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Abstract—Blockchain as an innovative distributed ledger tech-
nology, has attracted considerable attention in recent years from
both academic circles and industry sectors. Its applications
span a diverse range of domains, including finance and the
Internet of Things (IoT). However, the scalability of blockchain
technology is still a critical limitation with the increasing volume
of data. To address this limitation, directed acyclic graph (DAG)
data structure has been proposed to improve scalability by
supporting asynchronous process of transactions. IOTA is a well-
known DAG-based blockchain that theoretically offers faster
confirmation speeds with an increasing number of transactions.
However, in practice, IOTA still faces the challenge of balancing
scalability and security. In this paper, we propose a scalable
and secure transaction attachment algorithm for the DAG-based
blockchain IOTA. We determine two critical parameters through
our experimental analysis: one for calculating the selection
probability and the other for setting the threshold for abnormal
transactions. Firstly, we calculate the selection probability of
unconfirmed transactions. Then, we select abnormal transactions
whose selection probability falls below the predefined threshold to
maintain the security. Finally, new transactions attach randomly
to former transactions with a time computational complexity
O(n), ensuring the scalability. Through experiments comparing
the proposed algorithm to the current transaction attaching
algorithm, we demonstrate the scalability and security of our
proposed algorithm.

Index Terms—IOTA Blockchain Network, Network Modeling,
Distributed Ledger System, IoT

I. INTRODUCTION

BLOCKCHAIN technology has garnered significant atten-
tion within both academic and industrial sectors for its

innovative approach to decentralization [1]–[3]. For instance,
there are practical blockchain use cases within the Internet of
Things (IoT). Blockchain is implemented in transactive energy
management (TEM) systems for IoT-enabled smart homes,
achieving a 25% cost reduction through a privacy-preserving
distributed algorithm that allows users to optimize energy
usage [4]. Additionally, there is a consortium blockchain-based
public integrity verification system (CBPIV) for cloud storage
in IoT, where auditor actions are tracked on the blockchain
and monitored via smart contracts to ensure data integrity and
security, alleviating computation demands on data owners [5].
With the increasing number of IoT devices introduces new
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Fig. 1: A comparison of the blockchain data structure

demands on the scalability of blockchain networks [6]. Tradi-
tional chain-based blockchains, such as Bitcoin, face scalabil-
ity bottlenecks due to their linear data structure, limiting their
ability to handle the massive transaction volumes generated by
IoT environments. In contrast, graph-based architectures offer
a viable solution by inherently supporting parallel operations
and make them a promising solution for overcoming the
performance challenges posed by IoT systems.

A novel blockchain data structure Directed Acyclic Graph
(DAG) is proposed to solve the scalability issue. As shown
in Fig. 1, comparing to the chain, blockchain with DAG can
processes transactions asynchronously. In these years, various
DAG blockchains have been developed, such as IOTA [7],
Byteball [8], Hashgraph [9] and Fantom [10] etc. IOTA is one
of the most widely deployed DAG DLTs, which is maintained
by IOTA Foundation (IF) 1.

There exist two versions of IOTA, namely IOTA 1.0 and
IOTA 2.0, with the latter being the most recent. They differ
in their consensus mechanisms [7] [11]. Despite the novelty
of IOTA 2.0, the consensus mechanism of IOTA 1.0 remains
a representative and prototypical example of a DAG-based
distributed ledger protocol. Although IOTA 1.0 involves the
coordinator to ensure the legitimacy of transactions, which can
be seen as a centralization factor, it still employs a validation
process in which transactions must synchronize across all
nodes in the network to reach distributed consensus. Each
ledger entry needs to be validated, and IOTA nodes must
consistently update their states to ensure alignment with other
nodes. IOTA 1.0 is being still used in both research inter-
est [12], [13] and applications [14]–[18] recently. Hence, IOTA
1.0 still holds potential for development and improvement. The
term “IOTA” in the following context refers to IOTA 1.0.

In IOTA, the DAG data structure is referred to as the tangle,
where each vertex represents a transaction. Upon the arrival
of a new transaction, it must select and approve two previous
unconfirmed transactions, which are also called tips. The algo-
rithm used for selecting tips is named Tip Selection Algorithm

1https://www.iota.org/
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(TSA). The original IOTA protocol employs the Markov Chain
Monte Carlo (MCMC) algorithm as its TSA, which utilizes a
weighted random walk to attach new transactions. A critical
parameter α is used in the MCMC algorithm. A larger value
of α leads the walker through the most weighted branch which
can be against to parasite chain attacks, and these transactions
with lower weights may be ignored. Consequently, a larger
α value leads to an increase in unconfirmed transactions.
Conversely, a smaller α value may reduce the number of
unconfirmed transactions but increase the selection probability
of abnormal transactions, refer to transactions that are not
attached into the Tangle through the prescribed tip selection
algorithm. Examples of such abnormal transactions include
parasite chains and lazy tips. To enhance the IOTA’s defense
against attacks, a larger α value must be set, which will result
in more unconfirmed transactions in the tangle. Therefore,
IOTA with the MCMC algorithm still struggles to balance
security and scalability.

There have been several research efforts aimed at stabilizing
and minimizing the number of unconfirmed transactions to
accomplish a better scalability, meanwhile keeping the security
of the tangle. One such effort was proposed by G. Bu et al.
in the form of G-IOTA [19]. This approach involves each new
transaction referencing three previous messages. The same
team later proposed E-IOTA [20], a variant of IOTA that
utilizes a mix of TSA with varying α values executed with
different probabilities. For each round, one of three α values
is used to perform a random walk and select the tip. In DA-
IOTA [13], S. Rochman et al. set the α value as a variable that
depends on the standard deviation of all cumulative approver
weights. These research works have successfully controlled
and stabilized the number of tips. However, the tangle remains
vulnerable to attacks when a small α value is deployed.

Our aim is to enhance scalability while maintaining security
of the DAG-based consensus mechanism. There are two main
challenges to achieve the goal:

1) Challenge 1: A Proper α for the Tip Selection Probabil-
ity Calculation. The parameter α directly influences the
probability of selecting tips in a tangle when the new
transactions are attached via MCMC. In such a tangle,
tips on the random walk routine with higher weight may
have a greater selection probability. Therefore, selecting
an appropriate α that is sensitive to abnormal tips and
attack patterns is the first challenge of this study.

2) Challenge 2: A Baseline Value for the Abnormal Tip
Selection. In order to identify abnormal tips, a baseline
between the selection probabilities of normal tips and
abnormal tips needs to be established. This baseline
may vary depending on the transaction incoming rate
λ and the weighted random walk parameter α. The
accuracy of tip detection is also influenced by the
baseline. Therefore, determining an appropriate baseline
represents the second challenge.

In this paper, we propose a Secure Uniform Random Tip
Selection (S-URTS) algorithm that addresses the aforemen-
tioned challenges and ensures the scalability and security of
the tangle. At first, we detect and select out abnormal tips with

abnormal selection probabilities, then attach new transactions
using Uniform Random Tip Selection (URTS), which selects
the tip from set of all tips randomly [21]. Our solution
effectively mitigates the risk of attacks by detecting them prior
to attaching new transactions, thereby maintaining a stable
number of unapproved transactions. The previously attached
transactions can be approved immediately by the incoming
transactions, and the new transactions will be approved in the
subsequent round, without any accumulation of unapproved
transactions.

Our contributions are as follows:

• We propose a novel tip selection algorithm, which can
maintain both scalability and security of a DAG-based
blockchain.

• We determine a proper α for our proposed algorithm
based on statistical data from multiple repetitive exper-
iments. This α is sensitive and can be used to detect
abnormal tips in most tangle cases.

• We set the baseline for the normal tip distribution and
detection of the abnormal tips.

• We demonstrate the properties of proposed algorithm
through various experiments. The proposed TSA S-URTS
takes similar time with other TSAs, but S-URTS has less
number of tips and could defend against to the parasite
chain attack.

The rest of the paper is organized as following: We illustrate
the related analysis about the TSA and attacks in Section II.
Section III is about the basic knowledge used in proposed
algorithm. We describe the design of the propsoed algoithm
in Section IV. In Section V, we design the experiment to de-
termine the critial parameters and test the proposed algorithm.
Then we analyze the experiment result in Section VI. We
conclude the whole paper in Section VII.

II. RELATED WORK

In this section, we present previous works pertaining to
the scalability and security of the IOTA tangle. These works
encompass theoretical analyses of tips count, tangle TSA
variants, and tangle security.

A. Theoretical Analysis of the Tangle Tips Count

The experimental analysis of the influence of α and λ on the
number of tips has been conducted and reported in [22]. The
results of the experiment indicate that a small value of α leads
to a slower development trend of tips, while a large value of
α causes a continuous increase in the number of tips. Among
the various TSAs, URTS exhibits the smallest number of tips,
whereas MCMC has a higher number of tips than URTS, even
when α is 0. This finding has also been confirmed in [23]. In
another study by the same team, reported in [24], the influence
of α and λ on the probability of left-behind transactions and
permanent tips has been analyzed. The results indicate that,
for the same value of λ, an increase in α leads to a higher
percentage of tips.

This article has been accepted for publication in IEEE Internet of Things Journal. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/JIOT.2024.3521680

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



SUBMITTED TO IEEE INTERNET OF THINGS JOURNAL 3

B. Tangle TSA Variants

There exist several works proposing various algorithms to
stabilize the number of tips. In G-IOTA [20], the number
of tips is reduced by approving three tips through a new
transaction, and experimental results demonstrate a decrease
in the number of tips. To reduce the number of random walks
and save energy consumption, the same team proposed E-
IOTA [19]. For each random walk process, one α is selected
from the α set with a certain probability p. The security is
maintained by a large α, while the number of tips is stabilized
by another small α and 0. Experimental results confirm that
E-IOTA can maintain a low number of tips. However, the
security experiment is still missing, and the determination of
the selection probability p is not provided. The authors in [25]
proposed a hybrid TSA by using a large and a small α for two
tip selection processes separately. It is experimentally proven
that this method can stabilize the number of tips. But there
is no information on how to set the two α values. A TSA
algorithm DA-IOTA was proposed in [13], which determines
the α size based on the standard deviation of the cumulative
weight. Comparing with MCMC and E-IOTA, the number of
tips is smaller than the other two TSAs. However, there is no
detailed explanation of the algorithm’s basis and no proof of
security. The authors in [26] proposed a time-division-based
tip selection algorithm, which quickly identifies two tips for
an incoming transaction by sorting tip values within a time
slot. This approach reduces transaction verification time and
decreases the number of lazy and permanent tips; however, it
does not address the issue of parasite chain attacks.

All the above TSA variants have better performance than
MCMC in maintaining a stable and minimum number of tips,
but security and scalability were not approved simultaneously.

C. Tangle Security

The most prevalent form of threat in the IOTA network is the
parasite chain attack, and several studies have been conducted
on detecting such attacks. One approach involves using a
sampling random path to calculate a distance and identify the
parasite chain, as described in [27]. If the calculated distance d
exceeds a predetermined threshold, a flag is raised, and the tip
selection process needs to be restarted. Experimental results
have confirmed the effectiveness of this detection algorithm.
Another study by Ghaffaripour et al. [28] proposes a scoring
function to measure the importance of transactions in the IOTA
network. Any sudden changes in transaction importance indi-
cate abnormal behavior, which can be used to detect parasite
chain attacks. Chen et al. [29] analyzed the behavior strategies
of IOTA nodes using evolutionary game theory and identified
key factors affecting parasite chain attacks. They proposed
a parasite chain attack prevention algorithm based on price
splitting, which effectively prevents the formation of parasite
chains. Numerical simulations confirmed the effectiveness of
the proposed solution.

While these above TSA variants and parasite chain detection
algorithms have shown promising results, there is still lack of
a work verifiying and evaluating both scalability and security
of the novel TSA comprehensively.

Fig. 2: Full and light node in IOTA network

III. IOTA PRELIMINARY

In this section, we present an overview of the fundamental
concepts that underlie our work, encompassing IOTA-related
concepts and the absorbing Markov chain. With respect to
IOTA, we introduce the IOTA system, IOTA tangle, TSAs,
and common attacks separately.

The key idea behind IOTA is that a new transaction val-
idates two previous transactions. As a result of this, linked
transactions are disseminated throughout the entire network,
leading to the convergence of tangles and the formation of
consensus opinions through a distributed consensus protocol.

A. IOTA System

The IOTA network is a distributed system that comprises
two types of nodes: full nodes (such as n1, n2, n3) and light
nodes (clients), as shown in Fig. 2. A full node participates in
the IOTA network by storing, exchanging, and synchronizing
transaction data, which is eventually written into a local ledger
called the tangle and organized as a DAG. A light node collects
data from the user side and sends transactions to the IOTA
network (a full node). For a full specification of an actual
IOTA system (including node interactions, consensus, etc.),
please refer to [30].

B. IOTA Tangle

The IOTA tangle is a ledger of IOTA that comprises trans-
actions and directed links connecting these transactions. The
directed link between two transactions signifies an approval
relation and also denotes the order of attachment. The more
transactions that attach to a particular transaction, the greater
the confidence that transaction acquires. The transaction that
lacks any referred transactions is deemed unapproved and is
referred to as tips.

In the tangle, each transaction possesses its own weight and
a concept known as cumulative weight (CW). The own weight
is assigned a value of 1, while the CW is determined by the
number of children of the transaction plus itself. The CW value
serves as an indicator of a transaction’s significance within the
tangle. A higher CW value implies that the transaction has
received more approvals compared to transaction with lower
CW values. The difference between the CW values of two
connected transactions is referred to as the edge weight (EW).

C. IOTA Tip Selection Algorithm

IOTA attaches new incoming transactions to the tips through
the TSA. The official recommended TSA is the MCMC
algorithm, which selects tips through a biased random walk
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process. A random walker initiates its walk from a predefined
beginning transaction towards the end of the tangle, i.e., the
tip. An important parameter in the MCMC algorithm is α,
which influences the probability of tip selection. A large α
value causes the random walk to prioritize tips with high
cumulative weight, resulting in more unconfirmed transactions.
Conversely, a small α value leads to a more random walk
process. An α value of 0 results in an unbiased MCMC.
Another common used TSA is the URTS algorithm, which
selects tips randomly from the tip pool. Once a new transaction
attaches to the tips, this new transaction becomes a new tip
and the selected tips are approved and no longer available for
selection. While there is no mandatory TSA, IOTA Foundation
recommends the use of MCMC for better security and stability
of the tangle. URTS and Unbiased Random Walk (URW)
are theoretical tip selection algorithms and cannot be used
in real-life implementation of DAG based DLT due to their
vulnerability to parasite chain attacks [23].

Fig. 3: Transaction attachment on the tangle

Here we provide a detailed illustration of MCMC, as shown
in Fig. 3, m3, m4, and m5 represent tips, while m6 and
m7 denote new incoming transactions. A random walker
walks from m0 towards the end of the tangle. The transition
probability between m0 and m1 is calculated using Equ. 1. By
following the same approach, we can calculate the probability
of other edge transactions. Finally, m3 and m4 are selected
by m6 via MCMC.

pm0m1
=

e−αEWm0m1

e−αEWm0m1 + e−αEWm0m2
(1)

D. Attacks in IOTA

Fig. 4: Lazy tip and parasite chain

As noted in the IOTA whitepaper [7], the parasite chain
attack is a primary threat to the IOTA Tangle, with lazy
tips as a specific variant. Our paper focuses on these two
attacks as they pose significant security challenges to the IOTA
consensus algorithm.

1) Lazy tip: The lazy tip is a new coming transaction
that approves previously approved transactions instead of
unapproved ones. While the lazy tip does not contribute to the
confirmation rate and does not aid the IOTA system, it does
occupy storage space and interaction bandwidth. For instance,
in Fig. 3, transaction m7 would be identified as a lazy tip, as
it approves the already approved transaction m2.

2) Parasite chain: An attacker secretly constructs a sub-
tangle that cites a transaction on the main tangle, thereby
enhancing the cumulative weight of that transaction, as de-
picted in Fig. 4. The parasite chain can also be generated
by a set of sybil nodes. The concept of the parasite chain
was first introduced by Popov [7]. Subsequent works [31]–
[36] published or recommended by the IOTA Foundation have
extensively employed this type of parasite chain for security
analysis and algorithm testing. This parasite chain exerts
influence on the MCMC random walk process, directing the
walker towards the tips on the parasite chain. Consequently,
incoming transactions will validate the tips on the parasite
chain, while disregarding those from honest nodes. In the
worst-case scenario, the parasite chain may reference a double-
spending transaction, thereby attracting additional transactions
to validate it, ultimately resulting in an attack on the tangle.

In practice, a hypothetical attacker could carry out a double-
spending attack by attaching a parasitic chain to the Tangle.
As illustrated in the Fig. 4, the red squares denote transactions
within the parasitic chain that conflict with an original trans-
action. The attacker waits for the confirmation of the original
transaction before broadcasting the parasitic chain to the entire
Tangle, potentially validating the conflicting transaction [32].

The attacker’s goal is to create a sub-Tangle with a cu-
mulative weight greater than the main Tangle. If successful,
new transactions would prefer to attach to the conflicting
transaction. A parasitic chain is defined by the following
parameters:

• m is the length of the parasitic chain that references the
main Tangle.

• λ represents the rate at which honest transactions are
generated, which is related to the computing power of
the honest network.

• µ denotes the rate at which the attacker issues transactions
on the parasitic chain, corresponding to the attacker’s
computing power.

It is possible to create a parasitic chain with a more complex
structure. However, due to the complexity of the analysis,
we will focus on a single-chain parasitic chain. Additionally,
for the remainder of this paper, we will assume that the
honest majority assumption holds true [7]. This means that
the computing power of the honest users is always greater
than that of the attacker. This understanding is in line with
the state of the art in parasite chain prevention [31]–[36].

E. Absorbing Markov Chain

An absorbing Markov chain is a special type of Markov
chain that comprises two distinct states: transient state and
absorbing state. At least one absorbing state is present in an
absorbing Markov chain. Any transient state in an absorbing
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Markov chain will inevitably reach an absorbing state with a
probability of 1.

One important property of the absorbing Markov chain is
the stationary distribution, which characterizes the distribution
of all states after a sufficiently long period of time during
which the distribution no longer undergoes any changes. In this
context, the variable π represents a row vector of probabilities
associated with the states. If π satisfies the property defined
π = πP (P is the transition probability of the absorbing
Markov chain), it can be considered as the stationary distribu-
tion of the absorbing Markov Chain.

IV. ALGORITHM DESIGN

This section presents the proposed TSA S-URST. Before
deploying the algorithm, we need to determine two important
parameters: random walk influence factor α and threshold for
abnormal tips T . These two parameters will influence the
precision of the abnormal structure detection. To facilitate
understanding, we provide a summary of the definitions of
all variables used in this study in Tab. I.

A. Determine the α

Algorithm 1 α Determination

Require: set(λ), n, m, set(α)
Ensure: α

1: for λ in set(λ) do
2: Gλ = tangle generator(λ, n)
3: end for
4: for i in [1,m] do
5: Pci = parasiteChain generator(i)
6: end for
7: for Gλ in set(G) do
8: for Pcm in set(Pc) do
9: Gm

λ = parasiteChain attach(Pcm, Gλ)
10: end for
11: end for
12: for Gm

λ in set(Gm
λ ) do

13: for α in set(α) do
14: Dλ,m

α = probability calculator(Gm
λ , α)

15: end for
16: end for
17: for Dλ,m

α in set(Dλ,m
α ) do

18: pmin, ppc = select from(Dλ,m
α )

19: pdiff = pmin − ppc
20: end for
21: Calculate the mean and variance of pdiff for each α
22: Choose the α, whose mean is max and var is min.
23: return α

The value of α will have a direct impact on the probability
of tip selection. As the tangle is generated through the use of
URTS TSA, the effect of α on the probability of tip selection
may differ from that of the tangle generated through MCMC.
It is imperative that we select an appropriate value for α that
can differentiate between the selection probabilities of normal
and abnormal tips. In this paper, we employ an experimental

approach to determine the appropriate value for α. When the α
value is too large, it amplifies the influence of varying weights
on the probability distribution of tips, resulting in a more
extreme distribution and making it challenging to identify
anomalous transactions with lower weights. Conversely, when
the α value is too small, it averages the probability distribution
across different weights, reducing the sensitivity to abnormal
transactions. Therefore, by testing several commonly used α
values, it is possible to determine which value is most effective
for distinguishing anomalies.

Algorithm 1 shows the whole process for α determination.
Firstly, we generate tangles for various values of λ using the
URTS algorithm, and add parasite chains of varying lengths
to the tangle. Subsequently, for each length of the parasite
chain, the selection probability of both normal tips at the
main tangle and the abnormal tips at the parasite chain are
calculated and collected. Finally, the difference between the
minimum selection probability of normal tips and the selection
probability of abnormal tips is calculated. The mean and
variance of these differences are then computed, and the value
of α with the largest mean and smallest variance is selected.

B. Determine the T

Algorithm 2 Threshold Determination

Require: set(λ), n, α
Ensure: T

1: for λ in set(λ) do
2: Gλ = tangle generator(λ, n)
3: end for
4: for Gλ in set(Gλ) do
5: Dλ = probability calculator(Gλ, α)
6: end for
7: for Dλ in set(Dλ) do
8: Dmin = min(Dm)
9: end for

10: Calculate the moving average: T = moving ave(Dmin)
11: return T

After determining an appropriate value for α, it becomes
necessary to identify a suitable threshold T for detecting the
selection probability of abnormal tips for various values of λ,
shown in Algorithm 2. When determining the threshold value
T , the moving average of a normal threshold over a sufficiently
large sample set is used as the reference. If a value falls below
this threshold, it is classified as anomalous. This is because
nodes generating abnormal transactions typically have lower
computational power and are not integrated into the Tangle
following the system’s normal procedures. Consequently, the
calculated probability of such a node being selected will
be lower than under normal circumstances. By calculating
the selection probability distribution under typical conditions,
the minimum moving average probability is determined, es-
tablishing a lower bound for normal selection probability.
Transactions falling below this lower bound are classified as
anomalies. Initially, we collect the values of Dt for each t
during the tangle generation process. Subsequently, we obtain
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TABLE I: Variable definition

Variable Definition

Gt The DAG at time t
n The number of transactions
Pci The parasite chain i
m The length of the parasite chain
λ The new transaction arrival rate
Et The edge set at time t
eij The edge between two adjacent messages i, j
Vt The transaction set at time t
vi The transaction i of the tangle
v0 The genesis transaction of the tangle
Lt The set of tips at the time t
lt The number of tips at the time t
Dt The probability distribution of tips at the time t
Pt The transition probability matrix at time t
pij The transition probability between message i, j
πt The absorbing state at time t
α The weighted random walk parameter
ci The cumulative weight of message i
wij The edge weight of edge ij
T (t) The tip selection threshold at the time t
N The size of the sub-tangle

the minimum value of each Dt and calculate the moving
average value. Once the moving average value stabilizes and
converges, we set that value as the threshold T .

C. Proposed TSA S-URTS

(a) (b)

Fig. 5: Convert tangle to the absorbing Markov chain

The present algorithm S-URTS commences by transforming
the tangle into an absorbing Markov chain, followed by
the computation of the probability distribution of all tips.
Subsequently, the identification of the anomalous tip is carried
out, and transactions are selected from the remaining tips.
The primary steps involved in the algorithm are illustrated
in Algorithm 3.

At first, we transform the tangle Gt into an absorbing
Markov chain via designating tips as absorbing states and re-
versing the direction of directed edges in tangle. For example,
the tangle shown in Fig. 5a includes n transactions, comprising
r approved transactions and l tips. The Fig. 5b shows the
absorbing Markov chain converted from that tangle in Fig. 5a,

Fig. 6: Illurstration of the abnormal tips selection

which includes r transient states and l absorbing states with a
transient probability of 1. The transient probability from state
1 to states 2 and 3 is p12 and p13, respectively. If the number
of transactions n in the tangle is bigger than the predefined
sub-tangle size N , which is also the maximum random walk
depth, then we will only calculate tips probability of the sub-
tangle. The sub-tangle is a part of the tangle, constructed with
the last tip to the N former transactions.

Then, we calculate the cumulative weight ci of each transac-
tion i and get the edge weight wij of each edge ij from Equ. 2.
The affinity value between two states aij is influenced by α
and calculate by Equ. 3. We obtain the transition probability
pij for each pair of connected transactions from Equ. 4. After
gathering this information, we construct the transition matrix
P of the absorbing Markov chain, initiate the initial state π0

as Equ. 5, calculate the stationary state distribution π to obtain
the tip selection probability distribution Dt, through Fig 6.

wij = ci − cj (2)

aij = exp(−αwij) (3)

pij =


aij/

∑
z∈N(i) aiz, 1 ≤ i ≤ r,

1, i = j, n− l ≤ i ≤ n,

0, otherwise.
(4)

π0 = [1, 0, ..., 0] (5)

π1 = π0P

...

π = π0P
k

(6)

At the end, we pick out the abnormal tips as shown in Fig. 6.
We select the tips whose selection probabilities are below the
threshold T (t), and delete these abnormal tips from the tip
set, construct a new tip set L′(t), and attach new transactions
to the new tip selecting from set L′(t) uniformly.

In order to improve the efficiency and energy utilization
of adding new transactions, and to avoid network congestion,
new transactions are added at a fixed time unit interval. The
current set of newly arrived transactions is M(t) and the new
transactions are m1,m2,... . The above process is executed
once for every time unit, and the new transactions are added
to the new tip set L′(t) in the order they arrive. This process
ensures that the new transactions are added to the tip set in
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a timely manner, and that the network does not become too
busy.

Algorithm 3 Tip Selection

Require: G(t), V (t), E(t), α, λ, T
Ensure: tip1, tip2

1: for vi in V (t) do
2: ci = sum(children(vi)) + 1
3: if in-degree(vi) = 0 then
4: Add v(i) to the L(t)
5: end if
6: end for
7: for eij in E(t) do
8: wij = ci - ci
9: end for

10: for eij in E(t) do
11: pij = f(eij , α)/sum(f(eij′ , α)) for all j′ − > i
12: end for
13: Construct the transition probability matrix Pt

14: Calculate the stationary state D(t)
15: for di in D(t) do
16: if di > T (t) then
17: Add v(i) to the L′(t)
18: end if
19: end for
20: tip1 = random select(L′(t), 1)
21: tip2 = random select(L′(t), 1)
22: return tip1, tip2

V. EXPERIMENT DESIGN

This section presents two experiments conducted for the
proposed TSA: experiments aimed at estimating the critical
parameters of the algorithm, and experiments designed to
evaluate the algorithm’s performance.

A. Parameter Estimation

1) Determine α: The parameter α of the weighted random
walk influences the transition probability between two con-
nected transactions in the tangle. A small value of α results in
a even probability distribution, while a large value of α leads
to a scattered probability distribution for the tangle generated
by MCMC. However, the effect of α on the probability
distribution of the tip in the tangle generated by URTS remains
unknown. To determine the most appropriate value of α for
S-URTS, we conducted the following experiments.

TABLE II: Experiment setup: Parameter estimation

Parameters Value
α 0.001, 0.005, 0.01, 0.05
λ 5, 10, 15, 20
N 500

Parasite chain length from 1 to 200

The experiment was conducted using varying values of λ
and α. Some common values, including λ values of 5, 10, 15,

20, and α values of 0.001, 0.005, 0.01, and 0.05, were selected.
The tangle consisting of 500 transactions was generated using
the URTS algorithm via these λ. Subsequently, parasite chains
of varying lengths were attached to a fixed transaction, and the
selection probability of tips on the parasite chain and the tips
on the normal tangle were calculated. The attachment point
was determined based on the maximum distance in the 500-
transaction tangle.

The results of the tip selection probability development
are shown in Fig. 7. The box plots represent the selection
probability distribution of the normal tips, where the box itself
indicates the variability of the distribution. The orange line
denotes the median value of this probability distribution. The
blue points represent the abnormal tip selection probabilities,
highlighting deviations from the expected range. For a fixed
value of λ, as the value of α increases, the selection probability
of the tip at the parasite chain becomes more sensitive to
the length of the parasite chain. When α is set to 0.001, the
increasing rate of the tip selection probability at the parasite
chain is slow, and the selection probability of the tip at the
parasite chain is always lower than that of the tips at the main
tangle. However, when α is set to 0.05, the rate of increase is
fast, and the selection probability of the tip at the parasite chain
is higher than that of the tip selection probability. Our findings
indicate that for each value of λ, the best and most stable
performance is achieved when α = 0.001. As α increases
from 0.001 to 0.05, the tip probability on the parasite chain
grows faster. We have also calculated the mean and variance of
the difference between the probability of the tip at the parasite
chain and at the tangle, and the results are presented in Fig. 8,
which shows that for all values of λ, α = 0.001 has a higher
mean value and a smaller variance value compared to other
values of α. This indicates that with α = 0.001, it is easier to
detect the tip at the parasite chain.

2) Determine threshold T : The minimum probability in the
probability distribution of tips is influenced by the value of λ.
Generally, the threshold value T decreases as the number of
tips increases. In order to accommodate the arrival of nodes
with different λ values, we derive the minimum threshold for
tip addition when normal, using the same calculation criteria.
If the tip selection probability falls below the threshold, that
tip is deemed abnormal. We set α = 0.001, generate the tangle
using URTS with various λ values: 5, 10, 15, 20, and calculate
the minimum selection probability of the tip distribution each
round. We then calculate the moving average of the minimum
selection probability. Once the moving average value stabilizes
and converges, we set it as the threshold for that λ value.
Fig. 9 shows that after 600 messages, the lowest value of the
tip is essentially stable around 0.035. Therefore, we adopt the
corresponding value of 0.035 as the threshold for abnormal
tips for λ = 5. Using the same method, we calculate that the
thresholds for λ values of 10, 15, and 20 are 0.015, 0.01, and
0.007, respectively.

B. Algorithm Evaluation

The performance evaluation experiments comprise two as-
pects: scalability and security. In the scalability test, we
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(a) λ = 5, α = 0.001
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(b) λ = 5, α = 0.005
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(c) λ = 5, α = 0.01
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(d) λ = 5, α = 0.05
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(e) λ = 10, α = 0.001
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(f) λ = 10, α = 0.005
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(g) λ = 10, α = 0.01
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(h) λ = 10, α = 0.05
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(i) λ = 15, α = 0.001
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(j) λ = 15, α = 0.005
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(k) λ = 15, α = 0.01
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(l) λ = 15, α = 0.05
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(m) λ = 20, α = 0.001
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1 10 20 30 40 50

Parasite chain length

0.0

0.02

0.04

0.06

Pr
ob

ab
ilit

y

Selection probability of abnormal tips

(o) λ = 20, α = 0.01

1 10 20 30 40 50

Parasite chain length

0.0
0.02
0.04
0.06
0.08
0.10
0.12
0.14

Pr
ob

ab
ilit

y

Selection probability of abnormal tips

(p) λ = 20, α = 0.05

Fig. 7: The selection probability of the tip at the main tangle and at the parasite chain
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generate tangles with varying TSAs and parameter settings,
and collect data on the tips number and time consumption of
tangle generation. Additionally, we analyze the computational
complexity of these TSAs. In the security test, we attach

0 200 400 600 800 1000

Transactions

0.0

0.2

0.4

0.6

Pr
ob

ab
ilit

y

Min probability
Moving average

Fig. 9: The moving average of the minimum tip selection
probability

parasite chains of varying lengths to the tangle and calculate
the selection probability of tips at these parasite chains.

1) Scalability: We compare the scalability of our proposed
algorithm, S-URTS, with two other algorithms, namely, URTS
and MCMC, with α values of 0.001 and 0.05. The α value
of 0.001 for MCMC was determined through empirical ex-
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periments, while the α value of 0.05 was found to be highly
sensitive to abnormal structures. Throughout the remainder of
this paper, we will refer to MCMC with α = 0.001 as MCMC1
and MCMC with α = 0.05 as MCMC5. The experimental
setup is presented in Tab. III.

TABLE III: Experiment setup: scalability

Items Value
TSA URTS, MCMC1, MCMC5, S-

URTS
λ 5, 10, 15, 20
N 104

TABLE IV: Experiment setup: security

Items Value
N 500
α 0.001

TSA URTS, MCMC1, S-URTS
Parasite chain length from 1 to 200

λ 5 10 15 20
Attaching point index 400 380 330 300

2) Security: In order to conduct an analysis of the security
of the S-URTS, we have employed a rigorous methodology.
Specifically, we have attached parasite chains of varying
lengths to a fixed site located at the sub-tangle with a size
of N=500. The tip selection probability has been calculated
through the use of several algorithms, including S-URTS,
MCMC1, and URTS. The selection of the fixed site has been
based on the maximum difference between two indexes of the
transactions on the tangle. It is important to note that if the
attachment position is too close to the normal tips, they cannot
be detected, as has been previously noted [27]. The detailed
experimental settings are presented in Tab. IV.

VI. EVALUATION

In the present section, we undertake a comprehensive analy-
sis of the experimental outcomes and compare the proposed S-
URTS with other existing TSAs from two distinct perspectives,
namely scalability and security. Regarding to scalability, we
delve into the development of the number of tips during the
tangle generation process, the time taken for tangle generation,
and the computational complexity. In terms of security, we
scrutinize the tip selection probability of tips at both the main
tangle and the parasite chain.

All experiments were conducted on a computer equipped
with an Intel Core i5−8265U @ 1.6 GHz CPU and 16 GB
of RAM . Additionally, all algorithms were implemented in
Python 3.8.

A. Scalability

We evaluate scalability using three parameters: the number
of tips, consuming time for generating a new tangle and time
complexity of the algorithm. When a large volume of new
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Fig. 10: The comparison of the number of tips development

transactions enters the Tangle, the network must process and
validate these transactions. Each new transaction attaches to
existing tips, completing their validation and becoming a new
tip itself. A Tangle with good scalability efficiently processes
transactions, maintaining a stable number of tips, while poor
scalability results in a backlog of unprocessed transactions,
leading to an increasing number of tips. Consuming time
for generating a new tangle is another key indicator—shorter
consuming times reflect better scalability, while longer times
indicate inefficiency. Reduced consuming time for attaching
new transactions generally implies improved scalability, as
the system can handle more transactions at a faster rate. This
term refers to the assessment of an algorithm’s computational
complexity in relation to the time required for execution. A
lower time complexity is generally indicative of improved
scalability, as it allows the algorithm to handle an increasing
number of transactions or operations more efficiently.

1) The number of tips: The present study involves the
analysis of tip counts during tangle generation using different
TSAs, namely: URST, MCMC1, MCMC5, and S-URTS. The
raw data and the fitting line of the data of the number of
tips are depicted in Fig. 10, which provides insights into the
development trend of the number of tips with different TSAs
and λ values. The tip development of S-URTS is found to be
similar to that of URTS, wherein the number of tips initially
increases and then stabilizes. Moreover, the number of tips
of S-URTS during the stable period is also similar to that of
URTS. In the case of MCMC1, when λ is 5, the number of tips
shows an increasing trend for a tangle size of 10, 000. For other
λ values, the number of tips of MCMC1 initially increases
and then stabilizes at a higher value than that of URTS and S-
URTS. As for MCMC5, the number of tips always increases
and is greater than the other three TSAs. Theoretically, the
minimum number of tips is 2*λ, which is achieved by URTS
and S-URTS [7]. These experiments demonstrate that the
number of tips of S-URTS can be maintained at a stable and
low level.

2) Consuming time: We collect the consuming time for
generating the tangle with 10, 000 transactions and show the
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results in Fig. 11.
The results show that when λ is set to 5, URTS outperforms

the other three algorithms in terms of consuming time, with
S-URTS taking the longest time. However, as λ increases,
the consuming time of URTS and MCMC also increases.
Specifically, when λ is set to 10, the consuming time of S-
URTS is comparable to that of MCMC5, whereas when λ is
set to 15, the consuming time of S-URTS is similar to that of
MCMC1, but less than that of MCMC5. Finally, when λ is set
to 20, the consuming time of S-URTS decreases and becomes
less than that of MCMC1 and MCMC5, but higher than that
of URTS.

The duration of the batch attaching process has a significant
impact on the execution time of S-URTS. Specifically, when
the value of λ is relatively small, the number of attaching
transactions processed per unit time is correspondingly low.
Conversely, as the value of λ increases, the efficiency of
S-URTS is enhanced. Despite these fluctuations, the overall
execution time of S-URTS remains within an acceptable range.

3) Time Complexity: We conducted a comparative analysis
of the time complexity of URTS, MCMC, and S-URTS for
attaching new transactions.

In the case of URTS, the selection of a tip from the
tip pool is performed randomly in each step, resulting in a
computational complexity of only O(n), n is the number of
tips.

For MCMC, the situation is more intricate. MCMC employs
a biased random walk and necessitates knowledge of the
cumulative weight of each transaction. Based on the defini-
tion of cumulative weight, the number of ancestors of each
transaction must be calculated, resulting in a time complexity
of O(|V |2). The subsequent step involves the computation
of edge weight. The edge number is denoted as E, and the
complexity of calculating edge weight is O(|E|). Similarly,
the complexity of calculating transition probability is also
O(|E|), as each edge has a transition probability associated
with it. The MCMC algorithm for one-time random walk
has a complexity of O(|V |2 + 2|E|). When dealing with a
tangle consisting of V transactions, the total calculation time
becomes |V |(|V |2 + 2|E|). This is because each transaction
can approve a maximum of two older transactions, and each
vertex in the tangle has at most two edges. Therefore, the
edge number |E| is equal to or less than 2|V |. By substituting
these values, we can obtain the calculation complexity as
O(|V |3 + 4|V |2).

The S-URTS algorithm involves two initial steps, namely

the calculation of the cumulative weight and transition prob-
ability, which are identical to those of the MCMC. The time
complexity of the first step is O(|V |2+2|E|). Additionally, the
S-URTS algorithm requires the computation of the selection
probability distribution of all tips. The time complexity of the
matrix calculation is O(|V |2/λ). For each round, the time
complexity is O(|V |2+2|E|+ |V |2/λ). Assuming an average
of λ transactions per round, and a tangle with |V | transactions,
it requires approximately |V |/λ rounds. The overall time
complexity can be equivalent to O((λ2+1)|V |3/λ2+4|V |2).
When λ is large, the time complexity of the S-URTS algorithm
is comparable to that of the MCMC algorithm.

TABLE V: Time complexity

TSA Complexity
URTS O(n)

MCMC O(|V |3 + 4|V |2)
S-URTS O((λ2 + 1)|V |3/λ2 + 4|V |2)

Through our analysis of the number of tips, time required
for computation and the time complexity, we have observed
that for larger values of the parameter λ, the processing time
of the S-URTS algorithm is shorter than that of both MCMC1
and MCMC5. Additionally, we have demonstrated that the S-
URTS algorithm is capable of maintaining a stable and low
number of tips while exhibiting similar time complexity to
MCMC. These findings suggest that S-URTS exhibits better
scalability compared to the aforementioned algorithms.

B. Security

To evaluate the security of the algorithm, we compare the
tip selection probability of different TSAs. The probability of a
tip being selected on a parasite chain can serve as a measure of
the network’s security. If the probability of a tip being selected
on a parasite chain is higher than that on the main Tangle, it
indicates a vulnerability to attack. Conversely, if the selection
probability on the parasite chain is lower, the network is more
resistant to attacks. The tip selection probabilities on both
the Tangle and parasite chain are determined using different
tip selection algorithms. A lower probability of tip selection
on the parasite chain signifies a higher level of security. The
lazy tip attack is a specific form of the parasite chain attack,
particularly when the parasite chain consists of only a single
transaction, which can then be considered a lazy tip attack.
Therefore, our analysis focuses solely on the parasite chain
attack, as it encompasses the lazy tip attack as well.

1) Parasite Chain Attack: In this study, we have affixed
parasite chains of varying lengths to the tangle and have
subsequently computed the selection probability of the tip on
the parasite chain through the utilization of different TSAs.
The outcomes of this analysis are presented in Fig. 12.

The results show that URTS consistently exhibits the highest
selection probability across all values of λ. In contrast, the
selection probability of S-URTS is significantly lower than
that of MCMC1. Furthermore, when λ is set to 5, 10, or 15,
the selection probabilities of S-URTS fall below the threshold
T (red dashed line). Notably, even when the length of the
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Fig. 12: The comparison of the selection probability of the
parasite chain tip for various TSAs.

parasite chain is set to 200, the selection probability remains
at 0, indicating a secure tangle. However, when λ is set to
20, the tangle becomes vulnerable when the length of the
parasite chain exceeds 150. Additionally, as the length of
the parasite chain increases, the tip selection probability of
MCMC1 increases at a faster rate than that of S-URTS for each
λ. Overall, the experimental results suggest that URTS is the
most vulnerable TSA, while S-URTS is better than MCMC1
in resisting parasite chain attacks.

VII. FUTURE WORK

This paper establishes a theoretical foundation for the S-
URTS algorithm, with a primary focus on its scalability and
security through simulated testing. However, further work is
needed to enhance its practical applicability and to address
potential challenges in real-world deployments. Future efforts
will concentrate on three main areas: node diversity, network
latency, and security threats at the network layer.

A. Node Diversity
In real-world networks, blockchain nodes often exhibit sig-

nificant differences in hardware capabilities, processing power,
and network bandwidth. This heterogeneity in nodes may
impact the overall performance of the algorithm. For resource-
constrained nodes, the efficiency of the S-URTS algorithm
could decrease, affecting the system’s real-time performance
and security. Future work will include evaluating the algo-
rithm’s adaptability to varying hardware configurations and
exploring optimization techniques, such as dynamic parameter
adjustments or resource allocation strategies, to enhance the
algorithm’s robustness in a diverse node environment.

B. Network Latency
Network latency and communication instability are in-

evitable in real-world environments, potentially affecting the

consensus process of the S-URTS algorithm. Latency can lead
to delays in synchronization between nodes, impacting the
timeliness of consensus and, under high-latency conditions,
may even pose security risks. To address this, the algorithm
could incorporate fault-tolerance mechanisms to ensure its
resilience under high-latency and packet-loss conditions. Fu-
ture experiments will test the algorithm’s performance under
various network conditions (such as high latency and low
bandwidth) and identify appropriate network optimization
strategies to address these challenges.

C. Security Threats at the Network Layer

Beyond consensus layer security, blockchain networks face
additional threats at the network layer, including transaction
censorship and routing attacks. For example, transaction cen-
sorship occurs when a lightweight node sends a transaction
to a consensus node, which then verifies the transaction’s
validity before adding it to the blockchain. In future work, we
will explore how optimizing interactions between lightweight
and consensus nodes could enhance the system’s resilience
against these types of attacks and strengthen the network
layer’s security.

Through these efforts, we aim to build a comprehensive
understanding of the S-URTS algorithm’s applicability in
complex network environments and to support its practical
implementation.

VIII. CONCLUSION

This paper presented a S-URTS algorithm that ensured both
scalability and security of a DAG-based blockchain. The pro-
posed algorithm was designed for tip selection, and we further
developed algorithms to determine the main parameters α and
T for the S-URTS. To demonstrate the scalability and security
of the proposed S-URTS, we conducted various experiments.
We analyzed scalability in terms of the number of tips, growth
trend, time spent on generating tangles, and computational
complexity. Additionally, we evaluated security by calculating
and comparing the tip selection probability on parasite chains
using different TSAs. The experimental results indicated that
the proposed S-URTS algorithm effectively stabilizes the num-
ber of tips at a very low level, which was lower than the
MCMC and essentially equal to the URTS. Furthermore, the
time consumption was at a normal level, and the algorithm
was capable of resisting parasite chains and avoiding double
spending attacks. Our proposed algorithm would strengthen
blockchain-based applications, such as access control and trust
management and autonomous systems in IoT. For example, a
blockchain-based access control framework for IoT [37] uti-
lizes an encryption algorithm to store access rights on IOTA’s
Tangle, addressing scalability and transaction cost issues while
enabling efficient, fine-grained access control. Our algorithm
would further expands this system’s capacity to manage access
control for a larger number of devices. Additionally, IOTA is
used to create a trust overlay for secure information exchange
among autonomous vehicles [38], with a tangle architecture
integrated with vehicle simulation to assess trustworthiness in
decision-making. Our algorithm could enhance the network’s
ability to support more vehicles. Overall, the proposed TSA
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S-URTS algorithm represents a significant contribution to the
field of blockchain technology, and its potential applications
are numerous.
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