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Abstract—With the rapid proliferation of large Low Earth Or-
bit (LEO) satellite constellations, a huge amount of in-orbit data
is generated and needs to be transmitted to the ground for pro-
cessing. However, traditional LEO satellite constellations, which
downlink raw data to the ground, are significantly restricted in
transmission capability. Orbital edge computing (OEC), which
exploits the computation capacities of LEO satellites and pro-
cesses the raw data in orbit, is envisioned as a promising
solution to relieve the downlink burden. Yet, with OEC, the
bottleneck is shifted to the inelastic computation capacities. The
computational bottleneck arises from two primary challenges
that existing satellite systems have not adequately addressed: the
inability to process all captured images and the limited energy
supply available for satellite operations. In this work, we seek to
fully exploit the scarce satellite computation and communication
resources to achieve satellite-ground collaboration and present
a satellite-ground collaborative system named TargetFuse for
onboard object detection. TargetFuse incorporates a combi-
nation of techniques to minimize detection errors under energy
and bandwidth constraints. Extensive experiments show that
TargetFuse can reduce detection errors by 3.4× on average,
compared to onboard computing. TargetFuse achieves a 9.6×
improvement in bandwidth efficiency compared to the vanilla
baseline under the limited bandwidth budget constraint.

Index Terms—EO, Satellite Computing, Counting

I. INTRODUCTION

Earth-observation (EO) satellites collect multispectral im-
ages for geospatial analysis, providing valuable sensing and
computational applications in the harsh space environment,
characterized by highly constrained energy and network con-
nectivity. Visual tasks, which detect vehicles along interstate
highways to estimate traffic [1], count buildings from key areas
to predict population [2], or monitor animals from the wildness
to track their behaviors [3], etc, are among the key use cases
for EO satellites. Advances in technology enable satellites to
collect vast amounts of Earth images daily, often reaching tens
of Terabytes [4], [5]. However, traditional satellites operate
as “bent-pipe” and typically downlink all raw observations to
the ground, which is significantly restricted in transmission
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Fig. 1: A satellite periodically captures Earth images. Images
are pre-processed into tiles before applying DNN models.

capability due to the scarce bandwidth resources (e.g., tens of
Mbps) and limited satellite-ground connection duration.

To overcome the limitations of the bent-pipe architecture,
Orbital Edge Computing (OEC) has emerged as a promising
solution, which mitigates the communication bottleneck by
processing the observation data in space and sending the
process results to the ground rather than directly downlinking
the raw data [6]. However, in-orbit processing faces a compu-
tational bottleneck due to the inherent limitations of satellites,
including both computational capacity and constrained energy.
EO satellite images are large (i.e., hundreds of millions of
pixels) and arrive at a high rate, far exceeding what embedded
satellite hardware can process. The computational bottleneck
arises not only from lower computing power hardware but
also from the inability to process all images within the energy
budget harvested from the less productive solar panel. For
instance, Baoyun satellite can harvest up to 260KJ of energy
daily, but not all of it is utilized for computing. When about
150KJ of energy is allocated for computing, satellite can
only support the computation of about 22% of the observable
high-resolution 3K satellite images. Therefore, as an effort
to support analysis for EO, this work focuses on in-orbit
detection of Earth objects, considering the inherent limitation

979-8-3503-8350-8/24/$31.00 ©2024 IEEE 551

IE
EE

 IN
FO

C
O

M
 2

02
4 

- I
EE

E 
C

on
fe

re
nc

e 
on

 C
om

pu
te

r C
om

m
un

ic
at

io
ns

 | 
97

9-
8-

35
03

-8
35

0-
8/

24
/$

31
.0

0 
©

20
24

 IE
EE

 | 
D

O
I: 

10
.1

10
9/

IN
FO

C
O

M
52

12
2.

20
24

.1
06

21
32

8

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on August 22,2024 at 11:26:36 UTC from IEEE Xplore.  Restrictions apply. 



in computational and energy. Fig. 1 shows that satellites
utilize Deep Neural Network (DNN) models in orbit to detect
objects. Detection results for images captured on each track
are aggregated, and satellites transmit these aggregated counts.

Terrestrial applications typically divide large images into
smaller images and process each image on DNN models.
However, they focus only on improving application perfor-
mance, ignoring the vital system factor of computational
overhead [7]. Prior attempts to address the computational
bottleneck focused on distributing in-orbit processing across
a constellation aimed at a particular purpose [6], but the
relatively high-cost solutions did not considered the energy
budget of each satellite. In-orbit computing still cannot meet
onboard application requirements due to energy constraints.
Therefore, a collaborative satellite-ground system is needed,
where embedded satellite hardware initially processes im-
ages under energy budget constraints and transmits crucial
images to the ground despite facing limited bandwidth [8].
In situations where a downlink system encounters a scarce
link, efficient transmission within a short-term contact time
should be prioritized. However, today’s satellites transmit data
indiscriminately [9]. Less attention has been paid to the scarce
downlink bandwidth budgets. Therefore, this work centers on
processing images onboard the satellite and selectively trans-
mitting crucial images by utilizing the downlink capability.

There are potential opportunities to deal with these compu-
tational and downlink bottlenecks in the collaborative satellite-
ground system: (1) By tiling large images into smaller ones
and resizing them to fit standard DNN models’ input size,
there exists an optimal tile size that satisfies higher detection
accuracy and lower computational overhead. Preliminary ex-
periments conducted on widely-used datasets reveal that tile
size affects both detection accuracy and computing overhead
(execution time). Therefore, we propose finding the optimal
tile size, balancing accuracy and computational overhead, for
executing the onboard DNN model; (2) Optimal tile size
also establishes the confidence thresholds for onboard DNN
models, influencing the decision of whether to downlink
corresponding tiles to the ground. To efficiently utilize the
available bandwidth, we implement bandwidth-aware down-
linking throttling to dynamically select and downlink crucial
tiles within the given bandwidth budget. The selection process
will be based on the confidence thresholds set by the onboard
DNN models; (3) Satellite images contain some semantically
geospatial feature contexts with a high degree of similarity,
specifically for the captured images as the satellite passes
over its ground track. To alleviate computational and downlink
bottlenecks, we introduce a lightweight, clustering-based data
deduplication technique that leverages geospatial feature con-
texts. This technique optimizes data processing by efficiently
identifying and removing redundant data, thereby reducing
computational and downlink burdens.

We present TargetFuse, a collaborative satellite-ground
system under the inherent limited computational and down-
link constraints. To ensure a realistic simulation, we collect
new data, including satellite operation details such as the

computing power of embedded hardware, based on tested in-
orbit satellites. We provide a comprehensive evaluation of
TargetFuse across various energy budgets, embedded hard-
ware setups, and bandwidth budgets. Extensive experiments
show that TargetFuse can reduce detection errors by 3.4×
on average, compared to onboard computing. TargetFuse
showcases a remarkable 9.6× improvement in bandwidth
efficiency compared to the vanilla baseline under the limited
bandwidth budget constraint. Our contributions can be sum-
marized as follows:
• We design and implement a satellite-ground collaboration

system for object detection, a critical use case for EO
satellite, aiming to minimize detection errors. To ensure
the system’s realism, we collect and publish new data that
contains satellite operation details*.

• We propose image tiling to balance detection accu-
racy and computational overhead, clustering-based data
deduplication to alleviate the computational bottleneck,
and bandwidth-aware down-linking throttling to address
downlink bottlenecks.

• We conduct extensive experiments across various en-
ergy budgets, embedded hardware configurations, and
bandwidth budgets, and demonstrate that TargetFuse’s
superior performance against four baselines.

II. BACKGROUND AND MOTIVATION

A. EO Satellites

EO satellites collect raw sensor data for geospatial analytics.
These satellites capture images along their ground track,
generating geospatial images that cover hundreds of square
kilometers and contain hundreds of millions of pixels. The
level of detail present in these images is described by the
ground sample distance (GSD) [6], which is determined by
orbit altitude, sensor size, and camera characteristics [6].
Besides, the high velocity of satellites, up to 7.9 km/s, results
in brief periods of visible contact with ground stations. These
periods typically last only a few minutes, sometimes less than
8 minutes, and may occur infrequently.

During a single orbit revolution, a single satellite captures
more images than it is capable of downlinking [10]. This
is due to the downlink capacity of current satellite sensors,
which is insufficient to support their data rates. Currently, the
majority of Earth-observation satellites are organized in a bent-
pipe architecture [6], where raw observations are transmitted
to ground stations and then processed by machine learning
algorithms. However, satellites only achieve downlinking rates
of no more than hundreds of Mbps using Ka-band [11],
resulting in a limited daily downlink data volume. For instance,
given that a contact session lasts for 6 minutes, the system
can downlink a maximum data quantity of 4.39 GB at a
downlinking speed of 100 Mbps [12]. The downlink bottleneck
prevents these daily global observations from being transmit-
ted to the ground. What’s more, not all raw observations
contain high-value data. Bent-pipe satellites may waste the
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precious downlink bandwidth as they indiscriminately transmit
raw observations independent of the value of data. Statistics
show that 67% of the observations are obscured by clouds,
thus becoming low-value to users [13].

B. Orbital Edge Computing

OEC [6] has been proposed to address the downlink bottle-
neck, in which satellites process raw data in space. OEC aims
to address the limitations of “bent-pipe” architectures [6] by
distributing processing across a constellation. Nowadays, each
satellite can be equipped with hundreds of high-datarate cam-
eras, sensors, and commercial, off-the-shelf (COTS) hardware
[14]. The satellite is lightweight, small-sized, and expensive,
with each satellite weighing a few kilograms, measuring a few
centimeters, and costing millions of USD.

However, satellites still face limitations in providing highly-
capable onboard processors. Currently, available space-grade
processors are often decades-old, “flight heritage”. The satel-
lite systems may operate for decades in the space environment,
which means that COTS hardware may be low-risk and highly
reliable at the expense of performance. Hence, recent trends
in space systems have started to consider COTS-embedded
systems [15], which enable the use of in-orbit processing.
Applying these terrestrial techniques directly to space is
appealing, but computational capacity is subject to unique
operating constraints. For instance, unlike on Earth, all energy
expended in space must be harvested from solar panels, which
is backed by a rechargeable energy buffer [16]. In line with
typical 3U Cubesat systems [6], the size of the tested satellite
limits the area of the solar panel to 57.2 × 20.6 cm and thus
limits the power to a range of 34-118 W.

The limited and inelastic computational resources also pose
a major space systems challenge. Though the satellites are
exposed to sunlight for about 60% of each orbit period (e.g.,
approximately 90 minutes) [17]. Only 30% of the solar energy
is initially converted into battery power, and less than 50% of
the battery capacity is utilized for daily satellite operation over
its lifetime [13]. We collected real-world data from Baoyun
satellite and observed that computing in operation accounts
for approximately 50%, compared to other subsystems such as
basic and electrical operations, as depicted in Fig. 2. Therefore,
during runtime, operating system (OS) of the satellite allocates
an energy budget to the computing modules by adjustmenting
in input performance and energy parameters.

C. Challenges for EO Computing

EO computing is a crucial application of OEC. However,
two challenges arise at the orbital edge: a downlink bottleneck
that hinders the transmission of all raw data and a computa-
tional bottleneck that restricts the processing of all data in
orbit. OEC has been proposed to address computational needs
by distributing tasks across a constellation. Although effec-
tive in reducing per-satellite compute workload to meet full
ground track coverage, this approach is in nature designed for
vertically-integrated constellations for a single purpose, which
requires a large pipeline population and incurs high monetary

(a) Physical map of Baoyun satellite
[9], [18].
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(b) The distribution of energy ex-
penditure in satellite operation.

Fig. 2: The real-world data, including energy and computing
power, is collected from Baoyun satellite.

costs. Existing OEC work can hardly reduce the per-satellite
workload without increasing the constellation population [6];
this shortcoming is a key motivation for our work.

Processing raw observations in space presents significant
challenges due to limited computational resources. Satellites
have an energy limit that prevents them from processing
all images, which creates a computational bottleneck that
limits OEC’s ability to address the downlink bottleneck. Un-
fortunately, improving the computational capacity of COTS
hardware is difficult because of physical constraints. And
there are no feasible options for adjusting the computational
capacity of the hardware already in space. Furthermore, in-
orbit computing alone is insufficient because each satellite
has natural constraints such as volume, mass, and energy that
prevent it from processing all images.

Compared to the space environment, a more collaborative
approach between satellite and ground station is feasible by
utilizing the relatively more favorable computing capacity and
higher energy availability of ground stations. As a result, we
consider the two bottlenecks of in-orbit processing jointly to
adapt the computing hardware of the target satellite in space.

III. SYSTEM DESIGN

This work introduces a satellite-ground collaborative system
tailored to counting, aiming to minimize counting errors in
the challenging satellite environment. TargetFuse executes
a geospatial counter (e.g., a shallower DNN) in space with
lower computing power, producing less accurate counts; and
a ground counter (e.g., a deeper DNN) on the ground with
higher computing power, producing more accurate counts.
To meet the computational and downlinking needs of count-
ing applications, TargetFuse leverages three techniques:
adaptive image tiling, clustering-based data deduplication,
and bandwidth-aware downlinking throttling. The workflow
of TargetFuse is shown in Fig. 3. For each satellite
image, TargetFuse divides it into several tiles based on
the image resolution and input size of the DNN counters.
Next, TargetFuse automatically performs clustering-based
data deduplication considering the similarity of the tiles. After
that, TargetFuse applies selection logic to determine which
logic according to confidence thresholds from the onboard
DNN counter. Note that onboard system also downlinks the
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Fig. 3: The overall workflow of TargetFuse.

counting result in space with vital tiles. Hence TargetFuse
emits the aggregated object count across space and ground.

A. System Operation

1) Energy expenditure: TargetFuse performs orbital
counting while adhering to the allocated energy budget of
satellites along their trajectories. Utilizing data obtained from
an in-orbit satellite [9], energy allocation extends beyond
fundamental satellite operations, including propulsion and
avionics. Energy is allocated for the following computing
activities associated with counting: (1) Ecap for capturing
images; (2) Ecom for executing counting on images; (3) Eagg
for deriving aggregated counting results in space; (4) Edown for
downlinking the satellite images to be counted on the ground.
The most energy-intensive activities (2) and (4) account for
over 60% of the total energy consumption, as illustrated in
Fig. 2: during each orbital track, satellites perform several
trillions of FLOPs and downlink some images to the ground. In
contrast, activities (1) and (3) consume negligible energy: (1)
only involves capturing thousands of images from the onboard
camera, and (3) only involves a few hundred arithmetic
operations. Therefore, activities (2) and (4) are the focus of
this work [19]. These two activities align with the satellites
lifetime design [9], [20], which optimally utilizes less than
50% of the available battery energy. This efficiency allows for
the estimation of the daily energy budget.

2) Selection logic with different confidence thresholds.:
Prior to system execution, the satellite’s OS captures numerous
images and selects a DNN counter. The deployment of DNN
counters on satellites has become increasingly crucial for
guaranteeing counting accuracy. When selecting a counter,
a confidence threshold is established based on the onboard
satellite’s DNN counter detection. This confidence threshold
indicates the probability of accurately counting the objects and
falls within the range [0,1] [21].

3) Objective: Minimizing overall counting error while opti-
mizing energy and bandwidth expenditure.: TargetFuse’s
objective is to minimize overall counting errors by allocating
energy and bandwidth efficiently. In our implementation, the
overall counting error is defined as the mean of the counts
across all tiles, a widely employed metric in diverse appli-
cations [22]. A smaller counting error indicates heightened
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Fig. 4: Effect of varied tile size on mAP accuracy and
execution time of yoloV3-tiny model. mAP 0.5:0.95 is the
average mAP over IoU threshold [24].

confidence in counting accuracy, which ultimately translates
to greater benefits for customers. To address the computa-
tional and downlink bottlenecks in the counting application,
TargetFuse leverages the three following techniques.

B. Adaptive Image Tiling

For each image, TargetFuse is designed to divide images
into tiles with a comparatively lower execution overhead. Pro-
cessing large satellite images, typically containing thousands
of megapixels, through the utilization of DNN models in
space is an essential solution. However, executing standard
models directly on these satellite images may lead to excessive
memory and potentially exhausting the available memory.
This is particularly challenging in typical space environments
where the memory capacity is insufficient for handling such
large-scale images. Prior work [6] divided the image into
several tiles maximizing inference accuracy at the expense of
execution overhead. Additionally, downsampling to the input
size of standard model architectures is frequently insufficient
for achieving optimal performance [7].

A large image can be segmented into either a larger tile
size with fewer tiles or a smaller tile size with numerous
tiles. After scaling each tile into input size of DNN counter,
the execution time per tile remains constant. Theoretically,
opting for a larger tile size reduces image processing time,
as each tile undergoes less degradation. Conversely, selecting
a smaller tile size increases processing time, and each tile
also undergoes less degradation. To explore the impact of tile
size on both inference accuracy and execution overhead, we
conducted measurements on two datasets, as shown in Fig. 4.
Interestingly, both datasets display similar curves. As the tile
size increases, the execution time decreases due to a smaller
number of tiles per image. However, there is an optimal tile
size that maximizes accuracy. Accuracy tends to deteriorate
when the tile size deviates from this optimal size. This obser-
vation aligns with findings from previous studies [6], [10]. The
optimal tile size enables substantial improvements in accuracy
while maintaining acceptable time. Moreover, the optimal tile
size is not constant but varies depending on the DNN counters
and image input size. Consequently, we determine the optimal
tile size based on the combination of satellite image and DNN
counter. Considering the trade-off between geospatial analysis
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Algorithm 1: Optimal Tile Size Selection
Input: minimum size sle f t , maximum size sright ,

threshold ε , mAPsle f t , mAPsright
Output: optimal size sbest

1 sle f t ← smin; sright ← smax;
2 while sright − sle f t >ε

3 smidl ← sle f t +(sright − sle f t)/3;
4 smidr← sright − (sright − sle f t)/3;
5 if mAPsle f t<mAPsright

6 sle f t ← smidl ;
7 else
8 sright ← smidr;
9 sbest = (sle f t + sright)/2;

10 Return sbest

accuracy (i.e., mAP accuracy) and execution overhead (i.e.,
processing time), we aim to identify an optimal tile size that
aligns with the input size of the DNN counter.

We present a detailed approach for optimizing image size in
tile-based processing using Algorithm 1. The process initiates
by initializing the tile sizes. Drawing from the measurement
results before NN counter deployment, we promptly narrow
down the search interval and empirically establish the mini-
mum and maximum tile sizes. We then iterate until the first
image size meets the preset empirical size difference threshold.
Specifically, we divide the search interval into three equal
fractions and compare the mAP accuracy at different sizes
to identify optimal search intervals. The optimal tile size lies
in the interval [smidl , sright ] when mAPsle f t < mAPsright , and
vice versa. Finally, we obtain an approximate optimal tile size
by taking the midpoint of the interval. This method achieves
a balance between accuracy and computational efficiency,
providing a user-friendly solution with improved speed and
accuracy of counting application.

C. Clustering-based Data Deduplication

TargetFuse is tasked with classifying each tile into
geographic contexts while complying with the computational
constraints imposed by satellite hardware. A geographic con-
text refers to a subset of images characterized by a high
degree of similarity, along with geographic and transformation
features. It is common for these images to exhibit a substantial
degree of similarity, often remaining relatively static over
time. EO satellites periodically pass over identical locations
on Earth’s surface, capturing images that exhibit significant
similarity or near-identical characteristics at different times
along their orbital path [25]. As shown in Fig. 5, the two tiles
acquired after tiling include an identical number of similar
images. This is due to the short average revisit cycle of each
satellite, such as GF-3, which revisits the same area at least
twice every day, enabling the capture of the same geographical
area multiple times [26].

The presence of numerous semantically similar images ex-
erts substantial pressure on the limited computational capacity

(a) (b)

Fig. 5: The tiles generated through image tiling in the DOTA
[28] dataset we utilize contain several images with similarities.

within a satellite. This heightened demand for processing
images may pose a computational challenge. To tackle this
challenge, we propose a data deduplication strategy that in-
volves processing representative tiles based on geographic
context, rather than processing all similar tiles. Certain images
are computationally less demanding in specific contexts than
in others. Due to the high predictability of satellite orbits,
determining the contexts can be readily achieved. However,
there may be image tiles for which the contexts are not
immediately apparent, posing a challenge in their generation.

The technique efficiently generates contexts for image tiles
by dividing them into multiple contexts. To cluster the rep-
resentative image tiles based on similarity, the technique uti-
lizes a low-dimensional label vector indicating the geographic
features described by computing moments [27] present in
each image tile. The technique creates a set of contexts by
performing k-means clustering while exploring the Euclidean
distance of the label vectors to measure similarity. Moreover,
to enhance the DNN counter’s robustness to diverse sensors,
we consider geographic label transformations like translations
and rotations as objects may have arbitrary headings between
0 and 360 degrees. We also explore a range of cluster counts
when partitioning the dataset into several clusters. Further in-
vestigation of this hyperparameter space represents an exciting
avenue for future research.

D. Bandwidth-aware downlinking throttling

The downlinking bottleneck also poses a significant chal-
lenge in in-orbit counting, impacting the overall perfor-
mance. When receiving the tiles with confidence thresholds,
TargetFuse employs selection logic to determine the policy
for handling these tiles. The optimal policy ensures that
downlinking remains within the bandwidth budget constraint
while transmitting as many tiles as possible to the ground to
minimize counting errors.

The selection logic, based on the confidence threshold
from the space-based DNN counter, is categorized into three
groups (in Fig. 3): when the confidence threshold is rela-
tively smaller (i.e., < con fp), TargetFuse discards them
directly; when confidence threshold is large enough (i.e.,
> con fq), TargetFuse accepts the counting result; only
when confidence threshold is between con fp and con fq (i.e.,
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Fig. 6: A comparison of CMAE (in Section IV) in three
methods based on the choice of confidence thresholds when
downlinking in different contact times.

[con fp,con fq]), TargetFuse downlinks the tiles and pro-
cesses them on the ground DNN counter. To comprehensively
explore how the confidence threshold affects CMAE (i.e., the
mean difference between the estimated count and the ground
truth), we vary the confidence threshold con fp under different
contact times between satellite and ground (i.e., different
downlinking data volume). As the tiles are sorted by the
confidence threshold, and the objective is to downlink as
many tiles as possible, we must consider the following three
methods based on the choice of confidence thresholds when
downlinking the tiles within [con fp,con fq] under the limited
bandwidth budget constraint:

• Low-Conf-First: If there are still tiles remaining when
the bandwidth is exhausted, we proceed to directly count
these tiles and downlink the results.

• Fixed Con f : If there are still tiles remaining when the
bandwidth is exhausted, we only count tiles whose con-
fidence thresholds are higher than the fixed con fq.

• Dynamic Con f : We first count the tiles with confi-
dence thresholds higher than the preset con fq and then
count the tiles whose confidence thresholds are within
[con fp,con fq] until the bandwidth is exhausted. The value
of con fq varies depending on the downlinking constraint.

The observations from Fig. 6 are summarized as follows:

• Dynamic con fp leads to performance improvement.
When the downlink capacity is insufficient, both Low-
Conf-First and Dynamic Con f show similar performance,
as all remaining tiles are counted and Dynamic Con f

is not effective. In this scenario, a larger con fp leads
to a lower CMAE, as it facilitates the downlinking of
more high-confidence tiles. Moreover, when downlink
capacity is sufficient, both Fixed Con f and Dynamic
Con f exhibit comparable performance, as all tiles are
counted. Consequently, Fixed Con f is not enabled. In
this case, a larger con fp results in higher CMAE, as it
discards the high-value tiles with confidence thresholds
below con fp. Therefore, choosing an appropriate dynamic
con fp is crucial for improving counting performance.
It motivates to downlink high-confidence images first
and downlink some low-confidence images within the
available bandwidth.

• Optimal con fp improves performance. When downlink
capability is sufficient and con fp increases to a certain
value, all methods discard the tiles below con fp, resulting
in a counting error. Here both Low-Conf-First and Fixed
Con f exhibit identical performance, since Fixed Con f
fails to work effectively. Additionally, Dynamic Con f
incurs a higher counting error, as counting tiles larger
than con fq in space is not as accurate as on the ground.
Therefore, optimizing con fp is crucial.

• con fq alleviates the downlink constraint without
greatly affecting performance. In Fig. 6(d), when the
downlink capability is sufficient (i.e., dynamic con fq
does not change), and the initial con fq is not too large
(i.e., smaller than 0.2), Dynamic Con f and Low-Conf-
First show similar performance. However, Dynamic Con f
has the advantage of increasing the downlink volume
compared to Low-Conf-First.

Therefore, strategically selecting the optimal confidence
threshold is crucial to downlink more high confidence tiles.
However, we face the challenge of determining the downlink-
ing method for confidence thresholds and fully exploiting the
bandwidth budget. Algorithm 2 describes the bandwidth-aware
downlinking throttling procedure, which takes the bandwidth
requirement and tiles obtained by tiling and clustering (as
shown in Fig. 3) as input and produces a set of tiles that
can be downlinked by the scarce bandwidth constraint. We
first identify all the clustered tile sets on the satellite and
discard tiles with a confidence threshold lower than a specified
empirically con fp (lines 5-6). Tiles with high confidence con fq
are included directly in the Cspace (lines 7-8). We calculate
the current remainder bandwidth and maximize it to downlink
images (lines 13-18), In other words, the remaining tiles are
sorted based on data size in descending order, and the count
results are added to the transmitted tile set Strans if sufficient
available bandwidth is present.

IV. EVALUATION

A. Methodology

1) Heterogeneous computational hardware: A computa-
tional satellite enhances onboard sensing, communications,
and control operations. In this context, the tested satellites
are equipped with two industrial modules: Raspberry Pi 4B
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Algorithm 2: Bandwidth-aware downlinking throttling
Input: minimum confidence con fp, maximum

confidence con fq, bandwidth requirement
Bandmax, filtered ROI set tiles

Output: transmitted tile set Strans, count from space
Cspace

1 Initialize Strans, Cspace, con ftiles;
2 Bandrest ← Bandmax;// Remaining bandwidth

assignment
3 foreach tile in tiles do
4 scores, labels← Geospatial DNN Counter(tile);
5 if scores.mean() < con fp
6 continue;
7 if scores.mean() > con fq
8 Cspace+=Ctile;
9 else

10 con ftiles.add();
11 end
12 con ftiles.sort();// Sort by confidence score
13 foreach tile in con ftiles do
14 Size← tile.size();// Measure size of tile
15 if Bandrest .size() ≥ Size
16 Strans.add();
17 else
18 break;
19 end
20 Return Strans, Cspace.

Datasets Size GSD (m) Volume (GB)
xView 3000 0.3 20
DOTA 4000 0.1∼0.81 34.3
UAVOD10 1000∼4800 0.15 0.9

TABLE I: Datasets in the evaluation. Size: large-scale geospa-
tial image resolution. GSD: geographic distance between ad-
jacent pixels.

(RPI4) and Atlas 200 DK (Atlas). These modules are preferred
for their cost-effectiveness and programming simplicity. This
work focuses on characterizing onboard computing utilizing
these two modules, recognized as widely-used computational
hardware in satellite applications.

2) ROI-based instance selection: To address redundant
counting in small tiles containing invalid information, such
as backgrounda, recognized challenge in spatial vision, we
utilize established techniques for regions of interest (ROI)
[29], as depicted in Fig. 3. We also implement non-maximal
suppression to the global matrix of bounding box predictions
to alleviate overlapping detections [30]. The operation is
compatible with this work, processing in-orbit images to save
bandwidth and aligning seamlessly with our core contributions
in producing statistical counting results.

3) Experiment Setups: Theoretical satellite-to-ground
bandwidth can achieve 100 Mbps, matching the air interface
transmission rate [12]. However, real-world measured satellite-
ground bandwidth is limited to 30-50 Mbps due to reception

DNN Counters Input mAP
YOLOV3 (Ground) 416*416 55.3
YOLOV3-tiny 416*416 33.1
ssd mobilenetv2 200*300 22.0

TABLE II: The DNN counters architecture used in this work.
mAP: mAP accuracy on COCO dataset [24].

losses. Additionally, the default satellite-ground contact time is
set at 6 minutes, and the default DNN counters on the satellite
and ground are YOLOV3-tiny and YOLOV3, respectively.

4) Datasets: We utilize three geospatial datasets covering
various scenes, including buildings, planes, and tracks (in
Table I), for evaluation. Each satellite captures images along
its ground track, and although object counts may exhibit high
temporal correlation, there are currently no publicly available
datasets covering multiple days and providing diverse object
contexts with sufficient instances. To address this limitation,
we employed rotations and data augmentation. We simulated
image captures as the satellite passed over its ground track by
flipping and rotating 50% of the images in the dataset.

5) DNN counters and ground truth counts: In Table II, we
present publicly available DNN counters customized for each
data sample, primarily small or medium-sized to accommodate
the resource-constrained nature of satellites. The evaluation is
conducted based on the ground truth returned by the dataset.

6) Metrics: To quantify the performance of the counting
system, we use Count Mean Absolute Error (CMAE), defined
as ∑ |yi−gi|/∑gi, where yi and gi are our counter count and
true count, respectively. The metric indicates the extent to
which our approximate counts deviate from the ground truth,
and a narrower CMAE is considered better. In addition, we
leverage the data size to demonstrate changes in the volume
of data, offering an indirect reflection of bandwidth utilization.

7) Baselines: We compare TargetFuse to four baseline
methods: (1) Space-Only: All images are processed using
the onboard DNN counter, and the resulting counting data
is transmitted to the ground; (2) Ground-Only [6]: Satellites
operate as “bent-pipe”, collecting images and downlinking
them to the ground; Due to bandwidth limitations, the ap-
proach is to downlink as many observations as possible
within the limited contact time; (3) TIANSUAN [9]: Following
onboard counting, satellites exclusively transmit results with
confidence thresholds surpassing a predetermined empirical
threshold, downlinking the remaining data to the ground within
the constrained contact time; (4) Kodan [10]: The images
processed in orbit are categorized into different levels, with a
preference for transmitting high-value pictures. Note that while
we share similarities with Kodan in onboard processing, there
is a distinction in transmitting — Kodan does not consider
bandwidth limitations. Theoretically, the outcome obtained
from Kodan functions as an upper bound.

B. End-to-End performance

1) TargetFuse enhances performance: Fig. 7 illustrates
the experimental results with the varying bandwidths. In
all methods, except for Space-Only, CMAE decreases as
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Fig. 7: The performance of CMAE on the varying satellite-
ground bandwidth.

more bandwidth resources are utilized and more images are
downlinked. TargetFuse outperforms the vanilla baseline
TIANSUAN, which relies on a fixed confidence threshold,
by reducing the counting error by 1.93× and 2.51× on av-
erage across different datasets. This improvement is achieved
because TargetFuse intelligently selects representative and
high-value images for downlinking, leading to enhanced count-
ing performance. Additionally, TargetFuse achieves a 9.6×
bandwidth-efficient improvement compared to TIANSUAN
under limited bandwidth constraints.

Counting performance is subject to the characteristics and
composition of the dataset used for evaluation. Despite vari-
ations in the datasets, TargetFuse shows similar perfor-
mance to Kodan, with differences mainly attributable to the
downlinking. The key advantage of our system over Kodan
lies in its incorporation of bandwidth-aware downlinking throt-
tling. In scenarios with extremely scarce bandwidth, especially
close to real-world values (i.e., below 50 Mbps in Fig. 7(b)),
TargetFuse enables efficient bandwidth allocation and di-
recting the remaining resources to other applications.

2) TargetFuse provides effective counting with limited
energy constraints: Fig. 8 explores the impact of computa-
tional energy on the performance of TargetFuse, consider-
ing various hardware configurations and contact times. Each
satellite is theoretically restricted to a daily energy collection
of up to 260KJ, allocated to computing operations within a
specified energy budget. Results show that, under identical
computational energy constraints, longer contact time leads to
lower CMAE as the increased downlinking of images to the
ground. Additionally, both hardware setups achieve compa-
rable CMAE values within the same contact time. However,
RPI4 (with 6W power) featuring computing-limited hardware
outperforms Atlas (with 13W power) by saving approximately
50% of energy. This advantage stems from the RPI4’s ability
to efficiently process more data, thus minimizing the CMAE.

3) Low-power hardware also improves performance: The
performance of TargetFuse is relevant with accelerators
running DNN counters, as shown in Fig. 9. Compared to
Altas, RPI4 significantly reduces CMAE by 34%, primarily
attributed to its ability to process and downlink more images
per track. Specifically, for the same CMAE, RPI4 requires a
shorter contact time, resulting in less downlinked data; with
the same contact time, RPI4 can achieve a lower CMAE.
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Fig. 8: TargetFuse operates on COTS hardware with vary-
ing computational energy budgets, which is a fraction of the
total solar energy available.
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Fig. 9: A comparison of CMAE on different hardware
with different contact times (dataset: xView, energy budget:
150KJ/day, onboard counter: YOLOV3-tiny).

4) Exploiting diverse DNN counters: Fig. 10 illustrates
the counting performance of different DNN counters under
the same energy constraint. Despite the diverse choices of
counters on the satellite, their performance remains similar.
Both TargetFuse and Kodan exhibit very comparable per-
formance, as both methods select less accurate DNN counters
in space, with the ground counter providing more accurate
counts. This observation highlights the significance of adaptive
image tiling, as it enables different selection logics for each
tile based on confidence thresholds. Execution with a smaller
tile size (e.g., ssd mobilenetv2) experiences less degradation,
resulting in a narrower CMAE.

5) Exploiting diverse datasets: Fig. 11 shows the counting
performance on widely-used datasets, comparing the base-
lines with TargetFuse under unlimited downlinking to the
ground. The performance of TIANSUAN consistently varies
across different datasets, as this method depends on fixed
empirical confidence thresholds, thereby affecting counting
performance. TargetFuse reduces counting error by 3.4×
on average, compared to Space-Only. With Ground-Only,
computational constraints are further mitigated and ground
counters can process all tiles with higher precision, resulting
in the theoretically lowest achievable CMAE. Kodan and
TargetFuse implement ROI-based instance selection, im-
age deduplication, and onboard computing. However, these
methods lead to a comparable performance with Ground-Only.

C. Validation of Key Designs

1) Clustering-based data deduplication enhances band-
width efficiency: In Fig. 12(a), performing Clustering leads to
a reduction in downlink data. Compared to No-Clustering, the
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downlink volume in the Clustering scenario is approximately
5.6% less, accounting for 32.8% of the volume observed in
No-Clustering. This is primarily due to the fact that, Clustering
transmits only representative similar or duplicated tiles to the
ground after the clustering process. Additionally, within the
downlinking constraints, Clustering enables the transmission
of additional small tiles to the ground, which can be integrated
into the final counting result.

2) Bandwidth-aware downlinking throttling improves per-
formance: Fig. 12(b) demonstrates that Dynamic Conf outper-
forms Fixed Conf as the contact time increases. When contact
time is limited, Dynamic Conf can selectively downlink high-
confidence tiles, reducing the counting error compared to
the indiscriminate downlinking of tiles in Fixed Conf. Both
Dynamic Conf and Fixed Conf exhibit similar performance
when all the tiles can be downlinked.

V. RELATED WORK

Satellite networking has witnessed substantial growth, with
a predominant focus in research on inter-satellite networking
[31], [32]. However, the challenges posed by the scarce down-
link bandwidth and the associated bottleneck are also crucial.
OEC [6] focuses on the downlink bottleneck and shifts it to the
inelastic computation capacities. Another recent work, Kodan
[10] has proposed filtering low-value data and prioritizing
high-value data for downlinking to mitigate the downlink
bottleneck. However, Kodan considers the constraints of scarce
satellite-ground bandwidth, a limitation that we aim to address
in this work. This work not only tackles the downlink bottle-
neck through bandwidth-aware downlinking throttling but also
addresses the computational bottlenecks.

The computational bottleneck represents a major challenge
for satellite systems. Some works, such as [33] and [34], have
explored the viability of utilizing DNN models for in-orbit
processing. However, these approaches do not directly tackle
the specific challenges addressed by TargetFuse, such as
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Fig. 12: Ablation study on key designs.

operating with real-world energy budgets. Moreover, several
works focus on optimizing DNN models for accuracy or speed
in terrestrial applications [35]–[41]. Various terrestrial and em-
bedded systems that operate on harvested energy [42], [43] can
transmit data at any time within energy constraints. However,
this continuous data transmission capability is impractical for
satellites as they can only transmit data when they are in
proximity to ground stations. Moreover, the limited bandwidth
available for satellite communication is significantly smaller
than that of ground-based connections.

Vision tasks in EO satellites have been extensively studied
and proven valuable for scientific investigations [44]–[46].
These applications span various domains, including computer
systems, satellite systems, satellite networks, and machine
learning systems. Developing a comprehensive scheduling
system that considers image size, processing speed, energy
constraints, and orbital mechanics poses a challenging research
problem in computer systems. We are actively working to
resolve the computer systems design challenges associated
with satellite computing under real-world satellite constraints.
Our system leverages a tradeoff between accuracy and exe-
cution time, and effectively addresses downlink bottleneck by
bandwidth-aware downlinking throttling.

VI. CONCLUSION

This work introduces an analytics system tailored
for addressing object counting queries on EO satellites.
TargetFuse utilizes both less accurate in space and more
accurate ground-based DNN models to determine earth object
counts within the constraints of computation and commu-
nication. TargetFuse is designed to minimize counting
errors under energy and bandwidth constraints. Extensive
experiments show that TargetFuse can reduce counting
error by 3.4× on average, compared to onboard computing.
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