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Abstract—While the popularity of electric vehicles brings great
convenience to our lives, battery charging also leads to an
increase in accidents, resulting in personal injuries and economic
losses. The methods currently embedded in charging hardware
mainly focus on the short-term state of the battery and fail to
leverage historical information effectively. The development of the
Industrial Internet of Things (IIoT) enables data collection from
sensors on industrial devices, which can be analyzed using deep
learning methods to support sophisticated analysis. This paper
proposes an intelligent and secure battery charging system in
the IIoT that establishes an interaction between battery charging
devices and cloud-based algorithms. A novel anomaly detection
method is introduced to deal with anomalous charging sequences
by making good use of historical data. We evaluate our system
using real-life data from 4,940 batteries in electric vehicles,
and our experiments achieve satisfactory results in detecting
anomalies in battery charging.

Index Terms—Battery charging, industrial internet of things,
anomaly detection, electric vehicle.

I. INTRODUCTION

With the growing concern regarding the greenhouse effect

and global warming, electric vehicles (EVs) have garnered

significant attention and have witnessed an increasing mar-

ket share in recent years. Rechargeable lithium-ion batteries,

known for their advantages such as high energy density, high

cell voltage, high efficiency, and long lifespan, are gradually

replacing gasoline as the primary energy source in many

electric vehicles, including cars, trucks, and bicycle [1]. How-

ever, despite the convenience offered by EVs, the potential

risks associated with charging lithium-ion batteries cannot be

ignored.

The security of EVs during the battery charging process

remains an important concern that needs to be addressed.

Despite batteries being designed with security measures, is-

sues can still arise during their use [2], [3]. On one hand,

unlike controlled laboratory or factory environments, the actual

conditions for battery charging in real life are often unknown

*Equal contribution
�Contact Authors

and varied. Factors such as humidity, high temperature, and

physical impacts can lead to fluctuations in the battery’s

state. On the other hand, over an extended period of use,

electronic components within the battery can age, resulting in

differences in resistance and voltage among cells [4]. These

variations can potentially lead to short circuits. Considering

the high energy density of lithium-ion batteries, accidents

involving these batteries can result in violent combustion or

even explosions, posing a significant threat to people’s lives

and property [5].

To ensure a secure and stable experience for users, es-

tablishing a dependable charging infrastructure is crucial

for controlling the charging process of EVs equipped with

lithium-ion batteries. While rule-based methods embedded

in integrated chips can detect certain anomalies, they often

rely on predetermined thresholds. As a result, they may

fail to capture subtle fluctuations in battery charging and

overlook valuable historical information. Advancements in

technology have made it increasingly convenient to collect

data transmitted from sensors on industrial devices through the

Industrial Internet of Things (IIoT) [6]. This wealth of data

can be utilized in various applications, including tasks such

as anomaly detection. The development of IIoT provides us

with opportunities to monitor the real-time status of the battery

charging process. By analyzing the data transmitted through

IIoT, we can promptly identify potential risks associated with

the battery charging process and take appropriate measures to

mitigate them.

In this paper, an intelligent and secure battery charging

system is proposed that leverages the Industrial Internet of

Things (IIoT) to address the aforementioned issues. During

the battery charging process, the system utilizes sensors to

collect a wealth of data, including current, voltage, and power

readings. These data points are then transmitted to the cloud,

where a vast amount of charging sequence data is generated

and stored for further analysis and processing.

Within the system, we propose a novel Anomaly detection

model on Battery charging (AndBach) for our secure battery
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Fig. 1. The secure battery charging system utilizes a novel anomaly detection model. To overcome the limitations of rule-based methods, charging sequence
data is transmitted to the cloud center via IoT technology. The cloud center processes the input data using the model and produces anomaly decisions for the
battery charge sequences.

charging system. To address the fact that battery errors are

not solely dependent on the current charging process but also

influenced by historical charging patterns, we propose a multi-

to-one encoder-decoder architecture. This design enables the

comprehensive integration of the battery’s charging evolution

history. In order to handle irregular charging sequences, we

tackle the challenge of varying data formats in the uploaded

data. To accurately represent the battery’s charging process,

we employ different positional encodings for time and charge.

Specifically, the main contributions of our work are sum-

marized as follows:

• Based on our in-depth study of the secure battery charg-

ing problem, we have developed a novel intelligent and

secure battery charging system within the context of

the Industrial Internet of Things (IIoT). This system is

specifically designed to address the challenges associated

with secure battery charging.

• We propose a novel anomaly detection model, called

AndBach, in which we introduce a multi-to-one encoder-

decoder architecture specifically designed to address the

challenges of analyzing the sequence of time series data

in battery charging. To accurately represent the status of

battery charging, we adopt different positional encodings

for time and charge. This enables us to precisely capture

the temporal information and the varying charge levels

during the charging process.

• We evaluate our system using large real-life datasets

and experiment results show that our system achieve

satisfactory results for detecting anomalies of battery

charging.

The remaining parts of the paper are structured as follows.

Section 2 reviews the application of IoT technology to lithium-

ion batteries, followed by a discussion of the main approach

to time series data. In Section 3, we introduce our proposed

method and explain how the architecture model works. Section

4 presents the experimental results and analyzes the findings.

In Section 5, we discuss the implementation and the deploy-

ment of a large-scale charging system. Finally, in Section 6,

we summarize our findings and conclude the paper.

II. RELATED WORK

In this section, we will review the applications of IoT

technology in the context of lithium-ion batteries. Then, we

will discuss some major approaches used for analyzing and

processing time series data.

A. Applications of IoT for battery management

A real-time system for battery monitoring is build in [7]

by using a coulomb counting method, where sensing technol-

ogy, central processor and interfacing devices in IoT provide

the environment for the implement of the proposed battery

management system. [8] explores blockchain technology for

ensuring the communication and data security of IoT devices

from malicious cyber-attacks.

To allow individual battery cells communicate with the

cloud and the battery model predicts the battery states exe-

cuted in the cloud, [9] builds a cloud-based battery condition

monitoring platform, which is able to early warn with various

formats and material systems of lithium-ion batteries. [10]

proposed a online estimation of battery health to facilitates

the life-cycle management by capturing and characterizing in-

stantaneous voltage drops, which are called V-edge dynamics.

In order to improve the effectiveness of signal processing,

[11] builds an intelligent analysis system for signal processing

tasks based on the LSTM recurrent neural network algorithm.

To classify and detect single as well as multiple faults,

measurements were made of supply air temperature, OA-

damper position, supply fan pressure, indoor temperature and

airflow rate in a variable air volume heating ventilating and air

conditioning test facility. [12] embed a combination CNN and

RNN to estimate Lithium-ion battery on IoT micro-controllers,

where CNN preform the feature extraction and RNN perform

the time-series prediction.

To improve the maintenance efficiency and lessen batteries

operating risks in data centers, [13] use the time series clus-

tering to present a battery anomaly detection method which

uses only battery operating data and does not depend on
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offline testing data. [14] present an anomaly detection strategy

for thermal parameters for lithium-ion batteries. A multiple-

model residual generation method is proposed for anomaly

detection and an RLS-based observer is presented to decouple

the electrical and thermal dynamics.

B. Methods for time series data analysis

To process and analyse the time-series data, there have been

numerous traditional signal processing techniques applied to

extract series-data features, such as temporal features, spectral

features and time-frequencys features. Transformation meth-

ods can recognize and extract time-frequency features in the

time-series data. Fourier analysis can be used to decompose

this signal in its periodic components [15]. Similar to Fourier

Transform, Wavelet Transform transform a signal into its

frequency domain and the output of a Wavelet transform

hash a high resolution in the frequency domain and also

in the time domain [16]. For spectral features, Higher-order

spectral analysis(HOSA) allows one to reveal phase coupling

between different frequency components [17]. For temporal

features, Zero-crossing and period-amplitude analysis (PAA)

can be adopted within frequency bands to mitigate the effects

of noise and to reduce the issues associated with signals

comprised of multiple components [18]. Detrended fluctuation

analysis(DFA) is a method to characterise long range temporal

correlations in a time series and can be used as a measure

of self-similarity [19]. After extracting these features, we

can input them in standard classifiers like Random Forest

[20], Logistic Regression [21], Gradient Boosting [22] or

Support Vector Machines [23]. However, unlike the deep

learning methods, these methods can not extract high-order

and nonlinear information in time-series data and also can not

be trained in end-to-end.

Despite the above signal processing methods, quantity of

time-sequence predicting approaches based machine learning

have been proposed in recent years, such as RNNs and

LSTM [24]. To alleviate the difficulties like gradient vanishing

and exploding in training RNNs, the LSTM employs several

gates to control which information the model goes to select,

forget and update. GRU [25] simplifies the gates in the

LSTM and achieves similar results with a smaller number

of parameters, which avoids over-fitting. DARNN [26] is a

dual-stage attention-based recurrent neural network where an

input attention mechanism is introduced in the first stage to

adaptively extract relevant driving series at each time step

and a temporal attention mechanism is used to select relevant

encoder hidden states across all time steps. ARIMA [27]

is a generalized model of Autoregressive Moving Average

(ARMA) that combines Autoregressive (AR) process and

Moving Average (MA) processes and builds a composite

model of the time series. DeepAR [28] is an autoregressive

RNN-based prediction method that trains a model to obtain a

joint conditional probability distribution, thereby generating a

probability value for each time stamp

Unlike the RNN-based methods, Transformer [29] enables

the model grasp the recurring patterns with long-term depen-

TABLE I
NOMENCLATURE

Notation Description

i The serial number of battery bi

yi The ground-truth label for battery bi

N The total number of batteries

B The set of batteries

d0 The dimension of data points

X A charging sequence for a battery

lx The length of a charging sequence

t(l) The timestamp for the l-th data point

Q(l) The state of charge for the l-th data point

Ri The evolutionary history for battery bi

Mi The number of charging sequences for battery bi

Li The set of charging sequence lengths for battery bi

QS The standard capacity of charge for a battery

d The dimension of model

SOC The state of charge

Pet The positional encoding of time

Peq The positional encoding of quantity

f(Ri) The anomalous probability of battery bi

Q,K,V Query, Key and Value vectors

dencies by a brand new architecture which leverages attention

mechanism to process a sequence of data and allows the

model to access any part of the history regardless of distance.

Transformer-XL [30] is a variant of Transformer which use

a segment-level recurrence mechanism and a novel positional

encoding scheme.

ReFormer [31] replaces dot-product attention by one that

uses locality-sensitive hashing and uses reversible residual

layers instead of the standard residuals to improve the effi-

ciency of Transformer. To solve locality-agnostics and mem-

ory bottleneck of Transformer, [32] propose LogSparse with

O(L(logL)2) memory cost. It produces queries and keys with

causal convolution and improves forecasting accuracy for time

series with fine granularity and strong long-term dependencies

under constrained memory budget.

Informer [33] is an efficient transformer-based model for

long sequence time-series forecasting. It propose a ProbSparse

Self-attention mechanism, a self-attention distilling and a gen-

erative style decoder to achieve O(LlogL) in time complexity

and memory usage.

III. METHODOLOGY

In this section, we will begin by defining the key concepts

that are essential for understanding the context of this paper.

We will then formalize the problem under investigation. Fi-

nally, we present the model architecture, illustrated in Figure 2,

which outlines the flow of our proposed approach.
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1) Problem Formulation: The goal of this paper is to detect

anomalous batteries in B. Specifically, given a battery bi, and

its evolutionary history Ri = {X (1)
i ,X (2)

i , ...,X (Mi)
i } with

lengths Li = {l(1)x , l
(2)
x , ..., l

(Mi)
x }, this paper produces ŷi =

f(Ri), the potential anomalous probability of battery bi.

A. Notations

Let B = {bi}Ni=1 be the set of batteries, where N is the

number of batteries. There are d0 sensors on each battery.

Definition 1: Data point. After the system sends a signal

for data collection, each sensor takes one measurement of its

monitored state, and the battery then uploads a data point x ∈
R

d0 to the server.

Definition 2: Charging Sequence. For a single charging

process of a battery, the period from the time it is put into

the charging cabinet to the time it is taken out, is called

a charging sequence. We denote a charging sequence as

X = {x(1), x(2), ..., x(lx)}, where lx is the length of this

charging sequence. Generally, lx is variable.

Definition 3: Evolutionary History. For a battery bi ∈ B,

after a long period of use, it will have a series of charging

sequence records. We will denote all the charging sequences

of a battery as Ri = {X (1)
i ,X (2)

i , ...,X (Mi)
i }, where Mi is

number of charging sequences for battery bi. We call it as the

evolutionary history of a battery. Noting that the lengths of

charging sequences are different, we denote the set of their

lengths as Li = {l(1)x , l
(2)
x , ..., l

(Mi)
x }.

B. Multi-to-one Architecture

For the classification task on a single sequence, many

methods use an encoder-decoder architecture [29], [34], [35]

to model time series data. Specifically, the encoder maps the

input time series X = {x(1), x(2), ..., x(lx)} to the hidden

state space to obtain the corresponding representation H =
{h(1), h(2), ..., h(lx)}, and the decoder maps H to the output

representation Z . The representation Z will be the input of

downstream tasks. However, in our problem, the evolution

history of a battery includes multiple charging sequences,

which makes it difficult for us to adopt a conventional encoder-

decoder architecture directly.

To solve the sequence of sequences problem, we introduce

a multi-to-one encoder-decoder architecture. As shown in Fig-

ure 2, the core idea behind multi-to-one architecture is to build

multiple encoders for charging sequences in the evolutionary

history of a battery. After each charging sequence is mapped

to the corresponding representation, the decoder will produce

a summary embedding for the representations except the

one of the last charging sequence. The summary embedding

and the representation of the last charging sequence will be

concatenated and output to the fully-connected layer.

Specifically, for a battery bi ∈ B, we have its evolu-

tionary history Ri = {X (1)
i ,X (2)

i , ...,X (Mi)
i } with lengths

Li = {l(1)x , l
(2)
x , ..., l

(Mi)
x }. For each charging sequence in Ri,

we perform the encoder on it and get its representation:

H(m)
i = Enc

(X (m)
i ; ΘE

)
(1)

where m ∈ [1, ...,Mi] is the serial number of the charging

sequence, and ΘE is the parameter of the encoder block

Enc, which will be defined in Section III-C. Therefore, we

get the representation sequence {H(1)
i , ...,H(Mi)

i } of charging

sequences for battery bi. The decoder summarizes (Mi − 1)
representations and concatenated it with the last one:

Zi =
∣∣∣
∣∣∣
(
Dec

(H(1)
i , ...,H(Mi−1)

i ; ΘD

)
,H(Mi)

i

)
(2)

where || represents the concatenation operation, and ΘD is the

parameter of the decoder block Dec, which will be defined in

Section III-D. We feed Zi into a fully-connected network to

get the results for the downstream task:

ŷi = Softmax(Ful(Zi; ΘF )) (3)

where ΘF is the parameter of the fully-connected network

Ful, and Softmax is operated along the dimension for classes.

The model outputs the probability that the current sample

belongs to each classes, i.e., the probability that the sample

is positive represents its anomaly score. Empirically, cross-

entropy is used to evaluate the difference between the predic-

tion ŷi and the ground-truth label yi of battery bi:

L(Ri|Θ) = −yi log ŷi − (1− yi) log(1− ŷi) (4)

where Θ = [ΘE ,ΘD,ΘF ]. In our task, the goal is to learn the

model parameters Θ by optimizing the objective:

min
ΘE ,ΘD,ΘF

L =
1

N

∑
bi∈B

L(Ri|ΘE ,ΘD,ΘF ) (5)

where yi is the ground-truth label of battery bi.

C. Encoder

1) Transformer: Transformer [29] and its variants [36]–

[39] have been widely used for processing time series data in

many fields. The multi-head self-attention mechanism enables

Transformer to capture short and long-term dependency in

different temporal aspects. In a multi-head self-attention layer,

the model projects the input feature matrix X into multiple

query matrices, key matrices, and value matrices:

Qj=Q
j
Linear(X ),Kj=K

j
Linear(X ),Vj=V

j
Linear(X ) (6)

where j ∈ [1, .., h] is the serial number of multi-heads , h is

the total number of heads, and Q
j
Linear,K

j
Linear,V

j
Linear ∈

R
d → R

d
h are linear projections for key, query and value,

respectively.

The output of multi-head scaled dot-product attention block

are then fed into the decoder.

2) Informer: The O(L2) complexity makes it difficult for

Transformer to run on long charging sequences and huge

amounts of data in our IIoT scenario. We adopt several

optimization measures in Informer [33] to make the model

achieve the time complexity and memory usage of O(L logL).
Specifically, a kernel smoother is used to define the i-

th query attention in a probabolity form, and a sparsity

measurement for i-th query is calculated with the help of

a simplified form of Kullback-Leibler divergence. Based on
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Embedding Layer

Encoding Layer

Decoding Layer

MLP

Softmax

Multi-Head
ProbSparse Attention

Conv1d & MaxPool

Add & Norm

Multi-Head
ProbSparse Attention

Conv1d & MaxPool

Add & Norm

Dec Block

Input 1

Dec Block

Input 2

Dec Block

Input (n-1)

Concat

Input n

Output
Battery features

Timestamps

State of Charge

MLP Layer

Fixed Positional Encoding

Learned Positional Encoding

Element-wise Add

Fig. 2. The multi-to-one encoder-decoder architecture of the proposed method. The battery features, timestamps, and states of charge from the raw data are
processed by MLP, fixed positional encoding, and learned positional encoding in the embedding layer to obtain the corresponding embeddings, respectively,
after which they are element-wise added. Then, the sequence embeddings is input into the encoder to get the summarized embedding for the current charging
sequence. Finally, the embedding of each sequence in a sample will be fed into the decoder and the final anomaly decision will be based on the output of the
decoder.

the two above definitions, the ProbSparse self-attetion can be

expressed as:

A(Q,K,V) =Softmax(
QKT

√
d

)V (7)

where Q is constructed by the top queries according to the

defined sparsity measurement.

After the self-attention block, a distilling module is applied

from l-th layer to (l + 1)-th layer:

X l+1 = MaxPool
(

ELU
(
Conv1d(X̃ l)

))
(8)

where Conv1d is the 1-D convolutional filter along the dimen-

sion of time and ELU is the activation function.

3) Positional Encoding: The order of the sequence is

very important for modeling the charging process. The self-

attention mechanism does not include recurrence and convo-

lution, so we use positional encoding to capture the features

of sequence order. We use the time and quantity of charge as

the position encoding rather than the position of the data point

in the sequence.

On the one hand, unlike regular time series data, the time

interval of the battery charging data obtained by the system

over IoT is variable, which leads to the use of time rather than

the order to more accurately describe the data points in the

overall sequence. On the other hand, the quantity of charge

reflects the progress of the battery charging process, which

hints at the possible range of the individual battery parameters.

We use fixed and trainable positional encoding to model time

and quantity, respectively.

For positional encoding of time, we use the sine and cosine

functions of different frequencies [29]:

Pett,2i = sin(t/100002i/d) (9)

Pett,2i+1 = cos(t/100002i/d) (10)

where t is the timestamp of a data point and i is the dimension.

For positional encoding of quantity, we actually encode the

state of charge, which is defined as the ratio of quantity of

charge left in the battery to the quantity when the battery is

brand new:

SOC =

∫
Idt+Q0

QS
(11)

where QS is the nominal quantity of charge and Q0 represents

the quantity of charge at t = 0, considering that the charging

sequences of batteries usually start at non-zero charge. The

interval of SOC from 0 to 1 is cut into m segments, each cor-
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TABLE II
EXPERIMENTAL RESULTS FOR COMPARISON ON CLASSIFICATION

Method Precision Recall F1-score

RNN 0.5350 0.4269 0.4748

GRU 0.6118 0.3833 0.4714

LSTM 0.5572 0.4365 0.4895

DARNN 0.6250 0.4476 0.5216

Transformer 0.8802 0.8161 0.8469

Informer 0.8694 0.8477 0.8584

AndBach-T 0.9294 0.9317 0.9305

AndBach-I 0.9552 0.9413 0.9482

responding to a trainable embedding. The positional encoding

of quantity is written as:

Peq(SOC) = S
[�SOC ∗m�, : ] (12)

where S ∈ R
m×d is the matrix of trainable embeddings for

state of charge.

D. Decoder

We adopt LSTM as the decoder of our method. The LSTM

network [24] consists of LSTM blocks, each of which controls

the selection, forgetting, and updating of information through

input gates, forgetting gates, and output gates. We abbreviate

above six steps as Dec-Block, as shown in Figure 2.

IV. EXPERIMENTS

A. Experimental Setup

1) Datasets: The dataset we use is from Company X, which

provides services such as battery sharing and public charging.

The dataset comprises battery charging data samples from

4940 electric vehicle (EV) batteries. Among these samples,

2724 are classified as normal, while 2216 exhibit anoma-

lous charging sequences. Each sample consists of numerous

charging sequences, collected between August 2020 and July

2021. The data collected by sensors capture battery status

information, resulting in 62-dimensional data points for each

sequence. The data features include time, total current, total

voltage, cell voltage, balanced current, quantity of charge,

temperature, switch status, etc.

To preprocess the original data, we apply one-hot encoding

and standardization techniques. As a result, each data point is

represented by a 62-dimensional feature vector. Regarding the

labeling of the data, for a normal battery, we consider all of

its charging sequences as normal. However, for an anomalous

battery, only its last charging sequence is labeled as faulty,

while the preceding sequences remain unlabeled.

Given the significant relationship between battery anomaly

detection and safety, it is crucial to prioritize both high

precision and high recall in our evaluation. To capture the

trade-off between precision and recall, we utilize the F1 score

as the primary metric for assessing the performance of our

experiments.

TABLE III
ABLATION STUDY

Encoder PE Decoder Precision Recall F1-score

Transformer

w/o PE

RNN 0.8913 0.8893 0.8903

GRU 0.8821 0.9015 0.8917

LSTM 0.9001 0.8824 0.8912

Transformer 0.8946 0.8768 0.8856

w/ PE

RNN 0.9012 0.8943 0.8977

GRU 0.8927 0.9088 0.9007

LSTM 0.9290 0.9321 0.9305

Transformer 0.9142 0.8924 0.9032

Informer

w/o PE

RNN 0.9048 0.8961 0.9004

GRU 0.8932 0.9026 0.8979

LSTM 0.9219 0.9076 0.9147

Transformer 0.9178 0.9011 0.9094

w/ PE

RNN 0.9333 0.9081 0.9205

GRU 0.9149 0.9297 0.9223

LSTM 0.9552 0.9413 0.9482

Transformer 0.9348 0.9011 0.9176

2) Baselines and Implementation Details: We compare our

method with the following competitive baselines:

• RNN-based: RNN, DARNN [26], DeepAR [28], ARIMA

[27].

• LSTM-based: LSTM [24], GRU [25].

• Transformer-based: Transformer [29], Informer [33]

To streamline the experiment, we have applied a data

filtering process to ensure that each charging sequence in our

dataset consists of at least 30 data points. For the data splitting,

we randomly divided the dataset into three sets: the training

set, the validation set, and the test set. The ratio between these

sets is 7:1:2, respectively. To maintain fairness and ensure a

consistent comparison, our proposed method and all baseline

approaches utilize the same network architecture settings. The

implementation of our method is done using PyTorch 1.8.1, a

popular deep learning framework.

B. Experimental Results

We make the comparison of classification on the real-life

dataset. The experimental results are summarized in Table II.

The suffix of AndBach represents the encoder block, where

-T is Transformer and -I is Informer.

As shown in Table II, we can see that the proposed

method AndBach outperforms all the baselines significantly

and consistently. In particular, our method achieves relative

performance gains over state-of-the-art baseline Informer by

10.5% in terms of F1 score. The results show that our method

is capable of detecting anomalous charging sequences.

C. Ablation Study

We perform an ablation study on our method AndBach. The

candidate set of encoders is Transformer, Informer and the
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Fig. 3. Parameter Sensitivity. The x-axis represents the average ratio of
lengths actually used for the model.

set of decoders is RNN, GRU, LSTM, Trasformer. Positional

encoding will also be optional.

Experimental results are shown in Table III. After the

introduction of positional encoding, the performance of each

encoder-decoder combination is significantly improved, which

shows that positional encoding can accurately capture the

order information in the sequence. Under the same conditions,

Informer performs better continuously as an encoder than

Transformer, which reflects its ability to capture long-term

dependence in the sequence. In terms of decoders, the per-

formance of LSTM is better than that of Transformer, which

may be since the two-tier Transformer architecture is difficult

to be fully trained.

D. Parameter Sensitivity

We perform a parameter sensitivity study for the proposed

method AndBach. We try to use charging sequences in limited

lengths for the training and inference of our model. The

range for the length l0 of the sequence actually used is

{25, 30, 35, 40, 45, 50, 55, 60}.

Experimental results are shown in Figure 3. For ease to

compare, instead of length as the x-axis, we use the average

ratio of actual used length to the sequence length:

p =
1∑N

i=1 Mi

N∑
i=1

Mi∑
j=1

(
l0

ljx,i
) (13)

With the decrease of p, the performance of the model

decreases slightly. Although the performance of the model

has a huge fall when p reaches 11.9% (l0 = 25), the overall

performance is pretty stable. In particular, F1-score of the

model remains above 0.9, when only 17.1% (l0 = 30) of the

length in average is used. The experimental results show that

our secure battery charging system can detect the anomalies

of the battery even with limited data, which saves time for

repairing the battery before the accident occurs.

V. SYSTEM DEVELOPMENT

In this section, we introduce the implementation and the

deployment of large-scale charging system with real-time

Fig. 4. Details of Online System Development.

secure protection. The workflow of the charging systems is

shown in Figure 4.

The secure charging system mainly involves two parts:

Charging Pile and Cloud Center. In the Charging Pile part,

we develop the charging pile which includes data acquisition

module, charging processor module, communication module,

balancing and protection module. Based on those modules, we

can achieve efficient data collection, real-time communication,

and balanced charging control with safety protection. In the

Cloud Center part, we aim to achieve exception detection

on the collected charging data using the proposed AndBach

algorithm. Based on the data type in the cloudy storage, Cloud

Center can also divided into two parts: online and offline

processing. In the offline processing, we firstly extract features

from the collected raw data, and then divide the datasets

to achieve model train and model validation in the large-

scale cloudy environment. In the online processing, we regard

the real-time data stream as input, then apply the AndBach

approach by model inference to detect the anomaly, and finally

handle the exception by controlling the charge process on/off

to protect the electric vehicles safe.

Note that the training time of the AndBach is typically less

than 1.5 hours on the cloud environment. The average response

time of the secure charging system is typically less than 30ms.

VI. CONCLUSION

In this paper, we study the security of the battery charging

process and design an intelligent, secure battery charging

system with the help of IoT. We propose a novel anomaly

detection model, AndBach, in this battery charging system.

This model uses a multi-to-one encoder-decoder architecture

to handle the sequence of time series data, and different po-

sitional encoding for time and charge to accurately reflect the

status of battery charging. Our secure battery charging system

was evaluated on data from 4,940 electric-vehicle batteries

over the course of a year. Real-life experiments showed that
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our system is capable of detecting potential anomalies during

battery charging. As a result, it may be applied to more

charging scenarios in the future, thus protecting the safety of

various electric devices.
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