multipliers. According to (24), its computational
complexity can be formulated as O(NM). In the inner loop,
computational complexity mainly lies in the service placement
optimization via dynamic programming method and joint task
scheduling and resource allocation optimization by adopting a
bilevel optimization framework. Based on the analysis afore-
mentioned, the overall complexity can be approximated by
Os +Ot +Od +Oe.

2) Optimality Analysis: Our proposed OJSTR can provide
the following performance guarantee on time-averaged system
cost and service placement cost queue backlogs:

Theorem 4. Let the infimum time average cost performance
with the overall information as Ψopt, the following conditions
will always hold by adopting the OJSTR for any value of V :

lim
T→∞

1

T

T∑
t=1

N∑
n=1

E [Ψn(t)] ≤
B

V
+Ψopt, (45)

lim
T→∞

1

T

T∑
t=1

E [Q(t)] ≤ B + VΨopt

ϵ
, (46)

where ϵ > 0 is a small value that represents the distance
between the time-averaged service placement cost consump-
tion by some control policy and the cost budget, and B =
1
2

(
C2

max + C̃2
)

is a finite constant.

Proof. The detailed proof is shown in Appendix G.

VI. NUMERICAL RESULTS

In this section, we present simulations to verify the ef-
fectiveness of our algorithms and analysis proposed in the
previous sections. We consider a hierarchical collaborative
MEC system with a cloud, two ESs, and several TDs. Each
ES has a radius of 200m [10], and the device communication
radius is 30m [36]. All TDs are randomly distributed over
the coverage region, and the services of interest may differ
among time slots. Considering the service diversity, we set
up 10 services with different multidimensional resource re-
quirements, e.g., delay-sensitive, computation-intensive, and
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Fig. 5. Performance of OJSTR versus the service
placement budget

TABLE II
SIMULATION PARAMETERS

Parameters Value
Communication bandwidth W 2MHz [9]
Backhaul link bandwidth wi,j , i, j ∈ S 100Mbps [38]
Noise power density σ2 -174dBm/HZ
Maximum transmit power of TDs Pn 0.1W [10]
Maximum storage capacity of ESs c [10, 20]GB
Maximum CPU capacity of ESs Fi [4, 10]GHz
Maximum CPU capacity of TDs Fi [0.9, 1.5]GHz
Required storage of service requests [2, 10]GB
Traffic data size of service requests [0.2, 1]Mb
Required CPU cycles of service requests [1 ∗ 107, 1 ∗ 108]cycles
Deadline service requests [0.02, 0.05]s
Energy efficiency parameter κ 10−27

Long term service placement cost budget C̃ [4, 8]

storage-hungry services. The channel gain is assumed to
remain constant within each time slot but may vary among
time slots. Similar to [10], [37], the channel gain is modeled as
hn,u = 127+30×log dn,u, where dn,u is the distance between
the TD n and the computing node u. The other specific system
parameters, including service requests and network settings,
are listed in Table II.

For performance evaluation, we consider the following
benchmarks. Moreover, the performance of all algorithms
is evaluated by simulation implemented on the MATLAB
platform, where the problem (̃P5) in OJSTR is addressed
by the CVX package. All simulations are performed on a
computer with a 2.50 GHz Core i7 CPU and 64 GB RAM.

• Global MEC Computing (GMEC): In this scheme, all
service requests can only be executed at the network edge
for satisfactory service provisioning. Otherwise, they will
be scheduled to the cloud [23], [26].

• Global D2D Computing (GD2D): In this scheme, all
service requests can only be computed locally or assisted
by other TDs in the vicinity. Otherwise, cloud outsourcing
will be adopted as the last resort [15].

• Alternating Optimization-based Solution (AOS): The al-
ternating optimization framework is invoked to solve task
scheduling and resource allocation subproblems itera-
tively, where the task scheduling subproblem with integer
variables is solved by relaxing it as a linear programming
(LP) problem [39].

Fig. 3 demonstrates the convergence behavior of the subgra-
dient method, surrogate subgradient method, and our adopted
surrogate Lagrangian relaxation method by comparing with

the optimal value obtained by the exhaustive search method.
For a fair comparison, we adopt the same objective function
value initialized randomly to update stepsizes considering
the unavailability of the optimal dual value in practice. In
addition, all subproblems are fully optimized per iteration
in the subgradient method. In contrast, only one subproblem
is solved at a time to update multipliers in the other two
surrogate subgradient-based methods. Therefore, the required
computational effort of the subgradient method increases
multiple times compared with others during the convergence
process. In Fig. 3, we observe that the surrogate Lagrangian
relaxation method achieves superior convergence speed and
accuracy performance. Conversely, the other two methods
exhibit obvious zigzagging during the iteration process and
obtain a relatively worse objective function value at the end.
The reason mainly lies in that our initialized objective value
may be larger than the optimal, thus causing the upper bound
of stepsize to violate condition (9) in [31] and leading to
divergence. Conversely, the surrogate Lagrangian relaxation
method adopts a novel stepsizing design as in (25) to guarantee
convergence without requiring the optimal dual value.

Fig. 4 illustrates the convergence performance of Algo-
rithm 2 with different task ordering schemes, i.e., our pro-
posed LCF and SFF. For a comprehensive evaluation, we
randomly generate 10-time slots with varying system parame-
ters, including the number of BSs and TDs. It can be seen
that the number of iterations to achieve convergence will
not exceed the number of TDs, thus indicating its linear
convergence even in large networks. In addition, we observe
that the objective function value of (P3) increases significantly
when the number of TDs increases due to more energy con-
sumption and cloud outsourcing costs for service provisioning.
Benefiting from sufficient service placement and enlarged
computing capabilities in horizontal edge collaboration, the
convergence value decreases as the number of ESs increases
as expected. We also observe that the task scheduling with
SFF scheme always performs better than LCF, especially when
the network resources are relatively scarce. This is because
SFF emphasizes minimizing the outsourcing costs alongside
taking into account the energy costs of TDs. Conversely, LCF
only focuses on the TDs with the lowest energy costs, thereby
leading to resource-hungry tasks being scheduled to the cloud
with a higher probability.

Fig. 5 shows the long-term average service placement cost
and system cost of OJSTR with various lengths of time slots
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under the different setting of service placement cost budgets,
which are defined as

∑t
i=1

∑M
m=1 Cm(i)

t and
∑t

i=1

∑N
n=1 Ψn(i)

t ,
respectively. It can be observed that the varying curves of
the average service placement cost gradually become stable,
and the long-term cost budget can always be satisfied. This
demonstrates the effectiveness of OJSTR in decreasing the
total system cost as well as stabilizing queue backlogs over the
long run. We also observe that the system cost can be signif-
icantly reduced with the service placement budget increasing
when queue stability is ensured. This can be explained by the
fact that the popular services are enabled to be deployed on
demand when the service placement budget is large, thereby
providing service for more TDs in a lower cost consumption.

Fig. 6 illustrates the impact of computing resource con-
straints of ESs on the performance of system cost. It is
easy to see that the total cost consumption of TDs decreases
with an increase in the MEC computing resources except
GD2D, and GMEC exhibits the most significant reduction.
This is because the dependence on edge resources for these
schemes i.e., GMEC, HCC, and GD2D, decreases sequentially,
and enlarging the computing power of ESs will provide
more superior scheduling candidates for schemes with high
dependence. Moreover, our proposed OJSTR with SFF and
LCF task ordering schemes achieves superior performance
compared to other schemes, which verifies the effectiveness
of the HCC framework. Meanwhile, our proposed OJSTR can
obtain proper scheduling decisions to unleash the collaboration
space’s service provisioning capability fully. By observing that
the SSF scheme reaches a great performance when Fm = 5HZ,
while LCF requires Fm = 8HZ to achieve relatively equivalent
performance, we conclude that SSF enables to achieve excel-
lent system performance with constrained network resources.

Fig. 7 shows the system cost performance of different
algorithms when the number of TDs varies from 10 to 30.
Obviously, the system cost increases with the number of TDs
for all schemes because more energy and outsourcing costs
are consumed for satisfactory service provisioning. It can also
be seen that the system cost of GMEC is rapidly increas-
ing due to the limited computing resources and increasing
computational load. However, for other algorithms that invoke
device collaboration, an increase in TDs also provides more
idle computational capacity, thereby effectively alleviating
the network computing load. Overall, the algorithms within
HCC framework achieve better performance than GMEC and
GD2D. Moreover, the bilevel optimization framework with

heuristic matching game outperforms the AO-based method,
i.e., the cost of SSF and LCF schedule schemes is reduced by
an average of 17% and 16.5% compared to AOS, respectively.

Fig. 8 shows the system cost under different settings of de-
lay upper bound of service requests. It is evident that the total
system cost of all algorithms exhibits a substantial decrease
when the delay deadline is relaxed while the task workload
and total resources remain unchanged. This is because the
feasible scheduling range for all tasks expands, and HCC
enhances the resource utilization of different network layers.
Moreover, our proposed OJSTR-SFF consistently outperforms
the others. However, all schemes except GMEC demonstrate
similar performance when the delay upper bound exceeds
0.05s. This is because the limited storage resources and the ser-
vice placement budget restrict the deployment of services on
ESs, resulting in the underutilization of computing resources
in the edge collaboration plane. In contrast, HCC can further
utilize the service programs and idle resources in proximate
devices, thereby increasing the success rate of scheduling and
reducing overall system costs.

Fig. 9 plots the distribution of device energy consumption
and cloud tenancy cost versus the number of BSs. Here, the
device energy consumption of GMEC under M = 2 and
M = 3 are 0.0139 and 0.0205, respectively. According to
the cost distribution of GMEC, increasing BS significantly
reduces cloud tenancy costs due to the improvement of the
system’s service provisioning ability. Moreover, it is obvious
that significant cost savings for TDs in both energy con-
sumption and cloud tenancy can be achieved by increasing
the number of BSs due to the tiny energy consumption for
workload offloading in edge computing mode. We also observe
that OJSTRA-SFF and OJSTRA-LCF can always achieve the
lowest cloud tenancy cost and device energy consumption
among all algorithms, respectively. This is mainly because the
SFF scheme preferentially schedules the TDs with the shortest
feasible set, while the LCF scheme pays more attention to the
TDs with the lowest energy consumption.

Fig. 10 shows the distribution of all requests on different
layers under different numbers of TDs and service request
data sizes. This helps us understand the importance of different
computing modes when our proposed OJSTR is used. The data
clearly shows that the proportion of computation at the device
layer increases with both an increase in the number of TDs and
offloaded data volume. This means that device collaboration
is important in meeting service demands when network loads
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Fig. 10. Distribution of requests processing in different layers versus the
number of TDs and requests data size

increase. On the one hand, though edge collaboration provides
computing resources at a lower cost, these resources become
scarce as the number of TDs increases. On the other hand, the
consumed cost and delay for edge computing mainly depend
on the data transmission process, thus a heavier transmission
load leads to poor service quality. Benefiting from the idle
computing resources and communication efficiency of device
collaboration, its powerful potential will be fully unleashed as
the network load increases. Therefore, our proposed OJSTR
can provide TDs with satisfactory services at lower costs
in different network scenarios by effectively leveraging the
advantages of the HCC framework.

VII. CONCLUSION

In this paper, we proposed a novel HCC framework, which
adopts horizontal collaboration in both the edge and device
layer and vertical end-edge-cloud collaboration for serving
spatially and temporally changing service demand patterns. To
achieve heterogeneity-aware distributed resource management
and uniform task scheduling cost-efficiently, we investigated
a long-term cost consumption minimization problem by joint
service placement, task scheduling, uplink transmission power,
and computational resources allocation, subject to the long-
term service placement cost budget, multidimensional resource
constraints, and diverse task deadlines. Given the inability to
predict future network information, we proposed an online
optimization framework for problem transformation and so-
lution derivation, in which the Lyapunov optimization theory
was adopted to turn the problem into a pure queue stability
problem, and a surrogate Lagrangian relaxation-based two-
loop optimization framework was developed for solving the

per-slot problems. Simulation results revealed that our pro-
posed algorithms have great convergence performance, and the
proposed OJSTR can efficiently manage network resources in
the cooperative space to reduce the total system cost while
ensuring the service placement budget.
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