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Abstract—As a cutting-edge technology of low-altitude Artifi-
cial Intelligence of Thing (AIoT), UAV object detection signif-
icantly enhances the surveillance services capabilities of low-
altitude AIoT. However, the difficulty of object detection is
exacerbated by the high proportion of small and obscure objects
in the captured images. To address the mentioned challenges, we
present an efficient multi-band infrared small object detection
approach for low-altitude intelligent surveillance services. Firstly,
we propose the Multi-band infrared Image Fusion algorithm
based on Cascade-GAN (MIF-CGAN), which produces fused
images with high information entropy and high contrast. Then,
the Transformer-based Multi-scale Dense Small Object Detection
(MsDSOD) algorithm is proposed. The algorithm consists of the
Global-Local Object Detection (G-LOD) network, the Object
Dense Area Extraction (O-DAE) module, and the Weighted Boxes
Fusion (WBF) module. It extracts small objects features at
different scales from infrared images and fuses the global and
local detection results to accurately identify small objects in dense
scenes. Furthermore, compared to the traditional algorithms,
the mean Average Precision (𝑚𝐴𝑃) of MsDSOD is improved
by 0.80% and the Average Precision in small object detection
(𝐴𝑃𝑠) is improved by 0.72%. The proposed algorithm is optimally
suited to deal with complex scenes with dense small objects and
background occlusion.

Index Terms—artificial intelligence of thing; low-altitude
surveillance services; object detection; multi-band infrared im-
ages; transformer network

I. INTRODUCTION

Typical of emerging productivity, the low-altitude Artificial
Intelligence of Thing (AIoT) seamlessly integrates Internet
of Thing (IoT), Artificial Intelligence (AI), cloud computing,
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and other cutting-edge information technologies [1]. It has
been widely used in a range of applications, from agricultural
monitoring and urban planning to traffic management, disaster
rescue and environmental protection [2]. As the core of low-
altitude AIoT, Unmanned Aerial Vehicles (UAVs) is steadily
advancing towards the peak of fully autonomous awareness
and control. Through the leveraging of object detection, UAVs
have acquired the ability to independently sense and under-
stand surrounding environment. Object detection is essential
to enhance the autonomous of UAVs in situational aware-
ness, obstacle avoidance and object tracking. Nevertheless,
the complexity of object detection tasks is combined to the
constraints of UAV computational capabilities, the limited
bandwidth of air-to-ground communication networks, and the
inherent characteristics of UAV-captured images [3]. Efficient
dense small object detection techniques improve the speed and
precision of UAV perception, which is becoming prerequisite
for the autonomy and intelligence of the low-altitude AIoT.

UAV-captured images are characterized by non-uniform
spatial distributions and high proportion of small objects,
with occlusion and overlap among dense objects. In contrast
to ground-based images, UAV-captured image boasts a wide
field of view providing a wealth of contextual information.
Increasing scene complexity and object diversity leads to
more noise interference in object detection task. Then, images
captured at wide ranges often appear as punctiform features
with a small percentage of effective information, and are
particularly difficult to detect accurately due to factors such
as mutual overlap of densely objects, background occlusion,
or the light changes [4]. In addition, UAVs have limited
computing capability and energy to support high-resolution
object detection algorithms. The above makes dense small
object detection of low-altitude AIoT a challenging mission.

As a common sensing method, UAV-borne infrared ther-
mography has a wide imaging range and all-weather detection
[5]. However, the nature of infrared imaging typically produces
images without discernible shape, colour and texture cues. To
make matters worse, the relatively large pixel sizes and low
spatial resolutions inherent in infrared imaging sensors result
in blurred boundaries between objects and their surroundings.
In addition, complex background clutter and ubiquitous ran-
dom noise increase the difficulty of UAV infrared small object
detection.

To address the above challenges, conventional infrared small
object detection methods rely on suppressing extraneous back-
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ground information, eliminating clutter and noise [6], or en-
hancing object information through contrast enhancement [7].
While these approaches perform well in relatively homogenous
detection scenarios, they fall short when faced with the real-
world environments characterized by complex backgrounds. In
contrast, deep learning techniques avoid the need for manually
generated features, instead relying on neural networks to
automatically extract relevant features directly from original
images [8]. The method improves model precision by using
large amounts of training data, and accelerates the model
training and detection process by using an end-to-end learning
approach. However, small objects in dense scenes are unevenly
distributed and lack obvious features such as shape and texture.
This makes it difficult for existing methods to accurately detect
dense small objects in infrared images.

Therefore, to improve the object detection accuracy of
UAVs, we propose a multi-scale dense small object detection
approach based on UAV-borne multi-band infrared sensing.
The main contributions of this paper can be summarized as
follows.

1) This paper presents a fusion-based dense small object
detection framework, including MIF-CGAN and MsD-
SOD. The MIF-CGAN on the UAV generates composite
infrared images with enriched feature representations,
which are transmitted to the ground computing center.
Then, the MsDSOD detects small objects in the fused
images. This framework significantly improves the ac-
curacy of UAV-based small object detection.

2) To enhance the quality of UAV-borne infrared images,
we present the Multi-band infrared Image Fusion al-
gorithm based on Cascade-GAN (MIF-CGAN). This
approach combines a Denoising Generative Adversarial
Network (DnGAN) and a Fusion Generative Adversarial
Network (FuGAN), exploiting the complementary infor-
mation provided by each band to significantly improve
the feature extraction performance.

3) To improve the precision of densely small object de-
tection, the transformer-based Multi-scale Dense Small
Object Detection (MsDSOD) algorithm is proposed. The
algorithm consists of Global-Local Object Detection (G-
LOD) network, Objected Dense Area Extraction (O-
DAE) module and Weighted Boxes Fusion (WBF) mod-
ule. The integration of global contextual information
with local detail improves the accuracy of dense small
object identification.

4) Compared with GAN-FM, the average gradient of MIF-
CGAN is improved by 4.78%. And compared to SCS-
Det, the mean Average Precision (𝑚𝐴𝑃) of MsDSOD
is improved by 0.80%, and the Average Precision in
small object detection (𝐴𝑃𝑠) is improved by 0.72%.
The proposed algorithm is optimally suited to deal with
complex scenes for dense small objects and background
occlusion.

The rest of the paper is organized as follows. In Section
II, related works are introduced. In Section III, the system
model is given. In Section IV, multiband infrared image fusion
network based on Cascade-GAN is given. In Section V, the

Transformer-based multi-scale dense small target detection
algorithm is given. In Section VI, the performance metrics
are analyzed by experiments. Finally, Section VII concludes
this article.

II. RELATED WORKS

In recent years, scholars from both domestic and inter-
national communities have conducted in-depth explorations
on related technologies such as image fusion and object
detection. Ma et al. [9] introduced Generative Adversarial
Networks (GAN) into the image fusion field for the first
time, and utilized the adversarial game between generator and
discriminator to generate high-quality fused images. Wang
et al. [10] proposed a self-supervised fusion model based
on comparison learning self-supervised fusion model, which
guides the backbone network to generate the fused image by
estimating the feature compensation map of the infrared image.
Yang et al. [11] designed a dual-stream bootstrap filtering
network, which extracts the image features in the way of
two independent data streams, preserving more background
and detail information. Zhao et al. [12] proposed a multi-
modal image fusion network, the correlation-driven feature
decomposition fusion, which optimizes the extraction and
fusion of cross-modal features through specific techniques,
significantly improves the quality of the fused images. In
order to make the generator capture comprehensive spatial
information, Li et al. [13] integrated a multi-scale attention
mechanism in the generator and discriminator of GAN, so
that the fusion network pays more attention to the typical
regions of the source image to reconstruct the fusion map.
However, fused multi-band infrared images still have different
degrees of defects, such as missing texture detail information,
low contrast, and poor signal-to-noise ratio.

Deep learning techniques have become a mainstream
method in the field of object detection. The backbone is a fea-
ture extractor for the object detection task and outputs a feature
map of the image. Li et al. [14] proposed lightweight Large
Selective Kernel Network (LSKNet) to fully utilize the a priori
knowledge in small object scenarios and dynamically adjust
the spatial sensing field, which improves the detection preci-
sion and at the same time reduces the number of parameters
and computation of the model. Du et al. [15] proposed a global
Context-Enhanced Adaptive Sparse Convolutional network for
efficient and low-latency object detection on computationally
resource-constrained UAV platforms. Neck [16] mixes and
combines image features to pass image features from the
backbone to the prediction layer. However, in areas of the
infrared image where objects are small and densely distributed,
the object information is limited and there is mutual occlusion,
which still increases the difficulty of detection.

Currently, object detection frameworks are mainly cate-
gorized into single-stage detection and two-stage detection.
The most representative single-stage detectors are the YOLO
series [17]–[19]. Detection Transformer (DETR) [20] based on
Transformer achieves end-to-end detection through Hungarian
bisection matching, eliminating manual operations such as
Non-Maximal Suppression. Ye et al. [21] proposed a Cascade-
DETR approach to object detection, which improves the
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Fig. 1. Fusion-based dense small object detection architecture

localization precision and calibration confidence of generic
object detection. Xu et al. [22] propose a dynamic prior along
with the coarse-to-fine assigner, which effectively solves the
label allocation problem in directional tiny object detection
and improves the detection precision of tiny objects. Tian et al.
[23] implemented a pixel-by-pixel object detection algorithm
based on a fully convolutional network, which utilizes the idea
of centrality to suppress low-quality prediction frames, and
also achieves better detection results. The two-stage detector
firstly detects each prediction frame by generating region
suggestions and then refining them. The most representative
of two-stage detection is the R-CNN family, including Fast
R-CNN [24], Faster R-CNN [25], Cascade R-CNN [26], and
Cascade Mask R-CNN [27].

III. SYSTEM MODEL

Due to the limited computational capabilities of UAVs, high-
precision object recognition algorithms cannot be deployed
directly on board. This manuscript presents a fusion-based
framework for dense detection of small objects, consisting
of MIF-CGAN and MsDSOD. The MIF-CGAN component
operates onboard the UAV, denoising and fusing multiple
infrared images (NIR, MIR and LIR) acquired from the
same perspective to produce composite infrared images with
enriched feature representations, which are then transmitted
to a ground-based computing center. This fusion-based ap-
proach minimizes the need to transmit large amounts of raw
infrared data, significantly reducing the communication burden
between the UAV and the ground. The MsDSOD component
runs in the cloud computing centre, detecting densely packed
small objects in the fused images and either presenting the
results to the user or transmitting them back to the UAV. This
two-component approach significantly improves the accuracy
of UAV-based small object detection.

Since multi-band infrared images all have their own char-
acteristics, we use the UAV-borne sensor to acquire near-
infrared (NIR), mid-infrared (MIR) and long-infrared (LIR)
images of the same scene. As shown in Fig. 1, to enhance the
image quality, we propose the MIF-CGAN, which comprises
DnGAN and FuGAN. The DnGAn is used to filter out noise
from multi-band infrared images of the same scene. The
denoised image is inputted into FuGAN, which produce a
fused image with distinguished features, thereby enhancing the
image signal-to-noise ratio. This holistic approach exploits the
complementary information provided by each band, increasing
the effectiveness and detail of subsequent target detection
analysis.

To improve the precision of infrared object detection, we
propose a MsDSOD method. The method comprises G-LOD,
O-DAE, super-Lightweight Super-Resolution (s-LWSR), and
WBF. G-LOD is used to detect the global objects of the
input images. Subsequently, O-DAE extracts the dense regions
of the objects. s-LWSR is used to super-resolve cropped
local images. G-LOD is then used once more to obtain local
detection results, which are combined with the global detection
results in WBF to achieve the final detection results and the
desired level of precision.

IV. MULTI-BAND INFRARED IMAGE FUSION METHOD
BASED ON CASCADE-GAN

In order to improve the quality of infrared images, the MIF
CGAN network is proposed, as shown in Fig. 2. The denoised
images generated by DnGAN are used to guide the game-
adversarial training of FuGAN to obtain high-quality fused
images.

A. The network structure of DnGAN

Stage 1-1: NIR, MIR and LIR images are taken as inputs,
and the denoised multi-band infrared images are generated
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by the game confrontation between the generator and the
discriminator of DnGAN.

To express more clearly, we propose a formalized represen-
tation of the fusion process. Given a pair of aligned multi-
infrared image 𝐼𝑁𝐼𝑅, 𝐼𝑀𝐼𝑅 and 𝐼𝐿𝐼𝑅, the goal is to synthesize
a fused image 𝐼 𝑓 𝑢𝑠𝑒𝑑 .

𝑓𝑒 (𝑁𝐼𝑅) = {𝜙1
𝑁 , ..., 𝜙

𝑚
𝑁 , ..., 𝜙

𝑀
𝑁 }, (1)

𝑓𝑒 (𝑀𝐼𝑅) = {𝜙1
𝑀 , ..., 𝜙𝑚𝑀 , ..., 𝜙𝑀𝑀 }, (2)

𝑓𝑒 (𝐿𝐼𝑅) = {𝜙1
𝐿 , ..., 𝜙

𝑚
𝐿 , ..., 𝜙

𝑀
𝐿 }, (3)

where 𝑓𝑒 (·) denotes the extraction function learned by the
encoder. 𝜙𝑁 , 𝜙𝑀 and 𝜙𝐿 represent the feature maps extracted
from multi-infrared image 𝐼𝑁𝐼𝑅, 𝐼𝑀𝐼𝑅 and 𝐼𝐿𝐼𝑅, respectively.
𝑀 is the number of feature maps. The corresponding extracted
features of the corresponding images are fused.

{𝜙1
𝑓 , ..., 𝜙

𝑀
𝑓 } = { 𝑓𝜙 (𝜙1

𝑁 , 𝜙
1
𝑀 , 𝜙1

𝐿)..., 𝑓𝜙 (𝜙𝑀𝑁 , 𝜙𝑀𝑀 , 𝜙𝑀𝐿 )}, (4)

where 𝜙 𝑓 represents the fused feature maps. 𝑓𝜙 denotes the
fusion process. As reconstruction is the inverse process of
extraction, we employ a decoder to learn the inverse rans-
formation of 𝑓𝑒 (·). 𝑓𝑑 (·) is the reconstruction process. The
fused image is generated as:

𝐼 𝑓 𝑢𝑠𝑒𝑑 = 𝑓𝑑 (𝜙1
𝑓 , ..., 𝜙

𝑀
𝑓 ). (5)

DnGAN is used to denoise the input image. The generator
𝐺𝐷𝑛 consists of an encoder and a decoder. In the encoder,
the receptive field of the convolutional kernel is expanded by
upsampling and downsampling, so that the model can make
full use of the context information to realize the secondary
extraction of image features. Denoised images is reconstructed
in the decoder. The network structure parameters specific to
the generator 𝐺𝐷𝑛 are shown in Table I.

As shown in Fig. 3, the encoder of the 𝐺𝐷𝑛 consists of
four convolutional layers. Each layer of the network comprises
a 3 × 3 convolutional kernel and a Rectified Linear Unit
(ReLU). The stacked 3×3 convolutional kernels require a few
parameters, which can reduce the complexity of the model
while ensuring speed of training. Moreover, DenseNet [28] is
directly connected between the convolutional layers to reuse
the original features. This can reduce the loss of features
and avoid the disappearance of gradients. The decoder is also
composed of four convolutional layers.

𝑌𝑖, 𝑗 =
∑︁
𝑢,𝑣

𝐻𝑖−𝑢, 𝑗−𝑣𝑋𝑢,𝑣 + 𝑏. (6)

TABLE I
NETWORK STRUCTURE PARAMETERS OF 𝐺𝐷𝑛

Network structure layer Kernel size Output Next layer

Input raw image / 640 × 640 × 3 Conv1

Encode 1

Conv1 3 × 3, 𝑆 = 1 640 × 640 × 32 Conv2
Conv2 3 × 3, 𝑆 = 1 640 × 640 × 64 Conv3
Conv3 3 × 3, 𝑆 = 1 640 × 640 × 128 Conv4
Conv4 3 × 3, 𝑆 = 1 640 × 640 × 256 Conv5, Conv11

DownSampling Conv5 1 × 1, 𝑆 = 2 320 × 320 × 256 Conv6

Encode 2

Conv6 3 × 3, 𝑆 = 1 320 × 320 × 32 Conv7
Conv7 3 × 3, 𝑆 = 1 320 × 320 × 64 Conv8
Conv8 3 × 3, 𝑆 = 1 320 × 320 × 128 Conv9
Conv9 3 × 3, 𝑆 = 1 320 × 320 × 256 Conv10

UpSampling conv10 1 × 1, 𝑆 = 2 640 × 640 × 256 Conv11

Decode

Conv11 3 × 3, 𝑆 = 1 640 × 640 × 128 Conv12
Conv12 3 × 3, 𝑆 = 1 640 × 640 × 64 Conv13
Conv13 3 × 3, 𝑆 = 1 640 × 640 × 32 Conv14
Conv14 3 × 3, 𝑆 = 1 640 × 640 × 1 Output

Fig. 3. Encoder and Decoder of the generator 𝐺𝐷𝑛 in DnGAN

To avoid gradient explosion or disappearance, Batch Nor-
malization (BN) is applied to each convolutional layer. BN
increases the robustness of the system by normalising the input
data to achieve constraints on the search space of the system
parameters. The input batch data 𝑋 = {𝑥1, ..., 𝑥𝑖 , ..., 𝑥𝐾 } are
taken to be the mean value 𝜇. Find the variance 𝜎2 of the batch
data from the resulting 𝜇. The representation of the network is
changed due to the transformation of the normalized 𝑥𝑖 from
the original data distribution to the normal distribution. To
achieve better scale transformation and bias, BN introduces
two new parameters that can be obtained by learning through
model training: the translation factor 𝜉, and the scale factor 𝜂.

𝑦𝑖 = 𝜂
𝑥𝑖 − 𝜇
√
𝜎2 + 𝜀

+ 𝜉. (7)

The decoder also employs a ReLU activation function in
each neural network to speed up convergence.

𝑅𝑒𝐿𝑈 (𝑥) =
{
𝑥, 𝑥 ≥ 0
0, 𝑥 < 0.

(8)

As shown in the above equation, the function outputs zero
for negative input values, effectively inhibiting the activation
of the corresponding neuron. This selective activation of neu-
rons contributes to a simplified network architecture, leading to
substantial computational efficiency. The convolutional kernel
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stride for all encoders and decoders is set to 1. As shown in
Fig. 4, the discriminator 𝐷𝐷𝑛 consists of three convolutional
layers and a fully connected layer. Each convolutional layer is
set with 3 × 3 convolutional kernels, BN and ReLU.

Fig. 4. The discriminator 𝐷𝐷𝑛 model of DnGAN

B. Loss Functions for DnGAN

1) Loss Function of 𝐺𝐷𝑛: The loss function 𝐿𝐺𝑑 of
𝐺𝐷𝑛 consists of the reconstruction loss and the perceptual
loss. The reconstruction loss 𝐿𝐺𝑑𝑚𝑠𝑒 is defined as the Mean
Squared Error (MSE) between the denoised image generated
by DnGAN and the noiseless image.

𝐿𝐺𝑑 = 𝐿𝐺𝑑𝑚𝑠𝑒 + 𝐿𝐺𝑑𝑝𝑒𝑟 , (9)

𝐿𝐺𝑑𝑚𝑠𝑒 (𝑥, 𝑥) =
1
ℎ𝑤

ℎ∑︁
𝑖=1

𝑤∑︁
𝑗=1

[
𝐺𝐷𝑛 (𝑥)𝑖, 𝑗 − 𝑥𝑖, 𝑗

]2
, (10)

where 𝑥 represents the input noisy image, 𝑥 represents the
noiseless image. 𝐺𝐷𝑛 (𝑥) represents the denoised image gen-
erated by 𝐺𝐷𝑛, where 𝑖 and 𝑗 denote the rows and columns of
features, respectively. ℎ and 𝑤 represent the height and width
of the image.

The clarity of the denoised image is improved by the
perceptual loss. The infrared images 𝐼𝑁𝐼𝑅, 𝐼𝑀𝐼𝑅 and 𝐼𝐿𝐼𝑅
in three bands are convolved with a single channel 1 × 1 to
obtain the source image features 𝐹. Similarly, the denoised
result 𝐼1 is obtained after convolution of the denoised images
𝐼𝑑𝑒𝑛𝑜𝑠𝑖𝑒𝑑 . The final loss 𝐿𝐺𝑑𝑝𝑒𝑟 is calculated using the 𝐿2
paradigm:

𝐹 = 𝑐𝑜𝑛𝑣 [𝑐𝑜𝑛𝑐𝑎𝑡 (𝐼𝑁𝐼𝑅, 𝐼𝑀𝐼𝑅, 𝐼𝐿𝐼𝑅)] , (11)

𝐼1 = 𝑐𝑜𝑛𝑣 (𝐼𝑑𝑒𝑛𝑜𝑠𝑖𝑒𝑑) , (12)

𝐿𝐺𝑑𝑝𝑒𝑟 (𝐹, 𝐼1) =
1

𝐻𝑝𝑊𝑝



𝜑𝑝 (𝐹) − 𝜑𝑝 (𝐼1)


2

2 , (13)

where 𝑝 denotes the 𝑝𝑡ℎ layer of the network. 𝐻𝑝 and
𝑊𝑝 represent the height and width of the input features,
respectively. 𝜑𝑝 (𝐹) and 𝜑𝑝 (𝐼1) indicate the output features
obtained through the 𝑝𝑡ℎ layer of the network. ∥ · ∥2

2 denotes
the 𝐿2 paradigm.

TABLE II
NETWORK STRUCTURE PARAMETERS OF 𝐺𝐹𝑛

Network structure layer Kernel size Output Next layer

Input Denoising image 640 × 640 × 1 Conv1

Encode

Conv1 3 × 3, 𝑆 = 1 640 × 640 × 32 CBAM1
CBAM1 / 640 × 640 × 32 Conv2
Conv2 3 × 3, 𝑆 = 1 640 × 640 × 64 Conv3
Conv3 3 × 3, 𝑆 = 1 640 × 640 × 128 CBAM2

CBAM2 / 640 × 640 × 128 Conv4
Conv4 3 × 3, 𝑆 = 1 640 × 640 × 256 Conv5

Decode

Conv5 3 × 3, 𝑆 = 1 640 × 640 × 128 Conv6
Conv6 3 × 3, 𝑆 = 1 640 × 640 × 64 Conv7
Conv7 3 × 3, 𝑆 = 1 640 × 640 × 32 Conv8
Conv8 3 × 3, 𝑆 = 1 640 × 640 × 16 Conv9
Conv9 3 × 3, 𝑆 = 1 640 × 640 × 1 Output

2) Loss Function of 𝐷𝐷𝑛: The loss function 𝐿𝐷𝑑 of 𝐷𝐷𝑛
comprises decision losses of the denoised image and noiseless
image, denoted by 𝐿𝐷𝑑𝑥 and 𝐿𝐷𝑑𝑥̃ , respectively.

𝐿𝐷𝑑𝑥 =
1

2𝑁

𝑁∑︁
𝑖=1

{[
𝑃𝑥 (𝐺𝐷𝑛 (𝑥𝑛)) − 𝑎1

]2+[
𝑃𝑥̃ (𝐺𝐷𝑛 (𝑥𝑛)) − 𝑎2

]2
}
,

(14)

𝐿𝐷𝑑𝑥̃ =
1

2𝑁

𝑁∑︁
𝑖=1

{[
𝑃𝑥 (𝑥𝑛) − 𝑎3

]2 +
[
𝑃𝑥̃ (𝑥𝑛) − 𝑎4

]2
}
, (15)

where 𝑁 is the number of input images. 𝑃𝑥 represents the
probability that 𝐷𝐷𝑛 judges the input as a denoised image, and
𝑃𝑥̃ represents the probability of being judged as a noiseless
image. 𝐺𝐷𝑛 (𝑥𝑛) denotes the 𝑛𝑡ℎ denoised image generated
by 𝐺𝐷𝑛. 𝑎1 and 𝑎2 are probability labels. When the input is
a denoised image, 𝑃𝑥 → 1 and 𝑃𝑥̃ → 0 are expected. Thus,
𝑎1 is set to 1, and 𝑎2 is set to 0. Similarly, 𝑎3 is set to 0, and
𝑎4 is set to 1.

C. The network structure of FuGAN

Stage 1-2: The denoised multi-band image generated by
DnGAN is fed into FuGAN through three channels to obtain
a high quality multi-band fused image. FuGAN achieves high-
quality fusion images through the adversarial game between
the generator 𝐺𝐹𝑢 and the discriminator 𝐷𝐹𝑢. The generator
𝐺𝐹𝑢 consists of an encoder and a decoder. The network
structure parameters specific to the generator 𝐺𝐹𝑛 are shown
in Table II.

As shown in Fig. 5, the encoder of 𝐺𝐹𝑢 consists of four
convolutional layers and two Convolutional Block Attention
Modules (CBAM). The flow of information between networks
is enhanced by the establishment of jump links. Like decoder
of 𝐺𝐷𝑢, each convolutional layer is set with 3×3 convolutional
kernels, BN and ReLU.

The CBAM is inserted after the first and third convolutional
layers to establish skip connections. CBAM enables the net-
work model to focus on information that is more critical to
the task at hand and reduces the focus on other information,
thereby increasing the efficiency of the entire network. CBAM
consists of two parts: Channel Attention Module (CAM) and
Spatial Attention Module (SAM). The features output from the
convolutional layer are firstly compressed by CAM in spatial
dimension to obtain a one-dimensional channel attention map.
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The features output from the convolutional layer are multiplied
with the channel attention map and input to the SAM. This part
compresses the channel to obtain a two-dimensional spatial
attention map, which is multiplied with the input data to obtain
the final weighted result.

𝑓 ′ = 𝑀𝑐 ( 𝑓 ) ⊗ 𝑓 , (16)

𝑓 ′′ = 𝑀𝑠 ( 𝑓 ′) ⊗ 𝑓 ′, (17)

where 𝑓 represents the features output from the convolutional
layer, 𝑓 ′ represents the features output from the CAM layer,
𝑓 ′′ represents the features output from the SAM layer. 𝑀𝑐

represents the one-dimensional channel attention map, and
𝑀𝑠 represents the two-dimensional spatial attention map. As

Fig. 5. The generator 𝐺𝐹𝑢 model of FuGAN

shown in Fig. 6, the discriminator 𝐷𝐹𝑢 is designed as a multi-
classifier. It consists of four convolutional layers and one fully
connected layer. Based on the image features extracted by the
convolutional layers, the fully connected layer discriminates
the input to obtain a probability vector for image fusion. Each
layer is composed of a 3 × 3 convolutional kernel, ReLU and
BN. The stride of all convolutional layers is set to 1, and the
padding method is SAME.

Fig. 6. The discriminator 𝐷𝐹𝑢 model of FuGAN

D. Loss Functions for FuGAN

1) Loss Function of 𝐺𝐹𝑢: The loss function 𝐿𝐺 𝑓 of 𝐺𝐹𝑢
consists of adversarial loss 𝐿𝐺 𝑓 𝑎𝑑𝑣 , perceptual loss 𝐿𝐺 𝑓 𝑝𝑒𝑟 ,
and SSIM loss 𝐿𝐺 𝑓 𝑠𝑠𝑖𝑚.

𝐿𝐺 𝑓 = 𝐿𝐺 𝑓 𝑎𝑑𝑣 + 𝐿𝐺 𝑓 𝑝𝑒𝑟 + 𝐿𝐺 𝑓 𝑠𝑠𝑖𝑚, (18)

𝐿𝐺 𝑓 𝑎𝑑𝑣 =
1

3𝑁

𝑁∑︁
𝑛=1

{[
𝐷𝐹𝑢 (𝐼𝑛𝑓 𝑢𝑠𝑒𝑑) [0] − 𝑒

]2+[
𝐷𝐹𝑢 (𝐼𝑛𝑓 𝑢𝑠𝑒𝑑) [1] − 𝑒

]2 +
[
𝐷𝐹𝑢 (𝐼𝑛𝑓 𝑢𝑠𝑒𝑑) [2] − 𝑒

]2
}
,

(19)

where 𝑒 is the probability that the fused image matches the
source image. The goal of 𝐺𝐹𝑢 is to make 𝐷𝐹𝑢 indistin-
guishable between the fused image and the source image,
hence 𝑒 is set to 1. 𝐼𝑛

𝑓 𝑢𝑠𝑒𝑑
indicates the 𝑛𝑡ℎ fused image

input to 𝐷𝐹𝑢. As the discriminator is a multi-classifier, the
output is a 1 × 3 probability vector. The three terms of this
vector represent the probabilitie that the fusion image is NIR,
MIR, and LIR image, expressed by 𝐷𝐹𝑢 (·) [0], 𝐷𝐹𝑢 (·) [1]and
𝐷𝐹𝑢 (·) [2] respectively.

The perceptual loss 𝐿𝐺 𝑓 𝑝𝑒𝑟 can motivate 𝐹𝐹𝑢 to generate
fused images with high information entropy, which is defined
in the same way as 𝐿𝐺𝑑𝑝𝑒𝑟 in DnGAN. The SSIM loss
𝐿𝐺 𝑓 𝑠𝑠𝑖𝑚 can constrain the correlation, luminance distortion,
and contrast distortion of the fusion image.

𝐼2 = 𝑐𝑜𝑛𝑣
(
𝐼 𝑓 𝑢𝑠𝑒𝑑

)
, (20)

𝐿𝐺 𝑓 𝑝𝑒𝑟 (𝐹, 𝐼2) =
1

𝐻𝑝𝑊𝑝



𝜑𝑝 (𝐹) − 𝜑𝑝 (𝐼2)


2

2 , (21)

𝑆𝑆𝐼𝑀 =
1
3
𝑆𝑆𝐼𝑀

(
𝐼 𝑓 𝑢𝑠𝑒𝑑 , 𝐼𝑁𝐼𝑅

)
+

1
3
𝑆𝑆𝐼𝑀

(
𝐼 𝑓 𝑢𝑠𝑒𝑑 , 𝐼𝑀𝐼𝑅

)
+ 1

3
𝑆𝑆𝐼𝑀

(
𝐼 𝑓 𝑢𝑠𝑒𝑑 , 𝐼𝐿𝐼𝑅

)
,

(22)

𝐿𝐺 𝑓 𝑠𝑠𝑖𝑚 = 1 − 𝑆𝑆𝐼𝑀. (23)

2) Loss Function of 𝐷𝐹𝑢: 𝐷𝐹𝑢 is a multi-classifier which
adopts the least squares loss function 𝐿𝐷 𝑓 . And 𝐿𝐷 𝑓 com-
prises four decision losses for NIR, MIR, LIR images, and
fusion images, denoted by 𝐿𝐷 𝑓 𝑁𝐼𝑅, 𝐿𝐷 𝑓 𝑀𝐼𝑅, 𝐿𝐷 𝑓 𝐿𝐼𝑅 and
𝐿𝐷 𝑓 𝐹𝑢𝑠𝑒𝑑 , respectively:

𝐿𝐷 𝑓 = 𝐿𝐷 𝑓 𝑁𝐼𝑅 + 𝐿𝐷 𝑓 𝑀𝐼𝑅 + 𝐿𝐷 𝑓 𝐿𝐼𝑅 + 𝐿𝐷 𝑓 𝐹𝑢𝑠𝑒𝑑 . (24)

Considering the output of the discriminator is a 1×3 vector
𝐷𝐹𝑢 (·), so that 𝑃𝑁𝐼𝑅 = 𝐷𝐹𝑢 (·) [0], 𝑃𝑀𝐼𝑅 = 𝐷𝐹𝑢 (·) [1],
𝑃𝐿𝐼𝑅 = 𝐷𝐹𝑢 (·) [2]. The corresponding 𝐿𝐷 𝑓 𝑁𝐼𝑅 loss, 𝐿𝐷 𝑓 𝑀𝐼𝑅
loss and 𝐿𝐷 𝑓 𝐿𝐼𝑅 loss are defined as:

𝐿𝐷 𝑓 𝑁𝐼𝑅 =
1

3𝑁

𝑁∑︁
𝑛=1

{[
𝐷𝐹𝑢 (𝐼𝑛𝑓 𝑢𝑠𝑒𝑑) [0] − 𝑏1

]2+[
𝐷𝐹𝑢 (𝐼𝑛𝑓 𝑢𝑠𝑒𝑑) [1] − 𝑏2

]2 +
[
𝐷𝐹𝑢 (𝐼𝑛𝑓 𝑢𝑠𝑒𝑑) [2] − 𝑏3

]2
}
,

(25)

𝐿𝐷 𝑓 𝑀𝐼𝑅 =
1

3𝑁

𝑁∑︁
𝑛=1

{[
𝐷𝐹𝑢 (𝐼𝑛𝑓 𝑢𝑠𝑒𝑑) [0] − 𝑏4

]2+[
𝐷𝐹𝑢 (𝐼𝑛𝑓 𝑢𝑠𝑒𝑑) [1] − 𝑏5

]2 +
[
𝐷𝐹𝑢 (𝐼𝑛𝑓 𝑢𝑠𝑒𝑑) [2] − 𝑏6

]2
}
,

(26)

𝐿𝐷 𝑓 𝐿𝐼𝑅 =
1

3𝑁

𝑁∑︁
𝑛=1

{[
𝐷𝐹𝑢 (𝐼𝑛𝑓 𝑢𝑠𝑒𝑑) [0] − 𝑏7

]2+[
𝐷𝐹𝑢 (𝐼𝑛𝑓 𝑢𝑠𝑒𝑑) [1] − 𝑏8

]2 +
[
𝐷𝐹𝑢 (𝐼𝑛𝑓 𝑢𝑠𝑒𝑑) [2] − 𝑏9

]2
}
,

(27)
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𝐿𝐷 𝑓 𝐹𝑢𝑠𝑒𝑑 =
1

3𝑁

𝑁∑︁
𝑛=1

{[
𝐷𝐹𝑢 (𝐼𝑛𝑓 𝑢𝑠𝑒𝑑) [0] − 𝑏10

]2+[
𝐷𝐹𝑢 (𝐼𝑛𝑓 𝑢𝑠𝑒𝑑) [1]−𝑏11

]2+
[
𝐷𝐹𝑢 (𝐼𝑛𝑓 𝑢𝑠𝑒𝑑) [2]−𝑏12

]2
}
,

(28)

where 𝐼𝑛
𝑓 𝑢𝑠𝑒𝑑

represents the 𝑛𝑡ℎ NIR image. 𝑏1, 𝑏2 and 𝑏3 are
probability labels. The generative network is expected to out-
put images that are independently and identically distributed
across the training samples. When the input is a NIR image,
it is expected that 𝑃𝑁𝐼𝑅 → 1, and 𝑃𝑀𝐼𝑅, 𝑃𝐿𝐼𝑅 → 0, so, 𝑏1
is set to 1, and 𝑏2 and 𝑏3 are set to 0. Similarly, when 𝐼𝑛

𝑓 𝑢𝑠𝑒𝑑

represents the 𝑛𝑡ℎ MIR image, 𝑏5 is set to 1, and 𝑏4 and 𝑏6
are set to 0. If 𝐼𝑛

𝑓 𝑢𝑠𝑒𝑑
represents the 𝑛𝑡ℎ LIR image. 𝑏9 is set

to 1, and 𝑏7 and 𝑏8 are set to 0. And in Eq.(28), 𝑏11, 𝑏12, and
𝑏13 are all set to 0. In other words, from the viewpoint of the
discriminator, the fused images are the same degree of pseudo-
NIR image, pseudo-MIR image and pseudo-LIR image.

V. MULTI-SCALE INFRARED DENSE SMALL OBJECT
DETECTION METHOD BASED ON TRANSFORMER

As shown in Fig. 7, the fused image is fed into the G-
LOD network to extract global information. The O-DAE
algorithm is defined to specify the boundary of the object
detection region. The input fused image is cropped according
to the boundary. s-LWSR improves image resolution. The
output is then analyzed locally by G-LOD for detection. The
WBF combines global and local predictions to achieve high-
precision detection.

Local detection 

resul ts

Global detection results

Backbone 

Network

RFP

RPN

G
-L

O
D

O-DAE

s-LWSR
Trimming by 

region

Adaptive region 

selection

Adapt ive scaling

Aggregate Score 

G-LOD

WBF

Fig. 7. Multi-scale infrared dense small object detection architecture

A. G-LOD

Stage 2-1: The fused image is fed into the G-LOD network
to get global detection results 𝑇 (𝐽) (category, bounding box).

The G-LOD network consists of CSPResNet101, Recursive
Feature Pyramid (RFP), Transformer encoder and Feed For-
ward Networks (FFN), as shown in Fig. 8. CSPResNet101 was
chosen as the backbone network of G-LOD [29]. The RFP was
added to the Neck to ensure reasonable full utilisation of multi-
scale features. The prediction frame information is extracted
from the multi-layer feature map by the RoIAlign, which
is then combined with positional data relating to candidate
regions before being fed into the detection head for training.

As Transformer is capable of end-to-end detection, it was
used to extract the input detection header of the candidate
region. To ensure the detection precision, a Bipartite Graph
Matchings was used to force constraints on the detection
range, effectively avoiding operations such as Non-Maximum
Suppression (NMS) within the detection model.

Fig. 8. Global-local object detection network

To improve the detection accuracy of dense small objects,
we introduce the classical backbone network ResNet101,
which relies on the residual learning mechanism to ensure
the training performance of the deeper network by copying
the features of the shallow network to the deeper network
for effective feature extraction. To achieve richer gradient
combinations, the Cross Stage Partial Network (CSPNet) is
used to combine with ResNet101 to form CSPResNet101.

The structure of CSPResNet101 and RFP is shown in
Fig. 9. The backbone network CSPResNet101 is used to
extract features from the input image and map the features
to the RFP to produce a multilevel feature map. By setting
additional feedback connections in the RFP, the semantically
information-rich high-level features are brought back to the
lower-level feature layers of the backbone network to enhance
the feature extraction performance of the backbone network
and achieve accelerated training of the network.

Conv5_x
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Conv2_x

Conv1(BN

+ReLU)
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1×1，s1

Conv2d

1×1，s1

Conv2d
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640×512×1
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＋
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40×32×256
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Fig. 9. The structure of CSPResNet101 and RFP
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Region Proposal Network (RPN) uses the global feature
map to determine whether a object is present in a candidate
region. Binary class labels are assigned to each candidate re-
gion by generating anchor frame coverage images at different
scales. A candidate region is assigned a positive label if its
Intersection over Union (IoU) overlap with the real frame
is above a certain threshold. This label of 1 means that the
candidate region is a object region; 0 means that it is not a
object region.

The position of the candidate region is defined as [𝑃𝐸 (𝑋) :
𝑃𝐸 (𝑌 ) : 𝑃𝐸 (𝑤) : 𝑃𝐸 (ℎ)], where [:] denotes the connection,
(𝑋,𝑌 ) ∈ [0, 1]2 is the coordinates of the upper left corner
of the prediction box, and (𝑤, ℎ) ∈ [0, 1]2 is the width and
height of the prediction box.

𝑃𝐸 (𝑋)2𝑖 = sin
(
𝑋/100002𝑖

)
, (29)

𝑃𝐸 (𝑋)2𝑖+1 = cos
(
𝑋/100002𝑖+1

)
. (30)

After the feature information of the candidate regions is
input to the Transformer encoder, it is aggregated by the self-
attention mechanism and finally reaches the shared FFN. The
FFN consists of a 3-layer perceptron with ReLU activation
and a linear layer that predicts the category labels of each
candidate region (including the ’no object’) and bounding box.
The bounding box of global detection result is denoted as
𝐵𝑙 = {𝑐𝑙

𝑘
, 𝑏𝑙
𝑘
}, where 𝑙 denotes the original image, 𝑘 is the

prediction frame code, 𝑐 is the object category, and 𝑏 is the
prediction frame location information.

This section uses the Hungarian loss for training supervision
of the detection head. 𝑦̄ = {𝑦̄𝑖}M𝑢=1 denotes the set of true
objects and 𝑦̂ = {𝑦̂𝑖}N𝑢=1 denotes the set of predictions.

L𝐻un𝑔𝑎𝑟𝑖𝑎𝑛 ( 𝑦̄, 𝑦̂) =
∑︁N

𝑖=1
[L𝑖, 𝛿 (𝑖)

𝑐𝑙𝑎𝑠𝑠
+ 𝟙{ 𝑦̂≠∅}L𝑖, 𝛿 (𝑖)𝑏𝑜𝑥

] . (31)

In general M < N because there are cases where the
prediction frame corresponds to no object object. L𝑖, 𝛿 (𝑖)

𝑐𝑙𝑎𝑠𝑠
and

L𝑖, 𝛿 (𝑖)
𝑏𝑜𝑥

are the classification loss and bounding box regression
loss, respectively, and 𝛿 is the matching loss between 𝑦̄ and
𝑦̂, denoted as follows:

𝛿 = argmin
𝛿∈𝔖N

N∑︁
𝑖=1

L𝑚𝑎𝑡𝑐ℎ
(
𝑦̄𝑖 , 𝑦̂ 𝛿 (𝑖)

)
, (32)

where 𝛿 ∈ 𝔖N is the set of N prediction frames and L𝑚𝑎𝑡𝑐ℎ
is the pairwise matching loss.

B. O-DAE

Stage 2-2: The global detection results of G-LOD network
are input to O-DAE module, and the clustering score is used
to obtain the region with denser small objects, and then the
region is adaptively adjusted to determine the final cropping
region.

The O-DAE module can adaptively crop out dense object
regions in the image for G-LOD to achieve fine detection. The
pseudo-code for the O-DAE is shown in Algorithm 1.

Algorithm 1 O-DAE algorithm
Input: The detection result 𝑇 (𝐽) (category, bounding box

𝐵𝑙 = {𝑐𝑙
𝑘
, 𝑏𝑙
𝑘
});

Output: The final cropped local image set 𝐽′;
1: Calculate the density of the area where the bounding box

𝐵𝑙 = {𝑐𝑙
𝑘
, 𝑏𝑙
𝑘
} is located by Eq.(33);

2: if 𝐺 (𝑋,𝑌 ) > Θ then
3: Get the coordinate set 𝐸𝑞;
4: end if
5: The source image 𝐽 is divided into subregion images set

{𝐽1, 𝐽2, · · · , 𝐽𝜆, · · · , 𝐽𝜐} according to the 𝐸𝑞;
6: for 𝜆 = 1 : 𝜐 do
7: Obtain the boundaries of the subregion 𝐽𝜆;
8: Calculate the centre coordinates (𝑋0, 𝑌0) of the subre-

gion 𝐽𝜆 by Eq.(35);
9: Calculate the scale standard 𝑠 and width to height ratio

𝑟 by Eq.(36)-(37);
10: Crop the subregion images 𝐽′

𝜆
according to Eq.(40)-

(41);
11: end for
12: return The final cropped local image set 𝐽′ =

{𝐽′1, 𝐽
′
2, · · · , 𝐽

′
𝜆
, · · · , 𝐽′𝜐};

The aggregate score model is used to measure the denseness
of the area where the bounding box 𝐵𝑙 = {𝑐𝑙

𝑘
, 𝑏𝑙
𝑘
} obtained in

the global detection is located.

𝐺 (𝑋,𝑌 ) =
{∑

𝑘 1, 𝑖 𝑓 (𝑋,𝑌 ) 𝑖𝑛 𝑏𝑙
𝑘

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,
(33)

𝐸𝑞 = {(𝑋,𝑌 ) | for Φ(𝐺 (𝑋,𝑌 )) > Θ} , (34)

where (𝑋,𝑌 ) represents the coordinates of the adaptive region.
Θ is the score threshold. The aggregate score is used as a
screening condition for dense regions, and screening high-
scoring coordinates as an input for adaptive region selection
not only ensures credible zoomed-in regions, but also speeds
up the selection. The set of high-resolution coordinates 𝐸𝑞
and the set of coordinates of the boundary of the prediction
frame 𝑍 are fed into the adaptive region selection based on
Density-Based Spatial Clustering of Applications with Noise
(DBSCAN).

Each coordinate in 𝐸𝑞 is assigned to a specific class, the
boundaries of the subregion can be easily obtained, and the
intercepted subregion contains the global box of all targets,
which can avoid object truncation. As a result, each subregion
has a different size. The source image 𝐽 is divided into
subregion images set {𝐽1, 𝐽2, · · · , 𝐽𝜆, · · · , 𝐽𝜐}.

Due to the different scales of the subregions, they cannot be
fed directly to the local detector. In order to maintain the scale
and proportion of the subregions within a preset range, the
subregion adaptive scaling method is proposed. The bounding
box of the subregion images 𝐽𝜆 is (𝑋1, 𝑋2, 𝑌1, 𝑌2). (𝑋1, 𝑌1) are
the coordinates of the upper left corner of the bounding box,
(𝑋2, 𝑌2) stands for the coordinates of the lower right corner
of the bounding box, the centre coordinates are (𝑋0, 𝑌0), 𝑆

indicates the standard size, and 𝑟 denotes the width to height
ratio.

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2025.3544258

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on February 24,2025 at 10:25:03 UTC from IEEE Xplore.  Restrictions apply. 



IEEE INTERNET OF THINGS JOURNAL 9

(𝑋0, 𝑌0) =
(
𝑋1 + 𝑋2

2
,
𝑌1 + 𝑌2

2

)
, (35)

𝑆 =
√︁
(𝑋2 − 𝑋1) (𝑌2 − 𝑌1), (36)

𝑟 =
𝑌2 − 𝑌1
𝑋2 − 𝑋1

. (37)

When 𝑆 ≥ 𝑆′, 𝑟 ∈ [𝑟𝑚𝑖𝑛, 𝑟𝑚𝑎𝑥],

ℎ𝜆 = max
(
𝑆′,

𝑋2 − 𝑋1
2

, 𝑌2 − 𝑌1

)
, (38)

𝑤𝜆 = max
(
𝑆′,

𝑌2 − 𝑌1
2

, 𝑋2 − 𝑋1

)
, (39)

(
𝑋𝜆1 , 𝑌

𝜆
1

)
=

(
𝑋0 −

𝑤𝜆

2
, 𝑌0 −

ℎ𝜆

2

)
, (40)

(
𝑋𝜆2 , 𝑌

𝜆
2

)
=

(
𝑋0 +

𝑤𝜆

2
, 𝑌0 +

ℎ𝜆

2

)
, (41)

where
(
𝑋𝜆1 , 𝑌

𝜆
1
)

and
(
𝑋𝜆2 , 𝑌

𝜆
2
)

denote the new coordinates
of the upper left corner and the lower right corner of the
bounding box of the final cropped subregion image 𝐽′

𝜆
, re-

spectively. ℎ𝜆 and 𝑤𝜆 denote the final cropped height and
width of the bounding box. Final cropped local image set
𝐽′ = {𝐽′1, 𝐽

′
2, · · · , 𝐽

′
𝜆
, · · · , 𝐽′𝜐} is output.

We did a sampling statistic on all the datasets and its
distribution presents are characterized by non-uniform spatial
distributions and a high proportion of small objects, with
occlusion and overlap between dense objects. Due to the
uneven spatial distribution of the dataset, very empty areas
do not have much identification value. Therefore, we set the
score threshold at 2 (Θ = 2) to ensure that there is an
identification object in the region. Of course, there are very
limited instances of complete overlapping or obscuration in
the dataset. Although the proposed algorithm can distinguish
the object to some extent, it is still unable to do anything for
very dense cases. So we have to discard the very dense parts,
detection area should not be too small. Therefore, we set the
standard size at 5 (𝑆′ = 5) based on statistics and empirical
values. To ensure that the image input to the neural network
is square or tends to be square, the aspect ratio of the cropped
image should not be too large or too small, so it is set between
[0.5, 2] (𝑟𝑚𝑖𝑛 = 0.5, 𝑟𝑚𝑎𝑥 = 2).

C. s-LWSR

Stage 2-3: The cropped local images 𝐽′ are fed into the
s-LWSR network to increase the resolution of the image
for more detailed detection information and higher detection
accuracy.

After the image has been scaled, the size has reached the
acceptance standard of the detector. However, due to a series
of processing operations, the cropped image inevitably suffers
from blurring of image quality, loss of image details, and
degradation of resolution. To address the above problems, we
employ the highly-efficient s-LWSR network [30], which is

based on the a priori knowledge of the image, to recover
the lost object edge information of the cropped image so
as to obtain a high-resolution image and provide more se-
mantic information to the object detector. Since the adaptive
selection algorithm intercepts sub-regions of different sizes,
super-resolution processing for large sub-regions is obviously
unnecessary. So,

𝐽𝑠 =

{
𝑠𝑢𝑝𝑒𝑟

(
𝐽′
𝜆

)
, 𝑖 𝑓 𝑠𝜆 ≤ 𝑆𝑠𝑟

𝐽′
𝜆
, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒,

(42)

where 𝐽𝑠 is a recovered high-resolution image. The cropped
image of 𝐽′ is input to s-LWSR. The local images are
processed with super-resolution and fed into the G-LOD local
fine detection network.

Stage 2-4: The recovered high-resolution images 𝐽𝑠 are fed
into the G-LOD network for secondary fine detection of the
object and local detection results 𝑇 (𝐽𝑠) are obtained.

D. WBF
Stage 2-5: Both local and global detection results are fed

into the WBF module for result fusion to output the final object
detection results.

𝐵 𝑓 = 𝑚𝑒𝑟𝑔𝑒 (𝑇 (𝐽) , 𝑇 (𝐽𝑠)) , (43)

where 𝐵 𝑓 indicates the final detection result, 𝐽 denotes the
source image, 𝐽𝑠 denotes the local super-resolution image
generated by the O-DAE network. 𝑇 (·) indicates network
detection result, 𝑚𝑒𝑟𝑔𝑒 (·) represents weighted boxes fusion
[31]. The pseudo-code for the MsDSOD is shown in Algo-
rithm 2.

Algorithm 2 MsDSOD algorithm
Input: The fused image with multi-band infrared features

generated by MIF-CGAN;
Output: the final detection result;

1: for 𝑙 = 1 : 𝐿 do
2: Get the global detection result 𝑇 (𝐽) and the bounding

box 𝐵𝑙 = {𝑐𝑙
𝑘
, 𝑏𝑙
𝑘
} by G-LOD network;

3: Calculate the final cropped local image set 𝐽′ =

{𝐽′1, 𝐽
′
2, · · · , 𝐽

′
𝜆
, · · · , 𝐽′𝜐} by Algorithm 1;

4: for 𝜆 = 1 : 𝜐 do
5: if 𝑠𝜆 ≤ 𝑆𝑠𝑟 then
6: Enhanced image resolution of 𝐽′

𝜆
through s-LWSR

network;
7: end if
8: Get the local detection result 𝑇 (𝐽𝑠) by G-LOD

network;
9: end for

10: Calculate the final detection result 𝐵 𝑓 by Eq.(43);
11: end for
12: return The final detection result 𝐵 𝑓 ;

VI. SIMULATION EXPERIMENTS AND ANALYSIS OF
RESULTS

A. Environment Configuration
The experimental environment is Intel Xeon Gold 5218R

CPU, 32G DDR4*8 RAM, NVIDIA GeForce RTX3090

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2025.3544258

© 2025 IEEE. All rights reserved, including rights for text and data mining and training of artificial intelligence and similar technologies. Personal use is permitted,

but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on February 24,2025 at 10:25:03 UTC from IEEE Xplore.  Restrictions apply. 



IEEE INTERNET OF THINGS JOURNAL 10

GPU. The operating system is Window 10, the programming
language is Python, and the deep learning framework is
TensorFlow-gpu 1.14.0. Training is conducted for 300 epochs
using the Adam optimizer with 0.0001 learning rate and 2
Batchsize and the average is taken.

1) Multi-band Infrared Image Dataset: The Multispectral
Dataset [32] is used as the training and testing data for the
multiband image fusion simulation experiments, as shown
in Fig. 10. The dataset includes 7512 sets of images in
different scenes. Each set of images is divided into four
categories, RGB, NIR, MIR, and LIR. It contains a variety
of scenes in university environments, such as cars, bicycles,
and pedestrians in road scenes, and buildings in natural scenes.
The training set is divided into 3740 sets for day and 3772
sets for night. In this paper, the selected image experienced
scene alignment and scaling processing.

(a
) 
N
IR

(b
) 

M
IR

(c
) 

L
IR

Fig. 10. The Multispectral Dataset

2) Infrared Small Object Detection Dataset: The MsDSOD
simulation experiments utilized the infrared small object de-
tection dataset in aerial photography, as shown in Fig. 11.
The dataset collects 11045 infrared image data under the
overhead angle of surveillance, which contains rich infrared
small objects : pedestrians, cars, buses, bicycles, cyclists, and
trucks. The label files are converted to json format to construct
the MS COCO format dataset. We selected 8837 images as
training set, 1104 images as validation set and 1104 images
as test set.

Fig. 11. The dataset of MsDSOD

B. Evaluation Indicators

To evaluate the performance of the MIF-CGAN algorithm,
the fusion algorithm will be quantitatively evaluated using the
objective evaluation criteria, which mainly include Entropy

(𝐸𝑁), Average Gradient (𝐴𝐺), Standard Deviation (𝑆𝐷),
Structural Similarity Index (𝑆𝑆𝐼𝑀), Peak Signal-to-Noise Ra-
tio (𝑃𝑆𝑁𝑅) and Gradient-based fusion performance 𝑄𝐴𝐵/𝐹 .
The metrics for measuring object detection algorithms contain
Precision (𝑃), Recall (𝑅), mean Average Precision (𝑚𝐴𝑃) and
F1 score (𝐹1).

𝐸𝑁 is the amount of information carried by each image
feature in the image grey scale distribution.

𝐸𝑁 =

255∑︁
𝑡=0

𝑝𝑡 log2 𝑝𝑡 , (44)

where 𝑝𝑡 denotes the proportion of pixels with grey value 𝑡

in the image. 𝐴𝐺 is the clarity of the fused image.

𝐴𝐺 =
1

(𝑊 − 1) (𝐻 − 1)

𝑊−1∑︁
𝑤=1

𝐻−1∑︁
ℎ=1√︄

[𝑅 (𝑤 + 1, ℎ) − 𝑅 (𝑤, ℎ)]2 + [𝑅 (𝑤, ℎ + 1) + 𝑅 (𝑤, ℎ)]2

2
,

(45)
where 𝑊 and 𝐻 denote the width and height of the image,
respectively, and 𝑅(𝑤, ℎ) denotes the pixel value located at
(𝑤, ℎ).
𝑆𝐷 is the degree of dispersion of the grey value of an image

pixel with respect to the mean value.

𝑢 =
1

𝑊𝐻

𝑊∑︁
𝑤=1

𝐻∑︁
ℎ=1

𝑅(𝑤, ℎ), (46)

𝑆𝐷 =

√√√
1

𝑊𝐻

𝑊∑︁
𝑤=1

𝐻∑︁
ℎ=1

(𝑅(𝑤, ℎ) − 𝑢)2, (47)

where 𝑢 denotes the mean value.
𝑆𝑆𝐼𝑀 is the similarity of two images in terms of brightness,

contrast and structure.

𝑆𝑆𝐼𝑀 = [𝑙 (𝑋, 𝑅)]𝛼 [𝑐(𝑋, 𝑅)]𝛽 [𝑠(𝑋, 𝑅)]𝛾 , (48)

where 𝑋 represents the source image, 𝑅 represents the fused
image, 𝑙 (𝑋, 𝑅), 𝑐(𝑋, 𝑅), 𝑠(𝑋, 𝑅) are the formulas for lumi-
nance similarity, contrast similarity, and structural similarity,
respectively, and 𝛼, 𝛽, and 𝛾 are the weighting coefficients,
which are generally taken to be 1.

𝑃𝑆𝑁𝑅 is an objective measure of the difference in noise
level between two images.

𝑀𝑆𝐸 =
1

𝑊𝐻

𝑊−1∑︁
𝑤=1

𝐻−1∑︁
ℎ=0

[𝑋 (𝑤, ℎ) − 𝑅(𝑤, ℎ)]2, (49)

𝑃𝑆𝑁𝑅 = 10 log10

(
𝑀𝐴𝑋𝐼

𝑀𝑆𝐸

)2
= 20 log10

(
𝑀𝐴𝑋𝐼√
𝑀𝑆𝐸

)
, (50)

where 𝑋 (𝑤, ℎ) and 𝑅(𝑤, ℎ) denote the pixel values of the two
images at (𝑤, ℎ), 𝑀𝑆𝐸 denotes the mean square error of the
two images, and 𝑀𝐴𝑋 𝐼 denotes the maximum value of the
image pixels that can be taken.
𝑄𝐴𝐵/𝐹 is the extent to which the salient information of the

input is represented in the fused image [33].
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TABLE III
RESULTS OF MSDSOD ABLATION EXPERIMENTS

Groups CSPResNet101 RFP Transformer Encoder O-DAE 𝑚𝐴𝑃 𝐴𝑃50 𝐴𝑃75 𝐴𝑃𝑠

I × × × × 49.7 86.8 51.1 38.8
II

√ × × × 52.9 87.4 59.8 43.1
III

√ √ × × 59.2 89.3 65.9 51.5
IV

√ √ √ × 60.8 90.4 67.4 52.9
V

√ √ √ √
63.163.163.1 93.693.693.6 70.070.070.0 55.755.755.7

TABLE IV
COMPARISON EXPERIMENT OF MIF-CGAN

Methods
Indicators

𝐸𝑁 𝐴𝐺 𝑆𝐷 𝑆𝑆𝐼𝑀 𝑃𝑆𝑁𝑅 𝑄𝐴𝐵/𝐹 Parameters (MB) FLOPs (G) Time (s)

DenseFuse [34] 7.2755 0.0224 69.4440 0.2481 58.4254 0.0805 0.0750.0750.075 49.63 0.236
FusionGAN [9] 6.4860 0.0114 34.4700 0.50300.50300.5030 64.701564.701564.7015 0.1495 0.972 499.37 0.196
DDcGAN [35] 7.5903 0.0247 65.3309 0.3359 59.8904 0.2610 1.121 899.04 0.203
GANMcC [36] 6.7973 0.0133 42.6550 0.4666 61.5798 0.2077 1.901 1010.09 0.200
RFN-Nest [37] 7.1645 0.0133 51.8210 0.4567 59.6889 0.2428 12.033 / 0.216

CSF [38] 7.1734 0.0166 56.2399 0.4488 61.0692 0.2647 0.178 / 3.113
GAN-FM [39] 7.4091 0.0251 68.9384 0.3778 5.97467 0.34050.34050.3405 / / /
TarDAL [40] 6.9844 0.0183 64.9494 0.4525 60.1620 0.2788 0.317 15.6715.6715.67 0.0390.0390.039
MIF-CGAN 7.59827.59827.5982 0.02630.02630.0263 70.234470.234470.2344 0.4008 62.2523 0.2990 2.272 63.88 0.259

C. Results and Analysis of Ablation Experiments

1) MIF-CGAN: In this ablation experiment, we only re-
moved the attention modules from the second and fifth layers
of the FuGAN generator. The experiment verifies the effect of
the channel attention module and the spatial attention module.
Then, we only removed DnGAN to verify the effectiveness of
the cascade structure for image fusion quality improvement.
NIR, MIR and LIR are fed into FuGAN after connecting them
along the channels. The experimental results are shown in the
Table V. MIF-CGAN has significant improvement in 𝐸𝑁 , 𝐴𝐺,
𝑆𝐷 and 𝑄𝐴𝐵/𝐹 compared to both Ablation1 and Ablation2.
This indicates that attention modules in the MIF-CGAN can
capture more image features and enhance the resolution of the
fused image and DnGAN effectively improves the clarity and
information richness of the fused images.

TABLE V
RESULTS OF MIF-CGAN ABLATION EXPERIMENTS

Methods 𝐸𝑁 𝐴𝐺 𝑆𝐷 𝑆𝑆𝐼𝑀 𝑃𝑆𝑁𝑅 𝑄𝐴𝐵/𝐹

Ablation1 7.1863 0.0239 65.7710 0.4145 63.1017 0.1840
Ablation2 7.2413 0.0164 59.5917 0.45410.45410.4541 63.513863.513863.5138 0.1729

ours 7.59827.59827.5982 0.02630.02630.0263 70.234470.234470.2344 0.4008 62.2523 0.29900.29900.2990

2) MsDSOD: We design five sets of ablation experiments to
verify the effectiveness of each module of MsDSOD, and the
results are shown in Table III. The network of Group V is the
MsDSOD. Compared to Group I, the CSPResNet101 of Group
II improves the average detection precision by 6.44%. This
shows that the deeper network structure of CSPResNet101
effectively extracts image features. Compared to Group II, the
RFP of Group III improves the average precision by 11.91%
and the small object detection precision by 19.49%. This
is due to the fact that the proposed algorithm introduces a
recursive feature pyramid structure RFP, which avoids the loss
of small target information through multi-scale feature fusion.

Compared to Group III, the Transformer Encoder of Group IV
effectively improves the average detection precision as well
as the small object detection precision. This is due to the fact
that the proposed algorithm discards the decoder structure of
the Transformer and connects the shared feedforward network
directly after the encoder, which is used to determine the
class and location of the target. Compared to Group IV, the
average precision of MsDSOD is improved by 3.78%, the
small object detection precision is improved by 5.29%, and
the large object detection precision is improved by 7.27%. It
can be seen that the O-DAE module effectively improves the
detection precision.

D. Results and Analysis of Comparative Experiments

1) MIF-CGAN: This algorithm is compared to eight image
fusion algorithms such as DenseFuse, FusionGAN and DDc-
GAN. We evaluate the fusion effect of each algorithm in terms
of subjective qualitative analysis and objective quantitative
analysis. In Table IV and Fig. 12, 𝐴𝐺 and 𝑆𝐷 of MIF-CGAN
improves 4.78% and 1.13% over the suboptimal algorithms
respectively, and outperforms most of the algorithms in 𝐸𝑁 ,
𝑃𝑆𝑁𝑅 and 𝑄𝐴𝐵/𝐹 . This indicates that MIF-CGAN is able
to obtain more sufficient visual information from the source
image.

The algorithm generates rich fused images with less noise,
strong contrast, High clarity. The proposed algorithm achieves
sub-optimal results in PSNR and 𝑄𝐴𝐵/𝐹 , after FusionGAN
and GAN-FM, indicating that the difference between the fused
image and the source image is large. This indicates that
Cascade-GAN is able to obtain sufficient visual information
from the source image with good visual perception. The 𝑆𝑆𝐼𝑀

of MIF-CGAN is lower. Because the source images and the
fused images are very different in terms of brightness, contrast,
and structural information. It is these differences that make the
structure of the fused image clearer and solve the problem of
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Fig. 12. Quantitative comparisons of the metrics

(a) NIR (b) MIR (c) LIR (d) DenseFuse (e) FusionGAN (f) DDcGAN (g) RFN-Nest (h) CSF (i) GAN-FM (j) GANMcC (k) TarDAL (l) Ours

Fig. 13. Comparison of fusion effect

low contrast and poor visual effect in infrared images. From
the above, it can be seen that the proposed algorithm is able to
fully obtain the target and texture detail information from the
source image, and produce a fused image with high signal-to-
noise ratio and high information entropy, which will be helpful
for the subsequent target detection tasks.

Although the proposed algorithm performs well in 𝐸𝑁 , 𝐴𝐺
and 𝑆𝐷, it performs poorly in Parameters, FLOPs and Time.
This is due to the fact that the proposed algorithm consists
of two generative adversarial networks, the denoising network
and the fusion network. Macroscopically, the training speed
is much slower than that of a generative adversarial network
such as FusionGAN. Although the introduction of the BN
module with residual network structure speeds up the training

speed of the proposed network to some extent, it is still slower
than that of a generative adversarial network. This approach
improves thenetwork extraction capability and also increases
the computational resources.

The effect of the MIF-CGAN algorithm is shown in Fig.
13. Columns (a)-(c) are the source images of NIR, MIR, and
LIR, Columns (d)-(k) are the fusion images generated by the
comparison algorithm, and the last column is the fusion image
generated by MIF-CGAN. From the overall visual perception,
the fusion effects of DDcGAN, FusionGAN, RFN-Next, and
GANMcC are all very blurred.Among them, the fused image
of FusionGAN is more in favour of MIR and LIR, and the
image object boundary is blurred. The background texture of
bicycles, leaves, windows, etc. is basically lost, and the noise
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TABLE VI
AVERAGE PRECISION OF COMPARATIVE EXPERIMENTS

Methods
Indicators person car bus cyclist bike truck 𝑚𝐴𝑃 𝐴𝑃50 𝐴𝑃75 𝐴𝑃𝑠 𝐴𝑃𝑀 𝐴𝑃𝐿

DETR [20] 30.2 54.3 66.0 40.2 40.7 63.2 49.1 82.1 51.9 37.9 58.7 62.3
FCOS [23] 40.2 63.4 74.2 46.5 52.8 72.4 58.2 90.0 64.5 49.6 66.4 66.3

Cascade R-CNN [26] 40.7 65.1 75.7 47.6 55.9 74.5 59.9 89.9 66.5 51.5 67.3 71.0
Cascade Mask R-CNN [27] 37.1 61.6 70.7 43.2 50.2 70.0 55.5 88.2 60.0 47.4 62.5 65.8

YOLOv3 [17] 43.1 68.6 73.4 46.2 53.2 73.4 59.6 89.7 63.8 47.8 65.0 72.7
YOLOv3-tiny [41] 27.2 56.1 63.1 33.3 35.5 60.1 45.9 80.3 43.4 30.6 53.9 64.7

YOLOv5n [18] 37.8 64.2 69.9 42.4 46.4 67.8 54.7 87.7 56.0 42.1 61.2 70.0
YOLOv8n [19] 41.3 67.7 73.4 45.0 51.1 72.0 58.4 88.6 63.1 45.8 64.8 72.2
YOLOv9s [42] 45.3 70.270.270.2 77.5 49.0 55.7 75.8 62.2 90.5 66.3 49.4 67.4 74.874.874.8

AS-YOLOv5 [43] 46.646.646.6 70.270.270.2 72.3 50.1 54.6 74.8 61.9 92.9 68.4 48.5 68.968.968.9 74.3
Light-YOLOv5 [44] 37.6 64.0 70.4 42.8 45.4 68.9 54.8 89.1 62.4 43.4 63.9 74.2

SCSDet [45] 43.1 69.8 77.8 46.7 54.6 75.575.575.5 62.6 91.2 67.3 55.3 67.9 72.6
MsDSOD 46.2 68.1 78.378.378.3 53.753.753.7 56.956.956.9 75.3 63.163.163.1 93.693.693.6 70.070.070.0 55.755.755.7 68.8 73.8

TABLE VII
COMPARISON EXPERIMENT OF MSDSOD

Methods
Indicators Backbone Input shape 𝑚𝐴𝑃 AR F1 Parameters (MB) FLOPs (G) FPS Energy cost (KJ)

DETR [20] Eficientdet 640 × 640 49.1 59.1 53.6 41.6 75.3 33.1 25.0
FCOS [23] ResNet-50 640 × 640 58.2 65.7 74.3 25.3 36.8 41.4 17.8

Cascade R-CNN [26] ResNet-101 640 × 640 59.9 65.9 74.8 88.2 262.1 55.2 14.3
Cascade Mask R-CNN [27] ResNet-FPN 640 × 640 55.5 62.9 72.7 42.0 157.7 46.1 16.4

YOLOv3 [17] DarkNet-53 640 × 640 59.6 66.3 73.8 58.7 154.6 59.9 13.8
YOLOv3-tiny [41] DarkNet-53 640 × 640 45.9 55.1 64.2 8.3 12.9 185.2 4.5

YOLOv5n [18] CSPDarkNet 640 × 640 54.7 63.3 71.3 1.71.71.7 4.24.24.2 588588588 2.22.22.2
YOLOv8n [19] CSPDarkNet 640 × 640 58.4 66.0 75.1 2.9 8.1 212.8 3.9
YOLOv9s [42] CSPDarkNet 640 × 640 62.2 67.9 73.2 6.8 26.7 128.2 6.5

AS-YOLOv5 [43] CSPDarkNet 640 × 640 61.9 69.069.069.0 72.3 57.0 171.4 90.1 9.2
Light-YOLOv5 [44] Shufflenetv2 640 × 640 54.8 66.1 70.9 17.9 24.6 112.4 7.4

SCSDet [45] SCSDet 640 × 640 62.6 67.7 74.5 9.4 28.9 73.6 11.6
MsDSOD CSPResNet101 640 × 640 63.163.163.1 68.8 75.275.275.2 25.3 36.8 63.1 13.1

interference is serious. The DDcGAN fused image produces
artefacts. the boundary of the pedestrian target is missing,
and the background sharpening is serious, which will cause
serious interference in the execution of the subsequent target
detection task. RFN-Nest and GANMcC extract the basic
texture information of NIR, but the contrast is low. The fused
images of DenseFuse, CSF, and GAN-FM are clearer overall,
but the boundary is blurred and the object is not bright enough
in the pedestrian object area. Comparison reveals that the
fused images generated by our algorithm have clearer object
boundaries and texture details, more appropriate contrast, and
more prominent object features, which are more useful for
subsequent object detection.

2) MsDSOD: To verify the improvement of our MsDSOD
algorithm for infrared dense small object detection precision,
several YOLO variants and their improvements are used as
comparison algorithms. The experimental results are shown in
Table VI and VII. The Table VI lists the accuracy of various
types of algorithms with different labels. In order to show
the classification results of our algorithms in more detail, the
confusion matrix figure of the MsDSOD algorithms is also
attached as shown in Fig. 14. Compared to the confusion
matrix of other two algorithms, the proposed algorithm has
better detection accuracy and lower probability of confusion
between categories.

In Table VI, 𝑚𝐴𝑃, 𝐴𝑃50, 𝐴𝑃75 and 𝐴𝑃𝑠 of MsDSOD is the

highest. Compared to SCSDet, the 𝑚𝐴𝑃 improves by 0.80%.
Compared to YOLOv9s, the 𝑚𝐴𝑃 improves by 1.44%. When
𝐼𝑜𝑈 threshold is 0.5, 𝐴𝑃50 of MsDSOD reaches 93.6. When
𝐼𝑜𝑈 threshold is 0.75, 𝐴𝑃75 of MsDSOD reaches 70.0. 𝐴𝑃 of
MsDSOD is the higher for detecting objects of different sizes.
𝐴𝑃𝑠 of MsDSOD improves by 0.72% over SCSDet, and by
8.16% over Cascade R-CNN in small object detection. This is
due to the fact that the proposed algorithm employs a two-step
detection approach to locally detect dense target regions and
identify dense small targets more accurately.

In medium-sized object detection, 𝐴𝑃𝑀 of MsDSOD is
not far from the highest of AS-YOLOv5, 𝐴𝑃𝐿 of MsDSOD
reduces by 1.36% compared to YOLOv9s. This is because in
convolutional neural networks, deep feature maps usually have
a higher degree of abstraction and are suitable for recognising
complex patterns or large objects. Shallow feature maps retain
more original visual information in them and are more suitable
for detecting fine features such as edges and textures. The
backbone network CSPResNet101 is introduced, which relies
on the residual learning mechanism to ensure the training
performance of the deeper network by copying the features
of the shallow network to the deeper network for effective
feature extraction. The proposed algorithm relies too much on
shallow features for prediction and thus performs poorly when
dealing with large targets.
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(a) YOLOv5n (b) YOLOv8n (c) MsDSOD

Fig. 14. Confusion matrix

(a) high proportion of small object. (b) object occlusion. (c) significant noise interference.

Fig. 15. Object detection effect in different scenarios

The Table VII shows the comparison results of various
algorithms in terms of metrics such as accuracy, parameters
and energy cost. Same as 𝑚𝐴𝑃, F1 is also the highest and AR
is not much different from the highest value of AS-YOLOv5.
Our algorithm is not superior in Parameters, FLOPs, FPS,
and Energy cost. The best in these aspects is the YOLOv5n
algorithm. Since MsDSOD aims at accuracy in detecting small
targets and is deployed in a cloud data centre, it has not been
designed for light weight and recognition speed in order to
be mounted on UAV. The detection effect of MsDSOD is
shown in Fig. 15. MsDSOD can detect small objects in high
proportion of small objects scenes, objects with occlusions
scenes and significant noise interference scenes.

The object detection architecture we have constructed is that
the image fusion algorithm is deployed on UAVs, and the
object detection algorithm is deployed on the cloud center.
Deploying algorithms on UAVs requires consideration of sev-
eral aspects, including computational resources, energy con-
sumption, and real-time performance. Therefore, we consider
using dedicated hardware such as FPGAs, GPUs and ASICs
to accelerate computation. Meanwhile, we use techniques such
as model pruning, quantization, and knowledge distillation
to reduce the number of parameters and the computational
complexity of the model. However, the accuracy of supervised
learning models tends to decrease rapidly after pruning and
compression. That’s why our MIF-CGAN uses GANs. Al-
though the proposed methods involve some additional training
effort, they can maintain fusion accuracy, making the use of

the proposed algorithms on UAVs more efficient and reliable.

VII. CONCLUSION

To improve the precision of object detection in UAVs,
we propose a multi-band infrared image fusion and dense
small object detection method. A multi-band infrared image
fusion algorithm based on cascade-GAN network is proposed,
which exploits the complementary information provided by
each band, increasing the effectiveness and detail of subse-
quent target detection analysis. The Transformer-based Multi-
scale Dense Small Object Detection network disentangles tiny
objects embedded in densely regions at multiple scales. The
performance of the proposed method is significant compared
to conventional algorithms. Specifically, the MIF-CGAN has
obvious advantages in EN, AG, and SD metrics. MsDSOD
consistently increases detection precision across different ob-
ject dimensions, and excels in scenarios characterised by
complex configurations of dense small objects and instances
of object occlusion. The simulation experiments of the two
proposed algorithms have shown positive results. Our Future
research focuses on deploying the algorithms on UAVs for
real-world validation.
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