
AoDNN: An Auto-Offloading Approach to
Optimize Deep Inference for Fostering Mobile Web

Yakun Huang, Xiuquan Qiao, Schahram Dustdar, Yan Li

Abstract— Employing today’s deep neural network (DNN)
into the cross-platform web with an offloading way has been
a promising means to alleviate the tension between intensive
inference and limited computing resources. However, it is still
challenging to directly leverage the distributed DNN execution
into web apps with the following limitations, including (1) how
special computing tasks such as DNN inference can provide
fine-grained and efficient offloading in the inefficient JavaScript-
based environment? (2) lacking the ability to balance the latency
and mobile energy to partition the inference facing various
web applications’ requirements. (3) and ignoring that DNN
inference is vulnerable to the operating environment and mobile
devices’ computing capability, especially dedicated web apps.
This paper designs AoDNN, an automatic offloading framework
to orchestrate the DNN inference across the mobile web and the
edge server, with three main contributions. First, we design the
DNN offloading based on providing a snapshot mechanism and
use multi-threads to monitor dynamic contexts, partition decision,
trigger offloading, etc. Second, we provide a learning-based
latency and mobile energy prediction framework for supporting
various web browsers and platforms. Third, we establish a multi-
objective optimization to solve the optimal partition by balancing
the latency and mobile energy.

I. INTRODUCTION

The web is becoming the most viable cross-platform tech-
nology and ubiquitous platform, reducing the costs of de-
ploying services across a wide range of devices and en-
vironments [1], [2]. More than 80% of smartphone apps
adopt a hybrid development and support web-based apps
using the system’s embedded WebView [3]. However, enabling
computation-intensive artificial intelligence (AI) services such
as deep learning on the cross-platform web is still in its fancy
and has been numerous complaints, including: (i) unbearable
model loading latency [4], slow response [5], and substantial
energy consumption; (ii) the devices have various inference
performance of the same service due to the enormous diversity
of hardware and software specifications; (iii) the lack of
optimized low-level APIs and instant loading mechanism [1],
[6], [7]. In this work, we focus on optimizing deep learning
inference for fostering mobile web with an auto-offloading
mechanism and enhancing WebAI capabilities for web apps.

Yakun Huang and Xiuquan Qiao are with State Key Laboratory of Net-
working and Switching Technology, Beijing University of Posts and Telecom-
munications, Beijing, 100876, China. Email:{ykhuang, qiaoxq}@bupt.edu.cn.
Xiuquan Qiao is the corresponding author. Schahram Dustdar is with the Dis-
tributed Systems Group, Technische Universität Wien, Vienna, 1040, Austria.
E-mail:dustdar@dsg.tuwien.ac.at. Yan Li is with the Shanxi Transportation
Planning Survey and Design Institute Co., LTD., Taiyuan, 030012, China. E-
mail:58093797@qq.com. This research was supported in part by the National
Key R&D Program of China under Grant 2018YFE0205503, in part by the
Funds for International Cooperation and Exchange of NSFC under Grant
61720106007, in part by the 111 Project under Grant B18008.

There are many kinds of research concentrated on mobile
offloading, including (i) conventional solutions that offload
JavaScript codes, which require developers to analyze, anno-
tate and identify offloading codes and tasks manually [8]–[11].
This approach mainly includes the Code analyzer and the Mi-
grator. Code analyzer provides the profiler and static analysis
to orchestrate the intensive functions and codes between the
web and the server. The Migrator provides code migration
and JavaScript runtime context synchronization. However, this
approach is coarse-grained and inefficient for extending to
deep inference, which does not involve analysis and offloading
strategies for DNN characteristics. Also, it lacks the use of
more efficient multi-threaded web workers to enable energy-
efficient DNN offloading; (ii) the second approach delves into
the dynamic partitioning and offloading strategies for imple-
menting DNN inference across resource-constrained mobile
devices, the edge, and the cloud. This promising approach
can be classified as partition-offloading execution [12]–[14]
and collaborative execution, which exploring optimal partition
of DNN layers and distributing them to various computing
resources, or training multi-branches to provide an early exit
to reduce needless inference [15]–[20]. However, these efforts
focus more on optimal DNN partitioning while lacking explor-
ing the differences and features implementing DNN offloading
on the mobile web and native device. Typically, [18], [19], [21]
provide simple validation of their collaborative inference by
packing API interfaces for the web services.

To enable DNN inference offloading for the mobile web and
relieve the burdens of web developers, we propose AoDNN,
an auto-offloading framework to distribute the DNN infer-
ence across the edge and ubiquitous web-supported devices.
AoDNN quickly provides inference migration and recovery by
employing a snapshot-based mechanism to answer three criti-
cal questions, including “what-to-offload”, “when-to-offload”,
and “how-to-offload” for the mobile web. Nevertheless, there
are three critical challenges to implementing the AoDNN.

• Inefficient JavaScript environment and DNN character-
istics lead to web developers having to spend lots of
interventions and efforts to enable offloading. Existing
offloading frameworks run custom function code offload-
ing written in Node.js (JavaScript for web apps), Python,
or C++ (towards native apps) based on a Function-as-a-
Service (FaaS) [22]. They require the professional analysis
of web developers to obtain an optimal offloading strategy
and cannot be applied directly to offloading DNN inference
on mobile web apps. Besides, web apps usually require a

978-1-6654-5822-1/22/$31.00 ©2022 IEEE 2198

IE
EE

 IN
FO

C
O

M
 2

02
2

- I
EE

E
C

on
fe

re
nc

e
on

 C
om

pu
te

r C
om

m
un

ic
at

io
ns

 |
97

8-
1-

66
54

-5
82

2-
1/

22
/$

31
.0

0
©

20
22

 IE
EE

 |
D

O
I:

10
.1

10
9/

IN
FO

C
O

M
48

88
0.

20
22

.9
79

67
63

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on September 05,2022 at 09:27:45 UTC from IEEE Xplore. Restrictions apply.

third-party DNN inference library with high encapsulation
APIs to execute DNNs, which is hard to distribute due
to complex DNN layers, intermediate outputs, and current
executing status.

• The huge variability of hardware and software makes
the linear regression for predicting inference latency and
mobile energy unavailable. The same DNN has different
layer inference performance between the web apps and the
native apps with the same device. Also, we observe that
it has weak adaptability on a wide type of DNNs. These
altogether indicate that executing prediction models with a
better fitting ability and better performance is fundamental
to realize optimal DNN inference offloading for web apps.

• Resource-hungry mobile web apps have stricter require-
ments to balance the latency and mobile energy than
native apps. Existing methods using single-objective opti-
mization, either latency or mobile energy, cannot meet the
demand of achieving a balance among multiple indicators
such as latency, mobile energy, accuracy, etc. More impor-
tantly, it is necessary to design adaptive DNN partitioning
that considers the dynamic contexts, low complexity, and
high efficiency.

To address the first challenge, we explore the nature of
JavaScript computation offloading on the mobile web platform
and propose a snapshot-based offloading framework for fast
inference packing, forwarding, and resuming. Specifically,
AoDNN uses a multi-threaded web worker technology to
control and schedule the DNN inference offloading. We also
detail three essential aspects of web browsers in offloading
DNN inference, i.e., “what-to-offload”, “when-to-offload”, and
“how-to-offload”. Meanwhile, we leverage Node.js as the
operating environment for the edge to seamless recovery
task snapshots, smoothly execute the DNN inference, and
timely respond to web apps. To address the second challenge
and answer “what-to-offload”, we propose the learning-based
latency and mobile energy prediction framework. It considers
the DNN characteristics and combines the unknown computing
capability of mobile devices, running status, and software.
Primarily, we first learn polynomial prediction models aiming
at the native platform. Then, the multi-type prediction models
are further provided for more accurate prediction models,
reducing the fitting error caused by DNN running in different
stages of web apps. It also reduces the difficulty of fitting
a learning prediction model. To address the third challenge,
we establish a lightweight multi-objective optimization for
efficiently making partitioning decisions during the online
offloading. It has the optimization objective of both latency and
mobile energy, which also can be expanded to other metrics
for web apps with extremely limited resources and operating
environments. Our adaptive partitioning and offloading mech-
anism can change the optimal offloading strategy according to
the dynamic contexts by real-time monitoring and complete
the elastic DNN inference.

We implement AoDNN and generate standard JavaScript
manifest files for online offloading. Extensive experiments on

typical datasets and DNNs illustrate that proposed learning-
based prediction framework performs better than baselines,
especially those that ignore the computing capability, running
status, and characteristics of web apps. Also, AoDNN on
MobileNet improves the latency by 1.8x on average and up to
20.4x, reduces mobile energy by 22.5% on average and up to
32.9%, and improves the throughput by 1.2x on average and
up to 2.4x. The key contributions are as follows:
• AoDNN explores automatic offloading approach towards

web apps that can seamlessly offload intensive DNN infer-
ence between the mobile web and the edge, fully consider-
ing DNN characteristics and dynamic web environments.

• We propose exclusive latency and mobile energy prediction
models, considering the DNN characteristics, used device,
running status, and then further provide more accurate
predictions for various web browsers and platforms.

• We establish a multi-objective optimization rather than a
single objective to provide low latency and low mobile
energy offloading scheme for leveraging distributed DNN,
which can quickly expand more metrics for web apps.

II. DESIGN OF PROPOSED FRAMEWORK

In this section, we introduce the design of the AoDNN
approach in Fig. 1, detailing how to provide automatic and
seamless offloading of DNN inference, including “what-to-
offload”, “when-to-offload”, and “how-to-offload”.

DNN Profiler

Layer-level latency
models

Computing capability

ShuffleNetMobileNet

LeNet
ResNet50

. . .
Compressed DNNs

Common DNNs

AlexNet
VGG16

Running platform

DNN
Features

Device
Info

Layer-level energy
models

Dynamic
Partitioner

Application
Constrains

Request
Contexts

Generating Auto-offloading Manifest

Web
Server

Deployable & Configurable Files

…

… Sy
nc

hr
on

iz
e

m
od

el
 fi

le
s

Operating System

Trident / WebKit

App1 App2 App3 Appn…

U
I T

hr
ea

d
/

M
ai

n
Th

re
ad

App
Worker

Decision
Worker

Offloading
Worker

0
(
6
6
$
*
(

Client (Browser) Edge Cloud (Server)
WebKit�1RGH�MV

App1 App2 App3 Appn…

Inference
Worker

Manager
 Worker

Web Worker
Pool

Recovery
 Worker

…

Service Context
Manager

Communication
Interfaces

(Web Socket)

Deploy Auto-offloading Service <“auto-offloading.js”>

Web
Service 1

Web
Service 2

Offload Snapshot to Edge

Return and Merge Results

1

2

3

4Request

DownloadService Files
5

6

7

Context-Driven Offloading
& Runtime Execution

O
ffloading

M
anager Monitoring

Worker

Fig. 1. System overview of DNN auto-offloading for the mobile web.

A. Overview of AoDNN

AoDNN mainly includes DNN Profiler (what-to-offload)
in the offline phase, DNN Partitioner (when-to-offload), and
Context-Driven Offloading & Runtime Execution (how-to-
offload) in the online phase.

DNN Profiler (in-depth analysis of inference for “what-to-
offload”). This module makes in-depth inference profiling of
different common DNNs from the fine-grained layer inference.
It provides inference prediction of DNN layers when exe-
cuted in different browsers and devices. Accurate DNN layer
inference analysis provides an essential foundation for DNN
partitioning and automatic offloading decisions in the online

2199
Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on September 05,2022 at 09:27:45 UTC from IEEE Xplore. Restrictions apply.

phase. In contrast to the traditional approach of using linear
regression, which only considers the layer features, DNN Pro-
filer provides a platform-aware prediction framework to predict
the layer inference latency and mobile energy. It combines the
layer structure, executed platform, and operating environment
to propose different polynomial prediction models. Thus, it
can fit multiple types of DNN layers and further enhance the
effectiveness of the partitioning.

DNN Partitioner. This component provides how to gener-
ate manifest files deployed and configured for the web service
to offload DNN inference automatically. Besides, dynamic
partitioning and offloading execution based on the real-time
contexts and environment is also the pivotal content. Typically,
the generated manifest files are deployed to application servers
that provide standard web services, providing DNN inference
offload services without developer intervention. The automatic
offloading mechanism of the DNN Partitioner provides optimal
partitioning and execution by using DNN Profiler to estimate
inference latency and mobile energy without pre-executing the
deployed DNNs.

Context-Driven Offloading & Runtime Execution. It tells
how AoDNN implements adaptive offloading and distributed
inference between the mobile web and the edge (explaining
“how-to-offload”). The key process includes the browser ini-
tiating a DNN computation request to the web server and
downloading service files such as model, computation logic
diagram, and “auto-offloading.js” required. Then, the browser
decides whether to trigger DNN offloading by executing the
auto-offloading manifest files. Once the offloading is triggered,
the packaged offloading snapshot is synchronized to the server
through the WebSocket communication pipeline. Finally, the
results returned from the server are merged for rendering.
Further, we describe the complete operational flow of the
AoDNN as follows:

STEP. 1. In the offline phase, AoDNN collects and analyzes
layers’ inference performance with DNN Profiler, including
compressed DNNs executed on various devices and platforms.

STEP. 2. DNN Partitioner establishes a multi-objective au-
tomatic offloading optimizer. It satisfies application constraints
such as latency and mobile energy based on DNN Profiler’s
prediction framework. Then, it takes the current contexts as
the input to generate manifest files that can be deployed and
configured for the web services. Unlike conventional web
offloading methods requiring developers to deeply analyze
tasks and package them to generate offloading manifest files,
this step is fully automated and requires no involvement.

STEP. 3. Once the auto-offloading manifest files are gener-
ated, the web service providers simply deploy these standard
files to the web server and related web services.

STEP. 4. In the online phase, the browser initiates the DNN
inference request to the web server in the cloud (including the
edge cloud), which is the same as an ordinary web request.

STEP. 5. The web server returns to the browser the files such
as HTML, CSS, and JavaScript, including the manifest files
for auto-offloading generated in the previous step. They are

routinely used for rendering pages for web services. Similarly,
this step is consistent with the normal web service process.

STEP. 6. This step uses multiple web workers to enable
seamless DNN offloading. Before loading the DNN model
and executing inference, the browser first loads the context
monitoring function from “auto-offloading.js” and determines
whether the offloading is triggered based on “MakeDeci-
sion()”. If the current DNN inference can be made natively, the
corresponding DNN model is directly loaded on the browser
for execution. Otherwise, the “DynamicPartitioner()” provides
the best partitioning and offloading the snapshot.

STEP. 7. When the edge server receives the snapshot from
the browser, the Service Context Manager (SCM) restores the
inference snapshot based on the DNN model files. Then, SCM
computes the graph synchronized from the web server side,
awakes the inference workers, and returns the results. The
process shown in Fig. 2 does not block the main thread of
the browser by using sub-threads and web workers to execute
the inference. Hence, it makes the inference and offloading
process transparent to the users.

B. DNN Profiler

This section describes how DNN Profiler provides AoDNN
with a learning-based DNN layer inference prediction frame-
work in Fig. 2. It provides a polynomial regression learner

Layer-level
Latency

…
Native Environment
(Linux, Android,etc.)

Layer-level
Mobile energy

Predictive Latency &
Mobile Energy

First Stage
Second Stage

…

Y
Support

WebAssembly?

Y

Web-based
Apps Ҙ

Web-based Environment
(Node.js, WebOS, etc.)

C1 C2 Cn-1 … Cn
Improved predictions for
various web environment

Network Characteristis
batch size Input size

output size …

Computing Capability
Web Environment
CPU Status

Web browser

Polynomial
Regression Learner

Fig. 2. Platform-aware predictive framework to support offloading decisions.

to search for the optimal coefficients considering the layer-
inference prediction and memory access for the web-based
environment run on devices with different computing capa-
bilities. We first employ a similar definition of the layer-level
prediction model in [23] and consider equally essential factors
including running environment and the computing capability
of the used device, representing the inference cost Cl(x) of a
given DNN layer l can be described as:

Cl(x) =
∑

j
αj ·

∏D

i=1
x

eij
i +

∑
k
βk ·Fk(x), (1)

where x ∈ RD is the feature vector, dimension D includes
the input size, the output size, the batch size, the filter size,
the kernel number and shape, the stride size, and the padding
size, current computing capability and state of the used device.
Note that the dimensions of different types of DNN layers
may be different from each other. For instance, the kernel, the
stride size, and the padding size is only used in convolutional
layers. eij ∈ N is the exponent of xi in the jth polynomial
term, and ∀ j,

∏D

i=1
x

eij
i ≤K where K is the regular degree of

polynomial. Besides, the memory access cost and the floating-
point operations of the DNN layer can also not be ignored,

2200
Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on September 05,2022 at 09:27:45 UTC from IEEE Xplore. Restrictions apply.

thus using particular polynomial term F(x) to denote these
two critical features. α and β are the coefficients to learn.

We can learn the coefficients to fit the DNN layer predic-
tion models of the latency and mobile energy by inputting
DNN layer features and the used device information based
on such a prediction model. Although the above prediction
model considers the possible factors of DNN characteristics,
especially the computing capability and running state of the
used device, the prediction model is aimed at executing the
DNN directly on the mobile devices apps. Thus, it cannot be
directly used for various web-based apps due to the perfor-
mance degradation and differences among various browsers
such as Chrome, Safari, Opera, and embedded app-browsers.
Besides, whether or not to support WebAssembly technology
also affects the predictions. To eliminate the prediction error
caused by various browsers and using WebAssembly as much
as possible, we use the first-order polynomial Bu(c) to fit the
DNN layer predictions running on different browsers without
WebAssembly. We also use the quadratic polynomial Bs(c) to
fit the DNN layer predictions that support WebAssembly.

Bi

u(c) = γi ·c+ εi, (2)

Bi

s(c) = γi ·c2 + δi ·c+ εi. (3)

Where c ∈ Cl(x) denotes the prediction result of a given
DNN layer l using Eq. (1), γ and δ are the coefficients
and ε is the constant term. As shown in Fig. 2, we can
provide different prediction models to adapt different browsers
that support or do not support WebAssembly, thus laying an
essential foundation for the partitioning decision in AoDNN.
Also, to learn the coefficients of proposed models, we first
search the optimal order of polynomial of various predictions,
and using ElasticNet [24] to select the best model of the
polynomial model with the lowest cross-validation Mean-
Square-Erro (MSE):

J (θ) =MSE(C, Ĉ; θ)+µ1·
∑n

j=1
‖θj‖+µ2·

∑n

j=1
‖θj‖22 . (4)

Based on the definitions mentioned above, we collect
the actual inference latency and mobile energy of common
DNNs in various devices with different CPU frequencies and
collect latency and mobile energy when executing common
browsers and embedded browsers. Our training data includes
928 convolutional layers, 220 pooling layers, and 156 fully
connected layers collected from common DNN networks such
as AlexNet, VGG16, MobileNet, ShuffleNet, ResNet, etc.
Since the dropout layer is an effective means of preventing
overfitting during the DNN model training phase, it can be
ignored in the inference phase. The configurable parameters
of the convolution, pooling, and fully connected layers take
the input data, output data and other features as the variables.
ReLU and Normalization layers are handled similarly. Before
we generate training and testing data for fitting prediction
models of the DNN layers on different platforms, including
the edge server, various mobile devices, and web browsers,
we introduce tools and methodologies to measure the basic
profiles. First, the total latency can be calculated based on
two timestamps before and after the DNN target execution.

We repeat the same DNN inference multiple times and use
the average latency to reduce random errors. Then, we use a
hardware power monitor of AAA10F [25] to provide a stable
voltage of 3.7V for devices and obtain the system energy cost,
such as the screen brightness cost in the standby state. Last, we
use a command-line tool that allows the user to communicate
with an emulator instance to control the CPU frequency of the
mobile device by Android Debug Bridge (ADB) [26].

C. Dynamic Partitioner

In this section, we explain how to provide dynamic parti-
tioning facing various contexts. Supposing that there is only
one partitioning point, then the DNN model is partitioned into
two parts for executing DNN inference on mobile web and
the edge, respectively. Note that the mobile web is inclined to
execute the front part of the DNN inference because executing
the front part of the DNN means that the mobile web has
transmitted the input to the edge. The optimal solution at this
time is executing the whole inference, which degenerates to
the edge-only approach.

We give basic notations to describe better the DNN parti-
tioning mentioned above as follows. λi, ψi, and wi are the
input data size, output data size, and the weight size of ith

layer, respectively. twi and tei are the ith layer latency on
the mobile web and the edge, respectively. tuk is the kth

layer transmitting latency. ewk is the energy consumption
of kth layer inference. TM and TW are the model loading
latency and inference latency on the mobile web, respectively.
TU and TE denotes the uploading latency and inference
latency on edge, respectively. EM and EW are the mobile
energy of the loading model and inference on the mobile web.
EU is the energy consumption to upload data to the edge.
Besides, dc means the computing capability of the mobile
device. Specially, we use Ti to denote the intermediate result of
partial inference on the edge or the mobile web, r(Ti) and Pi
represent the transmission rate and mobile energy, respectively.
Then, we can formulate the partition-offloading problem as a
multi-objective optimization with two goals, including latency
and mobile energy, which can be defined as

P1 : min F (k) = (Ttotal(k), Emobile(k)),

s.t. Ttotal(k) < Tubound,

Emobile(k) < Eubound,

k ∈ {0, 1, ..., N}.

(5)

Where Ttotal(k) and Emobile(k) denote optimization ob-
jectives of the overall inference latency and mobile energy
consumption. The units of the two objectives are ms and
J , respectively. k ∈ {0, 1, ..., N} guarantees the partitioning
is valid. The two conditions constraint the upper bounds of
inference latency and mobile energy. Ttotal(k) is the overall
processing latency of executing inference between the mobile
web and the edge server, consisting of communication latency
and inference latency. Because the partitioning point leads to
different latencies for the mobile web and the edge server,

2201
Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on September 05,2022 at 09:27:45 UTC from IEEE Xplore. Restrictions apply.

we search the optimal partition k to balance the latency and
mobile energy.

Ttotal(k) = Tinference + Tcommunication

= TWk + TEk + TMk + TUk

=
∑k

i=0
twi +

∑N

i=k+1
tei

+
∑k

i=0
(wi/r(wi) + λi+1/r(λi+1)).

(6)

Similarly, mobile energy consumption mainly consists of
communication and inference. Different partitioning points
may cause various amounts of computation for the mobile
web and the edge server, which means that the mobile web
may consume different mobile energy levels. Besides, the edge
server’s output results are assumed to be of small size, and thus
the feedback latency can be ignored.

Emobile(k) = Einference + Ecommunication

= EWk + EMk + EUk

=
∑k

i=0
ewi + EMi + EUi

(7)

To solve multi-objective optimization in linear complexity,
which is suitable for an efficient scheduler on the mobile web,
such online offloading scheduling problem P1 can use the
linear weighting method to formulate it as

P2 : min Ttotal(k) + η · Emobile(k),

s.t. Ttotal(k) < Tubound,

Emobile(k) < Eubound,

k ∈ {0, 1, ..., N}.

(8)

Since the objective function is the weighted sum of the
execution latency and mobile energy with (in ms·J−1) the
weighting factor η, we set η as the ratio of Tubound to Eubound
to adjust the tradeoff between the latency and mobile energy.
Generally, service providers set the Tubound and Eubound to
control the η for balancing the latency and mobile energy ac-
cording to the application characteristics. We use a traditional
but suitable and effective solution to solve the proposed multi-
objective optimization, which is the weighted sum of latency
and mobile energy for the following reasons: (i) The goal of
establishing such multi-objective optimization is to balance
the execution latency and mobile energy to avoid falling into
the partition with one goal of latency or mobile energy. The
weighted sum of latency and mobile energy can efficiently
solve the problem for AoDNN, and our experimental results
also show the effectiveness. (ii) The more important reason
is that complex and accurate solutions for multi-objective
problems such as genetic algorithms and reinforcement learn-
ing algorithms require much time and resources to search
for the optimal solution. Thus, extra computation latency is
unacceptable when executing complex DNNs. Although such
a traditional solution is simple, it is suitable for web platforms
and can efficiently execute with little latency and energy
consumption than other solutions.

D. Context-Driven Offloading and Runtime Execution

This section describes how AoDNN uses the generated
“auto-offloading.js” to offload the inference between the mo-

bile web and the edge server.
1) Preparing before Offloading: Web browser loads the

service files and auto-offloading file and regularly imports
them, using <src=“auto-offloading.js”> to load the service.
Web browser first establishes the communication pipeline
with the interface of the edge server, thus avoiding the time
waste of establishing communication links when triggering the
offloading. Hence, the offloading prerequisites needed for the
runtime phase is pre-prepared at the initial service loading
before executing the DNN inference.

2) Context Sensing and Runtime Offloading: When the
browser initializes and loads the “auto-offloading.js” file, the
offloading manager first detects the context through the mon-
itoring worker as input to awake the decision worker. The
decision worker obtains the optimal DNN partitioning accord-
ing to the DNN partitioner and determines whether to trigger
offloading. In Fig. 3, once the partition point is at the last
layer, all inferences are performed locally, otherwise triggering
offloading in all other cases. When the offloading is triggered,
offloading manager generates a snapshot and transfers it to
the edge server. The generated task snapshots do not contain
the model data required for DNN inference to reduce network
bandwidth consumption. In addition, when the decision worker
provides a defined offloading scheme, the offloading worker
simultaneously requests from the edge server to download the
DNN model data required for inference. Note that AoDNN
only loads the necessary service files from the web server for
initialization, and the edge server provides the DNN models
with high bandwidth consumption.

Manager
Worker

Monitoring
Worker

Decision
Worker

Generating & Trigger
offloading Worker

Manager
Worker

Recovery
Worker

Inference
Worker

Local execution

Remote execution

_callWorker(“m1”, msg)

_callWorker(“d1”, msg)

_response(msg)

_callWorker(“o1”, msg) _exeWorker(“e1”,msg)
Local inference

_response(“snapshot”, msg)

_handler(“snapshot”, msg)_callWorker(“snapshot”, msg)

_recovery(“snapshot”, msg)

_remoteExecution(“snapshots”, msg)response

DNN parameters
/models

_Recovery()

Initial distributed
inference

Adjusted inference

Web Apps Edge Server

Fig. 3. Seamless execution diagram among various web workers.

Next, we describe how the offloading worker generates a
snapshot that can be quickly recovered in the edge server.
In general, extracting and saving the execution state of the
web task as another application in the form of source code
is known as the snaptshot [27], [28]. It greatly facilitates
us to quickly recover the computational tasks saved by the
snapshot in the edge server. We describe the flow of the
snapshot-based offloading in Fig. 4. Assuming a DNN infer-
ence model V = inf() of the web browser, the decision
worker triggers the offloading, generates a snapshot of the
current application context, and sends it to the edge server.
Then, the edge server resumes and runs the DNN inference
contained in the snapshot, and after executing inf(), it pack-
ages the current computation state, result, and context into a

2202
Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on September 05,2022 at 09:27:45 UTC from IEEE Xplore. Restrictions apply.

new snapshot and sends it to the browser. The web browser
receives the snapshot and resumes to immediately execute
the subsequent DNN inference. When snapshot offloading is
triggered, neither the thread nor the application waits for the
response from the server. When a snapshot is received from
the browser, the service context manageer (SCM) forwards it
to the headless browser without GUI, whose processes such as
UI rendering are streamlined to a pure computational version,
thus effectively enhancing the recovery and operation of the
snapshot task. Note that when the communication pipeline
between the browser and the edge server is abnormal, the
current snapshot is discarded, and the browser needs to re-
initiate a new request.

Web
Browser

Edge
Server

Initialing
an request Waiting for

request

Offloading
Manager

Request

Local
Inference

No
offloading

Triggering
offloading

Generating
Snapshots

Headless Browser
Generating
Snapshot

snapshot_1

snapshot_2

snapshot_n

…

snapshots
(JavaScript)

HTML
Service
Context
Manager
ID:app1

ID:app2

ID:appn

Context Pool
JavaScript
Context #1

JavaScript
Context #2

JavaScript
Context #n

…

Fig. 4. Offloading context management and sychronization.

3) Snapshot Recovery and Remote Execution: We have de-
scribed how the web browser triggers and generates DNN of-
floading snapshots and resumes the snapshots. This subsection
focuses on how the edge server can then synchronize different
offloading snapshots and provide remote real-time execution.
SCM is responsible for performing offloading snapshots from
the web browser and forwarding them to the corresponding
inference worker for execution. Since SCM needs to process
snapshots initiated by different web users and different web
applications, the WebKit engine on the edge server needs to
support the independent operation of snapshots with different
contexts. As shown in Fig. 4, the SCM manages snapshots us-
ing <key:value> pairs. We use different identification numbers
to distinguish the corresponding contexts of the snapshots sent
from the web to the edge server. When an abnormal occurs,
the edge server clears these expired contexts, and the browser
will refresh, load, and hang the offloading services again.

III. EVALUATION

This section introduces the methodology and settings for
evaluation, including benchmarks, datasets, and detailed set-
tings. Second, we focus on the effectiveness of the DNN
profiler and partitioner in AoDNN compared with the bench-
marks. We also compare AoDNN with the common web
offloading methods to illustrate the advantages of AoDNN.
Last, we deeply analyze the parameters involved.

A. Methodology and Settings

1) Benchmarks and Datasets: We compare AoDNN with
representative DNN partition-offloading approaches such as
Neurosurgeon [12], JointDNN [13], and MAUI [29], a control-
centric method makes decisions about regions of code. We use

Neuro-L and Neuro-E to denote optimal objects of the overall
latency and the mobile energy, respectively, in Neurosurgeon.
We also use JointDNN-B to denote the status with limited bat-
tery constraints. The datasets are the CIFAR-10 and ImageNet,
widely used datasets for image recognition.

2) Mobile device and edge server setup: We used a
HUAWEI Mate9 smartphone running the Android system with
the Firefox browser, which is equipped with a CPU of eight
cores (four cores of 2.4 GHz and four cores of 1.8 GHz)
and 4 GB RAM. For the edge server, we used a regular
server running Ubuntu 18.04 LTS. We set Tubound = 2.5
and Eubound = 9 for MobileNet and Tubound = 1.2 and
Eubound = 24 for AlexNet. Eubound can be calculated by
Eubound = C · U · ξ · 3600. C denotes battery capability of
the smartphone. U denotes the voltage. ξ is the percentage of
used battery.

3) Communication setup: We describe the core network
topology with an average downlink bandwidth of 150 Mbps
and an average uplink bandwidth of 40 Mbps. We use Wonder
Shaper [30] to limit the bandwidth of network adapters and
simulate a variety of communication conditions such as 3G,
4G, and WiFi. Communication energy consumption of up-

TABLE I
TRASMISSION POWER MODELING.

– αu(mW/Mbps) αd (mW/Mbps) βp(mW)
3G (1∼3Mbps) 868.98 122.12 817.88
4G (5∼12Mbps) 438.39 51.97 1288.04

WiFi (30∼100Mbps) 283.17 137.01 132.86

loading and downloading depends on the network throughput
(Bu and Bd). As indicated in [31], uplink and downlink
energy consumption can be modeled with a linear equation,
which is relatively accurate with less than 6% error rate. We
show the average download and upload speed of a network of
different network statuses in Table I, including the equation’s
parameters for the network condition.

Pu = αu ·Bu + βp

Pd = αd ·Bd + βp
(9)

B. Effectiveness of DNN Profiler and Partitioner of AoDNN

1) Latency performance: We present the performance of
AoDNN in various network conditions, which fixes the CPU
frequency with four 2.4 GHz cores in Fig. 5. Besides,
Fig. 5(a) and Fig. 5(b) describe the latency performance of
four partition-offloading approaches for executing AlexNet
over CIFAR-10 and ImageNet (the model sizes are 90.9 MB
and 249 MB, respectively). Fig. 5(c) and Fig. 5(d) show the
latency results of four approaches for executing MobileNet
over CIFAR-10 and ImageNet (model sizes are 3.4 MB and
14.3 MB, respectively). In particular, AoDNN improves over-
all latency by 1.8x on average and up to 20.4x on MobileNet.

The main results are: (1) When the network bandwidth
reaches 3 Mbps from 1 Mbps, AoDNN, JointDNN-B, and
Neuro-L will offload part of the DNN computations to the
mobile web, requiring much time to load and execute DNN
layers. However, MAUI provides the fixed partitioning point

2203
Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on September 05,2022 at 09:27:45 UTC from IEEE Xplore. Restrictions apply.

for each network and dataset because its offloading decision is
the code (functions). Thus, MAUI still loads large models at

1 2 3 5 10 30 50 80 100 150
0.00

0.25

0.50

4
8

12
100
200

1 2 3 5 10 30 50 80 100 150
0.0
0.5
1.0

10
20
30

150
225

1 2 3 5 10 30 50 80 100 150
0.0
0.4
0.8
1.2
1.6

5
10
15

100
200

1 2 3 5 10 30 50 80 100 150
0

1

2

10
20
30

80
120

La
te
nc
y(
s)

(a) AlexNet-CIFAR-10

fc3

conv1

input

 AoDNN
 Neuro-L
 Neuro-E
 JointDNN-B
 MAUI

conv5

Network bandwidth (Mbps)

 AoDNN
 Neuro-L
 Neuro-E
 JointDNN-B
 MAUI

(b) AlexNet-ImageNet
La
te
nc
y(
s)

Network bandwidth (Mbps)

conv1

input

conv5

fc3

 AoDNN
 Neuro-L
 Neuro-E
 JointDNN-B
 MAUI

(c) MobileNet-CIFAR-10

La
te
nc
y(
s)

conv2
input

bottleneck17

Network bandwidth (Mbps)

bottleneck9
conv2

 AoDNN
 Neuro-L
 Neuro-E
 JointDNN-B
 MAUI

(d) MobileNet-ImageNet

La
te
nc
y(
s)

bottleneck6

bottleneck17

input
conv1

conv2

Network bandwidth (Mbps)

Fig. 5. Latency performance when controlling the network bandwidth.

low network speed. As network bandwidth increases, MAUI
has lower latency than Neuro-L except on MobileNet of
CIFAR-10. MAUI is inclined to offload more computation
to the edge server, which means smaller loading latency. (2)
Neuro-L’s latency dramatically rises when the partitioning
point changes from the input to the middle layer. Neuro-L
has no partition at low speed and can be viewed as the edge-
only approach. As network bandwidth increases, Neuro-L’s
partitioning point is changed to the fully connected layer of
AlexNet and conv2 layer of MobileNet, resulting in large
model loading latency. (3) When faced with a large DNN
models or weak network speed, we find that AoDNN can
avoid large model loading latency by changing to the edge-
only scheme.

1.4 2.8 4.2 5.6 7 8.4 9.8 11.2
0.0
0.1
0.2
0.3
0.4

0.75

1.50

2.25

1.4 2.8 4.2 5.6 7 8.4 9.8 11.2

1.2

1.5

1.8

2.1

2.4 AoDNN
 Neuro-L
 Neuro-E
 JointDNN-B
 MAUI

conv2

La
te

nc
y

(s
)

bottleneck9

La
te

nc
y

(s
)

conv2

bottleneck17

(a) MobileNet-CIFAR-10
CPU (Frequency) CPU (Frequency)

(b) MobileNet-ImageNet

 AoDNN
 Neuro-L
 Neuro-E
 JointDNN-B
 MAUI

bottleneck9 conv2

conv2

bottleneck17

Fig. 6. Latency performance when controlling the computing capability.

We present the layer performance of AoDNN and other of-
floading approaches of the mobile device’s various computing
capabilities in Fig. 6. AoDNN can adjust the partitioning point
and reduce the inference latency by perceiving the mobile
device’s computing capability. For example, AoDNN’s latency
is significantly lower than JointDNN-B and Neuro-L when
accumulating CPU frequency is lower than 5.6 GHz. Neuro-
L’s partitioning point is at conv2 without adjustment, which
means that the overall latency is not apparent, and the curve
is flatter than others. When accumulating CPU frequency

increases to 5.6 GHz, AoDNN’s latency tends to be stable.
This is mainly influenced by the mobile device’s multicore
computing architecture and other indicators, which cannot
provide linear growth.

Fig. 7. Energy improvements of AoDNN in various network conditions.

2) Mobile energy improvements: Fig. 7 shows the mobile
energy consumption achieved by AoDNN in various network
conditions, normalized to the status quo approach, which fixes
the mobile device of CPU with four 2.4 GHz cores. AoDNN
can reduce mobile energy consumption by 22.5% on average
and up to 32.9% on MobileNet. (1) For AlexNet on CIFAR-
10 and ImageNet, it can be seen that AoDNN reduces mobile
energy consumption by 98% and 99% on average and up to
99.2%. This happens because AoDNN considers large amounts
of model loading latency and provides the partition decision
at the input layer to avoid large energy consumption on data
transmission. Thus, AoDNN can be viewed as the edge-only
approach with lower mobile energy consumption on trans-
mitting image tasks rather than loading partial DNN model
and inference locally. However, the status quo approaches
calculate the mobile energy of transmitting intermediate results
while ignoring loading model latency. (2) For MobileNet on
CIFAR-10 and ImageNet, AoDNN reduces mobile energy
consumption by 22.5% and 49.1% on average and up to 32.9%
and 69.5%. The model size of MobileNet on CIFAR-10 is 3.4
MB, which is suitable for the mobile web. With the increase
of network bandwidth, AoDNN provides dynamic partition
while Neuro-E continuously partitions MobileNet at the layer
of bottleneck9 and bottleneck6, respectively. For example,
when the network bandwidth is 35 Mbps, AoDNN partitions
MobileNet at the layer of bottlenect14 with the loading model
size of 1.8 MB, which acquires energy improvement of
29.2%. Besides, with the increase of network bandwidth to
35 Mbps, AoDNN changes partitioning points at the layer of
conv2, which consumes similar mobile energy to Neuro-E. In
conclusion, AoDNN’s partition is more flexible to dynamic
network bandwidth, DNN model, and different datasets.

Fig. 8 shows that AoDNN reduces mobile energy consump-
tion up to 38.8% and 25.7% for CIFAR-10 and ImageNet, as
the CPU frequency of the mobile device increases. However,
Neuro-E partitions MobileNet at the constant layer of fc1,
which ignores the variations of mobile devices. For example,
when we compare the mobile energy consumption between
1.4 GHz mobile device and 2.8 GHz mobile device, their
mobile energy consumption differs at the same partitioning
point. AoDNN adapts its partitioning point by perceiving
the mobile device’s computing capability and estimating the

2204
Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on September 05,2022 at 09:27:45 UTC from IEEE Xplore. Restrictions apply.

Fig. 8. Energy consumption with various compuitng capabilities.

inference latency and mobile energy. For example, when the
CPU frequency of the mobile device is 1.4 GHz, which means
weak computing capability, AoDNN offloads a small portion
of computations to the mobile web browser and avoids the
loading latency and mobile energy of the partial MobileNet
model. When the CPU frequency increases to 5.6 GHz,
AoDNN adjusts the partitioning point to fc1 layer, which
increases the amount of computation on the mobile web.

1

1.3

1.7

2.3

0.9 0.8 0.9 1
1.3

1.6

2.4

0.7 0.8 0.9

0.0x

0.5x

1.0x

1.5x

2.0x

2.5x

 Neuro-L AoDNN-1Mbps
 AoDNN-12Mbps AoDNN-35Mbps
 JointDNN-B Neuro-E MAUI

(b) CPU frequency(a) Network Bandwidth

N
or

m
al

iz
ed

 th
ro

ug
hp

ut

0.0x

0.5x

1.0x

1.5x

2.0x

2.5x

3.0x

 Neuro-L AoDNN-1.4GHz
 AoDNN-2.8GHz AoDNN-5.6GHz
 JointDNN-B Neuro-E MAUI

N
or

m
al

iz
ed

 th
ro

ug
hp

ut

Fig. 9. The edge server improvement of AoDNN in various contexts.

3) Throughput improvements: We evaluate AoDNN’s
throughput of the edge server normalized to the status quo
approach using BigHouse [32] in Fig. 9. AoDNN can improve
the throughput of the edge server by 1.2x on average and up to
2.4x. When the mobile users are connected to the edge server
with a network bandwidth of 35 Mbps, AoDNN achieves 2.3x
throughput improvement. As wireless connection changes to
12 Mbps and 1 Mbps, the throughput improvements become
more significant 1.3x for 1 Mbps and 1.7x for 12 Mbps.
AoDNN adapts its partition decision and pushes large portions
of the MobileNet computation to the mobile web browser
as the wireless connection quality becomes ideal. Also, we
present the AoDNN’s throughput improvement as the increase
of CPU frequency of the mobile device in Fig. 9(b).

C. Comparison with Common Web Offloading

To verify the advantages of AoDNN over the existing web
offloading approach for DNN inference tasks, we compare
the response time of AoDNN by executing the MobileNet-
ImageNet model with the advanced web offloading approach
proposed for standard JavaScript tasks, including WWOF [8]
and i-Jacob [11]. Besides, we also analyze AoDNN against a
snapshot-based approach for web machine learning tasks [28].

3G 4G WiFi
0

1

2

3

4

5

R
es

po
ns

e
Ti

m
e

(s
)

 AoDNN WWOF
 i-Jacob Snapshot-based

(a) Various network bandwidths

1.4 GHz 2.8 GHz 5.6 GHz
0

1

2

3

4

R
es

po
ns

e
Ti

m
e

(s
)

 AoDNN WWOF
 i-Jacob Snapshot-based

(b) Various CPU frequencies

Fig. 10. Comparisons with common web offloading approaches.

The results in Fig. 10 show that: (i) AoDNN has a significant
advantage over the other two common web offloading methods
for DNN inference tasks. The snapshot-based approach also
exhibits a lower response time than WWOF and i-Jacob when
the network bandwidth is weak. This indicates that the con-
ventional offloading mechanism is an inherent disadvantage
for such a special computational task. (ii) We see that when
the network bandwidth switches to WiFi, AoDNN shows a
higher response time than the snapshot-based method because
it offloads all of DNN inference to the edge server regardless
of the network status. However, AoDNN offloads the part of
DNN inference to the edge server according to the dynamic
decision, and the inference worker mainly causes the increase
in response time on the web performing partial inference. (iii)
AoDNN outperforms all other methods in the high computing
capability when in a fixed WiFi network. It still performs
better than WWOF and i-Jacob in a low computing capability,
similar to snapshot-based methods and analyzed above. In
summary, we conclude that DNN inference is a special class of
computational tasks for which the conventional web offloading
method is not applicable.

D. Analysis of AoDNN

1) Analysis of Eq. (5): Latency and energy costs are the
most critical indicators for executing optimal DNN compu-
tation between the mobile web and edge server. However,
DNN computation consists of DNN inference, communication,
memory access, and other system costs. We present the latency
components executing AlexNet and MobileNet on CIFAR-10
between the mobile web and the edge server and show the
energy cost components of the same DNN execution of the
mobile device in Fig. 11. We observe that data communica-
tion and DNN inference occupy almost latency and energy
consumption for a DNN task. Simultaneously, memory access
and other system cost only occupy a small portion, which
has little impact on the partition decision. Besides, to the best
of our knowledge, most of the existing offloading approaches,
including DNN and non-DNN task offloading, mainly consider
the latency and energy cost in terms of data communication
and task computation, such as [12], [29], and [13]. Thus, it is
reasonable to consider communication and DNN inference as
the dominant indicators in AoDNN.

2) Analysis η of Eq. (8): To show the impacts of the
parameter η, we conduct experiments of MobileNet on CIFAR-
10 to illustrate the effects of η in Fig. 12, which presents

2205
Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on September 05,2022 at 09:27:45 UTC from IEEE Xplore. Restrictions apply.

AlexNet MobileNet

Mobile-only

2%3%4%3%2%

Partition-offloading Edge-only
Pe

rc
en

ta
ge

 o
f l

at
en

cy

2%

AlexNet MobileNet

Pe
rc

en
ta

ge
 o

f l
at

en
cy

AlexNet MobileNet

Pe
rc

en
ta

ge
 o

f l
at

en
cy

 Communication DNN inference System costs

AlexNet MobileNet

(b) Mobile energy components

Mobile-only

Pe
rc

en
ta

ge
 o

f m
ob

ile
 e

ne
rg

y

Edge-only Partition-offloading

1.5% 2%

(a) Latency components

AlexNet MobileNetPe
rc

en
ta

ge
 o

f m
ob

ile
 e

ne
rg

y
 Communication DNN inference System costs

1% 1% 1%

AlexNet MobileNetPe
rc

en
ta

ge
 o

f m
ob

ile
 e

ne
rg

y

1%

Fig. 11. Componets analysis of latency and mobile energy.

dynamic partition layers of AoDNN with different η. The
results show that AoDNN’s partition can balance the goal of
latency and energy consumption when η ranges from 0.3 to
0.7. Besides, when η changes too little or too large, AoDNN
degenerates into a single-objective partition that only considers
the latency or energy consumption (similar to Neurosurgeon).
In this work, we set the η for AlexNet on CIFAR-10 and
ImageNet as 0.24 and 0.37. As for MobileNet, we set the η
as 0.45 and 0.53 for CIFAR-10 and ImageNet.

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
1.0

1.1

1.2

1.3

1.4

1.5

conv2

bottleneck13

Latency
Energy

η (ms⋅J-1)

La
te
nc
y
(m
s)

bottleneck9

10

11

12

13

En
er
gy
(J
)

Fig. 12. Impacts of η on AoDNN’s partition.

IV. RELATED WORK

General offloading approaches. Existing frameworks
make predictions about when and where to offload com-
putation, and the correctness of the prediction dictates the
final performance improvements for the mobile application.
COMET [33] mainly aims to optimize the execution time
by offloading a pre-defined thread and ignores the amount of
data to transmit, network conditions, and others. Odessa [34]
lacks consideration of the entire application during partition
decisions and only considers the execution time and partial
functions. CloneCloud [35] presents a flexible architecture
for the seamless use of computation to augment mobile
applications. It partitions applications automatically based on a
combination of static analysis and dynamic profiling. MAUI’s

[29] offloading mechanism is better in that it makes predictions
for each function invocation separately. It considers the entire
application when choosing which code or function to offload.
The most related offloading approach is common web offload-
ing, such as WWOF [8], PIOS [9], and i-Jacob [11]. However,
most of them aim at common JavaScript computations rather
the DNN inference.
DNN inference on the web platform. We introduce some
inference libraries for the web platform. JavaScript and We-
bAssembly are the dominant methods to execute deep learning
inference on the mobile web browser. Typically, CaffeJS [36],
Keras.js [37], TensorFlow.js [38], WebDNN [39] and ONNX.js
[40] aim at executing DNNs on the same platform, rather
than for distributed platforms. The most relevant techniques
to this paper are aiming to offload computations of DNNs
from the backend server to the end device [21]. Neurosur-
geon [12] automatically chooses the partitioning point by
pursuing the optimal latency or energy consumption to offload
DNN computation. Edgent [16] searches the adaptive partition
of DNN computation based on the Neurosurgeon, which
aims to accelerate DNN inference through an early exit at a
proper intermediate DNN layer. They also ignore the real-time
loading of the partitioned model and lack the adaptive ability
to face dynamic contexts, especially the computing capabil-
ity of devices. Besides, they only consider single-objective
optimization (either latency or energy consumption) in the
partition phase [13]. Our work not only provides context-
aware partition but also implements a distributed framework
to execute DNN between the mobile web and the server.

V. DISCUSSION AND CONCLUSIONS

We discuss the contributions and the practicality of AoDNN
for the mobile web. First, AoDNN implements an auto-
offloading framework to migrate DNN inference from the
mobile web to the edge server smoothly, which lays a good
foundation for ubiquitous web applications to broaden the
mobile web’s capabilities, relieve the computing pressure, and
improve the throughput of the edge server. Second, in this
work, we mainly implement AoDNN on image classification
as examples. Since the core contribution of AoDNN is to pro-
vide an adaptive DNN execution scheme between the mobile
web and the edge server for ubiquitous web applications, it can
be applied to other deep learning fields with similar models.

We conclude that this work proposes a seamless and auto-
offloading approach to execute elastic DNN inference between
the mobile web and the edge server. We analyze the con-
textual factors on different datasets and networks and define
three critical contexts: the network condition and the mobile
device’s computing capability. Next, we explore the JavaScript
computation offloading framework by proposing a snapshot-
based framework. We propose an adaptive execution scheme
of distributed neural networks for mobile web applications to
adapt dynamic contexts. The experimental results demonstrate
that AoDNN improves latency and mobile energy performance
and is more suitable for web applications.

2206
Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on September 05,2022 at 09:27:45 UTC from IEEE Xplore. Restrictions apply.

REFERENCES

[1] Y. Ma, D. Xiang, S. Zheng, D. Tian, and X. Liu, “Moving deep learning
into web browser: How far can we go?” in The World Wide Web
Conference (WWW), 2019, pp. 1234–1244.

[2] X. Qiao, P. Ren, S. Dustdar, L. Liu, H. Ma, and J. Chen, “Web AR:
A promising future for mobile augmented reality—State of the art,
challenges, and insights,” Proceedings of the IEEE, vol. 107, no. 4,
pp. 651–666, 2019.

[3] “Web of Things (WoT),” 2021, [Online]. Available: https://www.w3.org
/WoT/.

[4] X. S. Wang, A. Balasubramanian, A. Krishnamurthy, and D. Wetherall,
“Demystifying page load performance with WProf,” in the USENIX
Symposium on Networked Systems Design and Implementation (NSDI),
2013, pp. 473–485.

[5] X. S. Wang, H. Shen, and D. Wetherall, “Accelerating the mobile
web with selective offloading,” in Proceedings of the second ACM
SIGCOMM workshop on Mobile cloud computing, 2013, pp. 45–50.

[6] A. Gallidabino and C. Pautasso, “Decentralized computation offloading
on the edge with liquid webworkers,” in International Conference on
Web Engineering (ICWE). Springer, 2018, pp. 145–161.

[7] H.-J. Jeong, C. H. Shin, K. Y. Shin, H.-J. Lee, and S.-M. Moon,
“Seamless offloading of web app computations from mobile device to
edge clouds via html5 web worker migration,” in Proceedings of the
ACM Symposium on Cloud Computing (SOCC), 2019, pp. 38–49.

[8] X. Gong, W. Liu, J. Zhang, H. Xu, W. Zhao, and C. Liu, “Wwof: an en-
ergy efficient offloading framework for mobile webpage,” in Proceedings
of the 13th International Conference on Mobile and Ubiquitous Systems:
Computing, Networking and Services, 2016, pp. 160–169.

[9] S. Park, Q. Chen, and H. Y. Yeom, “PIOS: A platform-independent
offloading system for a mobile web environment,” in 2013 IEEE
10th Consumer Communications and Networking Conference (CCNC).
IEEE, 2013, pp. 137–142.

[10] M. Yu, G. Huang, X. Wang, Y. Zhang, and X. Chen, “Javascript
offloading for web applications in mobile-cloud computing,” in 2015
IEEE International Conference on Mobile Services. IEEE, 2015, pp.
269–276.

[11] X. Liu, M. Yu, Y. Ma, G. Huang, H. Mei, and Y. Liu, “i-Jacob: An
internetware-oriented approach to optimizing computation-intensive mo-
bile web browsing,” ACM Transactions on Internet Technology (TOIT),
vol. 18, no. 2, pp. 1–23, 2018.

[12] Y. Kang, J. Hauswald, C. Gao, A. Rovinski, T. Mudge, J. Mars, and
L. Tang, “Neurosurgeon: Collaborative intelligence between the cloud
and mobile edge,” ACM SIGARCH Computer Architecture News, vol. 45,
no. 1, pp. 615–629, 2017.

[13] A. E. Eshratifar, M. S. Abrishami, and M. Pedram, “JointDNN:An
efficient training and inference engine for intelligent mobile cloud
computing services,” IEEE Transactions on Mobile Computing, early
access, Oct. 16,2019, doi: 10.1109/TMC.2019.2947893.

[14] S. Zhang, Y. Li, X. Liu, S. Guo, W. Wang, J. Wang, B. Ding, and D. Wu,
“Towards real-time cooperative deep inference over the cloud and edge
end devices,” Proceedings of the ACM on Interactive, Mobile, Wearable
and Ubiquitous Technologies (UbiComp), vol. 4, no. 2, pp. 1–24, 2020.

[15] S. Laskaridis, S. I. Venieris, M. Almeida, I. Leontiadis, and N. D.
Lane, “SPINN: synergistic progressive inference of neural networks over
device and cloud,” in Proceedings of the 26th Annual International
Conference on Mobile Computing and Networking (MobiCom), 2020,
pp. 1–15.

[16] E. Li, Z. Zhou, and X. Chen, “Edge intelligence: On-demand deep
learning model co-inference with device-edge synergy,” in Proceedings
of the 2018 Workshop on Mobile Edge Communications. ACM, 2018,
pp. 31–36.

[17] Y. Huang, X. Qiao, P. Ren, L. Liu, C. Pu, and J. Chen, “A lightweight
collaborative recognition system with binary convolutional neural net-
work for mobile web augmented reality,” in IEEE 39th International
Conference on Distributed Computing Systems (ICDCS). IEEE, 2019,
pp. 1497–1506.

[18] Y. Huang, X. Qiao, J. Tang, P. Ren, L. Liu, C. Pu, and J. Chen,
“DeepAdapter: A collaborative deep learning framework for the mobile
web using context-aware network pruning,” in IEEE Conference on
Computer Communications (INFOCOM). IEEE, 2020, pp. 834–843.

[19] Y. Huang, X. Qiao, P. Ren, L. Liu, C. Pu, S. Dustdar, and J. Chen,
“A lightweight collaborative deep neural network for the mobile web

in edge cloud,” IEEE Transactions on Mobile Computing, early access,
Dec. 2020, doi: 10.1109/TMC.2020.3043051.

[20] Y. Huang, X. Qiao, J. Tang, P. Ren, L. Liu, C. Pu, and J.-L. Chen, “An
integrated cloud-edge-device adaptive deep learning service for cross-
platform web,” IEEE Transactions on Mobile Computing, early access,
Oct. 2021, doi: 10.1109/TMC.2021.3122279.

[21] P. Ren, X. Qiao, Y. Huang, L. Liu, S. Dustdar, and J. Chen, “Edge-
assisted distributed dnn collaborative computing approach for mobile
web augmented reality in 5g networks,” IEEE Network, vol. 34, no. 2,
pp. 254–261, 2020.

[22] “Using AWS Lambda with CloudFront Lambda@Edge.” 2021, [On-
line]. Available: https://docs.aws.amazon.com/lambda/latest/dg/lambda-
edge.html.

[23] C. F. Rodrigues, G. Riley, and M. Luján, “Energy predictive models
for convolutional neural networks on mobile platforms,” arXiv preprint
arXiv:2004.05137, 2020.

[24] R. Durbin, R. Szeliski, and A. Yuille, “An analysis of the elastic net
approach to the traveling salesman problem,” Neural computation, vol. 1,
no. 3, pp. 348–358, 1989.

[25] “Monsoon solutions,” 2021, [Online]. Available: https://www.msoon.
com.

[26] “Android debug bridge,” 2021, [Online]. Available: https://developer.
android.com/studio/command-line/adb.

[27] H.-J. Jeong and S.-M. Moon, “Offloading of web application compu-
tations: A snapshot-based approach,” in International Conference on
Embedded and Ubiquitous Computing. IEEE, 2015, pp. 90–97.

[28] I. Jeong, H.-J. Jeong, and S.-M. Moon, “Work-in-progress: snapshot-
based offloading for machine learning web app,” in 2017 International
Conference on Embedded Software (EMSOFT). IEEE, 2017, pp. 1–2.

[29] E. Cuervo, A. Balasubramanian, D.-k. Cho, A. Wolman, S. Saroiu,
R. Chandra, and P. Bahl, “MAUI: making smartphones last longer with
code offload,” in Proceedings of the 8th international conference on
Mobile systems, applications, and services. ACM, 2010, pp. 49–62.

[30] “Wonder shaper,” 2021, [Online]. Available: https://github.com/magn
ific0/wondershaper.

[31] J. Huang, F. Qian, A. Gerber, Z. M. Mao, S. Sen, and O. Spatscheck,
“A close examination of performance and power characteristics of 4g
lte networks,” in Proceedings of the 10th international conference on
Mobile systems, applications, and services. ACM, 2012, pp. 225–238.

[32] D. Meisner, J. Wu, and T. F. Wenisch, “Bighouse: A simulation infras-
tructure for data center systems,” in IEEE International Symposium on
Performance Analysis of Systems & Software. IEEE, 2012, pp. 35–45.

[33] M. S. Gordon, D. A. Jamshidi, S. Mahlke, Z. M. Mao, and X. Chen,
“COMET: Code offload by migrating execution transparently,” in Sym-
posium on Operating Systems Design and Implementation (OSDI), 2012,
pp. 93–106.

[34] M.-R. Ra, A. Sheth, L. Mummert, P. Pillai, D. Wetherall, and R. Govin-
dan, “Odessa: enabling interactive perception applications on mobile
devices,” in Proceedings of the 9th international conference on Mobile
systems, applications, and services. ACM, 2011, pp. 43–56.

[35] B.-G. Chun, S. Ihm, P. Maniatis, M. Naik, and A. Patti, “Clonecloud:
elastic execution between mobile device and cloud,” in the sixth confer-
ence on Computer systems. ACM, 2011, pp. 301–314.

[36] “CaffeJS,” 2021, [Online]. Available: https://github.com/chaosmail/ca
ffejs.

[37] L. Chen, “Keras.js,” 2021, [Online]. Available: https://github.com/tr
anscranial/keras-js.

[38] D. Smilkov, N. Thorat, Y. Assogba, A. Yuan, N. Kreeger, P. Yu,
K. Zhang, S. Cai, E. Nielsen, D. Soergel et al., “Tensorflow. js: Machine
learning for the web and beyond,” arXiv preprint arXiv:1901.05350,
2019.

[39] M. Hidaka, Y. Kikura, Y. Ushiku, and T. Harada, “WebDNN: Fastest
DNN Execution Framework on Web Browser,” in the ACM on Multi-
media Conference (MM). ACM, 2017, pp. 1213–1216.

[40] “ONNX.js,” 2018, [Online]. Available: https://github.com/Microsoft/on
nxjs.

2207
Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on September 05,2022 at 09:27:45 UTC from IEEE Xplore. Restrictions apply.

