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Digital twins (DTs) and artificial collective intelligence (ACI) are transformative 
technologies that, when combined, hold significant potential for managing 
complex systems across diverse domains, such as smart cities, health care, 
and manufacturing. DTs encompass both physical objects and their virtual 
counterparts, enabling real-time monitoring, control, and predictive modeling, 
while ACI enhances decision-making by leveraging the collective knowledge from 
multiple models. This article explores the synergies between DT and ACI, focusing 
on their integration into federated DTs (FDTs), which are networks of autonomous, 
collaborative DTs. By leveraging collaboration, FDTs optimize processes, improve 
scalability, and adapt to dynamic environments. We analyze the properties of DTs 
and ACI and identify opportunities for innovation and challenges in areas, such 
as scalability, adaptability, and fault tolerance. This integration paves the way for 
smarter systems capable of addressing the complexities of modern technological 
and societal challenges.

Digital twins (DTs) are greatly attracting atten-
tion from both research and industrial com-
munities due to their great potential for the 

development of systems as challenging as smart cit-
ies, e-health, aerospace vehicles, or energy manage-
ment. The concept was originally coined by Grieves 
and Vickers in 2003,1 who identified three main ele-
ments: 1) a real space, 2) a virtual space, and 3) a link 
between both spaces for the bidirectional flow of data 
to offer the convergence of the real and virtual world. 
This model simply identifies these elements without 
describing how they should interact nor indicating 
which technologies should be used to achieve it.

The Internet of Things (IoT)2 is presented as a pow-
erful enabling technology for DTs, as it enables the 

connection of numerous devices (sensors and actua-
tors) that make possible the convergence of the real 
space and the virtual space.3 IoT devices collect large 
amounts of data in real time, but these data scarcely 
hold value without proper processing and analysis. DTs 
offer a step forward by facilitating that data monitored 
by IoT devices are processed, analyzed, and fused to 
offer information for further processing to make bet-
ter analysis and decisions. Artificial Intelligence (AI), 
another technology revolutionizing the current land-
scape, plays a crucial role in processing and exploiting 
the information gathered by IoT devices to control be-
havior, predict failures, etc. Together, the IoT and AI are 
crucial for unlocking the full potential of DTs.

Most of the research developed to date has fo-
cused on developing DTs as “monolithic applications,” 
which are highly cohesive systems designed to support  
very specific business use cases. Some examples 
of use of DTs are predictive maintenance for spe-
cific equipment in industrial settings,4 optimization 
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production of manufacturing lines,5 control of heating, 
ventilation and air conditioning (HVAC) systems in 
smart buildings,6 and personalized patient monitoring 
and treatment optimization in health care.7

There is an urgent need for breaking these mono-
liths and instead developing a composition of DTs 
enabling collective insights and enhanced capabil-
ities. This new concept, recently coined federated 
DTs (FDTs),8 consists of autonomous DTs (ADTs) that 
support independently their business use cases while 
collaborating and sharing knowledge to improve pre-
dictions, optimize processes, and effectively adapt to 
dynamic environments. Indeed, achieving such a be-
havior is still an open research question: How can the 
development of DTs transition to the development of 
ADTs capable to work as FDTs?

In parallel, AI has intersected with collective intelli-
gence (CI) in a catalytic way, enhancing data process-
ing and decision-making capabilities across various 
fields. CI refers to the phenomenon in which a group 
of individuals collaborate to solve problems, make de-
cisions, or create knowledge, achieving better results 
than a single individual.9 This intersection of AI and 
CI is called artificial collective intelligence (ACI).10 ACI 
leverages the collective knowledge and capabilities of 
multiple AI models to enhance decision-making, prob-
lem-solving, and innovation.

The integration of FDTs with ACI will represent a 
significant leap forward in terms of scalability, adapt-
ability, and management of complex and multifaceted 
systems. ACI enhances the functionality of FDTs by fa-
cilitating the exchange of knowledge across multiple 
ADTs. For example, in a smart city application, FDTs 
of different urban subsystems, such as traffic, energy, 
and waste management would collaborate through 
ACI to jointly optimize resources across the entire city. 
ACI enables continuous learning by transforming each 
DT in an ADT able to improve its own model through 
learning from others. This provides adaptation to dy-
namic circumstances, like fluctuating traffic patterns 

or unexpected shifts in energy demand. This collabo-
rative approach improves accuracy, while providing 
a holistic view of the system, leading to better deci-
sion-making and more efficient management of urban 
environments.

The integration of these concepts, FDT and ACI, pro-
vides a transformative approach for managing complex 
problems in a broad range of domains. This ground-
breaking integration inspires our work; hence, we ex-
plore the synergies between properties of DT and ACI 
and how their combination can enhance each other in 
innovative and impactful ways. We also detail the chal-
lenges and opportunities for their future development.

This article is organized as follows: In the “DTs: 
Properties” and “ACI”’ sections, both concepts and 
their main properties are defined. Then, the “Vision: 
Synergies and Future Challenges” section presents 
the synergies between DTs and ACI, as well as some 
challenges and future research lines. Finally, the last 
section presents the conclusions of this work.

DTs: PROPERTIES
Since the initial conception of DTs, these have evolved 
from solely modeling physical objects in the virtual 
world to simulating their dynamics, monitoring their 
state, and controlling or predicting their behavior. 
These abilities greatly depend on the type of DT be-
ing developed, as they can be classified into three  
different categories,11 as Figure 1 illustrates. These cat-
egories are defined based on the type of interaction 
between the physical object (PO) and the logical ob-
ject (LO) in the virtual space:

	❯ Digital model: The data between the PO and the 
LO are exchanged manually, so the state of the 
PO and the LO are not directly synchronized.

	❯ Digital shadow: The data from the PO flows to 
the LO automatically, but the reverse is manual. 
Thus, the state of the PO is updated in its LO, but 
not vice versa.

FIGURE 1.  Digital model (DM), digital shadow (DS), and land DT (adapted from Kritinger et al.11).
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	❯ DT: There is an automatic bidirectional flow of 
data between the PO and LO. Therefore, any 
change in either the LO or the PO directly affects 
its counterpart.

Minerva et al.3 feature the properties that should be 
satisfied for being considered a DT. These DT proper-
ties are classified into two groups: essential properties 
and add value properties. The first set of properties, 
essential properties, ensures that the DT accurately 
represents the PO and behaves similarly to it within a 
specific context. This set consists of three properties.

	❯ DT1: Representativeness and contextualization: 
The LO supports only those attributes of the PO 
relevant to its context of use.

	❯ DT2: Reflection: The LO must univocally represent 
measurable aspects of the PO. Each measure-
ment of the PO must correspond unambigu-
ously to a set of values in the LO, ensuring that 
the PO’s status is perfectly described within its 
context.

	❯ DT3: Entanglement: A continuous flow of infor-
mation between the PO and LO is required so 
that they are synchronized in real time or close 
to real time.

The second set of properties are those that add 
value to the DT. The properties to be satisfied by the 
DT depend on the specific business use case to be 
supported by the DT. In the following, those properties 
more relevant to ACI are described.

	❯ DT4: Replication: This is the creation of multiple 
replicas (LOs) of a PO in different environments 
to satisfy specific demands. A key challenge is 
that all of the replicas (LOs) must be consistent 
with the PO.

	❯ DT5: Memorization: The LO must store both 
current and historical data relevant to the DT 
business use case. These data convey informa-
tion about the past behavior of the PO and the 
context where it belongs. This property it is key 
for supporting two properties: persistency (DT6) 
and predictability (DT10).

	❯ DT6: Persistency: The LO must be persistent and 
resilient over time. If the PO malfunctions, then 
the LO must re-establish and synchronize with 
the PO to an acceptable and meaningful state. 
Additionally, the LO must mitigate those issues 
caused by the lack of serviceability of the PO.

	❯ DT7: Composability: This is the ability to combine 
multiple LOs into one more complex DT able to 

monitor and control both the composite DT and 
the individual DTs. This property is the founda-
tion for the development of FDTs.

	❯ DT8: Accountability/manageability: This is the 
ability of the LO to offer self-healing facilities to 
recover from failures autonomously.

	❯ DT9: Augmentation: The LO should allow the ad-
dition of new attributes and functionalities to in-
crement and enhance the capabilities of the PO.

	❯ DT10: Predictability: The LO must predict or make 
decisions by exploiting large datasets describing 
the past of the PO (DT5: memorization). Further-
more, DTs should simulate their own behavior 
and their interactions with others over time un-
der specific conditions.

Predictability, along with the other DT properties, 
reveals the most outstanding capability of DTs: con-
trol, simulate, and act on systems as complex as smart 
cities, factories, or logistic networks.

ACI
In addition to human, animal, and AI, Malone and 
Woolley9 state that another important kind of intelli-
gence exists: the CI of groups of individuals. CI refers 
to the phenomenon where a group of individuals col-
laborate to solve problems, make decisions, or create 
knowledge, often leading to outcomes that surpass 
those achievable by individuals alone.12 In its simplest 
form, CI can be observed in everyday life, from families 
to companies or scientific communities, where the ag-
gregated contributions of many exceeds the capabili-
ties of any single individual.9

Historically, the concept has roots in various fields, 
including sociology or evolutionary biology, where ex-
amples, such as the foraging patterns of ants or the 
coordinated movements of bird flocks, showcase how 
the group can outperform the individual in nature.13 
In sociology, a classic example of CI can be found in 
Francis Galton’s experiment at a rural fair, where he 
observed that the collective estimation of a group re-
garding the weight of an ox was surprisingly accurate, 
despite individual variations.12 This kind of CI is called 
natural CI.10

More recently, technological advances have en-
abled the rise of digital CI, which is characterized by 
the integration of the Internet and computers with hu-
man collaborative efforts, creating a hybrid intelligence 
that leverages both human cognitive capabilities and 
machine efficiency. This concept aligns with social 
computing, which emphasizes human-centric inter-
actions facilitated by technology, and human-based 

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on April 01,2025 at 13:43:09 UTC from IEEE Xplore.  Restrictions apply. 



INTERNET OF THINGS, PEOPLE, AND PROCESSES

78 IEEE Internet Computing January/February 2025

computing, where human input is an integral part of 
computational processes.14 Platforms, such as Wiki-
pedia or open source projects, rely on the Internet’s 
ability to scale rapidly, enabling the participation of 
diverse and global human contributors.9 These plat-
forms exemplify how digital CI can harness the collec-
tive knowledge of users worldwide, thus expanding the 
traditional boundaries of CI.

Additionally, in recent years the concept of ACI 
has emerged too. According to Casadei,10 ACI refers 
to the CI exhibited by human-made machines. In other 
words, ACI represents the phenomenon where mul-
tiple models work together, much like human groups 
or natural systems, to produce outcomes that outper-
form individual ones. Thus, instead of a single model 
acting independently, a group of them collaborates, 
often through parallel processing or distributed deci-
sion-making, to solve complex problems.

According to Peter Flach,15 combinations of mod-
els are generally known as model ensembles. For in-
stance, ensemble learning is a widely used technique, 
where multiple models work together to make more 
accurate predictions than any single model could. 
Techniques, such as bagging, boosting, and stacking, 
combine the outputs of different models to reduce er-
ror and improve generalization. An example is the use 
of Random Forests, which aggregate the decisions of 
multiple decision trees to improve prediction accura-
cy. Similarly, swarm intelligence models, inspired by 
natural systems like ant foraging or bird flocking, uti-
lize multiple models that follow simple rules to solve 
complex optimization tasks.

ACI represents a transformative step in the evo-
lution of AI. While traditional AI systems operate indi-
vidually, ACI leverages the power of multiple models 
working together, often in real time, to solve complex 
problems.16 Thus, in ACI, different models, such as 
machine learning (ML) algorithms, neural networks, 
or evolutionary algorithms, are combined to share in-
sights and optimize decision-making. This mirrors the 
way biological or social systems, such as ant colonies 
or human crowds, pool individual expertise to achieve 
a collective goal. In ACI, these algorithms interact 
through a shared environment, exchanging informa-
tion or contributing their own solutions to parts of a 
larger problem.

In order to analyze the potential synergies of ACI 
and DTs, we describe in the following the main proper-
ties of ACI9,10,16:

	❯ ACI1: Communication: This is the process 
by which models exchange information, en-
abling the collective generation of ideas and 

solutions. An effective real-time communication 
is essential to align group efforts and improve 
decision-making.

	❯ ACI2: Collaboration: This is the capacity of differ-
ent models to work together, pooling resources 
and skills to achieve shared goals. Collaboration 
is based on interdependence, where the contri-
butions of each participant enhance the collec-
tive outcome of the group.

	❯ ACI3: Coordination: This is the management and 
alignment of group members’ activities to ensure 
effective collective actions. It guarantees syn-
chronization of efforts, avoiding unnecessary re-
dundancies and optimizing overall performance.

	❯ ACI4: Cognitive diversity: This is the variety of 
models used to solve problems and make deci-
sions within a group. ACI systems benefit from 
a diverse group of contributors, which enriches 
the pool of knowledge and perspectives. Diver-
sity can lead to more innovative solutions and 
reduce the likelihood of groupthink.

	❯ ACI5: Distributed problem solving: This is the ACI 
system’s ability to distribute tasks among models 
enhances its problem-solving capabilities. This 
decentralization fosters a wider range of ideas 
and solutions.

	❯ ACI6: Decentralization: ACI systems empower 
individuals to act autonomously, facilitating indi-
vidualism while promoting varied contributions, 
enriching decision-making processes.

	❯ ACI7: Aggregation of knowledge: This is the ca-
pacity of ACI systems to effectively incorporate 
mechanisms to aggregate information and in-
sights from various sources. This can involve 
algorithms that synthesize input data to form a 
coherent understanding or solution.

	❯ ACI8: Adaptability: ACI systems evolve by learn-
ing from past interactions, refining algorithms, 
and enhancing performance based on accumu-
lated knowledge.

	❯ ACI9: Scalability: This is the capability of ACI 
systems to scale effectively, accommodating in-
creasing numbers of contributors without a pro-
portional increase in complexity or degradation 
of performance.

VISION: SYNERGIES AND FUTURE 
CHALLENGES

This section explores the synergies between the prop-
erties of DTs and the properties of ACI, highlighting 
how their integration enhances the efficiency of an 
FDT, where the group of ADTs is able to achieve better 
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results than a single DT. As we delve deeper into these 

synergies, we also address the challenges that arise 

from this fusion, including scalability, real-time re-

sponse, decision-making, evolution, fault tolerance, 

and ethical implications. By understanding these syn-

ergies and challenges, we envision the future of these 

technologies and highlight their potential to transform 

sectors, such as smart cities, e-health care, or smart 

manufacturing.

Synergies Between DTs and ACI 
Properties
This section analyses the synergies between DTs and 

ACI by considering the properties of both approaches. 

Figure 2 summarizes the identified synergies and their 

relations to DT and ACI properties that are analyzed in 

the following.

S1: Composability of an ADT to Achieve FDTs
An ADT operates independently, equipped with its 
own intelligent models, decision-making capabilities, 
and local data storage. To achieve autonomy, each 
ADT must have three ACI properties: communication 
(ACI1), collaboration (ACI2), and coordination (ACI3) 
(see Figure 3). These properties enable ADTs to func-
tion autonomously while maintaining the ability to 
exchange information, collaborate on tasks, and co-
ordinate actions when necessary, ensuring effective 
operation within their use case.

As was stated earlier, the composability (DT7) 
property refers to the ability to develop a composition 
of multiple DTs. However, ADTs allow it to go one step 
further. Now, ADTs can be integrated into an FDT that 
enables each ADT to function both autonomously and 
as part of a unified system (see Figure 3). In this fed-
erated structure, ADTs work together to achieve com-
plex goals that would be unattainable independently.

FIGURE 2.  Summary of the synergies identified and their relations to DT and ACI properties.
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For example, in the domain of smart cities, each 
urban infrastructure component—such as transport, 
energy, and security—can be each represented as an 
ADT. These ADTs can communicate, collaborate, and 
coordinate with each other, forming an FDT that opti-
mizes the functioning of the entire city infrastructure.

S2: Enhancing Simulations and  
Decision-Making in FDTs
The predictability (DT10) property, when combined 
with cognitive diversity (ACI4), enables the FDT to im-
prove predictions from two perspectives: 1) by com-
bining multiple ADTs with different models, enabling 
more robust and precise predictions; and, 2) by lever-
aging different types of ADTs to obtain a global view 
of a larger system. Next, we detail both perspective in 
more detail.

On the one hand, in an FDT, cognitive diversi-
ty (ACI4) allows each ADT to use a different model,  
simulating the behavior of the PO under different 
conditions. ADTs collaborate to determine the future  
behavior of the PO, improving the accuracy and reli-
ability of the simulations of the FDT. For example, in 
smart grid management, several ADTs could collabo-
rate to simulate the future behavior of the power grid 
under different scenarios.

On the other hand, cognitive diversity (ACI4) en-
ables each ADT to pursue its own business use case, 
while contributing to the FDT’s goal. That is, each ADT 
leverages an intelligent model to make predictions 
with its specific information, which can be fused to 
better serve the common goal of the FDT. For example, 
in precision agriculture, an FDT could integrate anal-
ysis of factors, such as climate, fertilizer use, and soil 
conditions to improve decision-making.

S3: Improving Historical Data in FDTs
The memorization (DT5) property enables DTs to store 
relevant data from the present and past, providing a 
rich and detailed record of the PO. This capability can 
be improved with the aggregate knowledge (ACI7) 
property. Individual databases from multiple DTs are 
integrated into an FDT database. This shared reposi-
tory leverages the historical data of each DT to enrich 
the overall dataset. In an FDT, historical data from dif-
ferent DTs contribute to improve the prediction accu-
racy of each ADT, enabling dynamic and autonomous 
responses to changing events.

For example, in a smart building, an FDT can 
be composed of different ADTs corresponding to 
the building’s HVAC systems, occupancy patterns, 
and energy consumption. Historical data from 
each of these DTs can be aggregated to optimize 

FIGURE 3.  FDTs: ACI transforms DTs into ADTs.
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energy consumption, predict maintenance needs, and  
improve comfort levels for occupants. By analyzing 
past performance data across these interconnected 
systems, each ADT can predict when an area of the 
building might require heating or cooling or detect 
anomalies in energy usage.

S4: Improving Scalability in FDTs
In an FDT, the architecture must be designed to scale, 
supporting the addition of more ADTs as the system 
grows. This is especially important in applications 
where new ADTs need to be continuously integrated 
as the FDT evolves. A scalable architecture enables 
the FDT to autonomously adapt to changing demands 
and optimize its behavior without human interven-
tion. The scalability (ACI9) property can be achieved 
through the composability (DT7) property (see synergy 
S4’ in Figure 2) and also through the replication (DT4) 
property (see synergy S4’’ in Figure 2).

First, composability ensures the modular addition 
of new ADTs without disrupting the FDT. Each newly 
added ADT can be seamlessly integrated into the FDT, 
enriching the overall system with new data and capa-
bilities. For example, when a new building is construct-
ed in the city, its corresponding ADT can be added to 
the FDT, contributing its data to improve the overall 
system overview and decision-making processes.

Second, replication involves duplicating certain 
DTs to cope with increased demand. By replicating an 
ADT, the FDT maintains its responsiveness and can 
handle higher data-processing loads without degrad-
ing its performance. For example, if an ADT managing 
traffic flow becomes a bottleneck due to increasing 
data volumes or complexity, multiple replicas of that 
ADT can be deployed in different nodes of the FDT.

S5: Improving Adaptability in FDTs
An FDT improves its adaptability (ACI8) through 
the properties memorization (DT5) and predictabil-
ity (DT10). By leveraging the memorization, the FDT 
stores and recalls key past interactions and data, en-
abling the ADTs to recognize patterns and trends over 
time. This allows each ADT to adjust its models and 
responses based on all historical data, enhancing its 
ability to adapt to new conditions. Also, predictability 
enables each ADT to forecast potential outcomes by 
analyzing accumulated knowledge, anticipating future 
needs and behaviors. By combining these properties, 
the FDT can be more effective in responding to dynam-
ic environments.

For example, in intelligent traffic management, an 
FDT can adjust traffic routes according to the real-time 

information received from ADTs managing individual 
traffic zones. As traffic patterns evolve throughout the 
day, an ADT can predict congestion points and reroute 
traffic accordingly, while also using historical patterns 
to optimize future decision-making. This adaptability 
ensures more efficient traffic flow and a better respon-
siveness to real-time events.

S6: Leveraging Distributed Problem Solving  
in FDTs
In an FDT, the distributed problem-solving (ACI5) prop-
erty allows each ADT to focus on managing and solving 
specific parts of the FDT’s challenges. This delegation 
of tasks enables the FDT to tackle complex problems 
by distributing responsibilities among its ADTs. The 
composability (DT7) property supports the distributed 
problem-solving, allowing each ADT to handle specific 
parts of the overall problem. This modular approach 
enables the system to be composed of smaller, spe-
cialized components that can independently solve 
subproblems.

For example, in a smart city FDT, different ADTs can 
manage separate aspects, such as traffic, energy dis-
tribution, and waste management. Each ADT focuses 
on optimizing its specific domain, while contributing 
to the overall efficiency of the city management.

S7: Achieving Fault-Tolerance in FDTs
The decentralization (ACI6) property supports the 
properties persistency (DT6) and accountability/
manageability (DT8) within an FDT. In an open and 
decentralized environment, different ADTs operate in-
dependently, without relying on centralized control. If 
one of the ADTs fails, others can take over its respon-
sibilities, ensuring the persistence of the system. This 
decentralized architecture of the FDT creates a resil-
ient environment where at least one ADT is always 
available to maintain operations and provide self-heal-
ing capabilities to recover the PO when it fails.

For example, in health care, an FDT includes differ-
ent ADTs for patient monitoring and equipment man-
agement. If a patient-monitoring DT fails, other ADTs, 
such as the equipment management DT, can tempo-
rarily take over the role of monitoring the patient’s 
vital signs, so that care is not compromised. This de-
centralized structure ensures that even in the event 
of a failure, the system can continue to function with 
minimal disruption. In addition, other ADTs can assist 
to restore the patient monitoring DT by identifying the 
cause of the failure and initiating self-healing actions. 
This decentralized structure minimizes downtime, 
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maintains system integrity, and preserves the quality 
of patient care.

S8: Augmenting Functionalities in FDTs
The augmentation (DT9) property is enhanced by the 
cognitive diversity (ACI4) property. In an FDT, multiple 
ADTs contribute specialized functionalities, which en-
rich the overall capabilities of the FDT.

For example, in smart manufacturing, an FDT can 
optimize factory operations by integrating ADTs spe-
cialized in production lines, inventory management, 
and energy efficiency. Each ADT brings diverse intelli-
gent models designed to address different aspects of 
factory performance. Additionally, new functionalities, 
such as advanced analytics for predictive mainte-
nance, can be added by incorporating new ADTs with 
different intelligent models, further enhancing the FDT 
capabilities.

Use Cases for ADT and FDT
The synergies between DT and ACI offer great poten-
tial in a wide diversity of application domains where 
the management of complex systems and data-driven 
decision-making are required. Some of them are:

	❯ Smart manufacturing: In this domain, an FDT 
can be composed of ADTs representing var-
ious machines, production lines, and supply 
chains. The composability (DT7) property en-
ables seamless integration of ADTs, ensuring 
that the different parts of the manufacturing 
system are managed and optimized in a collab-
orative way (S1). Additionally, the distributed 
problem-solving (ACI5) property allows each 
ADT within the FDT to specialize in optimiz-
ing specific production processes to achieve 
more efficient manufacturing (S6). Moreover, 
scalability (ACI9) is crucial, as new machines 
or production lines can be added to the FDT as 
the factory grows (S4).

	❯ Autonomous vehicles: FDTs can be applied in 
autonomous vehicles to improve their predict-
ability (DT10) (S2). Collaboration (ACI2) and co-
ordination (ACI3) between vehicle ADTs, road 
infrastructure ADTs, and environmental condi-
tions ADTs improves the predictability of the 
FDT, enabling more accurate forecasts of vehicle 
behavior in different scenarios. Additionally, the 
persistency (DT) property ensures the resilience 
of the FDT (S7). For instance, if the ADT manag-
ing the vehicle’s navigation system fails, other 
ADTs can take over to maintain the autonomous 

vehicle operation. In addition, the adaptability 
(ACI8) of the FDT allows the autonomous vehicle 
to quickly adjust to changes in traffic patterns or 
weather conditions, improving vehicle efficiency 
and safety (S5).

	❯ Smart cities: FDTs can enhance urban infrastruc-
ture by integrating various components, such as 
traffic systems and urban buildings. The com-
posability (DT7) of these ADTs ensures effective 
communication (ACI1) and coordination (ACI3), 
optimizing the overall functionality of the city 
(S1). Also, the integration of historical data [mem-
orization (DT5)] from each ADT in the FDT facil-
itates the aggregation knowledge (ACI7) from 
multiple data sources, which can be leveraged to 
improve urban planning (S3). Scalability (ACI9) 
is also essential for growing cities, where new 
buildings must be easily integrated into the FDT 
as the city evolves (S4).

	❯ Building smart management: In this domain, 
FDTs represent various subsystems of a build-
ing, such as HVAC systems, lighting, and oc-
cupancy patterns. The composability (DT7) 
property enables the integration of these ADTs, 
ensuring that the different systems work in uni-
son to optimize energy consumption, mainte-
nance, and occupant comfort (S1). In addition, 
the integration of historical data [memorization 
(DT5)] provides valuable information for predic-
tive maintenance [predictability (DT10)], helping 
to identify potential problems before they arise 
(S2, S3).

	❯ Smart grids: FDTs of power generation sources, 
transformers, and distribution networks improve 
the efficiency and reliability of power systems. 
The predictability (DT10) property improves 
simulations by allowing ADTs to collaborate 
and predict future grid behavior under varying 
conditions (S2). Additionally, the integration of 
historical data [memorization (DT5)] from differ-
ent ADTs allows for more accurate forecasts of 
demand and power generation, optimizing load 
balancing and maintenance schedules (S3). In 
addition, distributed problem-solving (ACI5) and 
replication (DT4) properties enable the special-
ization of ADTs in specific areas of the network, 
ensuring efficient system operation even under 
high demand (S6).

	❯ Health care: In this domain, FDTs of patients, 
medical devices, and health-care infrastruc-
tures contribute to improved diagnosis and 
personalized treatment. Collaboration between 
ADTs improves simulation and decision making  
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[predictability (DT10)], enabling more accurate 
predictions of patient outcomes and treatment 
efficacy (S2). Also, the persistency (DT6) property 
ensures that if a failure occurs in one ADT (e.g. 
patient monitoring), other ADTs can temporarily 
take over critical functions, ensuring a continu-
um of care (S7). Finally, the augmentation (DT9) 
property also enables the integration of new  
diagnostic technologies into the FDT, extending 
its functionalities to support new health-care 
needs (S8).

	❯ Aerospace and aviation: In the aerospace indus-
try, FDTs of aircraft, airports, and air traffic sys-
tems are essential to optimize operations and 
ensure safety. The predictability (DT10) property 
enables more accurate forecasting of aircraft 
behavior and air traffic flow, which is crucial for 
scheduling and safety measures (S2). Addition-
ally, the scalability (ACI9) of FDTs ensures that 
new aircraft can be introduced and integrated 
smoothly and without disruption (S4). Further, 
the adaptability (ACI8) of the FDT is also im-
portant, as it allows the system to respond dy-
namically to changes in air traffic and weather 
conditions, maintaining safe and efficient flight 
operations (S5).

	❯ Precision agriculture: FDTs in agriculture inte-
grate ADTs representing weather conditions, 
soil quality, crops, and farm equipment. These 
ADTs collaborate to enhance predictability 
(DT10) by optimizing irrigation, fertilization, 
and cropping schedules (S2). Additionally, the 
memorization (DT5) from various agricultural 
processes can be aggregated to improve yield 
predictions and resource management (S3). In 
addition, distributed problem-solving (ACI5) (S6) 
enables specialized management of different 
aspects of agriculture, such as pest control, soil 
quality, and water use, leading to more efficient 
farming practices.

CHALLENGES AND FUTURE  
RESEARCH DIRECTIONS

Analyzing the synergies between DT and ACI proper-
ties reveals different challenges and research lines that 
illustrate both the potential and success of combining 
the two approaches. Key issues involve composabili-
ty, scalability, adaptability, fault tolerance, evolution, 
ethical implications, and data privacy. Below, we detail 
each challenge.

	❯ Scalability: Ensuring scalability is a critical chal-
lenge in integrating DTs and ACI, especially in 

complex FDT involving numerous interconnect-
ed ADTs. As an FDT grows, the computational de-
mands and coordination requirements increase, 
posing significant scalability issues. Scalability is 
crucial for environments like smart cities, where 
many ADTs must interact in real time, requiring 
efficient strategies to manage the complexity 
without a proportional increase in resource con-
sumption. Future research should focus on de-
veloping scalable architectures to support FDTs, 
enabling the seamless integration of new ADTs 
without sacrificing performance. Exploring dis-
tributed and modular approaches will be key to 
achieving composability at scale.

	❯ Adaptability: Many applications, such as intel-
ligent traffic coordination or health-care mon-
itoring, require real-time data exchange and 
adaptability to changing conditions. Ensuring 
that FDTs can respond accurately and in a time-
ly manner under fluctuating conditions is a key 
challenge. Future research should focus on de-
veloping adaptive FDTs capable of adjusting to 
dynamic environments, while maintaining their 
overall performance.

	❯ Fault tolerance and resilience: A fault-tolerance 
FDT requires mechanisms to maintain function-
ality even in the event of failures. Ensuring that 
multiple ADTs remain available and equipped 
with self-healing capabilities is essential for sys-
tem recovery when a failure occurs. To achieve 
fault tolerance, it is crucial to effectively manage 
the ADTs and ensure that, in case of failure, oth-
ers can seamlessly maintain the overall function-
ality of the FDT. Decentralization can be a key 
enabler of resilience but is not the sole factor in 
achieving fault tolerance. Additionally, each ADT 
must be equipped with self-healing mechanisms 
to automatically detect and fix issues as they 
arise. Future research should focus on exploring 
methods to enhance the self-healing and per-
sistence of FDTs, ensuring long-term reliability 
and robustness in dynamic environments.

	❯ Decentralization: A decentralized architecture 
of the FDT favors the composition of ADTs, en-
suring that each one can contribute specialized 
knowledge and data. Decentralization plays a 
key role for enabling scalability in FDTs. ADTs 
are managed independently and can operate in 
parallel, resulting in a more dynamic and robust 
system architecture. Future research should fo-
cus on improving methods for autonomous com-
position of DTs, ensuring seamless interaction 
between different models and systems, while 
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maintaining the performance, scalability, and 
fault tolerance of the FDT.

	❯ Managing cognitive diversity: The integration 
of multiple ADTs, each with its own model, en-
hances decision-making but also introduces 
complexity. Managing the cognitive diversity of 
models, ensuring effective communication, and 
avoiding conflicts are challenges that require 
advanced mechanisms for conflict resolution 
and knowledge aggregation. This is particularly 
relevant for systems like smart manufacturing, 
where multiple ADTs need to cooperate effi-
ciently. Future research should focus on lever-
aging ACI’s distributed problem-solving abilities 
to enhance the real-time decision-making capa-
bilities of FDTs. Additionally, methods for effec-
tively harness the cognitive diversity of different 
ADTs should be explored. By enhancing coor-
dination and conflict-resolution mechanisms, 
FDTs can benefit from diverse perspectives 
while minimizing the drawbacks of conflicting 
approaches.

	❯ Evolution: The evolution of both its constitu-
ents and the coalition should be considered 
from the very beginning. Any system is expect-
ed to evolve over time to remain useful for 
new and unexpected conditions, situations, 
events, or requirements. This implies that sys-
tems should learn from their environment and 
evolve their behavior by adapting their evolu-
tion rules and even discovering new evolution 
rules. Evolving is especially challenging in the 
context of ADTs, considering that they exploit 
heterogenous AI models that collaborate, co-
operate, and coordinate to achieve the goals 
of both the FDT and the ADTs, enhancing their 
overall effectiveness and. Different future chal-
lenges should be addressed for facilitating 
such evolution: 1) Identify and evaluate those  
AI models amenable to be evolved through time; 
2) manage cooperative and collaborative models 
efficiently as components of a coordinated FDT; 
3) prevent the emergence of undesirable behav-
iors within the coalition of ADTs over time; and 
4) evaluate the evolution of models establishing 
up-to-date metrics and frameworks. Addressing 
these four challenges will be crucial to support 
evolving autonomous and FDTs.

	❯ Data privacy and ethical implications: Data pri-
vacy is particularly important in sectors such as 
health care, where sensitive information is pro-
cessed. Developing FDTs requires sharing data 
among multiple ADTs, which raises concerns 

about data security and privacy preservation. 
Additionally, ethical issues, especially concern-
ing human DTs (HDTs), involve determining the 
limits of autonomy and the boundaries of deci-
sion-making capabilities to prevent misuse or 
unintended consequences. Two critical aspects 
must be addressed. 1) Privacy-preserving mech-
anisms for data sharing: Robust privacy-pre-
serving methods must be developed for han-
dling sensitive data in FDTs. Techniques, such 
as encryption should be adapted to ensure data 
security while maintaining system efficiency. 2) 
Ethical frameworks for HDTs: establishing eth-
ical guidelines for HDTs is crucial, especially re-
garding decision-making, autonomy, and privacy. 
Research should explore frameworks that define 
ethical boundaries, ensure user consent, and 
prevent harmful outcomes from unintended HDT 
behaviors.

CONCLUSION
This article explores the synergies between proper-
ties of DTs and ACI, analyzing how their combination 
can create powerful solutions to real-world challeng-
es, while identifying key areas that require further re-
search to fully harness their potential.

DTs and ACI are transformative technologies that, 
by leveraging their fundamental properties, can com-
plement each other to unlock new capabilities in a 
wide range of applications, from smart cities to health 
care and manufacturing. The potential of FDTs go be-
yond the current state of the art, with significant chal-
lenges to be addressed in the next future, particularly 
regarding scalability, adaptability, composability, fault 
tolerance and self-management, ethical consider-
ations and privacy preservation.

Nevertheless, the vision of fully integrated DT and 
ACI technologies is groundbreaking, promising smart-
er and more efficient solutions that can transform the 
way we manage and interact with complex systems, 
ultimately contributing to a smarter and more respon-
sive future.
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