
Cost-Aware Multidimensional Auto-Scaling of
Service- and Cloud-Based Dynamic Routing to

Prevent System Overload

Amirali Amiri
Software Architecture Research Group
University of Vienna, Vienna, Austria

amirali.amiri@univie.ac.at

Uwe Zdun
Software Architecture Research Group
University of Vienna, Vienna, Austria

uwe.zdun@univie.ac.at

André van Hoorn
Software Engineering and Construction Methods

University of Hamburg, Hamburg, Germany
andre.van.hoorn@uni-hamburg.de

Schahram Dustdar
Distributed Systems Group

Technical University of Vienna, Vienna, Austria
dustdar@dsg.tuwien.ac.at

Abstract—Dynamic reconfiguration is commonly used to ac-
commodate the dynamic behavior of today’s applications. As
cloud-based systems become increasingly complex, it is hard
and cost-ineffective to manage them manually. Dynamic routers,
such as API Gateways or Message Brokers, in combination with
auto-scalers can adapt the system to the resource demands, e.g.,
when a sudden load spike for a specific part of the system is
observed. Without taking costs of cloud resources into account,
this reconfiguration can lead to significant increase of charges. We
propose a self-adaptive and cost-aware dynamic routing archi-
tecture called Adaptive Dynamic Routers. The novel architecture
performs a multi-criteria optimization analysis to automatically
reconfigure the routers and the services of a cloud-based system
considering the costs of reconfiguration. This multidimensional
auto-scaling of resources takes incoming load as an input, and
uses queuing theory to find an optimal reconfiguration solution.
We systematically evaluated our architecture with an extensive
number of evaluation cases (9600). On average over cases where
an overload is predicted, our approach reduces the overload rate
by 46.7% and 61.8% for routers and services, respectively.

Index Terms—Self-Adaptive, System Overload, Cloud Re-
sources, Dynamic Routing Architectures, Cost-Awareness, Au-
tomatic Reconfiguration, Multidimensional Auto-Scaling

I. INTRODUCTION

Dynamic routing is an essential part of cloud-based systems.

The non-static behaviour of today’s applications usually means

that dynamic routers are used, e.g., API Gateways [18],

Enterprise Service Buses [8], Message Brokers [12], or Side-

cars [13]. Cloud computing provides an elastic infrastructure to

manage the dynamic behaviour of Internet applications. How-

ever, cloud-based systems are becoming increasingly complex,

so that it is hard and cost-ineffective to manage them manually.

The need for self-management systems is inevitable [6].

Consider for instance an e-commerce shop that offers dis-

counted products for a specific location during a period of

time. The application must cope with a sudden incoming

load increase that needs to be routed to the services residing

in the location. Dynamic routers in combination with auto-

scalers can accommodate the system demand. Without such

measures a system overload can lead to an application being

non-responsive. However, if the cost of cloud resources is not

considered, a business may lose profit by inducing significant

resource costs when dealing with the sudden load spikes.

Horizontal auto-scaling, i.e., adding or removing replicas,

and vertical auto-scaling, i.e., adding or removing resources

such as processing power or memory, are commonly used in

practice. A newer concept is multidimensional auto-scaling1,

which combines the two previous concepts in one decision-

making step. Nontheless, the concept is not fully developed

and has limitations such as not considering the incoming load

as an input for multidimensional auto-scaling. Thus, we set

out to answer the following research questions:

RQ1: Can we find a multidimensional auto-scaling approach
to perform self-adaptive cost-aware dynamic routing for auto-
matically reconfiguring resources to prevent system overload?

RQ2: How well does the self-adaptive dynamic routing ap-
proach perform with regard to system overload prevention?

In our prior work [5], we proposed a self-adaptive ar-

chitecture named Adaptive Dynamic Routers (ADR). This

architecture dynamically adapted the number of routers at

runtime to adjust system reliability and performance trade-offs.

In this paper, we substantially extend our proposed architecture

by adding support to reconfigure components and prevent

system overload. Moreover, we add cost-awareness to ADR.

For the evaluation of the proposed architecture, we take

multiple levels of call frequencies, component configurations

and routing profiles into consideration. Our extensive system-

atic evaluation of 9600 cases shows that the ADR architecture

1https://cloud.google.com/kubernetes-engine/docs/how-to/
multidimensional-pod-autoscaling

379

2022 IEEE International Conference on Web Services (ICWS)

978-1-6654-8143-4/22/$31.00 ©2022 IEEE
DOI 10.1109/ICWS55610.2022.00063

20
22

 IE
EE

 In
te

rn
at

io
na

l C
on

fe
re

nc
e

on
 W

eb
 S

er
vi

ce
s (

IC
W

S)
 |

97
8-

1-
66

54
-8

14
3-

4/
22

/$
31

.0
0

©
20

22
 IE

EE
 |

D
O

I:
10

.1
10

9/
IC

W
S5

56
10

.2
02

2.
00

06
3

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on October 19,2022 at 13:21:29 UTC from IEEE Xplore. Restrictions apply.

is beneficial in terms of system overload prevention. Our

approach can yield up to 100% improvement in reducing the

rate, with which the routers and services overload. The mean

of the data over all cases where an overload is predicted

shows that the architecture reduces the average overload rate

by 46.7% and 61.8% for routers and services, respectively.

II. APPROACH OVERVIEW

A. Background
In our prior work [2]–[5], we studied three representative

dynamic routing architecture patterns in service- and cloud-

based environments. These include the central-entity-based

architecture, e.g., an API Gateway [18], or any kind of

central service bus [8]; dynamic routers architecture [12]

in which multiple routers are responsible for the routing

regarding groups of services; and the sidecar architecture

that follows the sidecar pattern [13]. In [5], we introduced

the Adaptive Dynamic Routers (ADR) that is a self-adaptive

routing architecture. ADR abstracts the controlling logic in the

afore-mentioned architectures, i.e., the central entity, dynamic

routers and sidecars, under a concept called router. Then, it
automatically adjusts the number of routers based on a multi-

criteria optimization [1] analysis.

B. Architecture Extensions
We require a couple of significant extensions to the ADR

architecture for our approach presented in this paper, i.e.,

to prevent system overload. Firstly, we provide support to

monitor and reconfigure the services in addition to the routers

of a system. We use the term reconfigurable components to
refer to services and routers collectively. Secondly, we model

system overload analytically and use queuing theory [14]

in the context of dynamic routing architectures. We identify

system overload when a component of a system overloads

resulting in an application being non-responsive to requests.

Thirdly, the perspective for the reconfiguration is different in

this paper. That is, the extended ADR architecture focuses

on each reconfigurable component, i.e., a router or a service,

separately and reconfigures it individually to prevent the

overload of that specific component. As a result, we study

reconfiguration measures that we did not investigate before

such as auto-scaling. Finally, we consider the reconfiguration

cost as a deciding factor, i.e., an optimization criterion.

C. ADR Component Diagram
Figure 1 presents a UML component diagram of the ex-

tended ADR architecture with a sample configuration. An

API Gateway, which is an entry access for clients, publishes
monitoring data to the Quality of Service QoS Monitor com-
ponent. Moreover, the API Gateway forwards requests to the

current routing architecture. The routers either forward or

block the requests to the services they shield. The QoS Monitor
observes the monitoring data and can trigger a reconfiguration

if necessary, e.g., when degradation of quality attributes is

detected. A reconfiguration is performed at run-time using a

multi-criteria optimization analysis, explained in detail in the

remainder of this paper.

System

Routers

System

Services

Reconfigurator

Monitor
«API gateway»

Gateway

«dynamic router»
Router1

Routers

«dynamic route
Router1

«dynamic router»
Router2

«service»
Service1
««service
Service

«service»
Service2
«serrvice
Servvice

«service»
Service3

Services

«serrvice
Servvice

«service»
Service4

«client»
Client1

ent»
nt1

«client»
Client2

Publish Monitoring
Data

Consume
Monitoring

Data

Monitor
Routers

Monitor
Services

Rewire Router
Connections

Deploy/
Reconfigure

Deploy/
Reconfigure

Manager Components

Dynamic
«dynamic reconfigurator»

«monitor»
QoS

Fig. 1: Component Diagram of the ADR Architecture

D. Reconfigurable Components as Queuing Stations

We model each reconfigurable component, i.e., a router or

a service, as a queuing station having two subcomponents,

namely a buffer and a processor. Incoming requests are
buffered in a queue and processed by the processor one-by-one

according to a queuing discipline, e.g., a first-come-first-served

strategy. A buffer has a Length l of the number of requests it
can store, and a processor has a Processing Rate μ based on the
number of requests per second r/s. There is a standard service
offered by many cloud providers to configure containers. For

instance, Google Kubernetes Engine Autopilot2 and Microsoft

Azure Container Instances3 allow the configuration of vCPUs

and Memories per containers.

We indicate a system overload when a buffer of a recon-

figurable component overloads, that is when a component

as a queuing station is not in its steady state [14]. Let the

Arrival Rate of a Reconfigurable Component i be λi. For

a Reconfigurable Component i to be in the steady state,
its arrival rate must be lower than its processing rate, i.e.,

λi < μi. The buffer of Reconfigurable Component i eventually
overloads if λi > μi resulting in a system overload. We only

consider homogeneous workload, i.e., single class requests.

E. Measures to Overcome System Overload

When a system overload is predicted for a reconfigurable

component (see Section III-A), we consider the following

measures to address system overload at the component level:

• Scale-out a router by using replicas, i.e., HAS.
• Scale-out a service by using replicas, i.e., HAS.
• Increase the processing rate of a router, i.e., V AS.
• Increase the processing rate of a service, i.e., V AS.

These measures are associated with cloud costs since they

add cloud resources to the system (see Section III-C2). In the

2https://cloud.google.com/kubernetes-engine/docs/concepts/
autopilot-overview

3https://azure.microsoft.com/en-us/services/container-instances/

380

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on October 19,2022 at 13:21:29 UTC from IEEE Xplore. Restrictions apply.

following, we define an analytical model of system overload

and use this model to automatically adjust the cloud resource

usage considering the cost of cloud deployment.

III. APPROACH DETAILS

A. System Overload Model

As shown in Figure 1, the QoS Monitor observes each
reconfigurable component, i.e., a router or a service, and

triggers a reconfiguration for each component separately by

monitoring the arrival rate of each component. The monitor

also observes the processing rate of all routers and services,

e.g., by executing a docker stats command. An overload

is predicted if an arrival rate of a reconfigurable component is

higher than its processing rate, and its buffer is getting full.

1) Arrival Rate of Reconfigurable Components: In order to
model the Arrival Rate λi of each Reconfigurable Component

i, we define the incoming requests from the view point of a

component. That is, the requests received by a component.

An example ADR configuration is presented in Figure 2. We

define Call Frequency cf as the frequency with which the

client requests are received by the API Gateway based on

requests per second r/s. IRi is the number of Incoming

Requests IRi for a Reconfigurable Component i:

λi = cf · IRi (1)

That is, the arrival rate for Reconfigurable Component i is
the call frequency multiplied by the number of its incoming

requests IRi. To illustrate, in the example ADR configuration

presented in Figure 2, IRi = 2 uniformly for all routers. When
the application is under stress with, e.g., cf = 10 r/s, each
router has an arrival rate of λi = 20 r/s. Note that IRi needs

to be parameterized for each application separately.

2) Buffer Fill Rate: We define the Buffer Fill Rate BFRi

of a Reconfigurable Component i as:

BFRi = λi − μi (2)

When the buffer fill rate is positive for any reconfigurable

component, i.e., a router or a service, it means the arrival rate

of the component is higher than its processing rate. In this

case, the system eventually overloads if the Call Frequency

cf of client requests does not decrease. Using Equation (1):

BFRi = cf · IRi − μi (3)

«router»
R3

«router»
R1

«router»
R3

«host»
VM3

«host»
VM2

«service»
S5

«service»
S6

«router»
R1

«host»
VM1

«service»
S1

«service»
S2

«router»
R2

«host»
VM5

«client»
CL

«host»
VM4

«API gateway»
GW

«service»
S4

«service»
S3

GatewayRequest

ClientRequest

Fig. 2: Example ADR Configuration with Incoming Requests for
Routers (Solid Lines) and Services (Dashed Lines)

B. Threshold for Reconfiguration

The severity of the damage of a positive BFR depends

on the Full State FS of the buffer indicating how full it is,

i.e, 0.0 < FS < 1.0. An architect can define a Full State
Threshold FSth for the buffers of the reconfigurable compo-

nents of a system. If any buffer reaches this threshold, ADR

reconfigures the architecture configuration (see Figure 1). The

Dynamic Reconfigurator reduces the Buffer Fill Rate BFRi

of a Reconfigurable Component i by performing:

• Scale-out the Reconfigurable Component i by using repli-
cas reducing its Arrival Rate λi.

• Increase the Processing Rate μi of the Reconfigurable

Component i to reduce its BFRi (see Equation (2)).

Conversely, if the FS of a buffer goes below the threshold,

the steps can be reversed e.g., by scaling-in the replicas.

C. Reconfiguration Algorithm

The proposed architecture automatically reconfigures the

system at run-time using a multi-criteria optimization anal-

ysis [1]. We consider the following optimization criteria: the

buffer fill rate prediction and the cost of reconfiguration.
1) Prediction of Buffer Fill Rate: The Dynamic Recon-

figurator uses the buffer fill rate predictions to decide how
much of each reconfiguration measure to perform. Remind that

the architecture monitors each reconfigurable component sep-

arately and reconfigures it individually. Let BFR(nscal, npro)
be the predicted buffer fill rate by improving n units in each
reconfiguration measure, i.e., scaling-out the component by

nscal replicas, or improving the processing rate of an alarming

component by npro requests per second r/s.

BFR(nscal, npro) = cfscal · IRi − μpro (4)

IRi is the number of incoming requests of a Reconfigurable

Component i, cfscal is the call frequency after scaling-out the
component and load-balancing the cf among the replicas, and
μpro is the increased processing rate of the component:

μpro = μi + npro (5)

That is, the Processing Rate μi of the Reconfigurable Com-

ponent i is increased by npro r/s.
2) Cost of the Reconfiguration Measures: We consider

the cost models of widely-used cloud providers so that our

proposed approach can be applied to real-world applications.

These cost models relate to the resource usage and are at the

container level. That is, customers pay per use of resources

their containers need. For instance, Google Kubernetes Engine

Autopilot4 and Microsoft Azure Container Instances5 charge

per use of vCPUs and memories in seconds from the time the

container images are pulled until the task is finished.

The reconfiguration measures mentioned in Section II-E

require an increase of cloud resource usage. We associate costs

to an improvement of n units for each reconfiguration measure,
i.e., C(nscal, npro) = C(nscal) + C(npro). We have the cost

4https://cloud.google.com/kubernetes-engine/pricing
5https://azure.microsoft.com/en-us/pricing/details/container-instances/

381

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on October 19,2022 at 13:21:29 UTC from IEEE Xplore. Restrictions apply.

of scaling-out the component by nscal replicas, and the cost

of increasing the processing rate by npro requests per second.

Note that the conversion between vCPU and Processing

Rate μi depends on the application. There are different CPU

types with different processing capabilities (see, e.g., Google

Cloud CPU Platforms6). Moreover, the requests for each appli-

cation have different timing needs. We provide a systematic

evaluation in Section IV. Also, consider that the ADR cost

model is general and is not specific to these cloud-providers

or models. Other cloud cost models can be used if necessary.

3) Multi-Criteria Optimization (MCO): The QoS Monitor
triggers the Dynamic Reconfigurator to reconfigure the com-
ponents (see Figure 1). When the Full State Threshold FSth

has reached for a component, the reconfigurator automatically

adapts the Buffer Fill Rate BFR of the component based

on an MCO analysis [1]. Consider the following optimization

problem: the reconfigurator must decide how many units of

each measure to improve in order to have the minimum

predicted buffer fill rate. However, at the same time, the

reconfigurator needs to minimize the cost of cloud resource

usage. Let Cth be the Cost Threshold:

Minimize

BFR(nscal, npro) (6)

C(nscal, npro) ≤ Cth (7)

Note that any number of constraints can be added. The objec-

tive functions are opposing each other: we want to minimize

the buffer fill rate but at the minimum cost of reconfiguration.

Typically, there is no single answer to an MCO problem but

a set of acceptable points called the Pareto front [1].

4) Automatic Reconfiguration: When a reconfiguration is
triggered, the Dynamic Reconfigurator uses Algorithm 1 to

deploy new components or reconfigure the existing ones.

Algorithm 1: ADR Reconfiguration Algorithm

for one Overloading Component

input: C(nscal), C(npro), IR // costs and incoming requests
begin
cf, μ← consumeMonitoringData() // call frequency and processing rate

paretoFront ← MCO(cf, IR, μ) // Multi−Criteria Optimization
reconfigSolution ← preferenceFunction(paretoFront)
reconfigure (reconfigSolution)

function preferenceFunction (paretoFront)
begin
R← 0 // reconfiguration ratio
reconfigSolution ← (0, 0) // (scaling replica, processing rate)

foreach (solution : paretoFront)
begin
R(nscal, npro)← BFR(0,0)−BFR(nscal,npro)

C(nscal,npro)
// buffer fill rate, cost

if (R(nscal, npro) > R)
R← R(nscal, npro)
reconfigSolution ← (nscal, npro)

end
return reconfigSolution // final reconfiguration solution

end
end

6https://cloud.google.com/compute/docs/cpu-platforms

5) Preference Function: The final reconfiguration choice
from the Pareto front (see Section III-C3) is upon the decision

maker based on their preference. In order for the Dynamic
Reconfigurator to automatically choose a point as the selected
solution, we define a preference function. We select a final

solution based on the Reconfiguration Ratio R, i.e., the ratio
of buffer fill rate improvement to the cost of reconfiguration:

R =
BFR(0, 0)−BFR(nscal, npro)

C(nscal, npro)
(8)

This gives us the amount of BFR improvements for each unit
of cost spent on the reconfiguration. The preference function

chooses the solution with the highest R on the Pareto front.

IV. EVALUATION

We evaluate our approach using our experiment data set7.

A. Experiment Details
We ran an extensive experiment of 200 runs with a total of

1200 hours of runtime [3], [4]. We studied dynamic routing of

requests in a call sequence of multiple services (see Figure 2

for an example configuration). We had a private cloud setting

with three physical nodes, each having two identical Intel®

Xeon® E5-2680 CPUs. On the nodes, we installed Virtual Ma-

chines (VMs) with eight vCPUs and 60GB system memory.

Each router or service was containerized in a Docker container.

We used five desktop computers for load generation to send

HTTP requests to the VMs. For the sake of simplicity, we

labeled the routers and services incrementally from 1 and let

the incoming requests go through them one-by-one as shown

in Figure 2.

Systematic Analysis
In order to systematically evaluate the proposed ADR

architecture, we use our experiment cases: We study three

levels of the Number of Services, i.e., nserv ∈ (3, 5, 10) and
four levels of the Number of Routers nrout ∈ (1, 3, nserv) =
(1, 3, 5, 10). We consider 20 levels of the Call Frequency cf
in 10 ≤ cf ≤ 200 r/s each step increasing 10 r/s. For
container configurations, we investigate 20 levels based on the

amount of vCPU requirements of a container between 0.25 and

5 vCPUs. We increase 0.25 vCPUs in each level incrementally.

0.25 vCPUs correspond to a Processing Rate μ = 8 r/s in our
experiment, i.e., 8 ≤ μ ≤ 160 r/s (see Section III-C2).
Regarding the Cost Threshold, we take Cth = 1 cent per

second cent/s. This threshold is taken into account for each
reconfiguration step and for each component separately. All in

all, we performed an extensive evaluation of 9600 cases, i.e.,

three levels of nserv , four levels of nrout, twenty levels of cf
and twenty levels of μ, which are all considered for routers
and services separately. We define the Average Cost C and

the Average Percentage Difference of Buffer Fill Rate Δ as:

C =
1

n

∑

c∈Cases

C(nscal, npro) (9)

7Published as an open access data set for supporting replicability. https:
//ieee-dataport.org/documents/amiri-tsc-2021 doi:10.21227/mahp-mw44

382

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on October 19,2022 at 13:21:29 UTC from IEEE Xplore. Restrictions apply.

(a) Δ for Routers (b) Δ for Services

(c) C for Routers (d) C for Services

Fig. 3: Plots of Evaluation Data

Δ =
100%

n

∑

c∈Cases

BFR(0, 0)−BFR(nscal, npro)

BFR(0, 0)
(10)

in which Cases is the set of nserv and nrout so n = 12.
The BFR average percentage difference Δ for routers and

services are shown in Figure 3a and Figure 3b. We can see

that as the Processing Rate μ of a router increases, i.e., the
number of vCPUs per container rises, we have a higher Δ
specially with a higher Call Frequency cf . That is, the ADR
architecture yields the most improvements when a container

with a high processing rate is under stress of a high load.

Regarding average costs for routers, as shown in Figure 3c,

the reconfiguration costs rise as the Processing Rate μ of router
containers increases. This is expected because, e.g., scaling-

out a router with five vCPUs costs higher than scaling-out a

router with only one vCPU. However, for service containers

with a higher processing power, there is a constant average cost

as shown in Figure 3d. In these cases, the ADR architecture

chooses the same reconfiguration measure, i.e., adding a

Processing Rate μ = 40 r/s to an overloading service. This
is because as the processing power of a service container

increases, the cost of scaling-out the service also rises. In

this case, adding 40 r/s with C = 0.0016 cents/s gives the
highest Reconfiguration Ratio R and is chosen repeatedly8.
Table I reports the statistics of Δ and C, in which σ, Q1

and Q3 are the standard deviation, first and third quartiles

8The evaluation script and log (Pareto fronts) are anonymously down-
loadable to support reproducibility: https://doi.org/10.5281/zenodo.6566131

of the data. The proposed architecture can yield an BFR
average percentage improvement Δ of up to 100.0 % with

C of 0.0058 and 0.0035 cents/s for routers and services. For
the mean of data over overloading cases, i.e., those cases with

BFR(0, 0) > 0, the ADR architecture gives an enhancement
of Δ = 46.7% with C = 0.0024 cents/s for routers, and
Δ = 61.8% with C = 0.0016 cents/s for services.

TABLE I: Statistics of the Evaluation Data

Evaluation
Metric min Q1 median Q3 max mean σ

Routers Δ 9.804 32.680 49.528 57.132 100.000 46.703 15.487

C 25e-5 15e-4 25e-4 32e-4 58e-4 24e-4 12e-4

Services Δ 29.412 52.632 60.475 69.754 100.000 61.848 15.654

C 5e-4 15e-4 16e-4 16e-4 35e-4 16e-4 6e-4

V. THREATS TO VALIDITY

In this paper, we studied reconfiguration measures of in-

creasing the processing rate and scaling-out a component to

prevent system overload. While this is a common approach in

service- and cloud-based research (see Section VI), the threat

remains that other measures might work better in terms of

system overload prevention, for instance changing the routing

technology, e.g., using a circuit breaker [17], or adding more

routers and reconfiguring the routing [5].

We considered each reconfigurable component, i.e., a router

or a service, of a cloud-based application separately by model-

ing them as queuing stations. If a reconfiguration is required,

our approach performs a multi-criteria optimization analysis

383

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on October 19,2022 at 13:21:29 UTC from IEEE Xplore. Restrictions apply.

individually for the component. The threat remains that these

components can have interdependencies, e.g., preventing over-

load of an upstream component might stress the downstream

components. In future work, we plan to model and study the

proposed ADR architecture as queuing networks [14].

We designed our novel architecture with generality in mind.

In spite of the fact that we systematically evaluated our

approach with an extensive number of 9600 evaluation cases

using the experiment infrastructure of our experiment of 1200

hours (see Section IV-A), the threat remains that evaluating the

ADR architecture based on another infrastructure may lead to

different results. To mitigate this thread, we performed many

rounds of reviews and improvements in the author team and

constantly compared with the related work.

VI. RELATED WORK

The proposed ADR architecture is related to self-adaptive
systems, which typically use MAPE-K loops [6], and similar
approaches to realize adaptations. Our architecture extends

such studies with support specific to dynamic cloud- and

service-based routing architectures. Moreover, research on effi-

cient resource provisioning, e.g., [9], [15], and cloud elasticity,

e.g., [10], [11], are related to our work. Our study extends

these approaches by considering the increase of the processing

power of a container as a reconfiguration measure.

Multidimensional auto-scalers have been studied in the lit-
erature. AutoMAP [7] uses response time triggers to provision

resources. To support cost-efficiency, AutoMAP finds optimal

resources using Virtual Machine (VM) image sizes. Nguyen et

al. [16] use a forecasting model to predict CPU demand and

uses these predictions to start new machines before load peak

to increase performance. CloudScale [19] supports scaling of

CPU and memory resources when local scaling is possible.

Otherwise, it migrates VMs to prevent overloaded hosts. Our

work is different from all these studies in that they consider

auto-scaling at VM level and configure the resources. We

proposed a cost-aware multidimensional auto-scaler that works

at container level adjusting the resources of each container.

In contrast to the existing related work, major contributions

of our study are that we proposed a model of system overload

specifically designed for dynamic routing in service- and

cloud-based architectures. Having this specific view, and con-

sidering possible runtime adaptations, we defined a targeted re-

configuration algorithm to perform multi-criteria optimization

analysis to find the (Pareto) optimal reconfiguration solutions.

This would be hard to do in the generic case.

VII. CONCLUSION

In this study, we extended our previously proposed novel

architecture, i.e., Adaptive Dynamic Routers (ADR) [5] that

automatically reconfigures the routers and services of a cloud-

based system taking the costs of reconfiguration into account.

For RQ1, we proposed our extended ADR architecture which
uses queuing theory to model routers and services of a cloud-

based system and performs multidimensional auto-scaling on

each component individually to prevent system overload. For

RQ2, we systematically evaluated our approach using 9600
evaluation cases based on our extensive experiment of 1200

hours of runtime (see Section IV-A). Our results show that

the ADR architecture yields up to 100% average percentage

difference of buffer fill rate for routers and services. Regard-

ing the mean of the data, over cases where an overload is

predicted, our approach reduces the average overload rate by

46.7% and 61.8% for routers and services, respectively.

ACKNOWLEDGMENT

This work was supported by FWF (Austrian Science Fund)

project API-ACE: I 4268 and Baden-Württemberg Stiftung,

project ORCAS.

REFERENCES

[1] A. Aleti, B. Buhnova, L. Grunske, A. Koziolek, and I. Meedeniya.
Software architecture optimization methods: A systematic literature
review. IEEE Trans. Software Eng., 39(5):658–683, 2013.

[2] A. Amiri, C. Krieger, U. Zdun, and F. Leymann. Dynamic data
routing decisions for compliant data handling in service- and cloud-
based architectures: A performance analysis. In IEEE International
Conference on Services Computing, 2019.

[3] A. Amiri, U. Zdun, G. Simhandl, and A. van Hoorn. Impact of service-
and cloud-based dynamic routing architectures on system reliability. In
International Conference on Service Oriented Computing, 2020.

[4] A. Amiri, U. Zdun, and A. van Hoorn. Modeling and empirical
validation of reliability and performance trade-offs of dynamic routing in
service- and cloud-based architectures. In IEEE Transactions on Services
Computing, 2021.

[5] A. Amiri, U. Zdun, A. van Hoorn, and S. Dustdar. Automatic adaptation
of reliability and performance tradeoffs in service- and cloud-based
dynamic routing architectures. In IEEE international Conference of
Software Quality, Reliability and Security, 2021.

[6] P. Arcaini, E. Riccobene, and P. Scandurra. Formal design and
verification of self-adaptive systems with decentralized control. ACM
Transactions on Autonomous and Adaptive Systems, 11(4):1–35, 2017.

[7] M. Beltrán. Automatic provisioning of multi-tier applications in cloud
computing environments. The Journal of Supercomputing, 2015.

[8] D. A. Chappell. Enterprise service bus. O’Reilly, 2004.
[9] J. Comden, S. Yao, N. Chen, H. Xing, and Z. Liu. Online optimization

in cloud resource provisioning: Predictions, regrets, and algorithms. In
Publication: Proceedings of the ACM on Measurement and Analysis of
Computing Systems, 2019.

[10] G. Galante and L. C. E. de Bona. A survey on cloud computing
elasticity. In 2012 IEEE Fifth International Conference on Utility and
Cloud Computing, pages 263–270. IEEE, 2012.

[11] N. R. Herbst, S. Kounev, and R. Reussner. Elasticity in cloud computing:
What it is, and what it is not. In 10th International Conference on
Autonomic Computing, pages 23–27, 2013.

[12] G. Hohpe and B. Woolf. Enterprise Integration Patterns. Addison-
Wesley, 2003.

[13] P. Jamshidi, C. Pahl, N. C. Mendonça, J. Lewis, and S. Tilkov. Mi-
croservices: The journey so far and challenges ahead. IEEE Software,
35(3):24–35, 2018.

[14] V. V. Kalashnikov. Mathematical Methods in Queuing Theory. Springer,
2013.

[15] H. Khazaei, C. Barna, N. Beigi-Mohammadi, and M. Litoiu. Efficiency
analysis of provisioning microservices. In IEEE International Confer-
ence on Cloud Computing Technology and Science, 2016.

[16] H. Nguyen, Z. Shen, X. Gu, S. Subbiah, and J. Wilkes. Agile: Elastic
distributed resource scaling for infrastructure-as-a-service. In 10th
International Conference on Autonomic Computing, 2013.

[17] C. Richardson. Microservices Patterns: With examples in Java. Manning,
2018.

[18] C. Richardson. Microservice architecture patterns and best practices.
http://microservices.io/index.html, 2019.

[19] Z. Shen, S. Subbiah, X. Gu, and J. Wilkes. Cloudscale: elastic resource
scaling for multi-tenant cloud systems. In 2nd ACM Symposium on
Cloud Computing, 2011.

384

Authorized licensed use limited to: TU Wien Bibliothek. Downloaded on October 19,2022 at 13:21:29 UTC from IEEE Xplore. Restrictions apply.

