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Federated learning stands out as a promising approach within the domain of edge computing, providing a framework for

collaborative training on distributed datasets without necessitating data sharing. However, federated learning involves the

frequent transmission of machine learning model updates between the server and clients, resulting in high communication

costs. Additionally, heterogeneous clients can further complicate the Federated Learning process and deteriorate performance.

To address these challenges, we propose adaptive self-knowledge distillation-based quality- and reputation-aware cross-device

federated learning (ASDQR) - an eicient communication and inference framework designed for heterogeneous clients.

ASDQR initiates the process by selecting high-reputation and high-quality clients to be involved in federated learning,

signiicantly impacting communication eiciency and inference efectiveness. ASDQR also introduces a model of adaptive

local self-knowledge distillation that incorporates multiple local personalized historical knowledge for more accurate inference,

allowing the historical level to be dynamically adjusted across time. Finally, we present an inference-efective aggregation

scheme that assigns higher weights to important and reliable local model updates based on clients’ contribution degrees

when performing global model aggregation. ASDQR consistently outperforms baseline methods across all datasets and

communication rounds, achieving 9.0% higher accuracy than FedAvg, 6.59% higher than MOON, 0.29% higher than FedProx,

0.2% higher than PFedSD, and 0.08% higher than FedMD on the MNIST dataset at 100 communication rounds. Similar

improvements are observed on CIFAR, HAR, and WISDM datasets, demonstrating the robustness and eiciency of ASDQR in

federated learning with non-IID data.
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1 Introduction

With the advent of Deep Learning (DL) and the popularity of the Internet of Things (IoT) in recent years, edge

devices generate massive amounts of data. Multi-access Edge Computing (MEC) [5], regarded as a promising

technique for 5G heterogeneous networks, allows edge devices to access computing resources efectively. This

is especially attractive for a wide range of IoT applications. As a consequence of industry competition and

increasingly stringent data protection regulations [39], private data sharing between diferent clients or platforms

has been severely restricted. However, the achievement of high-quality DL models within the MEC architecture

necessitates an abundance of available shared data. As an emerging privacy-preserving distributed learning

paradigm in Artiicial Intelligence (AI), Federated Learning (FL) [26] is a promising technology to address the

challenge above. The integration of MEC and FL enables edge nodes to cooperatively train a global model by

sending local model updates derived from individual raw data to the cloud server. This method preserves data

utility integrity while safeguarding data privacy.

Despite the aforementioned advantages of FL, its implementation faces several challenges. Firstly, the prolifer-

ation of edge devices and the escalating complexity of models deployed on these devices present a notable hurdle.

Concurrently, neural network models employed in DL typically comprise millions or even billions of parameters

[4]. In contrast, the network bandwidth between edge devices and cloud servers is constrained, with uplink speeds

considerably slower than downlink speeds, resulting in elevated communication costs and delays. Moreover, the

clients and data involved in FL model training may exhibit heterogeneity and unreliability, leading to instances

where not all locally trained models contribute positively to overall model convergence. If unexpected models

are sent to the cloud server for aggregation, it will not only deteriorate the performance of the trained model but

also escalate additional communication costs. Lastly, communication costs between the cloud server and clients

may account for over 70% of the total energy consumption. Consequently, optimizing the use of communication

resources to reduce bandwidth requirements, training time, and energy consumption while maintaining high

performance in MEC environments is a critical research focus.

While various attempts have been made to explore research on communication-eicient FL in the literature,

this study remains essential for addressing their challenges. Techniques such as model compression, including

parameter pruning [31], sparsiication [35], and quantization [3], reduce the size of updates but often compromise

model accuracy or introduce additional computational burdens. Increasing the number of local training iterations is

another common approach [32]; while this reduces communication frequency, it can lead to model drift, especially

in scenarios where client data is Non-Independent and Identically Distributed (non-IID). Furthermore, selecting a

subset of clients for participation in training rounds is a practical way to lower communication overhead, but

methods like random client selection [22, 32] fail to optimize model performance, and advanced client selection

techniques based on client contributions or reinforcement learning [30, 46] often require substantial computational

resources. Other promising approaches include federated transfer learning, which adapts pre-trained models to

local datasets, and adaptive compression techniques, which dynamically adjust communication based on client

capabilities. While these methods provide notable beneits, they are limited by their reliance on pre-trained models,

computational complexity, or inability to adapt efectively to heterogeneous client environments [7, 36]. Despite

these advancements, existing methods often involve trade-ofs between communication eiciency, model accuracy,

and scalability, particularly when dealing with non-IID data and resource-constrained clients. Addressing these

challenges requires a more adaptive and holistic framework that balances eiciency and performance across

diverse scenarios. The following research question has motivated us to address the above challenges described:

How can we design an adaptive, eicient, and efective FL framework for heterogeneous clients that optimizes

communication bandwidth utilization and enhances FL performance in MEC environments? Succinctly, our

approach involves selecting clients that positively inluence model training on non-IID data and aggregating

local model updates through adaptive self-knowledge distillation.
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This paper’s primary contributions are delineated as follows:

• Novel FL Framework: To tackle the challenges of communication costs and inference ineiciency in MEC en-

vironments, we propose Adaptive Self-Knowledge Distillation-Based Quality-Aware and Reputation-Aware

Cross-Silo FL (ASDQR). This innovative framework integrates client selection, adaptive self-knowledge dis-

tillation, and inference-efective aggregation into a uniied system, ensuring both communication eiciency

and inference efectiveness.

• Quality-Aware and Reputation-Aware Client Selection: ASDQR introduces a client selection mechanism

that evaluates edge nodes based on data quality, scale, label distribution, distribution diferences, and client

reputation. By incorporating the freshness of learning records, it dynamically prioritizes high-contribution

clients to drive global model updates. This approach enhances communication eiciency by minimizing

redundant communication and maximizing the impact of each communication round, particularly in

heterogeneous environments.

• Adaptive Self-Knowledge Distillation with Historical Knowledge: We propose an adaptive self-knowledge

distillation scheme that utilizes historical local knowledge from prior models to guide current training.

By dynamically assembling a personalized ensemble of historical model updates, this approach improves

inference precision and generalization in non-IID scenarios. By enhancing local model quality, it reduces

redundant or low-quality updates, indirectly decreasing communication costs.

• Inference-Efective Aggregation Scheme: The proposed framework optimizes global model aggregation by

assigning higher weights to clients with greater contributions, as determined by their historical performance,

the quality of local model updates, and reliability metrics. This weighted aggregation improves global

model accuracy and reduces communication rounds, ensuring robustness and eiciency in heterogeneous

environments.

• Experiments: Extensive experiments on real-world datasets demonstrate that ASDQR consistently out-

performs baseline methods across various settings and communication rounds. On the MNIST dataset,

ASDQR achieves a 9.0% accuracy improvement over FedAvg, 6.59% over MOON, 0.29% over FedProx, 0.20%

over PFedSD, and 0.08% over FedMD on CNN at 100 communication rounds. Similar accuracy gains are

observed across CIFAR, HAR, and WISDM datasets, highlighting ASDQR’s robustness and scalability for

FL tasks in non-IID scenarios.

The rest of the paper is arranged as follows. In Section 2, we perform literature reviews on the most recent and

related works. In Section 3, we describe the system model and formulate our problem. In Section 4, we describe

the proposed work. In Section 5, we evaluate our work in various scenarios and compare it with the literature.

Finally, we conclude our work with a future scope in Section 6.

2 Related Work

In this section, we present the related work regarding communication-eicient FL and inference-efective FL, and

Self-Knowledge Distillation in FL.

Communication-Eicient FL. Communication cost is a signiicant challenge in FL, limiting its practical

adoption. Numerous strategies have been proposed to enhance communication eiciency in FL, which can be

broadly categorized into ive primary approaches: 1) Model Compression: This method reduces the size of models

exchanged between clients and the central server. Itahara et al. [16] achieved reductions in communication and

computation costs through neural network pruning. Sattler et al. introduced STC [35], leveraging parameter

sparsiication for eicient weight update compression. Bernstein et al. [3] proposed SIGNSGD, which minimizes

communication overhead using model parameter quantization. Wu et al. developed FedKD [43], combining

adaptive mutual knowledge distillation and dynamic gradient compression to enhance both communication
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eiciency and efectiveness. While these techniques reduce communication costs, they often increase computa-

tional overhead on resource-constrained devices and may compromise model accuracy in scenarios involving

heterogeneous data distributions. 2) Local Updates: This approach allows clients to train locally on their datasets

and only transmit model updates to the central server. McMahan et al. [32] reduced the frequency of parameter

exchanges by performing multiple local updates before communication. However, prolonged local updates can

lead to model drift in non-IID settings, which may cause suboptimal global model convergence and diminished

performance in diverse client environments. 3) Client Selection: This strategy minimizes communication overhead

by selecting a subset of clients for participation. Random selection [22, 32, 41] is widely used but may degrade

model performance. Contribution- and performance-based selection [8, 30, 45] focuses on choosing clients based

on their impact on model accuracy and convergence time, using metrics like data quality and contribution.

Reinforcement learning-based approaches [10, 46, 47] adaptively select clients based on metrics such as energy

consumption and training delay. System optimization techniques [1, 15, 44, 48] further improve eiciency by

considering resource availability and environmental factors. Despite their beneits, these methods often require

signiicant computational resources and struggle to adapt dynamically to changing client conditions. Detailed

comparisons can be found in Table 3 of Appendix A. 4) Federated Transfer Learning: This technique involves

transferring a pre-trained model to clients, which is then ine-tuned using their local data. Sharma et al. [36]

signiicantly improved runtime and communication eiciency through secure federated transfer learning. Cheng

et al. [7] combined federated transfer learning with reinforcement learning-based client selection, achieving

notable gains in model accuracy and communication eiciency. Their reliance on pre-trained models, however,

limits applicability in scenarios with diverse clients, where global pre-training may not align with local data

distributions. 5) Adaptive Compression: This method dynamically selects the most suitable compression algo-

rithm based on data characteristics. Hönig et al. [13] proposed DAdaQuant, which adjusts quantization levels

dynamically across clients and time. Wang et al. [41] introduced FedCAMS, an adaptive optimization approach

that mitigates communication overhead. Diao et al. [11] developed HeteroFL, which allocates submodels to

devices based on their computational and communication capabilities, optimizing both communication and

computation. While these methods enhance communication eiciency, their computational complexity and

reliance on real-time adjustments may limit adoption in resource-constrained environments.

Inference-Efective FL. Enhancing inference efectiveness in FL is challenging due to the decentralized

and heterogeneous nature of the data and clients. Several approaches have been proposed to address these

challenges: 1) Client Selection: This strategy involves selecting a subset of clients to perform inference tasks,

thereby improving efectiveness and minimizing overall inference time. The eicacy of FL models is inluenced

by the quality of data and computational resources available to the selected clients. Methods such as ClusterFL

and PyramidFL [23, 33] prioritize clients with high-quality data and computational power to enhance inference

performance. However, many client selection approaches rely on static criteria, making them less efective in

adapting to dynamic client conditions. 2) Adaptive Federated Optimization: This method dynamically adjusts

optimization algorithms based on client characteristics and data distribution, enhancing both model efectiveness

and inference accuracy. Jin et al. proposed pFedSD [18], which improves robustness and efectiveness through

personalized optimization. Jayaram et al. [17] introduced AdaFed, leveraging serverless/cloud functions for

eicient and fault-tolerant adaptive aggregation in FL. Despite these advancements, many federated optimization

techniques fail to fully incorporate personalized training, leading to reduced inference accuracy in non-IID

scenarios.

Self-Knowledge Distillation in FL. Self-knowledge distillation in FL enhances model optimization and

personalization by enabling models to adapt to heterogeneous data distributions without external teacher models,

thereby reducing communication overhead and improving performance across diverse client datasets. Jin et al.[18]

introduced pFedSD, an innovative personalized FL framework employing self-knowledge distillation to mitigate

historical knowledge forgetting and enhance model performance through an implicit local model ensemble.

ACM Trans. Internet Technol.
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Singh et al.[37] developed PerFed-SKD, a personalized FL framework utilizing self-knowledge distillation to

streamline knowledge transfer across model iterations, easing training on resource-constrained devices while

harmonizing generalization and personalization. He et al.[12] introduced FedCAD, a class-wise adaptive self-

distillation approach for FL, which assessed the global model’s inference conidence across diferent categories

and dynamically adjusts its inluence on local training, efectively mitigating the adverse efects of non-IID data

distribution. Wang et al.[38] introduced a backbone self-distillation approach for personalized FL, enabling clients

to train models with unique weights for global updates and personalization, merging universal representation

with bespoke customization. Existing Self-Knowledge Distillation approaches in FL primarily focus on short-

term optimization, static integration of knowledge, and limited adaptability to non-IID challenges and resource

constraints.

Despite the signiicant advancements in communication eiciency, inference efectiveness, and self-knowledge

distillation in FL, several research gaps remain unaddressed. Existing works on communication eiciency often

introduce trade-ofs, such as increased computational overhead or compromised model accuracy, especially in

heterogeneous and resource-constrained environments. Similarly, while inference optimization approaches like

client selection and adaptive federated optimization improve model performance, they often rely on static criteria

or fail to incorporate personalized optimization efectively, limiting adaptability to non-IID scenarios. Furthermore,

self-knowledge distillation methods focus primarily on short-term optimization or static integration of knowledge,

lacking the lexibility to dynamically adjust to evolving client conditions and heterogeneous data distributions. To

address these gaps, this work seeks to reduce communication costs by prioritizing high-contribution clients. To

guide the selection process, we evaluate both current and historical quality and reputation metrics, considering

factors such as data quality, data scale, data heterogeneity, and client reputation, while accounting for the freshness

of learning records. Additionally, we aim to optimize inference efectiveness and minimize communication costs

by integrating client selection, adaptive personalized optimization, and inference-efective aggregation into a

uniied framework. By bridging these gaps, our framework ofers a scalable and adaptable solution tailored for

real-world heterogeneous FL environments.

3 System Description and Problem Definition

In this section, we initially introduce the cloud-edge-based cross-silo FL system. Subsequently, we provide a

formalization of the problem studied in this paper.

3.1 System Description

In this work, we focus on the cloud-edge-based cross-silo FL system, as illustrated in Figure 1. In the FL system,

our scenario considers a cloud server and � edge servers (each edge server represents an organization), and

each edge server covers all the edge devices in that area. Let N = {1, 2, · · ·, �, · · ·, � } represents the set of edge

servers. For each edge server �, where � ∈ N , there exists a local dataset S� collected from the edge devices it

covers. The size of this local dataset is represented by �� = |S� |. The edge server � is capable of selecting a subset

X� ⊆ S� from its local dataset for local model training. Here, �� represents the size of the chosen subset, i.e.,

�� = |X� |. The frequently used symbols in this paper are meticulously detailed in Table 1. The detailed procedure

for Cloud-edge-based cross-silo FL training is elaborated below.

Step 1: Download. In the initial phase, the edge servers are required to download the global model aggregated

from the cloud server in the preceding round � (Note that the global model is randomly initialized during the irst

round).

��� = �� . (1)

ACM Trans. Internet Technol.
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Fig. 1. The overview of cloud-edge based cross-silo FL.

Step 2: Updates. Edge servers proceed to train their local models by utilizing their respective local raw data in

accordance with the downloaded global model.

��+1� = ��� − �▽�� (�
�
� ;�

�
�). (2)

Step 3: Upload. Edge servers transmit their local model updates to the central server.

Step 4: Aggregation. Cloud server aggregates all selected local model updates to generate a new global model,

where N� is the clients selected to participate in the model training.

��+1 =

∑
�∈N� [���

�+1
� ]∑

�∈N� ��
(3)

Multiple rounds are necessary to achieve convergence in FL, with each round comprising � iterations. The

objective of FL is to obtain the optimal weights, denoted as �∗, for the global model to minimize the global loss

function �(�).

�(�) =
︁
�∈N�

��∑
�∈N� �

�
�� (�� ;X�). (4)

where �� (�� ;X�) represents the loss for subset X� with respect to � .

�∗ = argmin
�

�(�). (5)

3.2 Problem Definition

The communication eiciency of FL is determined by the time required to upload model updates from edge

clients to the cloud server and the total volume of data (in bits) transferred between edge clients and the cloud.

Communication Time: The communication time in FL consists of two components: the download time for

global model updates from the cloud server to edge servers (downlink) in Step 1 and the upload time for local

model updates from edge servers to the cloud server (uplink) in Step 3. Among these, the uplink bandwidth

often represents a more signiicant bottleneck due to several reasons. First, internet providers generally prioritize

download speeds over upload speeds to enhance user experiences for activities like streaming and ile downloading.

Second, in FL, the downlink operation involves broadcasting the same global model to all clients, which is typically

more eicient compared to aggregating diverse parameters from multiple clients [13]. As such, this work focuses

on uplink communication time while neglecting the comparatively minor contribution of downlink time.

ACM Trans. Internet Technol.
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Given the constraints of limited network bandwidth and the increasing number of connected clients, the data

transfer rate decreases as more clients are added. According to Shannon’s theorem, the maximum data transfer

rate for a communication link is given by:

� = � × ���2

(
1 +

���

��

)
(6)

where� is the channel’s maximum capacity, � denotes the channel bandwidth, ��� represents the signal-to-noise

ratio, and �� is the number of clients participating in FL. Assuming that ��� remains constant throughout the

FL process and that data is transmitted independently from each edge server to the central server, an increase in

�� reduces the channel capacity � due to bandwidth sharing among clients. This reduction can adversely afect

the aggregation of complex models requiring large amounts of data. Thus, the communication time for one round

of FL is deined as:

����� =
��

�
=

��

� × ���2

(
1 + ���

��

) (7)

Here, �� represents the total size of the uploaded model parameters from all selected edge servers in a round.

From Eq. (7), it is evident that����� increases with the number of selected clients �� . Moreover,����� is directly

proportional to �� , indicating that an increase in the size of the uploaded model updates also leads to higher

communication time. This, in turn, impacts the overall training time of the system.

To achieve communication-eicient and inference-efective FL based on Eq. (6) and (7), we employ two key

strategies: 1) Quality-Aware and Reputation-Aware Client Selection: Instead of random client selection, the

proposed mechanism prioritizes clients with higher contributions to model training. By selecting a subset of

clients that provide the most valuable updates, the total number of participating clients (�� ) is reduced, maximizing

the utility of the available communication bandwidth. 2) Model Update Compression: Self-distillation ofers an

efective approach to reduce communication time (�����) by optimizing model update compression, thereby

decreasing the size of transmitted updates (��) while preserving their quality. These strategies work in tandem to

optimize the use of communication resources while maintaining high model accuracy and robustness in non-IID

and heterogeneous scenarios.

3.3 Problem Dificulty

Formulating an efective and eicient FL strategy poses signiicant challenges for several reasons. 1) Data Hetero-

geneity: Numerous research assumes that the local data distribution is homogeneous and the local data samples

are IID across all clients, which is often inconsistent with real-world scenarios. Data heterogeneity, in reality, can

increase communication requirements as clients may need to exchange more information to ensure comprehen-

sive model training. 2) Model Reinitialization and Catastrophic Forgetting: Each communication round in FL starts

by initializing the local model with the latest global model. This initialization process discards previously acquired

local knowledge, necessitating a restart in training the local model for each new communication round. Such a

process often leads to catastrophic forgetting, signiicantly degrading the local model’s performance, especially in

non-IID settings. 3) Aggregate Oversight: The FedAvg algorithm considers only the quantity of local data samples

contributed by each client for global model aggregation, neglecting the importance and credibility of local model

updates. Consequently, the global model might undervalue or overlook clients whose local data is exceptionally

valuable and credible, thereby impacting overall performance. Additionally, FedAvg’s assumption that local data

samples are IID across all clients can lead to biased local model updates and suboptimal model performance. Our

proposed framework is designed for communication eiciency and efective inference, systematically addressing

these issues.

ACM Trans. Internet Technol.
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Table 1. Frequently Used Symbols.

Symbol Description Symbol Description

N A set of edge servers. N A number of edge servers.

N� A set of selected edge servers. �� A number of selected edge servers.

S� Local dataset of EN �. �� Size of S� .

����� The communication time of FL in one

round.

X� Chosen subset for EN �.

�� Size of X� . �� Client �’s local model.

��� Local model of client � at round � . ��+1 Global model at round � + 1.

�� (� ;X�) Local loss function of client �. �(�) The global loss function.

ℎ�� The label distribution of client �. ���� The distribution diference of client �.

� Number of iterations in one round. � Channel bandwidth.

��� Signal-to-noise ratio. � Maximum speed supported by the channel.

��� Learning quality of EN � in round � . ������ Training loss of client � in round � .

�������� Average training loss of all clients in round

� .

�� Number of positive interactions.

�� Number of negative interactions. �� A set of learning quality.

�� A set of learning reputation. �� Success probability of packet transmission.

�� Total size of the uploaded model updates

in one round.

�
� (� )
� Number of bits uploaded from the edge

servers � in round � .

4 Design Details

In this section, we delineate ASDQR’s three major components: 1) Client Selection with quality and reputation

awareness; 2) Adaptive local model update with historical knowledge; and 3) Inference efective aggregation

scheme. Figure 2 provides an overview of the ASDQR framework.
4.1 Client Selection with uality and Reputation-Awareness

In this component, we assume that the round � commences at � ��−1 and concludes at � �+1� . Clients desiring to

participate in training must submit their model updates by � �� within the interval [� ��−1, �
�+1
� ], failing which they

will be excluded from round � . During round � , only chosen clients are eligible to engage in model aggregation at

� �+1� . Subsequently, the succeeding round starts.
4.1.1 uality Estimation. The quality estimation process comprises two distinct stages: learning quality quan-

tiication and the current learning quality estimation for ��ℎ client with interaction freshness, elucidated in the

subsequent discussion.

a) Learning Quality Quantiication: A cross-entropy divergence measurement can be used to evaluate client

impact in globally trainedmodels, as suggested by Chen et al. [6]. In any case, this approach introduces considerable

overhead during data transmission. An alternative approach, proposed by Deng et al. [9] emphasizes the disparity

between mean loss of global task and local model average training loss. The loss disparity ��ℎ client at round � is

in Eq.(8):

��� = �������� − ����
�
� . (8)

where the training loss of client � be denoted as ������ in round � , and the mean loss across all clients in round �

be represented as ��������.

In assessing the quality of clients within FL, it is recognized that relying solely on loss values may ofer an
incomplete depiction of data quality. Hence, we advocate for the development of a composite scoring function
that considers multiple factors, encompassing loss values, data volume, and label distribution. This composite
scoring function serves as a robust metric for evaluating and ranking the quality of client data. The proposed

ACM Trans. Internet Technol.
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Fig. 2. Overview of proposed ASDQR.

composite scoring function of learning quality is articulated as follows:

��� =

{
�1 (�

�
�)
′ +�2 (�

�
�)
′ +�3 (ℎ

�
�)
′ +�4 (��

�
�)
′, if ���−1 < ��� ≤ �

�+1
� ;

0, Otherwise.
(9)

Given that�1 +�2 +�3 +�4 = 1, where ��� , �
�
� , ℎ

�
� , and ��

�
� represent the loss disparity, data volume, and label

distribution, and distribution diference, respectively. We implemented a weight optimization algorithm designed

to maximize a performance metric by adjusting the weights assigned to diferent data categories, including

loss, volume, label, and distribution diferences. The algorithm optimizes these weights by solving a constrained

minimization problem using the SLSQP method, ensuring that the weights sum to 1 and remain within the range

[0, 1]. The corresponding normalized values are denoted as (���)
′, (���)

′, (ℎ��)
′ and (����)

′. Speciically, ℎ�� is deined

as Eq. (10):

ℎ�� =

100 × � ����

� ����
(10)

where � � denotes the list of the occurrence frequencies for each label in round � and Eq. (10) is formulated to

quantify the extent of imbalance in the frequency of label occurrences. A larger disparity between � ���� and �
�
���

corresponds to an increased ℎ�� , indicative of more pronounced label distribution discrepancies. The normalization

of the percentage values facilitates a standardized metric for comparing the gap, encompassing a uniform range

from 0 to 100.

The KL divergence, denoted as ���� , is used to measure the diference between the global and local data

distributions, as deined in Eq. (11):

��� =

�︁

�=1

�client � (�) · log
�client � (�)

�global (�)
(11)
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Algorithm 1 Quality and Reputation Estimation (QRE).

Input: Average loss �������, the list of the label frequencies in round � � � , the global distribution of class �

���
global
(�), the local distribution of class � for client� ���

client�
(�), # positive/negative interactions ��/�� , learning

quality/reputation set ��/�� , packet transmission success probability �� .

Output: Quality estimation ��� , reputation estimation ��� .

1: Initialize ��� ← ∅, ��� ← ∅

2: for each client � ∈ N� in parallel do

3: ���� ← ��������� − ����
��
�

4: ℎ��� =
100×��

���

�����

5: ����� =
∑�
�=1 �

��
client�

(�) · log
�
��
client�

(� )

�
��
global
(� )

6: Nomalize ���� , ℎ
��
� , �

��
� , ��

��
� to (���� )

′, (ℎ��� )
′, (���� )

′, (����� )
′

7: ���� ← �1 (�
��
� )
′ +�2 (�

��
� )
′ +�3 (ℎ

��
� )
′ +�4 (��

��
� )
′

8: Update �� ← �� + {�
��
� }

9: Estimate learning quality �̂��� ⊲ Eq. (12)

10: Update ��� ← ��� + {�̂
��
� }

11: if �̂��� > 0 then

12: Update �� ← �� + 1

13: else

14: Update �� ← �� + 1

15: end if

16: ��� ← ��
���

��� + ���
17: �� ← 1 − ��
18: ��� ← ��� + ���
19: Update �� ← �� + {�

��
� }

20: Estimate learning reputation �̂��� ⊲ Eq. (15)

21: Update ��� ← ��� + {�̂
��
� }

22: end for

23: return ��� , ���

Here, �global (�) represents the global distribution of class � , while �client� (�) denotes the distribution of class �

for client �. A global data distribution is calculated by normalizing the frequency of each class over the entire

dataset, while a client data distribution is determined by normalizing a subset of data.

b) The Current Learning Quality estimation of client � with Interaction Freshness: The �-th client’s data undergoes

changes in every round. When a malicious node contributes high-quality data in a single round, it can engage

in malicious activities during model training and exploit the training opportunity. Contrary to cross-device FL,

cross-silo FL possesses an identity and allows clients to carry their state from round to round. Consequently,

based on the historical learning quality records of client �, we can estimate its current learning quality. We

employ a freshness fading function to incorporate time efects on learning quality through assigning weights:

� (�) = ���−1−� , where � ∈ (0, 1) represents a given fade parameter concerning quality freshness, �� is the most

recent round, and � is the training round within [�0, �1, �2, . . . , ��−1] [19]. Here, we determined the optimal fade

parameter � by conducting a grid search over the range [0.01, 0.99], selecting the value that maximized our

learning quality metrics in estimating the learning quality’s freshness and relevance over time. This optimization
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helps understand how diferent � values inluence the model’s capacity to represent the dynamic nature of

learning quality over time, acknowledging that � itself might vary with each round and across time. Thus, the

current learning quality of client � up to round � is computed by Eq. (12).

�̂��� =

∑��−1
�=�0
[� (�)���]∑��−1

�=�0
� (�)

. (12)

4.1.2 Reputation Estimation. Similarly to quality estimation, reputation estimation consists of two distinct stages:

learning reputation quantiication and current learning reputation estimation of client � with fresh interactions.

a) Learning Reputation Quantiication: In this study, we utilize a subjective logic model [29], an extensively

employed probabilistic reasoning framework, to derive the learning reputation of client � based on its learning

quality.

��� = ���
����

���� + ��
�
�

��� = ���
����

���� + ��
�
�

��� = 1 − ��� .

(13)

In the proposed FL framework, the reputation opinion of client � is represented by a tuple vector ��� =

{��, ��, ��} in round � . Here, ��, �� , and �� denote belief, disbelief, and uncertainty, respectively. The constraints

are �� +�� +�� = 1, with ��, ��, �� ∈ [0, 1]. Additionally, �
�
� and �

�
� represent the numbers of positive and negative

interactions in the round � separately. The cloud server regards the training process as a positive interaction if the

learning quality of the client � is > 0, and vice versa. Furthermore, ��� signiies the successful packet transmission

probability, inluencing the uncertainty of the opinion. Consequently, the client �’s reputation in round � is

formulated as Eq. (14).

��� = ��� + ��
�
� . (14)

where the coeicient � ∈ [0, 1] delineates the extent to which uncertainty inluences reputation.

In order to mitigate the impact of negative interaction events, a greater weight is allocated to negative

interactions during the reputation calculation than to positive interactions. The weights representing positive

and negative interactions are denoted by � and � , respectively. It is noteworthy that � ≪ � , and � + � = 1.

b) The Current Learning Reputation estimation of client� with Interaction Freshness: In cross-silo FL, the reputation

of clients undergoes changes across rounds, rendering the client intermittently unreliable for model training.

Similarly, we apply the freshness fading function � (�) to assign weights to clients based on their interaction

freshness. Consequently, the current learning reputation of client � up to round � is formulated as Eq. (15).

�̂��� =

∑��−1
�=�0
[� (�)���]∑��−1

�=�0
� (�)

�̂��� =

∑��−1
�=�0
[� (�)���]∑��−1

�=�0
� (�)

�̂��� =

∑��−1
�=�0
[� (�)���]∑��−1

�=�0
� (�)

��� �̂��� =

∑��−1
�=�0
[� (�)���]∑��−1

�=�0
� (�)

.

(15)
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Algorithm 2 Client Selection.

Input: # Positive/negative interactions ��/�� , learning quality/reputation set (client�)��/�� , packet transmission

success probability �� , learning quality/reputation set (round �� ) �
�� /��� , selected client N� .

Output: Selected client N� , normalized contribution �� .

1: ���� ← ∅

2: for � ∈ N� do

3: �� (�� ;X�) ←
1
|N� |

∑
�∈N� �� (��)

4: ���� ← ���� + {��}

5: end for

6: ������� ← avg(���� )

7: ��� , ��� ← QRE(�������, ��, ��, ��, ��, ��)

8: �� ←
���

max���
×

���
max���

9: Sort N� in descending order of �� as��
10: for� ∈ �� do

11: Record the index position of� as ��� ;

12: if �� [�] < 0 then

13: break

14: end if

15: end for

16: ���� ← �� [��� :]

17: �� ← �� [���� ]

18: for � ∈ N� do

19: if � ∈ ���� then

20: N� ← N� − {�}

21: end if

22: end for

23: Normalize the contribution of selected clients �� as ��
24: return N� , ��

Algorithm 1 outlines the quality estimation process and reputation estimation for all clients in round �� and

provides a systematic way to estimate the quality and reputation of clients in a distributed system, based on

their past performance. These estimates can be used to make informed decisions about which clients to trust and

assign tasks to them.

4.1.3 The Estimation of Contribution Degree. Clients may upload intentionally or unintentionally low-quality

model updates, thereby compromising the overall performance of the global model. To ensure the client selection

with both high quality and reputation, we devise a measurement method employing a heuristic algorithm, outlined

as follows:

�� =
�̂�

max �̂�
×

�̂�

max �̂�
(16)

where �̂� =
{
�̂�1, �̂

�
2, · · ·, �̂

�
�

}
represents the set of learning quality for clients in round � . Themaximum learning qual-

ity in round � , denoted as max �̂� , corresponds to the highest value within this set. Similarly, �̂� =
{
�̂�1, �̂

�
2, · · ·, �̂

�
�

}
signiies the set of learning reputation for clients in round � , and max �̂� denotes the highest learning reputation

value in round � . The contribution degree of clients in round � is denoted as �� . When ��� is less than 0, it
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Fig. 3. Adaptive Local Self-Knowledge Distillation with Historical Knowledge.

indicates that client � is deemed unreliable, or the contributed data is not beneicial for enhancing model training

performance. In this study, the contribution degree, considering both the quality and reputation of the client, is

determined based on the data contributed in the current round and historical records of learning quality and

reputation.

Algorithm 2 (Lines 6-8) presents the process of estimating the contribution degree for selected clients in

round �� . The procedure takes into account multiple factors that can impact clients’ contribution, such as their

data quality, data scale, data heterogeneity, client reputation, and success probability in packet transmission.

After estimating the contribution degree for each client, the algorithm excludes those clients whose estimated

contribution degree is less than 0 (lines 9-20). This step is crucial for selecting high-quality and high-reputation

clients from a long-term perspective, as it eliminates clients who are unlikely to provide signiicant value to the

system in the current round. By focusing on clients with positive estimated contribution degrees, the system can

allocate tasks more eiciently, improving overall performance.

4.2 Adaptive Local Self-Knowledge Distillation with Historical Knowledge

Dislike cross-device FL, clients in cross-silo FL may have participated in each round of model training and

carried the state in each round, which means the model retains information from previous rounds. To mitigate

the negative impact of catastrophic forgetting on performance, we incorporate self-knowledge distillation to

guide the current local model using historical knowledge. Speciically, we irst generate knowledge from local

historical knowledge by combining the local model in each communication round, then transfer the knowledge

to the current local model through knowledge distillation. To achieve higher model performance, the key is to

explore how to generate a personalized guided model by exploiting local historical knowledge. In this work, we

explore six diferent schemes to identify the most efective scheme for reducing performance degradation due to

catastrophic forgetting as illustrated in Figure 3, detailed as follows.

Scheme1: The average of all historical knowledge. In this scheme, the local models of client � are preserved

in each round.�� =

{
�0
�,�

1
�, · · ·,�

��−1
�

}
represents the set of local models in the irst � rounds. The local guiding
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model for client � in the round �� is obtained as follows:

�̂� =

∑��−1
�=0 �

�
�

|�� |
. (17)

Scheme2: All historical knowledge with interaction freshness. Diferent from Scheme1, the local guiding

model for client � in the round �� in Scheme2 is obtained as follows:

�̂� =

∑��−1
�=0 [� (�)�

�
�]∑��−1

�=0 � (�)
. (18)

Scheme3: The average of bufer-ixed historical knowledge. In this scheme, the local models of client � are

preserved from the last � rounds, where � is a speciied ixed number. �� =

{
���−�� , · · ·,���−1�

}
represents the set

of local models in the last � rounds. The local guiding model for client � in the round �� is obtained as follows:

�̂� =

∑��−1
�=��−�

���

|�� |
. (19)

Scheme4: Bufer-ixed historical knowledge with interaction freshness. In contrast to Scheme3, the local

guiding model for client � in the round �� of Scheme4 is in Eq. (20).

�̂� =

∑��−1
�=��−�

[� (�)���]∑��−1
�=��−�

� (�)
. (20)

Scheme5: The average of bufer-adaptive historical knowledge. In this scheme, the bufer-adaptive scheme

employs a distinct historical level �� for each round � , where �� is a dynamic and responsive parameter that

adjusts with the communication rounds. The following equation succinctly deines the bufer-adaptive historical

level �� :

�� =

{
0 � = 0

⌈�/�⌉ � > 0
(21)

where � serves as the bufer adaptive parameter, inluencing alterations in the bufer size throughout various

communication rounds. Further details on this aspect will be provided in Section 5.4. �� =

{
�
��−��
� , · · ·,���−1�

}
denotes the set of local models in the last �� rounds. The local guiding model for client � in round �� is obtained

as follows:

�̂� =



∅ � = 0∑��−1

�=��−��
���

|�� |
� > 0

(22)

Scheme6: Bufer-adaptive historical knowledge with interaction freshness. Diferent from Scheme5, the

local guiding model for client � in the round �� of Scheme6 is in Eq. (23):

�̂� =



∅ � = 0∑��−1

�=��−��
[� (�)���]∑��−1

�=��−��
� (�)

� > 0
(23)

In our evaluation of these schemes, Scheme6 outperformed the other schemes in reducing the impact of

catastrophic forgetting. This was demonstrated in the results presented in Section 5.5, which showed that

Scheme6 was the most efective scheme at mitigating performance degradation due to catastrophic forgetting.
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Then, we utilize self-knowledge distillation from the local guiding model �̂� to regularize current local training

���� . Consequently, the loss function Ψ� (�
��
� ) of the client � in the round �� is a combination of training loss

�� (�
��
� ) and distillation loss as follows:

Ψ� (�
��
� ) = �� (�

��
� )︸   ︷︷   ︸

�� ����

+ �L�� (� (�̂�) | |� (�
��
� ))︸                       ︷︷                       ︸

�� ����

. (24)

where � is a parameter that controls the relative weight of the two terms in the loss function and higher values

of � mean placing more emphasis on knowledge distillation. Here, �� (·) denotes the standard cross-entropy

loss function while L��(·) signiies the Kullback-Leibler (KL) Divergence between the guiding personalized

prediction � (�̂�) and the current local prediction � (���� ). � (·) represents a softmax function that calculates the

soft prediction.

In the ASDQR framework, each client � updates its local weights���� by running stochastic gradient descent

(SGD) using its local objective Ψ� (�
��
� ) instead of �� (�

��
� ). More speciically, the local weights���� are updated

using the following SGD update rule:

���� = ���� − �∇Ψ� (�
��
� , �̂

��
� ) (25)

where � denotes the learning rate, and ∇Ψ� (�
��
� ) represents the gradient of the local objective concerning the

local weights.

To address resource limitations, we developed the ClientBuferSelection and UpdateBufer algorithms, as

detailed in Appendix D. These algorithms enable users to select an appropriate bufering strategy based on their

available resources. For clients with substantial resources, we recommend using larger adaptive bufers (e.g.,

ABufer15) to improve model performance and personalization. Conversely, for clients with limited resources, a

small ixed bufer (e.g., Bufer1) is more suitable, as it reduces computational and storage overhead.

4.3 Inference Efective Aggregation Scheme

From the analysis above, we observe that FedAvg focusing only on data quantity can lead to several challenges,

especially when dealing with data heterogeneity. To solve the challenges, we incorporate data quality, data scale,

data heterogeneity, distribution diference, and client reputation when performing global model aggregation.

Speciically, We utilize the contribution degree obtained by estimated quality and reputation as aggregation

weights to give higher weights to important, high-quality, and reliable model updates.

���+1 ←

∑
�∈N� [�

�
��

�� ,�
� ]∑

�∈N� �
�
�

(26)

where N� means the selected clients, � �� denotes the Normalized contribution degree,��� ,�� presents the local

model updates distilled from historical knowledge, details in Section 4.2 Scheme6.

The procedure for local client update of the ASDQR framework is presented in Algorithm 3 (Lines 20-30). Each

client � updates its local weights ���� by using its local objective Ψ� (�
��
� ) instead of �� (�

��
� ). The server then

aggregates the local updates and assigns weights according to their contribution degree, as detailed in Algorithm 3

(Lines 5-19). ClientBuferSelection in Line 3 ofers resource-aware dynamic bufer selection, ensuring adaptation

to diverse client resource conditions, while UpdateBufer in Line 16 improves model training generalization and

stability through eicient historical update management. Together, they empower the algorithm with robust

adaptability, resilience, and communication eiciency in heterogeneous and non-IID environments. Furthermore,

these mechanisms enhance communication eiciency in Appendix E by minimizing redundant transmissions

and adaptively managing data, while optimizing Computational Complexity in Appendix F through dynamic

adjustments of bufer size and computational workload, ensuring scalability across varied client resources.
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Algorithm 3 ASDQR with Bufer Selection.

Input: The set of clients N , step size �, the success probability of packet transmission �� .

Output: Global model���+1.

1: for each client � ∈ N do

2: ��� � ��� ← ∅, �� ← ∅, �� ← ∅, �� ← 0, �� ← 0

3: ��� � ��_����, � ����_����, � ← ClientBuferSelection(resources�) ⊲ Appendix D

4: end for

5: for �� = 0 to � − 1 do

6: if �� = 0 then

7: N� ← N

8: else

9: N� , �� ← Client Selection(��, ��, ��, ��, ��)

10: end if

11: Cloud server sends��� to selected clients N�
12: ��� ,0� ← ���

13: for each client � ∈ N� in parallel do

14: ��� ,�� ← ������������ (�� , ��� � ���,�
�� ,0
� )

15: ��� � ��� ← ��� � ��� + {�
�� ,�
� }

16: UpdateBufer(��� � ���,�
�� ,�
� , ��� � ��_����, �� , � ����_����, �) ⊲ Appendix D

17: end for

18: Aggregates local updates:���+1 ←
∑
�∈N� �

�
��

�� ,�
�∑

�∈N� �
�
�

19: end for

20: function ClientUpdate(�� , ��� � ���,�
�� ,0
� )

21: if �� = 0 then

22: �̂��� = 0

23: else

24: �̂��� =

∑��−1
�=��−��

� (�) × ��� � ��� [�]∑��−1
�=��−��

� (�)

25: end if

26: for � = 0 to � − 1 do

27: Computes gradient:��� ,�� ← ∇�� (�
�� ,�
� , ��� ,�� )

28: ��� ,�+1� ← ��� ,�� − �∇Ψ� (�
�� ,�
� , �̂��� )

29: end for

30: end function

Through this process, the server allocates weight to each client’s model update, considering its contribution

degree, which incorporates both the learning quality and reliability of the model update. This approach ensures

that updates with higher contribution degrees receive increased weight in the aggregation process, thereby

improving the overall performance of the global model. By utilizing the estimation of data quality and client

reliability, the ASDQR framework can also efectively handle non-IID data challenges. In addition, we present a

theoretical convergence analysis of Algorithm 3 for strongly convex problems, considering practical assumptions

such as non-IID, partial device participation, and local updating. The proof is shown in Appendix B.
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Table 2. Inference Accuracy Overview Under Non-IID.

Dataset Method Scale FedAvg MOON FedProx PFedSD FedMD ASDQR

MNIST

MLP

10 93.54 ± 0.06 93.82 ± 0.33 95.94 ± 0.12 95.73 ± 0.07 95.98 ± 0.09 96.04 ± 0.09

50 90.28 ± 0.13 90.32 ± 0.12 93.05 ± 0.16 93.00 ± 0.12 93.12 ± 0.11 93.43 ± 0.04

100 88.51 ± 0.11 88.54 ± 0.07 91.32 ± 0.12 91.31 ± 0.12 91.49 ± 0.11 91.72 ± 0.07

CNN

10 96.31 ± 0.16 96.43 ± 0.20 98.33 ± 0.09 98.34 ± 0.13 98.47 ± 0.07 98.53 ± 0.04

50 92.17 ± 0.38 96.21 ± 0.17 96.30 ± 0.07 92.30 ± 0.13 96.53 ± 0.09 96.68 ± 0.03

100 85.40 ± 0.30 89.75 ± 0.27 93.44 ± 0.16 93.31 ± 0.06 94.21 ± 0.12 94.59 ± 0.04

ResNet18

10 99.19 ± 0.06 99.35 ± 0.06 99.21 ± 0.03 99.40 ± 0.01 99.41 ± 0.04 99.44 ± 0.03

50 99.08 ± 0.03 99.33 ± 0.06 99.11 ± 0.15 99.38 ± 0.07 99.40 ± 0.05 99.42 ± 0.02

100 99.01 ± 0.09 99.23 ± 0.11 99.06 ± 0.12 99.30 ± 0.11 99.32 ± 0.10 99.36 ± 0.09

CIFAR-10

MLP

10 43.70 ± 0.63 44.68 ± 0.09 47.54 ± 0.42 47.15 ± 0.70 48.11 ± 0.13 48.27 ± 0.24

50 39.09 ± 0.16 42.30 ± 0.25 43.40 ± 0.46 43.18 ± 0.16 43.47 ± 0.19 43.56 ± 0.15

100 35.95 ± 0.24 40.50 ± 0.23 40.54 ± 0.22 40.45 ± 0.34 41.09 ± 0.17 41.27 ± 0.05

CNN

10 56.56 ± 1.14 59.83 ± 0.89 67.62 ± 1.30 68.15 ± 0.15 68.42 ± 0.17 68.61 ± 0.11

50 42.38 ± 0.34 54.13 ± 0.32 55.22 ± 0.10 55.27 ± 0.64 55.68 ± 0.23 55.96 ± 0.12

100 30.89 ± 0.29 42.15 ± 1.40 43.95 ± 0.54 44.23 ± 0.66 46.93 ± 0.58 47.45 ± 0.08

ResNet18

10 63.71 ± 0.96 66.43 ± 0.61 66.24 ± 0.94 71.29 ± 0.85 73.29 ± 0.51 75.63 ± 0.30

50 50.31 ± 0.26 59.86 ± 0.66 52.56 ± 0.72 62.99 ± 0.90 64.28 ± 0.87 66.33 ± 0.71

100 42.70 ± 0.30 55.28 ± 0.56 44.59 ± 0.31 56.37 ± 0.49 57.39 ± 0.49 58.50 ± 0.60

HAR

MLP

10 82.31 ± 1.55 84.74 ± 0.66 85.71 ± 0.51 86.08 ± 0.40 86.91 ± 0.53 87.71 ± 0.29

50 61.93 ± 0.60 75.84 ± 0.64 77.00 ± 0.85 79.46 ± 1.16 81.17 ± 0.39 82.64 ± 0.04

100 55.61 ± 0.19 60.40 ± 1.60 61.16 ± 1.29 60.63 ± 1.43 62.84 ± 0.61 64.52 ± 0.03

CNN

10 80.19 ± 2.66 90.05 ± 1.71 89.24 ± 0.48 90.75 ± 0.11 90.96 ± 0.08 91.15 ± 0.05

50 63.28 ± 0.53 75.94 ± 0.22 78.25 ± 0.28 79.61 ± 0.36 81.74 ± 0.19 83.13 ± 0.12

100 59.51 ± 1.43 65.80 ± 0.68 69.50 ± 0.95 70.03 ± 0.56 71.24 ± 0.58 72.06 ± 0.14

ResNet18

10 90.56 ± 0.39 93.63 ± 1.71 92.31 ± 0.36 93.90 ± 1.60 93.84 ± 0.87 94.51 ± 0.63

50 89.59 ± 2.22 91.91 ± 0.43 91.21 ± 0.24 92.01 ± 1.03 92.06 ± 0.69 92.56 ± 0.78

100 83.95 ± 0.45 89.51 ± 1.37 88.33 ± 0.33 90.53 ± 0.63 91.21 ± 0.74 91.93 ± 0.46

WISDM

MLP

10 74.53 ± 0.14 79.74 ± 0.92 80.38 ± 0.27 80.18 ± 0.35 81.52 ± 0.29 82.71 ± 0.40

50 67.75 ± 0.39 77.62 ± 2.78 76.11 ± 0.53 76.90 ± 0.23 78.16 ± 0.72 78.94 ± 0.38

100 62.15 ± 0.47 70.26 ± 0.13 70.97 ± 0.61 71.42 ± 0.47 72.06 ± 0.39 73.20 ± 0.45

CNN

10 79.62 ± 0.31 85.13 ± 0.54 84.83 ± 0.10 88.02 ± 1.02 89.69 ± 0.32 90.84 ± 0.09

50 68.05 ± 1.26 80.21 ± 0.37 79.03 ± 0.49 81.08 ± 0.67 82.95 ± 0.41 84.26 ± 0.14

100 61.78 ± 0.89 63.19 ± 0.34 62.41 ± 0.01 65.78 ± 0.29 67.63 ± 0.29 68.99 ± 0.15

ResNet18

10 83.79 ± 1.27 87.44 ± 0.50 88.04 ± 0.86 92.12 ± 0.99 93.37 ± 0.67 95.64 ± 0.32

50 81.57 ± 0.07 87.09 ± 1.06 84.83 ± 1.00 89.86 ± 0.39 89.72 ± 0.14 90.23 ± 0.03

100 79.59 ± 3.23 86.39 ± 0.34 83.44 ± 0.82 87.23 ± 1.53 89.62 ± 0.49 90.18 ± 0.05

4.4 Secure Analysis

In this subsection, we present a security analysis of the ASDQR framework, detailing potential security threats

and the balance between privacy preservation and system eiciency. Security Implications of ASDQR are as

follows:

(1) Privacy Preservation: ASDQR utilizes the FL paradigm to ensure data privacy by only uploading model

updates, not raw data. The framework’s adaptive self-knowledge distillation further anonymizes these

updates by incorporating personalized historical knowledge, thereby diminishing the risk of reverse

engineering attacks.

(2) Robustness Against Poisoning Attacks: ASDQR’s client selection, based on quality scores and reputation,

mitigates the risks of model poisoning. This selective participation reduces the likelihood of malicious

updates, enhancing the model’s resilience against data poisoning and backdoor attacks.
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(3) Data Integrity and Model Security: The framework’s adaptive local self-knowledge distillation constrains

the impact of any single client’s update on the global model, protecting against compromised or malicious

clients. The inference-efective aggregation, which assigns weights based on client contributions, prevents

the disproportionate inluence of anomalous updates.

While ASDQR demonstrates signiicant improvements in communication eiciency and inference accuracy

across diverse datasets and FL scenarios, several limitations require further exploration. One key challenge is

addressing extreme client heterogeneity. When clients exhibit substantial disparities in computational resources,

network conditions, or data distributions, the current adaptive mechanisms may struggle to maintain fairness

and robustness. Moreover, under stringent communication constraints, even optimized frequent model updates

can become a bottleneck. Additionally, real-time deployments may face challenges due to latency introduced by

adaptive client selection and aggregation processes. The framework’s implementation complexity also necessi-

tates careful tuning of components, such as the reputation system, adaptive knowledge distillation, and model

aggregation. Future research could explore advanced client selection strategies, including data-driven approach,

stratiied sampling, clustering, or fairness-aware algorithms, to enhance client diversity and improve global model

generalization while ensuring fairness. Augmenting the knowledge distillation framework with hierarchical

or graph-based methods may better accommodate highly non-IID data distributions. Finally, adopting opti-

mized communication strategies, such as gradient compression, quantization, or asynchronous protocols, could

signiicantly reduce communication overhead, improving the framework’s scalability in resource-constrained

environments.

5 Evaluations

In this section, we evaluate the performance of ASDQR to train diferent models on a variety of datasets and

discuss the experimental results. Here, we set frac =60% to reduce the performance degradation of other baselines

due to random selection. We assume three diferent FL scenarios: 1) � = 10 clients with frac = 60% sampleing ratio;

2) � = 50 clients with frac = 60% sampleing ratio; 3) � = 100 clients with frac = 60% sampleing ratio. We run � =

100 communication rounds for every scenario. During each training round, all clients adopt a ixed mini-batch

size of 32 and perform local training iterations with a ixed value of �=5. Moreover, we set the temperature for

soft prediction to 5. Plus, we set the noisy level of data with {0, 0.5, 1} by ����� (�) = (����� (�) + 1)%10, where � is

the true label. To evaluate the performance of each method, we record the average inference accuracy and loss

across all participating clients.

5.1 Experimental Setup

Baseline. For a fair comparison, we will evaluate ASDQR against three baseline methods:

• FedAvg. FedAvg [32] was introduced as a pioneering work in FL, involving the random selection of

participating clients and the aggregation of their local model updates to train a global model.

• MOON. MOON [25] is a model-contrastive FL framework that enhances the performance of classiication

tasks by leveraging the similarity between model representations to correct local training across clients.

• FedProx. FedProx [27] addresses the challenge of non-IID data in FL by introducing a proximal term to

the local objective function. This addition ensures that client updates do not deviate excessively from the

global model.

• PFedSD. PFedSD [18] leverages the value of historical personalized models in FL with the use of self-

distillation, overcoming the problem of forgetting and achieving a more favorable balance between person-

alization and generalization.

• FedMD. FedMD [24] employs knowledge distillation and transfer learning to facilitate collaboration among

clients with independently designed local models. By utilizing a public dataset as a communication medium,

FedMD enhances the accuracy of individual models while maintaining data privacy and protecting model

architecture details.
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Models & Datasets. To demonstrate the broad applicability of ASDQR, we selected two models and datasets for

our experiments. Speciically, we employed ASDQR to train Multilayer Perceptron (MLP), Convolutional Neural

Network (CNN), and Residual Network 18 (ResNet18) on diferent datasets, including MNIST [21], CIFAR-10

[20], HAR [34] and WISDM [42]. For the CIFAR-10 and MNIST datasets, MLP models are conigured with input

dimensions determined by the product of the image dimensionsÐ3072 for CIFAR-10 (3x32x32 images) and 784

for MNIST (1x28x28 images). Both models utilize a hidden layer of 64 neurons and feature a variable number of

output classes based on dataset-speciic requirements. In contrast, the MLP model designed for the HAR and

WISDM dataset is conigured with an input dimension of 1152, also uses a 64-neuron hidden layer, and outputs

to 6 classes. In the realm of CNN, the architecture for MNIST includes two convolutional and two fully connected

layers, incorporating dropout and pooling to optimize image processing. The CNN designed for CIFAR features,

being more complex, includes three convolutional layers with ReLU and max-pooling, followed by two fully

connected layers for inal classiication. Meanwhile, the CNN for HAR andWISDM consists of three convolutional

layers with ReLU and max-pooling, followed by a lattened output passed through a dense layer with dropout for

classiication. In ResNet18, the initial convolutional layer is adapted to the dataset using a pre-trained ResNet18

model, with the original fully connected layer replaced by a linear layer of a speciied encoding length, followed

by a linear classiier to categorize the encoded features.

5.2 Inference Accuracy

We examine the performance of various FL methods in handling non-IID data distributions across diverse datasets

and model architectures while maintaining a constant total data volume, as depicted in Table 2. The ASDQR

inference accuracy is compared with several baseline approaches in a non-IID setting where the data partition

ratio is [6:5:4:3:2]. According to the results presented in Table 2, ASDQR consistently outperforms FedAvg, MOON,

FedProx, PFedSD, and FedMD across all datasets, methods, and client scales under non-IID settings. Notably, the

accuracy of all methods decreases as the number of participating clients increases, but ASDQR demonstrates its

efectiveness in mitigating the adverse efects of non-IID data, resulting in superior inference accuracy.

Figure 4 compares the performance of the proposed ASDQR approach with baseline methods in terms of

inference accuracy over varying communication rounds, considering 100 participating clients using a CNN model.

The results demonstrate that ASDQR consistently outperforms baseline methods, including FedAvg, MOON,

FedProx, PFedSD, and FedMD, across diverse datasets (MNIST, CIFAR, HAR, and WISDM). For instance, on the

MNIST dataset at 100 communication rounds, the inference accuracies for FedAvg, MOON, FedProx, PFedSD,

FedMD, and ASDQR are 89.16%, 91.57%, 97.87%, 97.96%, 98.08%, and 98.16%, respectively. Notably, ASDQR achieves

higher accuracy and exhibits faster convergence compared to the other methods. The accuracy improvement
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Fig. 4. The average accuracy of the learning model with diferent rounds when the number of clients is 100 under diferent

noisy levels.
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Fig. 5. The average loss of the learning model with diferent rounds when the number of clients is 100 under diferent noisy

levels.

trend for ASDQR on MNIST is particularly pronounced, starting from 59.62% at round 1 and reaching 98.16% at

round 100. By contrast, FedAvg improves from 46.57% to 89.16%, MOON from 35.99% to 91.57%, FedProx from

41.99% to 97.87%, PFedSD from 45.23% to 97.96%, and FedMD from 58.92% to 98.08%. The performance on the

CIFAR dataset shows a similar trend, albeit with a lower accuracy range due to the dataset’s higher complexity.

ASDQR achieves the highest accuracy at 54.24% after 100 communication rounds, compared to 39.85% for FedAvg,

49.13% for MOON, 53.86% for FedProx, 53.06% for PFedSD, and 53.93% for FedMD. For HAR, ASDQR demonstrates

signiicant accuracy growth, starting from 15.10% in the initial round and reaching 84.19% after 100 rounds. It

outperforms the baseline methods, such as FedAvg (60.67%), MOON (77.35%), FedProx (79.11%), PFedSD (80.36%),

and FedMD (83.71%). On the WISDM dataset, ASDQR achieves a inal accuracy of 89.96%, compared to 64.37% for

FedAvg, 72.17% for MOON, 73.23% for FedProx, 83.77% for PFedSD, and 89.63% for FedMD.

These results clearly illustrate ASDQR’s ability to achieve higher accuracies across diverse datasets and

scenarios consistently. Furthermore, the model’s adaptability across various architectures such as MLP, CNN,

and ResNet18 highlights its versatility in FL tasks.

5.3 Convergence Speed

To validate the efectiveness of our theoretical analysis, we compared the convergence rates of four diferent FL

methods: FedAvg, FedProx, PFedSD, FedMD, and ASDQR.

Figure 5 presents the average loss trends of various methods (FedAvg, MOON, FedProx, PFedSD, FedMD, and

ASDQR) across diferent datasets (MNIST, CIFAR, HAR, andWISDM)with 100 clients over varying communication

rounds. The results indicate that ASDQR consistently achieves faster convergence and lower inal loss compared

to all baseline methods. On MNIST, ASDQR reduces the loss from 1.82 in the irst round to 0.06 after 100 rounds,

outperforming FedAvg (0.40), MOON (0.33), FedProx (0.08), PFedSD (0.08), and FedMD (0.07). Although FedMD

demonstrates competitive results, ASDQR converges more quickly and achieves a slightly lower inal loss. On

CIFAR, a more challenging dataset, ASDQR achieves a inal loss of 1.13, which is signiicantly lower than that

of FedAvg (1.65), MOON (1.49), FedProx (1.31), PFedSD (1.37), and marginally better than FedMD (1.15). Its

superior convergence speed highlights its eiciency under complex conditions. For HAR, ASDQR achieves the

lowest inal loss (0.46), surpassing FedAvg (1.01), MOON (0.58), FedProx (0.53), PFedSD (0.50), and FedMD (0.48).

ASDQR maintains a consistently faster convergence rate and greater stability throughout the training process. On

WISDM, ASDQR reduces the loss from 1.60 initially to 0.27 at 100 rounds, outperforming FedAvg (1.08), MOON

(0.95), FedProx (0.72), PFedSD (0.47), and FedMD (0.28). Its rapid and stable convergence further underscores its

superiority in this scenario.

ASDQR demonstrates consistent advantages in loss reduction and convergence speed across all datasets.

These results underscore its robustness and eiciency in FL scenarios with noisy and non-IID data distributions,
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establishing it as an efective solution for optimizing model training in distributed environments. Additionally,

we have provided proof of convergence for ASDQR in Appendix B.
5.4 Inference Accuracy vs.Communication Cost

Figure 6 provides a comprehensive comparison between ASDQR and baseline methods in terms of normalized

communication cost and inference accuracy. Results are derived from a CNN model with 100 clients. Each

blue curve in Figure 6 corresponds to the accuracy of a distinct FL method, namely FedAvg, MOON, FedProx,

PFedSD, FedMD, and ASDQR. The ASDQR curve’s upward trajectory signiies its superior accuracy performance.

In contrast, the red curves illustrate the normalized communication cost (NCC), with ASDQR-NCC and NCC-

Except ASDQR showing distinct patterns. Notably, the NCC-Except ASDQR curve relects a ixed normalized

communication cost of 0.6 for the baseline methods, including FedAvg, FedProx, PFedSD, and FedMD, which

employ a random selection strategy of 60 clients from the pool of 100 in each round. This method often results

in ineiciencies, as the static selection fails to adapt to the dynamic nature of the learning process. Conversely,

the descending trajectory of the ASDQR-NCC curve underscores its communication eiciency, indicating that

ASDQR optimally utilizes communication resources and adapts to the variability in client contributions more

efectively than the NCC-Except ASDQR.

ASDQR consistently outperforms baseline methods across all datasets. Notably, ASDQR achieves the highest

accuracy of 98.16% on MNIST, 54.24% on CIFAR, 84.19% on HAR, and 89.96% on WISDM. These results demon-

strate its robustness and adaptability, particularly in complex and heterogeneous data scenarios. While baseline

methods (NCC-Except ASDQR) maintain a static NCC of 0.6 due to random client selection, ASDQR dynamically

reduces communication costs over time. The ASDQR-NCC curve exhibits a descending trend across datasets,

converging to 0.13-0.2 by the 100th round, relecting its adaptive strategy to prioritize high-contribution clients

and minimize redundant communication. ASDQR’s dynamic communication mechanism signiicantly reduces

resource consumption without compromising model performance. This adaptability is critical in FL scenarios,

particularly in resource-constrained environments where eicient bandwidth utilization is essential.

ASDQR achieves a compelling balance between inference accuracy and communication eiciency, outper-

forming traditional static approaches in FL. Its adaptive strategy ensures scalability and robustness, making it an

efective solution for dynamic and distributed learning environments.

5.5 Evaluation of Six Schemes for Generating Guiding Model

We investigate the impact of six diferent schemes for generating guiding models on the average accuracy of

neural network architectures, including MLP, CNN, and ResNet18, under varying noise levels, with 100 clients.

The results are depicted in Figure 7.
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Fig. 6. Comparison Between ASDQR and Baselines in Communication Cost and Inference Accuracy.
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Fig. 7. The average accuracy of the learning model with diferent rounds when the number of clients is 100 under diferent

noisy levels.
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Fig. 8. Bufer-adaptive self-knowledge distillation.

Both Scheme 6 and Scheme 5 consistently demonstrate superior performance and greater stability across all

architectures compared to the other schemes. This consistent trend highlights the efectiveness of bufer-adaptive

historical knowledge, which leverages a dynamic parameter �� that adjusts based on the communication rounds,

allowing the models to respond more efectively to varying noise levels in the data. Furthermore, Scheme 6

consistently outperforms Scheme 5, underscoring the impact of the integrated interaction freshness mechanism.

This mechanism, represented by the function � (�), enhances the model’s ability to prioritize recent and relevant

historical information, thereby improving its decision-making process. The design of Scheme 6 enables a more

reined understanding of the data, especially in noisy label conditions that could otherwise distort learning.

Across all neural network architectures tested, Scheme 6 consistently delivers higher accuracy, suggesting that

both bufer adaptation and interaction freshness are versatile and efective enhancements.

5.6 Adaptive Bufer

Figure 8 presents the results of bufer-adaptive self-knowledge distillation experiments conducted on MLP, CNN,

and ResNet18. Speciically, Bufer1, Bufer5, Bufer10, and Bufer15 correspond to ixed bufer sizes of 1, 5, 10, and

15, respectively. In contrast, ABufer5, ABufer10, and ABufer15 represent adaptive bufer conigurations, where

the parameter � in Eq. (21) is set to 5, 10, and 15, respectively. As depicted in Figure 8, ABufer15 outperforms

all other schemes, including ixed bufer sizes and smaller adaptive bufers, underscoring its eicacy. Generally,

ABufer10 exhibits superior performance compared to both ABufer5 and ixed bufer schemes (Bufer1, Bufer5,

Bufer10, Bufer15). Remarkably, ixed bufer schemes demonstrate better performance than adaptive bufer

scheme ABufer5. The performance diference between ABufer15, ABufer5, and ABufer10 can be attributed to

the dynamics of the bufer-adaptive historical level �� , which is determined by the bufer adaptive parameter
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Fig. 9. The Impact of Unbalanced Level on Performance.

�. A smaller � induces a more rapid adaptation of the bufer size to recent changes, enhancing the model’s

responsiveness to variations in the data distribution or model updates. However, this expedited adaptation may

come at the cost of less stable historical knowledge, potentially capturing short-term luctuations. Conversely, a

larger � slows down the adaptation process, furnishing a more stable historical knowledge base over time. While

this stability aids in iltering out noise or short-term variations, it might render the model less responsive to

recent changes. Therefore, the selection of � in the bufer-adaptive mechanism is pivotal, representing a delicate

trade-of between responsiveness and stability.

For MLP, as shown in Figure 8 (a), ABufer10 and ABufer15 exhibit slightly better performance than the ixed

bufers after 200 communication rounds, achieving accuracy rates of 82.54% and 82.98%, respectively. Notably,

excessively large bufers can increase storage and computational demands, potentially afecting training speed

and eiciency. For example, in the irst round of communication, the accuracy rates for Bufer1, Bufer5, Bufer10,

Bufer15, ABufer5, ABufer10, and ABufer15 were 56.82%, 56.68%, 56.77%, 57.00%, 56.91%, 57.14%, and 57.05%,

respectively. By the 200th round, these rates had improved to 82.83%, 82.38%, 81.80%, 78.92%, 80.36%, 81.54%, and

82.98%, respectively. Based on this analysis, we selected � = 15 for our study. In the early stages of training, ixed

bufer strategies may outperform adaptive bufers; however, as the number of communication rounds increases,

adaptive bufers generally demonstrate superior performance. This trend is also observed in CNN and ResNet18,

as shown in Figure 8 (b) and Figure 8 (c). For more detailed information, please refer to Table 4, Table 5, and Table

6 in Appendix C.

5.7 The Impact of Data Heterogeneity

Data heterogeneity is a prevalent scenario in FL, as each client collects data from its unique local environment,

leading to signiicant variability. Simulating this data heterogeneity is essential for assessing the real-world

applicability and efectiveness of FL algorithms, as it enables the evaluation of their robustness under realistic

conditions. In this work, we simulate data heterogeneity through data partitioning, allocating time-varying

subsets according to the number of clients � and the ratio �� . We deine four unbalanced levelsÐ[16:12:8:4:1]

(unbalanced level 4), [12:9:6:3:1] (unbalanced level 3), [8:6:4:2:1] (unbalanced level 2), and [1:1:1:1:1] (unbalanced

level 1)Ðfor each round � . The unbalanced level is determined by the ratio of the amounts of data, with higher

values indicating a greater degree of imbalance. We also include the balanced case (unbalanced level 1) for

comparative purposes. In Figure 9, we illustrate the average accuracy of the learning model across various

communication rounds, utilizing the HAR dataset with 100 clients under diferent unbalanced levels, considering

three model architectures: MLP, CNN, and ResNet18. The results are presented for ive FL methods: FedAvg,

MOON, FedProx, PFedSD, and our proposed method, ASDQR. Notably, for the MLP model, ASDQR consistently

demonstrated superior accuracy across all levels of data imbalance, achieving accuracies of 81.41%, 80.31%, 80.14%,

and 79.20% for unbalanced levels 1 through 4, respectively. This trend is similarly observed with the CNN model,
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Fig. 10. The average accuracy across varying number of clients (50, 100, and 200 Clients) Over 100 Communication Rounds

where ASDQR recorded commendable accuracy levels of 86.84%, 85.81%, 85.56%, and 85.36% across the same

levels. In the case of ResNet18, ASDQR again outperformed other methods, with accuracies of 95.23%, 94.85%,

94.28%, and 93.15% for levels 1 through 4.

These results clearly illustrate that ASDQR consistently outperforms FedAvg, MOON, FedProx, and PFedSD

across all threemodels and varying levels of data imbalance. Such consistent performance highlights the robustness

and reliability of ASDQR in FL, particularly when confronted with varying degrees of data heterogeneity.

These indings underscore ASDQR’s potential as a leading FL method, emphasizing its signiicance in practical

applications where data imbalance is a critical factor.

5.8 Scalability Testing

To assess ASDQR’s scalability, we conducted experiments with varying client pool sizes (50, 100, and 200 clients)

over 100 communication rounds using the Wisdm dataset on MLP model. This evaluation aims to analyze the

framework’s performance in terms of inference accuracy, communication eiciency, and model convergence

under increasing client numbers.

As shown in Figure 10, in experiments with 50, 100, and 200 clients, ASDQR achieves accuracy levels of

83.56%, 82.77%, and 80.68%, respectively, after 100 communication rounds, consistently outperforming baseline

methods such as FedAvg, FedProx, PFedSD, MOON, and FedMD. This demonstrates its scalability and ability

to maintain competitive accuracy even with increasing numbers of clients. Notably, ASDQR reaches near-inal

accuracy (70ś80%) within the irst 20 communication rounds, underscoring its rapid convergence and superior

communication eiciency. The model stabilizes within 50 rounds for smaller client pools and approximately 70

rounds for larger ones, showcasing its adaptability to varying client sizes and its convergence stability in large-

scale FL scenarios. Additionally, its design emphasizes feature alignment and local loss optimization, enhancing

its resilience to noisy environments and further solidifying its applicability. These indings establish ASDQR as a

scalable, eicient, and robust framework for FL in diverse and challenging settings.

5.9 Ablation Study

In this section, we analyze the impact of individual design components in ASDQR by systematically removing

each component and evaluating its contribution to overall performance. This ablation study provides insights into

the efectiveness of key features, including client selection, adaptive self-knowledge distillation, and aggregation

optimization.

ACM Trans. Internet Technol.



Communication-Eficient Federated Learning for Heterogeneous Clients • 25

• ASDQR. The full adaptive self-knowledge distillation-based quality- and reputation-aware cross-silo FL

framework. It incorporates the proposed client selection mechanism, adaptive self-knowledge distillation

using historical knowledge, and aggregation optimization, designed to enhance both FL quality and

communication eiciency.

• CSKD. A variant of ASDQR without the aggregation optimization component, assessing the impact of

aggregation strategies on performance.

• CSAG. A variant of ASDQR without the adaptive self-knowledge distillation component, focusing on the

contribution of historical knowledge integration.

• KDAG. A variant of ASDQR without the client selection component, highlighting the role of quality- and

reputation-aware client selection in FL.

Figure 11 compares the performance of the complete ASDQR model with its ablated variants across communi-

cation rounds on MNIST, CIFAR-10, HAR, and WISDM datasets using an MLP model. The results demonstrate

that ASDQR consistently achieves the highest accuracy across all datasets, highlighting the importance of

its components in improving FL quality and communication eiciency. On MNIST, ASDQR achieves 94.37%

accuracy, surpassing CSKD by 0.2%, CSAG by 0.33%, and KDAG by 2.45%. For CIFAR-10, a more challenging

dataset, ASDQR reaches 48.16% accuracy, exceeding CSKD by 0.22%, CSAG by 3.75%, and KDAG by 13.42%. On

HAR, ASDQR achieves 79.65%, outperforming CSKD by 1.86%, CSAG by 5.3%, and KDAG by 21.26%. Lastly, for

WISDM, ASDQR attains 74.95%, exceeding CSKD by 0.41%, CSAG by 1.7%, and KDAG by 14.8%. The results

underscore the signiicance of client selection and adaptive self-knowledge distillation, with CSKD and CSAG

consistently outperforming KDAG. Adaptive self-knowledge distillation shows a greater impact on performance

than aggregation optimization, while KDAG also contributes positively, highlighting the value of aggregation

optimization.

6 Conclusion

In this paper, we present the design, implementation, and evaluation of ASDQR, an eicient and efective FL

framework for heterogeneous silos, which signiicantly achieves communication- and inference-eicient, and

inference-efective FL. ASDQR selects high-quality and high-reputation clients for model training, avoiding

performance degradation from random client selection and reducing communication costs. Additionally, adaptive

local self-knowledge distillation combined with historical knowledge addresses catastrophic challenges of forget-

ting and improves inference efectiveness, resulting in fewer communication rounds. The aggregation strategy is

meticulously crafted to take the quality, reputation, and importance of local model updates into consideration

when performing global aggregation for more accurate and efective models. Experimental results conducted on

real-world datasets and under various settings demonstrate ASDQR’s outperformance in comparison to existing
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Fig. 11. Performance comparison of ablations over communication rounds when considering 100 clients on MNIST, CIFAR-10,

HAR, and WISDM datasets.
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works. For future work, our focus will be on developing mechanisms to prevent and detect client misreporting,

enhancing the robustness and reliability of FL systems.
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A Comparative Analysis of Client Selection Methods in FL
Table 3. Comparison Table of Client Selection Methods in FL.

Ref. Selection Strategy Communication

Cost

Key Contributions Limitations

[1] Multicriteria Client

Selection

Reduce the number

of communication

rounds

Require fewer communication

rounds and more clients to

achieve the desired accuracy

Increase computation and selec-

tion overhead.

[2] Diverse Client Se-

lection

Minimize the com-

munication costs

Using submodular maximiza-

tion to reduce the variance in-

troduced by CS and improve

model accuracy

May introduce variance in

client contributions, potentially

leading to imbalanced updates.

[7] All & RL-Based

Client Selection

Improve communi-

cation eiciency

Integrate RL-based CS with FL

and transfer learning

Require high computational

overhead and time to converge.

[8] Power-of-Choice

Client Selection

Reduce the number

of communication

rounds

Flexibly spans between conver-

gence speed and bias

Flexibility may lead to inconsis-

tent convergence or bias issues.

[10] Automated and

Quality-Aware

Client Selection

× Demonstrate the eiciency, ro-

bustness, and scalability

Overlook personalization in lo-

cal models.

[14] Stochastic Client Se-

lection

× Optimize CS while addressing

the trade-of between participa-

tion efectiveness and fairness

Balancing efectiveness and fair-

ness can be challenging.

[30] Contribution-

based Client

Selection

× A good balance between global

accuracy and convergence

speed

May not address client-speciic

variability or system con-

straints.

[40] Reputation-aware

Client Selection

× An optimal CS method for FL

based on reputation scores

Reliance on reputation scores

may introduce biases.

[45] Online Client Selec-

tion

× Find the best client subset based

on their relative test perfor-

mance

Computationally expensive to

dynamically select clients.

[46] Adaptive Client Se-

lection

Increase the num-

ber of communica-

tion rounds

Energy and training delay re-

quired in FL can be reduced

Increased communication

rounds can lead to higher

latency and costs.

[47] Eicient run-time

Client Selection

Lower communica-

tion overhead

Jointly optimizes accuracy, la-

tency and communication ei-

ciency

Lacks robust client weighting

based on contribution.

[48] Online and asyn-

chronous Client Se-

lection

Enhance the utiliza-

tion of communica-

tion resources

Asynchronous FL with a

dynamic, fairness-focused CS

strategy

Asynchronous methods can

complicate fairness and dy-

namic resource utilization.

Ours Reputation- and

Quality-aware

Client Selection

Adaptive self-

knowledge distilla-

tion

Communication and inference-

efective FL

Assume that clients are trust-

worthy and that communica-

tion channels

ACM Trans. Internet Technol.



Communication-Eficient Federated Learning for Heterogeneous Clients • 29

B Proof of Convergence Analysis

Here, we impose the following deinition and assumptions on the functions �1, �2, · · ·, �� .

Assumption 1 (L-smooth). �1, · · ·, �� are all L-Smooth, i.e., for all � and� , �� (�) ≤ �� (�) + (�−�)
� + �

2
∥� −� ∥22.

Assumption 2 (�-strongly Convex). �1, · · ·, �� are all �-strongly convex, i.e., for all � and� , �� (�) ≥ �� (�) +

(� −�)� +
�

2
∥� −� ∥22 .

Assumption 3 (Bounded Local Variance). For the mini-batch �� uniformly sampled at random from B� from

client �, the variance of stochastic gradients is bounded: E∥▽�� (�
�
�, �

�
�) − ▽�� (�

�
�)∥ ≤ �

2
� .

Assumption 4 (Bounded Local Gradient). The stochastic gradient’s expected squared norm is uniformly

bounded, i.e., E∥▽�� (�
�
�, ��)∥

2
≤ �2 for � = 1, · · ·, � .

Assumption 5 (Bounded Heterogeneity). [�∗ −
∑
�∈N

����∗ ] denotes the statistical heterogeneity, bounded by

� , where �∗ := min
�
�(�) and ��∗ := min

�
�� (�).

Deinition 1 (Local-Global Objective Gap). For the global optimum �∗ = argmin� �(�) and local optimum

��
∗
= argmin� �� (�), the local-global objective gap is deined as below:

Γ ≜ �∗ −

�︁

�=1

����∗ =

�︁

�=1

�� (�� (�
∗) − �� (��∗ )) ≥ 0. (27)

where Γ is an inherent property of both the local and global objective functions, independent of the client selection

strategy. A larger Γ indicates higher data heterogeneity. If Γ = 0, it implies that the local and global optimal

values align consistently, eliminating solution bias attributed to the client selection strategy.

Theorem 1(Convergence of Algorithm 3). Under Assumptions 1-5 and Deinition 1, if choosing �� = � ��
(�� is the normalized contribution of selected clients in Algorithm 2 and the number of local epochs as � , the

convergence rate is

∥�̄�+1 − �∗∥
2
=∥�̄�+1 − �̄�+1 + �̄�+1 − �∗∥

2

=∥�̄�+1 − �̄�+1∥
2
+ ∥�̄�+1 − �∗∥

2
+

2⟨�̄�+1 − �̄�+1, �̄�+1 − �∗⟩.

(28)

(1) If iteration � is not aggregation step, �̄�+1 = �̄�+1 and

∥�̄�+1 − �∗∥
2
= ∥�̄�+1 − �∗∥

2
. (29)

According to Lemma 1 (Results of one step SGD) in [28],

E∥�̄�+1 − �∗∥
2
≤ (1 − ��)E∥�̄� − �∗∥

2
+ �2E∥�� − �̄� ∥

2
+

6��2Γ + 2E

�︁

�=1

��� ∥�̄
� − ��� ∥

2

= (1 − ��)E∥�̄� − �∗∥
2
+ �2�,

(30)

where � =

�∑
�=1
(���)

2
�2� + 6�Γ + 8(� − 1)

2�2.

(2) If iteration � is the aggregation step,

E[∥�̄�+1 − �∗∥]
2
≤(1 − ��)E[∥�̄�+1 − �∗∥

2
] + ��Υ�+

[(��Υ + (���� +�)2)�2 + �]�2
(31)
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where E[∥�̄�+1 − �∗∥] ≤ Υ. According to Assumptions 2 and 5,


∑

�∈N ����
∗ − �∗



 is bounded by a constant

� , as shown in Eq. (32). 





︁
�∈N

����
∗ − �∗






 ≤
︁
�∈N

�� ∥�
∗ − ��

∗∥

≤
︁
�∈N

�� (1 + ∥�
∗ − ��

∗∥
2
)

≤ 1 +
2

�

(
�∗ −

︁
�∈N

���
∗
�

)

≤ 1 +
2�

�
= �

(32)

where�∗ = argmin
�
�(�) and ��

∗
= argmin

�
�� (�) for � ∈ N .

Below is the convergence analysis. Here, we assume the selected clients perform � time steps of local update, the

selected setN�
� remains constant for every � iteration. Namely, if (� +1)��� � = 0, thenN�+1

� = N�+2
� = · · · = N�+�

� .

��+1� = ��� − �▽�� (�
�
� ;�

�
�). (33)

��+1� =



��+1� , � �� (� + 1) ��� � ≠ 0,

1
��

∑
�∈N�

(
��� − �▽� � (�

�
� ;�

�
� )
)
≜ �̄�+1, ��ℎ������.

(34)

Let

�̄� :=
︁
�∈N

����
�
� . (35)

�̄� :=
︁
�∈N

����
�
� . (36)

where ��� is the weight of �
�ℎ client and

∑
�
��� = 1. Similar withN�

� , �
�+1
� = ��+2� = · · · = ��+�� when (� +1)��� � = 0.

Therefore,

�̄� =



�̄� , � �� (� + 1) ��� � ≠ 0,
1
��

∑
�∈N�

��� , ��ℎ������, (37)

and,

�̄�+1 = �̄� − �

(︁
�∈N

����� (�
�
� ;�

�
�)

)
:= �̄� − ��� . (38)

We have
∥�̄�+1 − �∗∥

2
= ∥�̄�+1 − �̄�+1 + �̄�+1 − �∗∥

2

= ∥�̄�+1 − �̄�+1∥
2︸            ︷︷            ︸

�1

+ ∥�̄�+1 − �∗∥
2︸         ︷︷         ︸

�2

+ 2⟨�̄�+1 − �̄�+1, �̄�+1 − �∗⟩︸                          ︷︷                          ︸
�3

. (39)

(1) When (� + 1) ��� � ≠ 0,

�̄�+1 = �̄�+1, (40)
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Hence,

∥�̄�+1 − �∗∥
2
= ∥�̄�+1 − �∗∥

2
. (41)

According to Lemma 1 (Results of one step SGD) [28],

E∥�̄�+1 − �∗∥
2
≤ (1 − ��)E∥�̄� − �∗∥

2
+ �2E∥�� − �̄� ∥

2
+ 6��2Γ + 2E

�︁

�=1

��� ∥�̄
� − ��� ∥

2

= (1 − ��)E∥�̄� − �∗∥
2
+ �2�,

(42)

where � =

�∑
�=1
(���)

2
�2� + 6�Γ + 8(� − 1)

2�2.

(2) When (� + 1) ��� � = 0, we need to bound

E[∥�̄�+1 − �∗∥
2
] = E[�1] + E[�2] + E[�3], (43)

We assume the last time of aggregation is at step � ′ = � + 1 −� andN� is the selected subset of � whileN�
′

is the

selected subset of �
′
(N� ⊆ N�

′

). To bound the irst term �1,
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According to Assumption 1 (L-smooth of �� (·)) and Assumption 4 (�-bound norm of its stochastic gradient),

we have

�1 ≤ ��
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and
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Thus,
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In this work, we set the learning rate � as ixed. Thus, ∥�̄�+1 − �̄�+1∥ ≤ ��� (� − 1)�2 + ���.

Therefore, Eq. (33) can be bounded as follows:

E[∥�̄�+1 − �∗∥]
2
≤ E[∥�̄�+1 − �̄�+1∥

2
] + E[∥�̄�+1 − �∗∥

2
] + 2E[⟨�̄�+1 − �̄�+1, �̄�+1 − �∗⟩]

≤ (��� (� − 1)�2 + ���)2 + [(1 − ��)E[∥�̄� − �∗∥
2
] + �2�] + 2(�� (� − 1)�2 + ���)E[∥�̄�+1 − �∗∥]

≤ (1 − ��)E[∥�̄�+1 − �∗∥
2
] + ��Υ� + [� + ��� (� − 1)Υ + (��� (� − 1)� + ��)2]�2

≤ (1 − ��)E[∥�̄�+1 − �∗∥
2
] + ��Υ� + [(��Υ + (���� +�)2)�2 + �]�2

(50)

where E[∥�̄�+1 − �∗∥] ≤ Υ.
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Here the proof is completed.

C Bufer Performance Tables

Table 4. Inference Accuracy Overview Under Non-IID(MLP).

Bufer1 Bufer3 Bufer5 Bufer7 Bufer9 Bufer10 Bufer11 Bufer13 Bufer15 ABufer5 ABufer10ABufer15

Round 50 80.69 80.32 80.80 80.80 80.80 80.13 80.52 80.29 72.25 81.00 80.20 80.86

Round 100 82.25 81.81 82.29 82.20 82.10 81.70 81.70 81.73 75.32 80.76 81.56 82.70

Round 150 82.37 81.92 82.32 82.27 82.24 81.74 81.71 81.71 77.68 80.74 81.76 82.95

Round 200 82.32 81.83 82.38 82.21 82.04 81.80 81.76 81.95 78.92 80.36 82.54 82.98

Table 5. Inference Accuracy Overview Under Non-IID(CNN).

Bufer1 Bufer3 Bufer5 Bufer7 Bufer9 Bufer10 Bufer11 Bufer13 Bufer15 ABufer5 ABufer10ABufer15

Round 50 87.68 87.87 88.60 87.68 87.63 87.98 87.55 82.00 74.04 81.90 87.79 88.24

Round 100 89.65 90.80 90.69 90.40 90.88 89.94 90.76 85.74 77.32 82.80 91.48 91.33

Round 150 90.19 91.10 91.39 90.81 91.39 90.27 91.38 88.14 83.77 84.19 91.81 92.04

Round 200 90.29 91.19 91.50 91.14 91.76 90.57 91.52 89.18 84.69 85.57 92.05 92.39

Table 6. Inference Accuracy Overview Under Non-IID(ResNet18).

Bufer1 Bufer3 Bufer5 Bufer7 Bufer9 Bufer10 Bufer11 Bufer13 Bufer15 ABufer5 ABufer10ABufer15

Round 50 93.46 95.39 94.96 94.51 94.93 94.93 94.67 95.17 94.74 94.64 95.00 95.08

Round 100 93.69 95.25 94.75 94.57 94.64 95.14 94.68 95.10 94.89 94.46 95.32 95.07

Round 150 93.58 95.24 94.95 94.63 95.04 95.21 94.71 95.02 94.86 94.32 95.12 95.24

Round 200 93.42 95.19 94.71 94.49 94.90 95.27 94.64 95.07 94.86 94.37 95.27 95.33
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D Client Bufer Selection and Update

Algorithms 4 and 5 create a robust mechanism for managing client bufers in resource-constrained environments.

Algorithm 4 optimizes bufer selection based on system resources, while Algorithm 5 ensures eicient and

dynamic management of the bufer during training. This combination supports scalable and adaptive operations

in federated learning scenarios, particularly under heterogeneous client conditions.

Algorithm 4 Client Bufer Selection.

Input: resources dict: ���������_�, HighMemoryThreshold: ℎ�� , MediumMemoryThreshold: ��� ,

LowCPUThreshold: ��� , MediumCPUThreshold:��� .

Output: bufer_type, bufer_size or b.

1: function ClientBufferSelection(���������_�)

2: �����_��� � ��_������� ← [1, 5, 10, 15]

3: ��������_�_������� ← [1, 5, 10, 15]

4: if ������_������������ >= ℎ�� ��� ���_����� < ��� then

5: bufer_type← ”��������”

6: b← ��������_�_������� [2]

7: else if ������_������������ >=��� ��� ���_����� < ��� then

8: bufer_type← ”� ����”

9: bufer_size← �����_��� � ��_������� [1]

10: else

11: bufer_type← ”� ����”

12: bufer_size← �����_��� � ��_������� [0]

13: end if

return bufer_type, bufer_size or b

14: end function

Algorithm 5 Update Bufer.

Input: ��� � ���,�
�� ,�
� , ��� � ��_����, �� , � ����_����, �.

Output: ��� � ��� .

1: function UpdateBuffer(��� � ���,�
�� ,�
� , ��� � ��_����, �� , � ����_����, �)

2: �� ← ⌈��/�⌉ ⊲ Adaptive size

3: if ��� � ��_���� = ”� ����” then

4: ��� � ��_���� ← � ����_����

5: else

6: ��� � ��_���� ← ��

7: end if

8: if ���� (��� � ���) ≥ ��� � ��_���� then

9: ��� � ��� ← ��� � ��� [1 :]

10: end if

11: ��� � ��� ← ��� � ��� + {�
�� ,�
� }

12: end function
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E Communication Eficiency Guarantee

To prove the communication eiciency guarantee of the proposed ASDQR framework, we need to analyze the

communication costs associated with client selection and local model updates under the designed mechanisms.

Speciically, we will conduct a quantitative analysis of the communication eiciency from the following aspects:

(1) Communication Overhead for Client Selection

In each round � , the client selection process ensures that only a subset of clients N� is selected based on

quality and reputation estimates. The selection criterion is based on a composite quality score, which

combines several factors such as loss disparity, data volume, label distribution, and distribution diferences.

Let �� represent the number of clients selected in each round. Let � be the total number of clients in the

system. The communication overhead is proportional to the number of clients selected in each round. Since

the contribution of each client is evaluated using the formula in Eq. (16), we can conclude that only the

clients with the highest contribution will be selected, thereby reducing the total communication.

Thus, the communication overhead for client selection is � (�� ), where �� is expected to be much smaller

than the total number of clients � . This reduces communication costs, as fewer clients are involved in

transmitting updates, thereby avoiding redundant data transmissions.

(2) Communication Overhead for Model Updates

Each selected client � sends its local model update ��� in round � , but the size of these updates can be

reduced by employing the knowledge distillation mechanism.

Without Knowledge Distillation: Each client sends the full model update to the server. The communication

cost for a client update is proportional to the size of the model, denoted by |��� |. If �� clients are selected,

the total communication cost is:

�����_�������������_���� (��������������) = � (� · |��� |) (52)

With Knowledge Distillation (Scheme 5 and Scheme 6): The local model update is regularized by a distillation

term. In Scheme 5, the local guiding model �̂� is the average of historical models over the last �� rounds.

The size of the local model update is reduced due to the distillation process, as only the "distilled knowledge"

from previous rounds is communicated. The communication cost is thus reduced to:

�����_�������������_���� (���ℎ������������) = � (� · |���� | · �) (53)

where � controls the weight of distillation, reducing the size of the model in each round, which further

lowers communication overhead.

(3) Bufer-Adaptive Scheme and Communication Overhead In the bufer-adaptive scheme, the bufer size ��

controls the amount of historical knowledge used for distillation in each round. As �� increases over time,

clients only transmit a portion of their models, efectively reducing the total amount of data exchanged.

The communication overhead for the bufer-adaptive scheme is:

�����_�������������_���� (��� � ��_��������) = � (� · |���� | · �
� ) (54)

By using the bufer-adaptive mechanism, the number of model updates transmitted is minimized, leading

to a signiicant reduction in communication costs. This also enables a more eicient use of bandwidth over

multiple communication rounds.

(4) Communication Eiciency Guarantee

The communication eiciency guarantee can be expressed as:

�������������_�� � ������� = � (
� · |���� | · �

� · �

��
) (55)
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where � is the total number of clients. |���� | is the size of the distilled model update. �� is the bufer

size for historical knowledge, for clients with limited resources, a small ixed bufer in Appendix D (e.g.,

Bufer1) is more suitable, as it reduces computational and storage overhead. � is the distillation weight.

�� is the number of clients selected per round. Since �� is much smaller than � (as shown in Figure 6,
��
�
, converging to 0.13-0.2 at the 100th communication round), and the model updates are reduced in

size through distillation and historical knowledge bufers, the communication eiciency is signiicantly

improved.

F Computational Complexity Analysis

To address the concerns regarding the computational overhead on both the client and server sides for the ASDQR

framework, we can provide an analysis of the respective computational costs for each process involved.

(1) Client-Side Computational Overhead.

On the client side, the ASDQR framework requires clients to participate in three key processes: local model

training, reputation/quality scoring, and self-knowledge distillation. Below is an estimated breakdown of

the computational cost for each process:

(a) Local Model Training: Depends on the size of the dataset, model complexity, and number of local

epochs. For models like MLP, CNN and ResNet18, the complexity is � (�� × � × �), where �� is the

number of local samples, � is the number of local epochs, and � is the number of parameters in the

updated model.

(b) Reputation and Quality Scoring:Reputation scoring involves lightweight calculations such as model

accuracy evaluation and update contribution measurements, which are typically � (��).

(c) Self-Knowledge Distillation: Self-distillation is performed after local training and depends on the

number of past models stored for distillation.

For a historical sequence of � models, the cost of distilling knowledge can be approximated as� (�×��×�).

The distillation can be parallelized, and the value of � can be dynamically adjusted based on client

resources.

Total Computation on Clients: The overall client-side computational cost is dominated by the local

training and distillation processes. Since distillation occurs after training, it can be made adaptive (adjustable

based on resource availability). Clients with limited computational resources can reduce the depth of self-

distillation (lower�) or perform fewer local epochs, ensuring the framework is scalable across heterogeneous

clients.

(2) Server-Side Computational Overhead.

On the server side, the ASDQR framework handles client selection and model aggregation. The com-

putational costs associated with these processes are generally lightweight compared to the client-side

operations.

(a) Client Selection: The server selects clients for the next round based on their reputation and quality

scores. This selection process involves sorting and iltering clients based on their scores. If there are �

clients, sorting them based on reputation requires � (����� ) operations. Since this is performed once

per communication round, it does not impose signiicant overhead.

(b) Model Aggregation: After receiving model updates from clients, the server performs weighted model

aggregation. The weights are determined based on clients’ contribution and reliability, the cost of model

aggregation is � (� ∗ �).

Total Computation on the Server: The overall server-side computational overhead remains low due to

the lightweight nature of client selection and model aggregation tasks. Since the heavy lifting (i.e., model

training) is performed by clients, the server operations are computationally manageable.
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(3) Computational Cost Analysis Table.

Process Computational

Complexity

Comments

Client-Side

Local Model Training � (�� ×� × �) Training depends on data size, local epochs,

and model update parameters.

Reputation and Quality Scoring � (��) Lightweight process based on model eval-

uation (minimal overhead).

Self-Knowledge Distillation � (� × �� × �) Distillation depends on historical model

count (�) and is scalable.

Server-Side

Client Selection � (����� ) Sorting of client reputations for selection

(lightweight compared to training).

Model Aggregation � (� × �) Weight-based model aggregation (paral-

lelizable, but dependent on model parame-

ters �).

(4) Real-World Scalability Considerations.

(a) Client-Side Scalability: The ASDQR framework is designed to be adaptive, allowing clients to adjust their

self-knowledge distillation depth based on their resources. Clients with more powerful hardware can use

a higher � for better model personalization, while resource-constrained clients can reduce � to minimize

overhead.

(b) Server-Side Scalability: The computational overhead on the server is lightweight relative to the client-side

operations, making ASDQR suitable for deployment in real-world edge computing scenarios. The model

and client aggregation processes can be easily parallelized using modern server infrastructure, ensuring

that the server is not a bottleneck in the system.
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