
Sensyml: Simulation Environment for large-scale
IoT Applications

Isakovic Haris∗, Vanja Bisanovic†, Bernhard Wally∗, Thomas Rausch∗, Denise Ratasich∗,
Schahram Dustdar∗, Gerti Kappel∗, Radu Grosu∗

TU Wien, Vienna, Austria
∗ name.surname@tuwien.ac.at

† name.surname@student.tuwien.ac.at

Abstract—IoT systems are becoming an increasingly important
component of the civil and industrial infrastructure. With the
growth of these IoT ecosystems, their complexity is also growing
exponentially. In this paper we explore the problem of testing
and evaluating large scale IoT systems at design time. To this end
we employ simulated sensors with the physical and geographical
characteristics of real sensors. Moreover, we propose Sensyml,
a simulation environment that is capable of generating big data
from cyber-physical models and real-world data. To the best of
our knowledge it is the first approach to use a hybrid integration
of real and simulated sensor data, that is also capable of being
integrated into existing IoT systems. Sensyml is a cloud based
Infrastructure-as-a-Service (IaaS) system that enables users to
test both functionality and scalability of their IoT applications.

Index Terms—IoT, scalability, System-of-Systems, simulation,
sensors

I. INTRODUCTION

The Internet-of-things (IoT) is a multidisciplinary ecosys-
tem under constant development and expansion. The concept
emerged from a simple idea, namely to connect household
devices or “things” with users or other things over the internet.
For example a sensor in an electrical outlet is measuring elec-
trical current and provides a user with information whether
an appliance connected to this outlet is active or not and
what is the energy consumption of this appliance. However,
IoT systems are evolving from application oriented “ad-hoc”
systems like this, towards hierarchically structured and highly
integrated large-scale systems. It is projected that the number
of IoT devices will reach 100 billion units until 2030 [1]. The
increased number of IoT devices is proportional to the growth
of data produced and stored annually. A report published
in 2018 projected the growth of the global datasphere to
astonishing 175 ZB in 2025 [2].

An IoT system consists of three major components: the
swarm, the fog and the cloud. The swarm is akin to our skin
and muscle cells. It consists of millions of sensors and actu-
ators that are used to interact with the things. The fog is akin
to our backbone. It is network of relatively simple computers,
close to the swarm, and used for routing and real time control.
Finally, the cloud is akin to our brain. It is a large computer
farm used for data storage, planning and machine learning. The

Parts of this work have been supported by funding from the Austrian Gov-
ernment through the Federal Ministry Of Education, Science And Research
(BMWFW) in the program Hochschulraum-Strukturmittel 2016 (HRSM).

IoT hosts multiple applications that are designed and operated
by different organizations. The applications have to operate
in parallel and share existing infrastructure. Services created
by each application must be communal within a system, to
avoid unnecessary redundancy and reduce resource overheads.
A Cyber-physical system combines digital representation of
a system and physical description to observe behavior of
the system [3]. A combination of CPS and IoT systems can
be classified as System-of-System(SoS) [4]. As such system
is able to adapt to emerging conditions, and learn about
the physical system and its behavior. In general, it is quite
difficult to predict in advance data throughput and the ade-
quate dimension the IoT infrastructure precisely, and therefore
simulation is a convenient way of exploring such properties.
In this paper we are proposing a simulation environment
called Sensyml that is capable of simulating large scale data
during application development. Sensyml is capable of hosting
multiple types of sensors with physical and geographical
characteristics similar to real sensors, where sensors can be
derived from mathematical models or extracted from existing
online services. Moreover, Sensyml allows us to explore the
capability of the IoT to satisfy its given specification under
emerging conditions (e.g., power limitations, data growth). The
simulation environment can be integrated in existing hardware
infrastructure to test basic functions of the IoT and how the
IoT scales up.

The rest of the paper is organized as follows. Section II
provides the technical and theoretical background. Section III
describes state-of-the-art. Implementation details for Sensyml
are described in Section IV. Section V evaluates Sensyml and
reflects on its application of the in real-world use cases. Finally
in last two sections we discuss future work and provide final
remarks.

II. BACKGROUND

A. CPS/IoT Ecosystem Infrastructure

The project CPS/IoT Ecosystem [5] [6] explores synergies
between cyber-physical systems (CPS) and IoT as a corner-
stone infrastructure for development of smart services and
applications. The IoT is evolving from singular application
oriented systems towards heterogeneous clusters of applica-
tions sharing underlying hardware and/or software.

978-1-7281-4878-6/19/$31.00 ©2019 IEEE 3024

a) IoT as an Infrastructure: A generalized definition of
an infrastructure states: “An infrastructure is the basic physical
and organizational structures and facilities (e.g. buildings,
roads, power supplies) needed for the operation of a society
or enterprise [7]”. Therefore, a system that supports structures
of higher level of operation or functionality is part of an
infrastructure. The project CPS/IoT Ecosystem organizes IoT
in three scopes of operation: cloud, fog, and sensor/actuator.
Each scope is represented by its functionality spectrum and its
ability to perform certain tasks.

b) Cloud: Cloud systems are built on high-performance
computation devices capable of handling large amounts of
data (alias Big Data). They are commonly located of-site in
large data centers and reachable exclusively through Internet.
Sensors/actuators are low performance devices that interact
with the physical environment.

c) Sensor/Actuator: A sensor measures a certain physical
property and this data can be used to provide novel aspects
for aware applications, to optimize a process or improve
user experience. In Section I we described how an electrical
current sensor is increasing the functional spectrum of a simple
electrical outlet.

d) Fog: The effort of communicating data between these
two layers is often underestimated. The communication and
computational devices between the sensors and the cloud we
refer as Fog. They allow mid-range performance and wide
spectrum of communication standards. Fog devices provide
the ability to handle, aggregate, and filter data relatively close
to the source and with relatively small latency.

B. Everything-as-a-Service (XaaS)

A model where assets like infrastructure, hardware, soft-
ware, intellectual property, testing or security are offered as a
service is referred to as “as-a-Service” model [8]. Everything-
as-a-Service (XaaS) is a term that comprises all the different
models that use the “aaS” concept. Infrastructure-as-a-Service
(IaaS) is a concept introduced in cloud computing where
users can lease computing resources over a specific time and
cost model [9]. In CPS/IoT Ecosystem we are translating
this model further to fog and sensor layers, building a het-
erogeneous platform where individual software and hardware
components can be used as services. To estimate the growth
factor of an application and ensure its scalability the CPS/IoT
Ecosystem platform provides Testing-as-a-Service (TaaS) that
includes simulation, evaluation and experimentation.

C. Scalability

Scalability was always a vague term because it is highly
dependent on the domain and application where it is applied.
The notion of scalable systems originated with hardware
architectures and denoted ability of the system to maintain
work efficiency for arbitrary number of processors and a
variable algorithm size [10]. A scalable system is able to ac-
commodate increasing number of objects and elements, while
maintaining a graceful functionality, and being responsive to
changes in size [11]. The scalability is commonly associated

with performance properties, however scalability observed in
other properties especially in distributed and software systems
[12]. In this section we will to explore important aspects of
scalability in respect to IoT as an infrastructure as defined in
project CPS/IoT Ecosystem [13] [6].

According to Bondi in [11] scalability can be classified
in four groups: load scalability, space scalability, space-time
scalability and structural scalability. In distributed system
scalability can be manifested in distance or speed in relation to
distance. Load scalability represents the ability of the system
to continue to function with moderate and tolerable decline
in performance under increased workload. The system should
behave in a similar way under low, moderate and high work
load. Space scalability is related to memory consumption of a
system. If the number of tasks increases memory consumption
should remain within reasonable limits. Space-time scalability
refers to the ability of a system to function seamlessly or
with reasonable decline in performance even if the number of
tasks increases by an order of magnitude. Structural scalability
states that an implementation of a system and standards and
regulation allow the system to expand, increasing the number
tasks it can perform or number of objects it can serve, without
additional changes to the implementation or standards. This
can hold either indefinitely or for a specific time frame.
Systems could be allowed to scale in one aspect but they
could be limited in other, giving the system ability to grow
only within certain period of operation.

D. Modeling and Simulation

Having formal models of CPS/IoT systems at hand opens
up powerful capabilities with respect to planning, simulation,
programming, deployment and maintenance [14]. CPS/IoT
systems cover an extremely wide range of environments that
need to be considered in order to gain meaningful insights into
their workings, including views on, e.g., embedded systems,
network topologies and information flow.

An important aspect of well-defined models is that they
can be used for the creation of executable artifacts (code
generation) [15]. Depending on the level of detail provided
in the models and depending on the context of the code gen-
eration, one can imagine different kinds of generated artifacts,
including high-level configuration information or compilable
ANSI C code [16]. In the context of CPSs, it might be
tempting to generate embedded code based on the hardware
configuration of the embedded system (e.g., changing the
port assignment of a sensor would be reflected in the code
generation by injecting the correct pin number into the code).
In the context of IoT, a change in the network topology could
lead to changes in the code of embedded systems with respect
to the internet protocol (IP) addresses or hosts an embedded
system would connect to, or the software communication
protocol or payload format could be switched from one to
another and thus the respective parts of the code could be
“bulk”-replaced.

When it is possible to generate code fragments or even
complete systems from formal models, this code generation

3025

can be triggered by higher-order code generation frameworks
and produce multiple variants of code with distinct variations.
Thus, it enables the creation of numerous “cyber” entities,
which leads to the ability to simulate the behavior of a CPS
system without the need to physically prepare and deploy em-
bedded systems. These simulation entities could be generated
with behavior that follows a certain function and/or they could
employ some random behavior, depending on the configuration
of the higher-order code generation framework.

The application of model-driven engineering techniques
to the field of CPS/IoT application development has been
investigated, e.g., in [17]. While this study did not explicitly
consider “simulation” as a target application, it shows that the
main focus of models in the IoT domain was on creating se-
mantic or meta models with the aim of describing deployment
issues, service composition, devices themselves, and required
middleware. We believe, that with these pieces of information,
it is feasible to generate executable code fragments that can
be used for simulation efforts.

To reasonably evaluate the scalabiliy of a CPS/IoT infras-
tructure or application it is required to be able to set the load
on processing units, communication channels, storage devices,
power supplies to reasonable limits and observe the behavior
of the system under these conditions. Leveraging models can
lead to the generation of many CPS/IoT entities in a plethora
of configurations and deployed on various computing nodes.

E. Quality of Service in IoT

Many modern IoT scenarios have stringent quality of service
(QoS) requirements that cannot be met by cloud-based solu-
tions alone. In particular in latency-sensitive IoT scenarios,
message routing to the cloud incurs round-trip times that can
be detrimental to the application. Low-latency communication
and data processing near the edge is therefore a critical
requirement for satisfying these QoS requirements [18].A
fundamental issue that confronts Fog computing systems in
IoT scenarios is proximity detection between sensors, actu-
ators, and edge resources; and a key enabler for proximity
detection is network QoS monitoring. Furthermore, to enact
service level agreements (SLAs) for IoT scenarios, a system
requires detailed and timely information about network QoS.
Research has shown that straight-forward solutions to network
QoS monitoring do not scale well with increasing number of
network nodes [19], and that established approaches in cloud-
computing, e.g., proximity detection in CDNs, have serious
limitations when applied in IoT scenarios [20]. Specifically,
high-resolution QoS monitoring, necessary for both proximity
detection in mobile scenarios, as well as SLA enactment,
can put a high strain on the network. IoT scenarios further
exacerbate this problem, due to the immense amount of
networked devices involved.

III. RELATED WORK

Simulation environments can be organized in several
groups: full stack simulators, big data processing, network
simulators [21]. From the perspective of scalability all three

groups are important in their own scope, depending what
aspect of the system we want to evaluate. In this work we
are focusing on the scalability of the infrastructure and data
processing. This considers load scalability of the fog nodes and
cloud virtual machines due to increased number of sensors.
We identified number of simulators that could be used to
evaluate load scalability e.g., iFogSim [22], DPWSim [23],
CloudSim [24], IoTSim [25], SimIoT [26]. Simulation envi-
ronments can approximate production conditions of a system
to a certain level. They depend on the accuracy of the models
and resources they are allowed to use. In order to be able to
validate results experimentation and testing environments need
to be reproducible and repeatable. To achieve this research and
commercial communities introduced concept of an IoT testbed
where users can implement their applications and perform
evaluation on existing infrastructure. Few research initiatives
created mid and large-scale IoT testbeds to bring smart city
and IoT infrastructure closer to developers without the need
to build costly individual experimental setups. Fit/IoT LAB
[27] (initially known as SensLAB) is a testbed project in
France with over 1500 wireless sensor nodes. It is a multi-
user platform for research on wireless nodes with standard
and custom node possibilities, also it provides a mobility
research platform based on mobile robots. Other testbeds
include SmartSantander [28] an European project with goal
to build large scale IoT network in four European cities.
Japanese project JOSE [29] short for “Japan-wide orchestrated
smart/sensor environment” also provides the ability to virtual-
ize infrastructure and execute multiple applications and IoT
services at the same time. The testbeds provide ability to
validate application designs on large scale networks. However,
they are still bound with a fixed number of sensors. Combining
functionality of a testbed with a simulation environment like
Sensyml provides more realistic evaluation scenarios with the
ability to scale number of sensors or fog devices.

Scaling an application from a prototype to large distributed
systems in IoT: the heterogeneous nature of IoT makes it
almost impossible to have a single simulation environment
for the whole application. Existing IoT simulation frame-
works focus on exploring design properties of the IoT system
by establishing typologies and related constraints. Sensyml
focuses on big data generation using sensors created from
mathematical models or real existing data (Internet, database).
We are able to simulate multiple heterogeneous sensors and
connect them to existing infrastructure (fog and cloud nodes)
to test its functionality or scalability.

Testbeds focus on real life examples with specific use cases
where they create an arbitrary number of nodes. In order to see
full potential of such application it is necessary to implement
large numbers of sensors. It is difficult to fully evaluate the
capabilities of fog or cloud software and hardware. Sensyml
is a simulation platforms that augments any IoT testbed by
allowing it to model any type of sensor and simulate almost
any number of these sensors. The simulation environment is
dynamic and cloud based utilizing micro-services technology
to ensure scalability of the simulation system itself. It provides

3026

interface virtualization such that fog and cloud applications
can use existing interfaces to connect to individual sensors
or group of sensors. Furthermore, it can be combined with
heterogeneous infrastructures and can be accessed by multiple
users at the same time. Section IV provides a description of the
Sensyml simulation environment and its practical application.

IV. SENSYML: SIMULATOR FOR IOT SENSOR SWARM

In this section we present a cloud based simulation envi-
ronment for IoT sensor nodes. It provides an extension to the
CPS/IoT Ecosystem and allows users to spawn and simulate
various sensors with geographical and physical relation.

Fig. 1. Room Temperature Simulation Model.

A. Simulation Environment

Sensmyl uses software agents to implement simulated sen-
sor functions within a larger simulation environment. Sensor
functions can be derivatives of cyber-physical models (see
Figure 1) from tools like MATLAB [30], simple models with
pseudo-random generated parameters, or model with random-
ized values extracted from historic data of a physical sensors,
or real-world data services (e.g., OpenWeatherMap [31]). The
global simulation environment function provides input to the
sensors. Sensyml provides interface virtualization that allows
users to connect to the individual sensors. The connection
from the user side to the sensors is seamless and requires
no additional software from the user side. This allows us to
abstract from the hardware platforms and still be compatible
with existing network and software interfaces. Sensyml can be
connected to the actual infrastructure e.g., CPS/IoT Ecosystem
or virtualized infrastructure implemented in cloud. Figure 2
provides typical structure of an CPS/IoT system with Sensyml.

B. Technology Overview

The Sensyml simulation environment has been developed
in Java 8 [32] as a cloud application with web based user
interface. This means, that the system can run and scale at any
modern Java EE Server [33]. Currently, the Sensyml system
is running on a Wildfly Application Server [34] version 14.
Other tools used in the development process are Maven [35]
for the build management and Mongo DB [36], an open source
NoSQL database. This development pipeline allows Sensyml
to be platform independent and can be applied both in cloud

Fig. 2. IoT Testbed Structure with Sensyml.

and edge/fog layer. In current version Sensyml interfacing
mechanisms are based on HTTP and HTTPS protocols.

C. Software Architecture

Sensyml consists of six basic software modules depicted
(see Figure 3): sensyml-model, sensyml-database, sensyml-
creator, sensyml-control, sensyml-web and sensyml-interfaces.
The sensyml-model is central component in the architecture
and all other modules are directly or indirectly dependent
on it. It contains the sensor object templates which are
used to generate specific sensors or sensor networks. The
sensyml-database module contains all the database objects
and repositories used for direct operations over the database
The sensyml-creator module is used to generate different
types of sensors as single sensors or in batches. It is directly
interfaced with the sensyml-database module, what makes it
possible to add new sensors independent of the simulation
environment. The sensyml-control module is responsible for
the initialization and maintenance of the ongoing simulation,
and also provide service layer for Web and Interface modules.
The sensyml-web module is a user interface for the simulation
environment. It allows users to interact with the simulation
or individual sensors. The sensyml-interface module provides
provides sensors interface virtualization allowing users to
connect clients to specific sensors or sensors groups.

All specific sensor services are abstracted from a generic
sensor service. Figure 4 shows a class diagram that provides

3027

Fig. 3. Sensyml Software Architecture.

an insight in relationship between individual sensor simulation
and global environment simulation. In Sensyml virtual sensor
nodes can be created in three ways: a) Sensylm-creator batch
application b) In-browser management application where the
sensors can be created manually as simple as placing them
on a map, c) Sensyml-interface web application, by using
REST and WS endpoints clients can connect and remotely
manage the data over HTTP/HTTPS protocol. This allows
highly flexible management of the simulation environment
and interoperability with high variety of clients. Internal state
of each sensor is recorded in the database. The simulator
configuration can be defined in advance or during runtime.
It is capable of running multiple simulation scenarios simul-
taneously. It is also possible to log sensor values over time
and observe historical changes. Such data is valuable because
it could be used for offline analysis, to improve models and
optimize simulation. The system is designed to be able to
connect with a single database or a cluster in a completely
transparent way. This feature ensures better scalability of the
system, especially for large scale simulations.

V. RESULTS AND DISCUSSION

The main objective of Sensyml is to generate sensor data
on a large scale and the ability to connect these individual

Fig. 4. Sensyml Class Diagram - Abstract Classes.

data sources to existing IoT infrastructure. The data can be
used to evaluate scalability, to perform functional tests, as
a learning data for algorithms. Further, this platform should
be scalable and provide generic interfaces towards existing
infrastructure components. Under infrastructure we consider
cloud and fog/edge devices that are either part of an ex-
isting testbed (e.g., CPS/IoT Ecosystem) or virtualized IoT
infrastructure implemented in cloud. At current stage we
tested the simulation environment using Smart City use case
with up to 50000 sensors. Further we successfully ran the
simulation with multiple types of sensors and simulation func-
tions. Obviously the performance of the simulator is effected
by the amount of computing resources available. However,
we need to ensure that the functionality of the simulation
framework remains reasonably intact under increased load.
Table I shows round trip times measured from a client machine
for sensor requests, with two different hardware setups on the
server sides and different number of sensors per request. We
notice that RTT is only slightly affected by reduced hardware
performance. Moreover, with increase of sensors by 10-fold
the RTT increases by in average only by 2-fold. Table II
provides preliminary performance measurements for the same
experiment. The request run is performed in four stages 10,
100, 1000, 1000 sensors per request, and for each group
we perform 1000 requests (see Request Run column). We
observe that the memory and disk consumption are relatively
low and remain constant with slight deviations in memory
consumption. The CPU load is 27% higher in average during
the experiment than the idle run, with the maximum load up to

3028

95%. This scenario was performed on a static setup to evaluate
overhead of the simulation framework. The performance is
affected by different simulation functions etc. The platform is
still in an early alpha version, and more elaborate test will be
performed as the platform reaches production grade version.
Further we present a Smart City use case and how can Sensyml
be applied to design IoT infrastructure for a smart city.

TABLE I
ROUND TRIP TIME (RTT) MEASUREMENTS FOR A SENSOR READING

REQUEST, BASED ON 1000 SAMPLES.

Sens./Request VM: 1 CPU Core, 4 GB VM: 2 CPU Cores, 8 GB
Mean RTT (s) Std. Dev (s) Mean RTT (s) Std. Dev (s)

10 0.058 0.010 0.056 0.002
100 0.083 0.011 0.083 0.033
1000 0.396 0.053 0.384 0.032
10000 0.634 0.132 0.610 0.142

TABLE II
SENSYML RESOURCE CONSUMPTION MEASUREMENT FOR SENSOR READ

REQUEST. PERFORMED ON A VIRTUAL MACHINE WITH 2 CORES AND 8 GB
OF RAM.

Request Run Idle
Mean (%) Std. Dev Max (%) Mean (%) Std. Dev Max (%)

RAM 23.03 0.881 23.93 21.07 0,0606 21.25
CPU 58 0.168 95 40 0,12 67
DISK 36 0 36 36 0 35

a) Smart City Simulation Use Case: In this scenario
Sensyml is used to evaluate smart city applications such as
smart parking or environmental tracking on design time. These
applications require large number of geographically distributed
sensor nodes and required infrastructure is extremely difficult
to test without actual physical nodes. On the other hand
the implementation based on small scale prototypes poses a
risk of underestimating the software and hardware resource
requirements.

We assume the architecture of a smart city application to be
based on simple sensor nodes that depend on fog/edge node
gateways to deliver their data to the internet. For example, a
street will have a number of sensor nodes and a single fog
gateway to filter, aggregate and forward sensor data to the
cloud. We assume this scenario with respect to the goal of
sustainable IoT. This means sensor nodes are design to be
reliable, energy independent and economical. If we consider
only short parking zones in a city of Vienna the number
of sensors adds up to 55372 sensors. This number can be
even higher if we want to implement redundancy and higher
precision. Sensyml provides smart city sensor simulation for
two applications smart parking and environmental sensors.
Smart parking sensor is based on a model of magnetic field
sensor, and the climate sensors are based on randomized
values from an online weather service OpenWeatherMap [31].
Both scenarios are using actual public geographical informa-
tion about parking areas, zones and lanes, and locations of
meteorological stations in the city of Vienna, Austria. First
scenario concentrates on simulation of different in-advance
prepared behaviors of parking sensor grids over real time.

Fig. 5. Smart-Parking simulation overview in Sensyml web application.

Second scenario additionally provides means to interfacing
with the other already existing web service endpoints, such as
Weather API. As such, it provides means of feeding real-time
data into simulated sensors within Sensyml. Figure 5 shows
simulation framework interface with geographical and sensor
data.

VI. FUTURE WORK

Future work considers building a sensor library, such that
prototyping can be (i) faster and (ii) more accessible for a
wider user base. It also involves generalizing the framework
to involve other simulation scenarios. Further, the framework
should be extended in order to include support for a wider
range of IoT protocols. One of the main goals in the future
is to integrate Sensyml with existing IoT frameworks (e.g.,
Arrowhead [37]). This would ensure faster and more flexible
prototyping of large scale applications. Further testing is key
of the near future development as well as deployment on a
publicly reachable platform such that it can be used by students
and researchers.

VII. CONCLUSION

In this paper we have presented basic challenges in de-
signing and implementing large-scale IoT applications. We
conclude that scalability properties are especially difficult
to comprehend in large heterogeneous IoT networks. The
amount of data generated changes with each sensor, and
analysis algorithms are getting more “hungry” by the day.
The potentially massive amount of hardware and software
components that lie in between need to be able cope with

3029

this trend. We have proposed a simulation environment that
is able to simulate a large number of IoT sensor nodes and
create data from models and real-world sources. It is deployed
in a fully scalable environment, and able to blend with existing
heterogeneous infrastructure.

REFERENCES

[1] K. Rose, S. Eldridge, and L. Chapin, “The Internet of Things:
An Overview,” Feb. 2015, bibtex[howpublished=ISOC-IoT-Overview-
20151221-en.pdf]. [Online]. Available: https://www.internetsociety.org/
wp-content/uploads/2017/08/ISOC-IoT-Overview-20151221-en.pdf

[2] D. Reinsel, J. Gantz, and J. Rydning, “The Digitization of the World
from Edge to Core,” p. 28, 2018.

[3] E. A. Lee and S. A. Seshia, Introduction to Embedded Systems: A Cyber-
Physical Systems Approach, 2nd ed. The MIT Press, 2016.

[4] A. Ceccarelli, A. Bondavalli, B. Froemel, O. Hoeftberger, and
H. Kopetz, “Basic Concepts on Systems of Systems,” in Cyber-Physical
Systems of Systems: Foundations – A Conceptual Model and Some
Derivations: The AMADEOS Legacy, ser. Lecture Notes in Computer
Science, A. Bondavalli, S. Bouchenak, and H. Kopetz, Eds. Cham:
Springer International Publishing, 2016, pp. 1–39. [Online]. Available:
https://doi.org/10.1007/978-3-319-47590-5 1

[5] “CPS/IoT Ecosystem: A platform for research and education – CPS/IoT
Ecosystem.” [Online]. Available: http://cpsiot.at/?p=193

[6] H. Isakovic, D. Ratasich, C. Hirsch, M. Platzer, B. Wally, T. Rausch,
D. Nickovic, W. Krenn, S. Dustdar, and R. Grosu, “CPS/IoT Ecosystem:
A platform for research and education,” p. 8.

[7] “infrastructure | Definition of infrastructure in English by Oxford
Dictionaries.” [Online]. Available: https://en.oxforddictionaries.com/
definition/infrastructure

[8] Y. Duan, G. Fu, N. Zhou, X. Sun, N. C. Narendra, and B. Hu,
“Everything as a Service (XaaS) on the Cloud: Origins, Current and
Future Trends,” in 2015 IEEE 8th International Conference on Cloud
Computing, Jun. 2015, pp. 621–628.

[9] A. Iosup, R. Prodan, and D. Epema, “IaaS Cloud Benchmarking:
Approaches, Challenges, and Experience,” in Cloud Computing for
Data-Intensive Applications, X. Li and J. Qiu, Eds. New York,
NY: Springer New York, 2014, pp. 83–104. [Online]. Available:
https://doi.org/10.1007/978-1-4939-1905-5 4

[10] M. D. Hill, “What is Scalability?” SIGARCH Comput. Archit.
News, vol. 18, no. 4, pp. 18–21, Dec. 1990. [Online]. Available:
http://doi.acm.org/10.1145/121973.121975

[11] A. B. Bondi, “Characteristics of Scalability and Their Impact on
Performance,” in Proceedings of the 2Nd International Workshop
on Software and Performance, ser. WOSP ’00. New York,
NY, USA: ACM, 2000, pp. 195–203. [Online]. Available: http:
//doi.acm.org/10.1145/350391.350432

[12] L. Duboc, D. Rosenblum, and T. Wicks, “A Framework for
Characterization and Analysis of Software System Scalability,” in
Proceedings of the the 6th Joint Meeting of the European Software
Engineering Conference and the ACM SIGSOFT Symposium on The
Foundations of Software Engineering, ser. ESEC-FSE ’07. New
York, NY, USA: ACM, 2007, pp. 375–384. [Online]. Available:
http://doi.acm.org/10.1145/1287624.1287679

[13] “CPS/IoT Ecosystem – HRSM Project.” [Online]. Available: http:
//cpsiot.at/

[14] J. Bézivin, “On the unification power of models,” Software and System
Modeling, vol. 4, pp. 171–188, 2005.

[15] S. Kent, “Model driven engineering,” in Integrated Formal Methods,
M. Butler, L. Petre, and K. Sere, Eds., 2002, pp. 286–298.

[16] M. Brambilla, J. Cabot, and M. Wimmer, Model-Driven Software
Engineering in Practice, 2nd ed., ser. Synthesis Lectures on Software
Engineering. Morgan & Claypool Publishers, 2017.

[17] S. Wolny, A. Mazak, and B. Wally, “An initial mapping study on
MDE4IoT,” in Proceedings of the 2nd International Workshop on
Model-Driven Engineering for the Internet-of-Things (MDE4IoT), 2018.

[18] H. Truong and S. Dustdar, “Principles for Engineering IoT Cloud
Systems,” IEEE Cloud Computing, vol. 2, no. 2, pp. 68–76, Mar. 2015.

[19] T. Rausch, S. Nastic, and S. Dustdar, “EMMA: Distributed QoS-Aware
MQTT Middleware for Edge Computing Applications,” in 2018 IEEE
International Conference on Cloud Engineering (IC2E), Apr. 2018, pp.
191–197.

[20] T. Rausch, S. Dustdar, and R. Ranjan, “Osmotic Message-Oriented
Middleware for the Internet of Things,” IEEE Cloud Computing, vol. 5,
no. 2, pp. 17–25, Mar. 2018.

[21] M. Chernyshev, Z. Baig, O. Bello, and S. Zeadally, “Internet of Things
(IoT): Research, Simulators, and Testbeds,” IEEE Internet of Things
Journal, vol. 5, no. 3, pp. 1637–1647, Jun. 2018.

[22] H. Gupta, A. V. Dastjerdi, S. K. Ghosh, and R. Buyya, “iFogSim:
A Toolkit for Modeling and Simulation of Resource Management
Techniques in Internet of Things, Edge and Fog Computing
Environments,” arXiv:1606.02007 [cs], Jun. 2016, arXiv: 1606.02007.
[Online]. Available: http://arxiv.org/abs/1606.02007

[23] S. N. Han, G. M. Lee, N. Crespi, K. Heo, N. V. Luong, M. Brut, and
P. Gatellier, “DPWSim: A simulation toolkit for IoT applications using
devices profile for web services,” in 2014 IEEE World Forum on Internet
of Things (WF-IoT), Mar. 2014, pp. 544–547.

[24] R. Buyya, R. Ranjan, and R. N. Calheiros, “Modeling and Simulation
of Scalable Cloud Computing Environments and the CloudSim Toolkit:
Challenges and Opportunities,” arXiv:0907.4878 [cs], Jul. 2009, arXiv:
0907.4878. [Online]. Available: http://arxiv.org/abs/0907.4878

[25] X. Zeng, S. K. Garg, P. Strazdins, P. P. Jayaraman,
D. Georgakopoulos, and R. Ranjan, “IOTSim: A simulator for
analysing IoT applications,” Journal of Systems Architecture,
vol. 72, pp. 93–107, Jan. 2017. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S1383762116300662

[26] S. Sotiriadis, N. Bessis, E. Asimakopoulou, and N. Mustafee, “Towards
Simulating the Internet of Things,” in 2014 28th International Confer-
ence on Advanced Information Networking and Applications Workshops,
May 2014, pp. 444–448.

[27] C. Burin des Roziers, G. Chelius, T. Ducrocq, E. Fleury, A. Fraboulet,
A. Gallais, N. Mitton, T. Noél, and J. Vandaele, “Using SensLAB as
a First Class Scientific Tool for Large Scale Wireless Sensor Network
Experiments,” in NETWORKING 2011, ser. Lecture Notes in Computer
Science, J. Domingo-Pascual, P. Manzoni, S. Palazzo, A. Pont, and
C. Scoglio, Eds. Springer Berlin Heidelberg, 2011, pp. 147–159.

[28] L. Sanchez, L. Muñoz, J. A. Galache, P. Sotres, J. R. Santana,
V. Gutierrez, R. Ramdhany, A. Gluhak, S. Krco, E. Theodoridis,
and D. Pfisterer, “SmartSantander: IoT experimentation over a smart
city testbed,” Computer Networks, vol. 61, pp. 217–238, Mar.
2014. [Online]. Available: http://www.sciencedirect.com/science/article/
pii/S1389128613004337

[29] “JOSE: An open testbed for field trials of large-scale IoT services.” [On-
line]. Available: https://www.researchgate.net/publication/306143509
JOSE An open testbed for field trials of large-scale IoT services

[30] “MATLAB - MathWorks - MATLAB & Simulink.” [Online]. Available:
https://de.mathworks.com/products/matlab.html

[31] “Weather API - OpenWeatherMap.” [Online]. Available: https:
//openweathermap.org/api

[32] “Java 8 Central.” [Online]. Available: https://www.oracle.com/
technetwork/java/javase/overview/java8-2100321.html

[33] “Java EE Servers - Your First Cup: An Introduction to the Java EE
Platform.” [Online]. Available: https://docs.oracle.com/javaee/6/firstcup/
doc/gcrkq.html

[34] “WildFly Homepage · WildFly.” [Online]. Available: https://www.
wildfly.org/

[35] “Maven – Introduction.” [Online]. Available: https://maven.apache.org/
what-is-maven.html

[36] “Open Source Document Database.” [Online]. Available: https:
//www.mongodb.com/index

[37] J. Delsing, IoT Automation: Arrowhead Framework. CRC
Press, 2017. [Online]. Available: https://books.google.at/books?id=
6mMlDgAAQBAJ

3030

