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Abstract—In this article, we explore the opportunities and
benefits of integrating federated learning (FL) and blockchain
technologies to build an adaptable and secure Knowledge-Defined
Networking (KDN) system. Our aim is to enhance network
performance by ensuring self-learning, self-adapting, and self-
adjustment capabilities in dynamic and decentralized network
environments. The proposed conceptual architecture, KDN-FLB,
also strategically addresses critical challenges in knowledge
sharing and privacy preservation within network environments.
We discuss the constituents, architecture, processes, and use cases
of KDN-FLB in contemporary networking applications. Addi-
tionally, we analyze the benefits, challenges, and future prospects
associated with KDN-FLB, making it more intelligent for large-
scale, dynamic, and decentralized network environments.

Index Terms—Knowledge-defined Networking, Blockchain,
Federated Learning, Security and Privacy

I. INTRODUCTION

HE rapid growth of the Internet of Things (IoT) has

profoundly expanded the Internet’s scale, resulting in in-
creased dynamism and complexity in its applications. For these
networks to remain effective, self-learning, self-adaptation,
and self-adjustment capabilities are essential, and Knowledge-
Defined Networking (KDN) can fulfill these needs [1]. KDN
integrates Software-Defined Networking (SDN) with Artificial
Intelligence (Al), aiming at efficient network management and
control (illustrated in Fig. 1). KDN incorporates a knowledge
plane (KP) into traditional SDN architectures to empower
networks to autonomously learn from data, adapt to chang-
ing conditions in real-time, and optimize performance. On
the other hand, Machine Learning (ML) and Al excel at
tracking uncertain and dynamically evolving behaviors, rapidly
adapting to changing network conditions, and even resolving
issues autonomously. Nevertheless, existing research is mostly
fragmented across various aspects of networks, generally ad-
dressing specific issues in isolation without comprehensive
integration, resulting in two major drawbacks: Firstly, ML
lacks interpretability, operating without clear understanding;
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secondly, it does not facilitate the aggregation of knowledge
for global cognitive reasoning. Also, the current network
infrastructure involves both physical and logical distributed
resource allocation, creating an urgent need for distributed
machine learning [2], which federated learning (FL) can
effectively address [3].

In tackling the challenges mentioned above in the literature,
limited efforts have been made in advancing KDN. Zhang
et al. [4] introduced an advanced Deep-Q-Networks (DQN)
routing algorithm enhanced with graph recurrent neural net-
works (GRNN) to support intelligent routing decisions within
KDN environments. Their approach involved a comprehensive
workflow that included developing a network architecture
in Mininet, extracting features using GRNN, and employ-
ing DQN for dynamic path selection. It is necessary to
verify the computational efficiency and robustness of this
work. Rafiq et al. [5] presented a self-driving system based
on KDN that leverages graph neural networks (GNN) to
optimize service function chaining deployment and reactive
traffic routing across edge clouds, ensuring efficient resource
allocation and performance indicator estimation within an
SDN framework. Pham er al. [6] explored the application of
deep reinforcement learning (DRL) with convolutional neural
networks within KDN to significantly enhance QoS-aware
routing performance, addressing complex network challenges
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and improving routing configurations in environments with
multiple coexisting flows. He et al. [7] introduced MPDRL,
a novel approach that combines DRL with a GNN structure.
Based on experiments on the topologies of ISP networks, this
approach successfully solves routing optimization problems in
dynamic network environments. Another notable contribution
comes from Lu et al. [8], who proposed a blockchain-enhanced
FL framework for beyond 5G networks, addressing security,
privacy, and resource optimization through DRL. Despite sig-
nificant advancements in KDN, FL, and Blockchain technolo-
gies individually, there is a noticeable lack of comprehensive
integration among them in the literature.

As KDN, FL, and blockchain integrate within network
systems, they promise security and privacy for knowledge
sharing, ownership, and collaboration. Their overarching goal
centers on enhancing network systems’ performance, imbuing
them with self-learning, self-adaptation, and self-adjustment
capabilities. In this context, we propose a novel reference
framework called Knowledge-defined Networking through
Federated Learning and Blockchain (KDN-FLB) to enhance
large-scale and dynamic network performance, fortify security
measures, and empower the network with self-learning, self-
adaptation, and self-adjustment capabilities. The main contri-
butions are summarized as follows:

« We provide a strong motivation of integrating KDN, FL,
and blockchain to gain more benefit through KDN-FLB
reference architecture.

e We discuss KDN-FLB reference architecture fundamen-
tals, including its architecture, processes, and potential
use cases in contemporary networking.

« We employ traffic engineering use cases to evaluate the
performance of the proposed KDN-FLB and confirm its
superiority.

o We further provide a set of open challenges to implement
and extend KDN-FLB for next-generation internet-based
applications.

II. MOTIVATION

A primary goal of KDN is to integrate knowledge across
multiple network nodes, facilitating comprehensive global cog-
nitive reasoning and thereby improving overall network per-
formance. This initiative aims to enhance the synergy among
distributed nodes, fostering a collective cognitive capability
that contributes to an efficient and optimized network.

Integrating FL into KDN is imperative due to the unique
challenges in distributed knowledge environments. This mul-
tifaceted integration addresses privacy preservation, collab-
oration augmentation, and distributed knowledge utilization.
FL serves as a robust solution to inherent privacy concerns,
mitigating breach risks and aligning seamlessly with KDN’s
distributed nature. In addition to fostering collaboration and
sharing knowledge, FL promotes collective intelligence while
safeguarding the privacy of individual nodes. Moreover, FL
resolves challenges posed by centralized approaches, making
it easier to assemble and utilize distributed knowledge. This
integration enables local learning and model updates, optimiz-
ing network performance, enhancing adaptability, and ensuring

knowledge remains where it is generated. But, there are also
a range of key challenges, including covering security and
privacy issues in knowledge sharing, knowledge ownership,
and collaboration.

Fortunately, blockchain technology presents immense po-
tential due to its decentralization, immutability, openness,
transparency, and traceability characteristics, providing inno-
vative solutions to the above-mentioned issues. Blockchain’s
decentralized nature mitigates single points of failure, enhanc-
ing system stability and participant control over knowledge
resources. Its non-tamperability, openness, and transparency
establish a robust foundation for knowledge dynamics, en-
suring credibility and authenticity. Blockchain’s traceability
strengthens knowledge credibility and origin scrutiny, fostering
trust in knowledge sources within the KDN. It is vital to use
these mechanisms to establish trust among KDN contributors
and consumers.

III. KDN-FLB: CONSTITUENTS, ARCHITECTURE,
PROCESSES, AND USE-CASES

In this section, we discuss the components, architecture, and
processes of the proposed KDN-FLB conceptual architecture.

A. Constituents

KDN-FLB is a multifaceted conceptual architecture that
combines several entities to enable decentralized, privacy-
preserving knowledge sharing. These entities work together
to facilitate efficient and secure comprehensive knowledge
integration and informed decision-making while protecting
individual data. Each of the following constituents plays its
individual role in the KDN-FLB architecture:

1) Distributed networks: The KDN-FLB architecture incor-
porates distributed networks consisting of diverse computing
elements such as IoT devices, the Edge, or even a computing
continuum. These elements typically perform various compu-
tational tasks such as data processing, FL. model training, FL
model aggregation, validation, and blockchain operations.

2) Farticipants: The KDN-FLB architecture encompasses
several types of participants: individual end-users, organiza-
tions, and system administrators. End users utilize FL. models
and knowledge-sharing capabilities to gain insights, make
informed decisions, or generate suggestions. Organizations
may contribute data, resources, or expertise to the system and
interact with FL. models and knowledge-sharing processes.
System administrators oversee and maintain the technical
infrastructure of the KDN-FLB system, ensuring its overall
well-being through system updates, security measures, and
troubleshooting.

3) Miners: Miners play a pivotal role in the KDN-FLB
architecture by maintaining the blockchain. They validate
transactions, create transaction blocks, and secure the network
through cryptographic processes such as Proof-of-Work or
Proof-of-Stake.

B. Proposed KDN-FLB Conceptual Architecture

The KDN-FLB architecture consists of three components:
client-side software, server-side software, and blockchain-side
components, as illustrated in Fig. 2.
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Fig. 2. The proposed KDN-FLB conceptual architecture.

On the client side, the user interface (UI) facilitates user
interactions with the KDN-FLB system, providing visualiza-
tion tools, controls, and feedback mechanisms for managing
FL and blockchain processes. FL data collection involves
gathering and preparing local data from individual clients,
including user interactions, client-specific information, and
other relevant data. Local clients contribute by uploading
local model updates without raw data and participating in FL,
interacting with server-side components.

The server side, typically in distributed networks, is man-
aged by an FL server that coordinates the FL process, commu-
nicates with client-side clients, aggregates local model updates,
and securely updates the global model. In hierarchical FL,
edge servers can serve as intermediate aggregation servers.
Communication middleware on the server side ensures secure
data transmission through encryption, authentication, and other
security measures. Blockchains receive global knowledge ag-
gregated from distributed clients through the middleware.

On the blockchain side (typically managed by miners),
employing a consensus mechanism is crucial for maintaining
unanimity on the blockchain state across all nodes, preserving
the integrity of the distributed ledger. Historical blockchain
data supports intelligent decision-making, with the decision-
making process transmitted to the intent language interface.
This interface translates instructions into an imperative lan-
guage for users to execute, provides feedback to the client
side, and enhances system performance.

C. Processes

This section delineates the working process of the proposed
KDN-FLB conceptual architecture, with Fig. 3 depicting the
detailed process.

1) Data Collection: The initiation phase involves collecting
data from dispersed clients, potentially including edge devices,
IoT devices, or contributions from participants.

2) FL Model Training: Guided by the control plane, FL
trains local models using distributed data, facilitating model
training without sharing raw data.

3) Model Aggregation and Updates: Under the control
plane, diverse clients’ trained local model updates are aggre-
gated to generate a global model, which is then disseminated
back to each client.

4) Data Security and Transparency: Blockchain is used for
data security and transparency by recording model training
procedures and outcomes, mitigating tampering risks, and
providing traceability. However, challenges such as scalability
limitations and poor storage extensibility arise due to the
blockchain consensus protocol, affecting data safety and re-
liability. KDN-FLB integrated blockchain involves building a
private blockchain and connecting it to a public blockchain to
address these issues.

5) Knowledge Extraction: The KP plays a crucial role in
deriving meaningful insights from FL models. It involves dis-
cerning and extracting valuable knowledge embedded within
the aggregated global model. In this phase, KDN-FLB uses
FL to extract overall insights from various clients, while
integrating blockchain to ensure knowledge authenticity and
transparency. Therefore, it fosters decentralized intelligence
while maintaining data privacy, which is reinforced through
blockchain’s secure, immutable ledger, which addresses pri-
vacy concerns. Also, KDN-FLB’s dynamic adaptation utilizes
blockchain’s immutable record-keeping to secure historical
insights, enabling FL to learn from past experiences and
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optimize over time. Adapting to evolving network conditions
through continuous knowledge extraction improves operational
efficiency and user experience.

6) Intelligent Decision-making: Intelligent decision-
making utilizes extracted knowledge to guide strategic
choices within distributed networks. Integrating FL and
blockchain ensures that decisions are intelligent, privacy-
preserving, and secure. FL’s integration with knowledge
extraction supports decentralized decision-making, where
each client contributes insights from local data, fostering a
dynamic distributed decision-making process adaptable to
varying conditions. Adaptive decision-making is enabled by
continuous knowledge extraction, allowing the network to
adaptively respond to dynamic environmental changes. The
immutable record of historical decisions on the blockchain
allows decision-makers to refine and optimize future decisions
based on past outcomes. Furthermore, blockchain technology
ensures the integrity of decision-making processes by
providing a decentralized, tamper-resistant ledger for decision
records. Bringing FL and blockchain together enhances the
security and trustworthiness of decision outputs, establishing
a reliable framework for strategic network decisions.

D. Use-Cases

In this section, we explore the most appropriate use cases
that demonstrate the effectiveness and usefulness of the KDN-
FLB conceptual architecture in addressing real-world chal-
lenges.

1) Traffic Engineering: Traffic engineering optimizes
telecommunications network performance and efficiency
through strategic control of data, voice, and video traffic.
This discipline is essential for effectively utilizing network
resources, minimizing congestion, and meeting service quality
objectives. Traditional methods often lack intelligence, making
it challenging to classify and control incoming traffic based
on existing features. Therefore, Al methods such as GNN or
Multi-Agent Reinforcement Learning are considered optimal
for early traffic classification, enhancing scheduling and load
balancing in dynamic distributed networks to mitigate con-
gestion [9]. In the context of KDN-FLB, historical knowledge
trained by FL can be analyzed and stored on the blockchain to
learn patterns and relationships between network traffic load
and various factors. It facilitates proactive network optimiza-
tion and enhancements by enabling more accurate traffic load
predictions.

2) Network Anomaly Detection: Network anomaly detec-
tion is critical for identifying and addressing abnormal behav-
iors in networks. Traditional methods face challenges due to
dynamic network changes and the likelihood of false positives
or negatives, leading to misinterpretations and ineffective
responses. KDN-FLB will be a robust solution for network
anomaly detection since it combines the benefits of FL and
blockchain. KDN-FLB enhances anomaly detection accuracy
by combining historical data from distributed networks with
intelligent learning, ensuring proactive and secure network
management

3) Supply Chain Transparency: Supply chain transparency
ensures clarity and accessibility of information throughout the
entire supply chain, from raw material procurement to product
delivery, providing stakeholders, including consumers, with
precise details about goods’ origins, manufacturing processes,
and distribution channels. Contemporary supply chains, char-
acterized by intricacies and fragmentation, raise challenges to
reliable product tracking and monitoring. Restricted visibil-
ity and data silos hinder accurate inventory tracking. KDN-
FLB uses blockchain to establish traceability and provenance
through the creation of an immutable ledger of supply chain
events. KDN-FLB also facilitates compliance and audit efforts
by building trust between supply chain clients. In addition,
it can enhance security by decentralizing data storage and
automating decision-making processes. In summary, KDN-
FLB provides a robust architecture for efficient supply chain
transparency, ensuring efficiency, security, and trust.

IV. EXPERIMENTS

We employ traffic engineering use cases to evaluate the per-
formance of the proposed KDN-FLB. Existing long and short-
flow classification research relies heavily on static thresholds,
which frequently results in high error rates due to the dynamic
nature of network traffic. This paper introduces a dynamic
coarse-grained classification method based on KDN-FLB to
address the complexities and variations in network conditions.
The scheduling module subsequently uses the classification
results to optimize traffic management, reduce packet loss, and
improve transmission stability.

A. Dataset

Flow size is a key criterion for classifying long and short
flows. Al-Fares er al. [10] defined a long flow as a flow
that consumes more than 10% of the total link capacity
regardless of its duration, which is one of the most important
characteristics of flow scheduling. We perform data analysis on
the ISCX2016 dataset, revealing that up to 90% of flows have a
size smaller than ¥ MB. Based on flow size, the classification
of flow types is outlined in Table I.

TABLE I
CLASSIFICATION OF FLOW TYPES BY FLOW SIZE.
Flow Size Category Classification
< YMB 0 Short
> YMB 1 Long

To expedite coarse-grained long and short flow classifica-
tion, this study utilizes the FlowMeter tool to extract flow
information from the first three packets in the dataset, pro-
ducing a CSV file with 41,816 records and 64 features each.
Due to the long-tail distribution, the dataset exhibits sample
imbalance, which was addressed using SMOTE, resulting in
a balanced dataset of 75,172 records. The data is divided into
seven periods, with each period generating 10,738 records.
Here, the random forest was selected as the machine learning
algorithm for flow classification.
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Fig. 4. Results for (a) Static Model Classification Scheme. (b) Single Dataset Dynamic Classification Scheme (c) Fusion Dataset Dynamic Classification

Scheme (d) Dynamic flow size threshold

B. Comparison of Experimental Schemes

1) Static Model Long and Short Flow Classification: Cur-
rently, most schemes for long and short-flow classification rely
on static threshold division. In coarse-grained classification
using random forest under static threshold conditions, a model
is first trained on existing data to distinguish between long
and short flows. This model is then applied to classify all
subsequent traffic data accordingly. The experimental results
are shown in Figure 4(a).

Experimental results indicate that using the static threshold
method for coarse-grained long and short-flow classification
leads to inconsistent performance. The classification accuracy
fluctuates, sometimes achieving high performance and other
times low, with no significant overall improvement.

2) Single Dataset Dynamic Long and Short Flow Classi-
fication: To adapt to the evolving and complex nature of
network traffic, this paper introduces a dynamic long and
short-flow classification model update algorithm for a single
dataset. Periodically, a new model is trained based on the
latest traffic data, which varies over time. Consequently, each
trained model differs, tailored to classify traffic specific to its
corresponding period. The experimental results are presented
in Figure 4(b).

Experimental results show that when only the most recent
data is used for training coarse-grained long and short-flow
classification at regular intervals, the performance metrics of
the classification remain suboptimal, show little improvement,

and may even deteriorate.

3) Fusion Dataset Dynamic Long and Short Flow Clas-
sification Based on KDN-FLB: To improve the accuracy
and stability of dynamic coarse-grained long and short-flow
classification, this paper designs a dynamic flow classification
model update scheme based on KDN-FLB using a fused
dataset. The specific process is as follows:

o Clients request participation in the training process and
prepare their local flow data.

e In each period, clients in FL train local models on
the client data, generate local models and calculate the
respective flow classification thresholds.

o Under the coordination of the control plane, the local
models from different clients are aggregated to update
the global model and the flow classification thresholds.
This ensures the accuracy and adaptability of the model.

e The new global model and flow classification thresh-
olds are combined with the previous global model and
thresholds to generate the final global model and flow
classification thresholds.

o Blockchain is used to record the final global model and
flow classification thresholds to prevent tampering and
ensure traceability. Only authorized users can obtain the
global model.

o Users utilize the newly obtained global model to classify
flow data into long and short flows. The classification
results are then provided to the scheduling module to im-
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prove traffic scheduling, reduce packet loss, and enhance
transmission stability.

The results of Fusion Dataset Dynamic Long and Short
Flow Classification Based on KDN-FLB are illustrated in Fig-
ure 4(c). The experimental findings show that periodic coarse-
grained long and short-flow classification training, which
incorporates both previous and current flow data, leads to a
steady improvement in classification performance. Ultimately,
the performance stabilizes at over 99%, indicating a highly
favorable outcome.

4) Dynamic thresholds: As network traffic dynamically
changes, the threshold for classifying traffic into long and short
flows varies accordingly. This paper illustrates the dynamic
threshold changes for traffic classification as shown in Figure
4(d).

V. CHALLENGES AND DISCUSSION

KDN-FLB presents a promising approach to enhancing
security and empowering the network with self-learning, self-
adaptation, and self-adjustment capabilities. Nevertheless, it
has its own set of challenges.

Scalability. In KDN-FLB, scalability challenges arise due
to FL and blockchain technologies. Specifically, the grow-
ing number of clients introduces heightened communication
overhead in FL and model aggregation intricacies. This chal-
lenge can be mitigated in expanded network settings by
using strategies such as hierarchical FL, client selection, and
model compression techniques. Scalability issues may arise
with blockchain ledger growth and consensus mechanisms.
In order to resolve this challenge, various strategies can be
adopted, including sharding to facilitate parallel transaction
processing, enabling off-chain transactions via state channels
and sidechains [11], managing ledger size with data pruning,
and integrating cross-chain technologies. Addressing these
scalability challenges allows for a more adept design and
implementation of KDN-FLB, ensuring high scalability and
efficiency in large-scale network environments.

Energy Consumption. In the KDN-FLB architecture, FL
poses a risk of increased energy consumption, especially due to
training models on resource-constrained devices. Additionally,
integrating consensus algorithms into the blockchain raises
energy usage concerns. It is essential to integrate optimized FL
model training, energy-efficient blockchain consensus mech-
anisms, adaptive energy management [12], renewable energy
sources [13], and energy sharing into the KDN-FLB system
to ensure its sustainability and effectiveness.

Network Latency. Communication and coordination be-
tween FL and blockchain are optimized and managed by
addressing network latency in KDN-FLB. It is crucial to
adopt strategies such as using latency-optimized FL algo-
rithms [14], integrating distributed edge intelligence, optimiz-
ing blockchain networks through efficient consensus mecha-
nisms, deploying adaptive asynchronous mechanisms [15], and
utilizing hybrid blockchain models. These measures reduce
network latency’s adverse effects on KDN-FLB architecture
performance.

Computational Overhead. The KDN-FLB framework en-
counters considerable computational overhead challenges, pri-
marily due to the demanding computational requirements of
FL algorithms and the power-intensive consensus mechanisms
essential for blockchain functionality. These challenges can be
addressed by optimizing FL algorithms by using methods such
as model pruning and knowledge distillation [16], adopting
energy-efficient blockchain consensus mechanisms [17], uti-
lizing hardware accelerators to boost computation efficiency,
and integrating edge computing to process data closer to the
source. The KDN-FLB framework benefits from these targeted
interventions by enhancing network intelligence and security
under decentralized circumstances.

Interoperability. In the KDN-FLB architecture, addressing
interoperability challenges in integrating blockchain platforms
and FL becomes imperative. Developing communication and
data exchange standards may be crucial to ensuring seamless
integration of the two technologies. The KDN-FLB archi-
tecture encompasses establishing universal standards [18],
designing cross-platform communication APIs, and fostering
consortium and collaborative efforts for standardization to
ensure interoperability issues.

Deployment of the KDN-FLB in Real-World Envi-
ronments. The deployment of the KDN-FLB framework in
real-world networks presents several challenges, including
guaranteeing technical compatibility across various hardware
and software ecosystems, overcoming bandwidth and com-
putational resource limitations, and navigating cross-domain
collaboration. Addressing these challenges necessitates a mul-
tifaceted approach that includes adapting the framework to
be modular and flexible [19], harnessing advanced technolo-
gies like 5G/6G and edge computing to mitigate resource
constraints [20], and establishing robust governance models
that facilitate trust and cooperation among stakeholders while
ensuring data privacy and integrity. Furthermore, continuous
engagement with stakeholders and creating a feedback loop are
crucial for the iterative refinement of the framework, ensuring
its effectiveness and relevance. With these solutions, the KDN-
FLB framework can overcome the above-mentioned barriers,
allowing it to significantly transform networked systems.

Considering the intricate interplay between FL and
blockchain within the KDN-FLB framework is imperative for
mitigating these challenges. KDN-FLB’s strategic approach
aims to overcome obstacles and maximize its benefits, but
further research is needed.

VI. CONCLUSION

In this article, we explore the potential of combining feder-
ated learning and blockchain technologies to create an intelli-
gent Knowledge Delivery Network (KDN) system, specifically
known as the KDN-FLB architecture. The proposed KDN-
FLB conceptual architecture combines the collaborative nature
of FL with blockchain security and transparency features to
present a decentralized and next-generation intelligent KDN
architecture. The proposed KDN-FLB architecture aims to
enhance dynamic and distributed network performance, en-
hance security measures, and empower the network with self-
learning, self-adapting, and self-adjustment capabilities. We
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will evaluate the proposed architecture in different use cases
and demonstrate its superiority to existing platforms in the
future.
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