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Abstract. In the context of autonomous vehicles (AVs), offloading is
essential for guaranteeing the execution of perception tasks, e.g., mobile
mapping or object detection. While existing work on offloading focused
extensively on minimizing inter-vehicle networking latency, vehicle pla-
toons (e.g., heavy-duty transport) present numerous other objectives,
such as energy efficiency or data quality. To optimize these Service
Level Objectives (SLOs) during operation, this work presents a purely
Vehicle-to-Vehicle approach (V2V) for collaborative services offloading
within a vehicle platoon. By training and using a Bayesian Network
(BN), services can proactively decide to offload whenever this promises
to improve platoon-wide SLO fulfillment; therefore, vehicles estimate how
both sides would be impacted by offloading a service. In particular, this
considers resource heterogeneity within the platoon to avoid overloading
more restricted devices. We evaluate our approach in a physical setup,
where vehicles in a platoon continuously (i.e., every 500 ms) interpret the
SLOs of three perception services. Our probabilistic, predictive method
shows promising results in handling large AV platoons; within seconds,
it detects and resolves SLO violations through offloading.

Keywords: Service Level Objectives · Edge Computing · Intelligent
Transportation · Microservices · Offloading · Bayesian Networks

1 Introduction

The swift evolution of Autonomous Vehicles (AVs) promises a disruptive
impact [18] for future transportation. Despite AV solutions claim considerable
benefits, such as rapid green transition and traffic flow improvement [14] , the
execution of AV-enabling services, such as perception, path planning, and con-
trol [15] pose ambitious processing requirements. Here, optimal allocation and
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execution of workloads highly depend on AVs’ constrained computation capa-
bilities and the supporting infrastructure’s network bandwidth. A lack of these
guarantees can cause delays in real-time perception and decision-making, leading
to potentially harmful consequences.

Services offloading [7] aims at mitigating these risks, for example, by min-
imizing computation latency between neighboring vehicles through Vehicle-to-
Vehicle (V2V) or Vehicle-to-Infrastructure (V2I) transmission. However, collab-
orative AV scenarios commonly have higher-level objectives besides latency. For
instance, consider AV platoons for public or heavy-duty transport, where the sys-
tem providers want to minimize costs or energy consumption. We define these
requirements as Service Level Objectives (SLOs) – a term from software engi-
neering. The concept of SLOs is wide enough to define any high- or low-level
objective that a management framework can enforce [19,23] by elastically adapt-
ing hardware or software. SLO-awareness also offers promising scenarios [22] for
V2V offloading; however, its adoption remains limited, highlighting the gap for
more intelligent offloading mechanisms [10].

This work, therefore, aims to ensure SLOs by incorporating them into the
offloading mechanism – we call this “SLO-aware task offloading”. Our motiva-
tion stems from two central objectives: (1) we want to ensure that vehicles fulfill
the SLOs of their local services; if SLOs are violated, this might be resolved by
offloading services, and simultaneously, (2) offloaded tasks must not jeopardize
the SLO fulfillment of existing services at the target host. This goal implies
solving a combinatorial problem, i.e., the optimal assignment of n services to
m vehicles; this problem is NP-hard, hence practically intractable. A solution
could be to decompose the problem so that AVs make decentralized offloading
decisions. However, training an offloading model for every AV separately would
introduce a considerable overhead. Furthermore, we would miss the chance to
combine knowledge from multiple AVs, which promises a more profound under-
standing. For these reasons, we envision a method that trains a decision model
within an AV but simultaneously integrates knowledge from other AVs.

In this paper, we present a modular, collaborative framework for autonomous
SLO interpretation and service offloading. Here, we consider collaborative
offloading approaches using “decentralized” sensory data [9]. Individual services
continuously observe their processing to understand the extent to which SLOs
can be fulfilled on different processing hardware; this knowledge is encoded in
an SLO interpretation (SLO-I) model. These models are updated by a mutable
platoon leader according to AVs’ observations and then broadcast to other AVs.
Given the SLO-I model, individual services predict how offloading would impact
global SLO fulfillment. Hence, the contributions of this article are:

1. An SLO-aware offloading mechanism based on Bayesian networks that
dynamically estimates the hardware implications of multiple competing ser-
vices to find a satisfying assignment. Thus, it is possible to optimize the SLO
fulfillment by shifting computation within a composable vehicle platoon.

2. A collaborative training strategy that continuously exchanges model updates
between edge devices while adjusting the training frequency according to
agents’ local SLO prediction errors. Thus, service agents improve their SLO
interpretation whenever the system does not behave as predicted.
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Fig. 1. Composite vehicle platoons offload computations according to SLO fulfillment;
if service s2’s SLOs are not fulfilled at host v2, it searches for alternatives, such as v3

3. A modular framework for collaborative service offloading that can be extended
with custom processing services and respective SLOs. Thus, other service
managers can plug their own service implementation into the framework,
which itself can be installed on arbitrary edge device types.

The remainder of this paper is organized as follows: Sect. 2 further illustrates
the scenario used throughout this paper and gives an overview of related work,
Sect. 3 describes our framework for SLO-aware offloading, which is evaluated in
Sect. 4. Finally, we summarize our paper in Sect. 5.

2 Preliminaries

This section highlights the gap addressed by our methodology by presenting
an illustrative scenario with vehicle platoons, where SLO awareness is essential
for meeting high-level requirements, and by reviewing how this issue has been
approached in existing research.

2.1 Illustrative Scenario

Here, we consider a platoon of vehicles for heavy-duty transportation. Depending
on the trajectories of platoon members, individual vehicles can join or leave the
platoon at specific intersections, such as ramps. One of the platoon members
is elected as the leader, either apriori or dynamically. In our work, we focus on
V2V offloading, as V2I infrastructures could be impractical [7] or add delays [3].

As shown in Fig. 1a, n vehicles are clustered into a platoon P = {v1, ..., vn}.
We represent each vehicle through the pair v = 〈id, t〉, where v.t specifies the
type of processing device embedded. Additionally, each vehicle is equipped with
numerous sensors and perception services, for instance, in Fig. 1b, vehicle v2 runs
two services, i.e., mapping its surroundings through Lidar (s1) and detecting
objects on the road through computer vision (s2). Given that v2 has a QR code
attached to its rear, v3 follows its predecessor by scanning for QR codes (s3). We
define a service through s = 〈type,Q,C〉, which reflects the type of perception
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service, e.g., Lidar or CV; Q specifies a set of processing SLOs, and C a list
of service constraints, e.g., CV should operate at fps = 15. These specifications
ensure safe operations when vehicles must respond to dynamic conditions.

Depending on services’ resource demand, vehicles may not possess sufficient
processing capabilities to fulfill their SLOs, which impacts the latency and qual-
ity of how a vehicle perceives its environment. For instance, v2 might employ a
weaker processing device (v2.t); however, v3’s resources are less utilized, so v2
might offload one of its services to v3. Therefore, v1 must now decide (1) which
service, i.e., s1 or s2, should best be offloaded to v3, (2) whether this improves
SLO fulfillment of remaining services at v2, and (3) if offloading could impact s3
negatively. In the context of this paper, we focus on higher-level requirements,
i.e., leaving out networking latencies for transferring input data and results under
the assumption of high network throughput between nearby vehicles.

2.2 Related Work

We classify existing literature on task offloading for IoV and related scenarios
in two main categories: offloading in V2I/V2V scenarios and offloading through
Markovian or Bayesian methods. To set the foundation for our contribution, we
highlight the strengths and limitations of these approaches.

IoV Offloading Mechanisms. In the context of V2I task offloading, Xu et
al. [28] provide a neighborhood search algorithm that minimizes costs of task out-
sourcing, estimated on simulated network traffic. Similarly, Dong et al. [4] pro-
vide a multi-task and multi-user offloading mechanism for Mobile Edge Comput-
ing (MEC), optimized through a particle swarm. Ant colony optimization (ACO)
is another explorative algorithm for optimal pathfinding: Mousa and Hussein [20]
apply ACO to cluster IoT devices accessed by UAVs; Ma et al. [17] model the
same scenario, but with Mixed-Integer Linear Programming (MILP), closely to
Zhang et al. [29]. Related to our use case, Lu et al. [16] provide a latency-aware
V2V/V2I offloading mechanism based on Deep Reinforcement Learning (DRL).
Fan et al. [7] propose a V2V/V2I offloading tool that decomposes optimization
problems with Generalized Benders Decomposition (GBD).

Other authors model offloading scenarios as shortest path [8] or stochastic
optimization problem [13]; some methodologies focus on solely V2V offload-
ing: Du et al. [5] provide a collaborative offloading mechanism for sensing tasks
in autonomous vehicle platoons, making use of idle resources. Guo et al. [11]
combine LSTM-based trajectory prediction and optimization strategy for V2V
offloading. However, all these methods, while solid, rely on simulations rather
than real-world data, assume static and homogeneous infrastructures, which are
unrealistic, and frequently neglect SLO measures like energy consumption.

Offloading Through Markovian and Bayesian Methods. To the best of
our knowledge, there are no solutions based on Bayesian Networks for V2V
task offloading in platoons. Still, Markov models and Bayesian approaches are
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found in Edge-to-Cloud scenarios for task offloading [23,24]. Hazra et al. [12] use
MILP to find offloading locations in hierarchical computing environments under
latency and energy constraints. Wu et al. [27] offload streaming tasks from edge
nodes to fog or cloud resources through a Markov decision process, improved
through Reinforcement Learning (RL). Tasoulas et al. [25] provide a prediction
mechanism that uses historical observations to forecast VMs’ resource demand
through Bayesian Networks. However, these papers offer little variety for SLOs
and do not incorporate dynamic or real-time adaptations.

Takeaways. Existing research focused extensively on MEC offloading mecha-
nisms to RSUs or UAVs for optimizing network latency; however other objec-
tives, as energy efficiency or QoS are often overlooked. In addition, most
approaches were only evaluated in simulations; however, to establish reliable
offloading mechanisms, it is paramount to consider dynamic runtime behavior.
Conversely, we propose an SLO-aware mechanism for V2V offloading that opti-
mizes various SLOs in heterogeneous vehicle platoons. Centralized approaches
suffer from the combinatorial complexity of finding a global optimum and the
risk of becoming a single point of failure; in our approach, however, services have
decentralized authority to interpret their runtime behavior and make offloading
decisions.

3 Methodology

In the following, we present our modular framework for SLO-aware task offload-
ing in composable vehicle platoons. This means, continuously observing service
executions to collect insights, interpreting these insights through collaborative
training, and making offloading decisions. Figure 2 provides a high-level overview
of these processes, which are explained in more detail in Subsects. 3.1 to 3.3.

3.1 Service Observation

The first building block of our approach is observing a service, i.e., continuously
monitoring and interpreting its SLO fulfillment. Observation requires interpret-
ing service metrics parallel to service execution, as part of the service wrapper
in Fig. 2. Perception tasks, such as those executed by autonomous vehicles, usu-
ally work iteratively; hence, service metrics are also interpreted step by step. In
Algorithm 1, it is depicted how metrics (Ds,v) from executing a service (s) on
a vehicle (v) are interpreted: for a set of SLOs (Q), the percentage of metrics
(φ)1 that fulfill these conditions is determined as shown in Eq. (1); then, φ is
appended to the sliding window Wφ. To avoid overhasty decisions based on spo-
radic SLO violations, the length of the sliding window (|Wφ|) can be customized.

φ(Q) =
∑|Q|

i=1 φ(qi)
|Q| (1a)

1 We choose the symbol φ due to the sound of the letter, i.e., SLO ful-phi-llment.
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Fig. 2. Framework for collaborative offloading: inaccurate SLO predictions trigger
retraining of SLO interpretation models; services use these models to evaluate alterna-
tive hosts according to their expected hardware utilization and SLO fulfillment

φ(qi) = φ(qi,m, v|∀m ∈ Dv
qi , v ∈ V ) =

|Dv
qi

|
∑

j=1

φ(mj , qi)
|Dv| (1b)

where φ(qi,mj) =

{
1, if mqi

jmin
≤ mj ≤ mqi

jmax

0, otherwise
(1c)

To understand if a service should be loaded off, we consider both its cur-
rent SLO fulfillment as well as predictions according to historical observations;
for this, we infer the predicted SLO fulfillment (Line 3) using a Bayesian Net-
work (BN). BNs are structural causal models encoded as Directed Acyclic Graph
(DAG); nodes represent random variables (e.g., cpu) and an edge between two
variables (e.g., cpu → energy) indicates conditional dependency, i.e., cpu influ-
ences the states of energy. Given historical observations, BNs can answer how
likely it is to observe a specific (i.e., SLO fulfilling) state at runtime [23,24];
hence, we call them SLO interpretation (SLO-I) models. For an SLO-I model m
and service s, agents predict SLO fulfillment through INFER(m, s.Q, s.C).

To ensure that predictions remain accurate regardless of variable drifts,
increasing prediction errors trigger retraining. As more training data is collected
(Line 4), the utilization of the metrics buffer, as shown in Eq. (2), indicates that
the model becomes outdated, putting additional weight on retraining.

FULL(B) =
∑n

i=1 1
|B| (2)

Next, in Line 5, we calculate the evidence to retrain (er) as the sum of absolute
prediction error and metric buffer utilization. If er surpasses the retraining rate
(ρ), the metrics buffer is sent to the platoon leader to update the SLO-I model;
this is further elaborated in Sect. 3.2. Notice that both the maximum buffer size
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Algorithm 1. Continuous SLO Interpretation
Require: D, B, Wφ; s, ms,t, ρ, ω, γ (global)
1: φs ← φ(s.Q)
2: Wφ ← Wφ ∪ φ
3: pφ ← INFER(ms,t, s.Q, s.C)
4: B ← B ∪ D
5: er ← abs(Wφ − pφ) + FULL(B)
6: if er > ρ then
7: ms,t ← RETRAIN(B); B ← ∅
8: end if
9: eo ← abs(Wφ − pφ)) + (1 − Wφ)

10: if eo > ω then
11: v′ ← FIND OFFLOAD(s, v)
12: if v′ �= ∅ then OFFLOAD(s, v′)
13: end if

(|B|) as well as ρ can be customized; for instance, ρ = 1.0 would be exceeded if
FULL(B) = 0.8 and the prediction is off by 0.3.

Model retraining assures that offloading decisions are taken based on accurate
assumptions; to that extent, the evidence to load off (eo) is computed (Line 9)
as the sum of absolute SLO violation and prediction error. When eo surpasses
a custom rate ω, and only in this case, does the agent look for a suitable host
within the vehicle platoon (Line 11); given that there is one, the service will then
be offloaded there; this will be explained in more detail in Sect. 3.3.

3.2 Collaborative Training

Retraining of SLO-I models is carried out by the platoon leader, i.e., a distin-
guished member elected; however, training data is provided by all platoon mem-
bers. For instance, recall Fig. 2, where s2 and s5 are two CV service instances
executed on different hosts. Each service collects evidence to retrain (er) inde-
pendently of other instances; once its er > ω, the service requests a model
update from the platoon leader, providing its local training buffer. Technically,
our architecture allows platoon members to update SLO-I models locally; how-
ever, limiting the training to the leader improves model consistency over the
platoon, plus it isolates the training overhead. Also, to avoid a platoon leader
becoming a single point of failure, new leaders can be reelected at any point; for
the context of this work, we exclude leader election strategies from the analysis.

Each combination of service and device type is encoded in a unique SLO-I
model. Therefore, as soon as the platoon leader (v1) receives a metric buffer
(Bs,v2) from a member (v2), it first checks v2’s type of processing device (v2.t),
e.g., Jetson Orin NX. Next, the leader updates its local SLO-I model (ms,t) for
service s and device type v2.t; in our example, this means updating the SLO-I
model of service s = CV executed on device type t = NX. Finally, a new model
version m′ = PARL(m,B) is created by updating the BN parameters according to
recent observations (Bs,v). Retraining through PARL is limited to updating the
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Algorithm 2. Evaluating Alternative Host (FIND OFFLOAD)
Require: s, v; P , A, M (global)
Ensure: v′ {Optimal vehicle for offloading s from v}
1: if |P | = 1 then return ∅
2: Sv ← {sa | (sa, va) ∈ A | va = v}
3: S′

v ← Sv \ {s}; Γ ← ∅
4: φS ← INFER(M [Sv], Sv.Q, CONV HW(Sv, v.t))
5: φS′ ← INFER(M [S′

v], S′
v.Q, CONV HW(S′

v, v.t))
6: for each w in P \ {v} do
7: Σw ← {sa | (sa, va) ∈ A | va = w}
8: Σ′

w ← Σw ∪ {s}
9: φΣ ← INFER(M [Σw], Σw.Q, CONV HW(Σw, w.t))

10: φΣ′ ← INFER(M [Σ′
w], Σ′

w.Q, CONV HW(Σ′
w, w.t))

11: γ ← (φS′ + φΣ′) − (φS + φΣ)
12: Γ ← Γ ∪ (γ, w)
13: end for
14: γ, v′ ← {(γ, w) ∈ Γ,max(γ)}
15: return v′ if γ > 0 else ∅

conditional probabilities of BN variables; the structure (i.e., variable relations)
is left untouched and only supplied through expert knowledge.

After retraining, the updated model (m′) is shared within the platoon. For
this, the platoon leader broadcasts m′

s,t to all members in {v ∈ P | v.t = v2.t},
i.e., to all platoon members with the matching device type. Vehicles that received
an updated model now substitute the SLO-I models of locally running services.
For Fig. 2, this would mean that s2 gets updated, but s5 not, since v1 has a
device type v2.t �= v1.t. Thus, all instances of service s at vehicles with type
v.t = v2 interpret their SLO fulfillment according to the new model version.

3.3 Service Offloading

Once a service collected sufficient evidence to load off (eo), like s2 in Figs. 1 and 2,
the service looks for the best alternative host, which means comparing for each
of the other platoon members if global SLO fulfillment would be improved by
offloading there. Formally, this is described in Algorithm 2, which uses the list of
platoon members (P ), the assignments (A) of which vehicle currently executes
which service, and the shared collection (M) of all SLO-I models. In case the
platoon does not contain other vehicles (Line 1), the search stops immediately;
otherwise, the service predicts (1) the combined SLO fulfillment (φS) for all ser-
vices (Sv) executed at vehicle v (Line 4), and (2) how offloading s would change
local SLO fulfillment (φS′) (Line 5). For this, we first estimate the combined
hardware demand (CONV HW) that would emerge from co-locating the services on
a target device and then estimate per service if the increased hardware load has
an impact on its SLO fulfillment.
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Before continuing Algorithm 2, we briefly explain CONV HW(S, t), which pre-
dicts the hardware utilization that would result from executing all s ∈ S at a
device of type t. For each service s ∈ S, we use the respective model ms,t ∈ M
to infer its expected hardware utilization; in our case, we consider the hardware
variables hw = {cpu, gpu,memory}, but the list can be extended arbitrarily with
other monitor variables included in the SLO-I model. This returns a probability
distribution (e.g., pcpu) for each variable ∈ hw; afterward, the combined hard-
ware load is calculated as the convolution of the individual loads. Formally, the
convolution of two or more random variables (X,Y ) with probability density
functions fX(x) and fY (y), i.e., the probabilities for each hw variable, is the
sum (Z = X + Y ) of their individual distributions [2], as shown in Eq. (3).

fZ(z) = (fX ∗ fY )(z) =
∫ ∞

−∞
fX(t)fY (z − t) dt (3)

Thus, we obtain the combined hardware utilization, which is supplied as a con-
straint to INFER; this allows estimating how the respective hardware load would
impact SLO fulfillment (φS and φS′). Alternative approaches to estimating com-
bined load and resulting SLO fulfillment might need to empirically test the ser-
vice deployment, which is infeasible when decisions must be made quickly.

In the next step, we estimate for each of the other platoon members (w) the
SLO fulfillment (φΣ) of its local services (Σw) and how this would be affected
(φΣ′) if we would offload s there. This follows the same pattern applied for
the source vehicle v: we use the list of services executed at w (Line 7) and
their respective SLO-I models to estimate their SLO fulfillment according to the
combined hardware load (Lines 9 & 10). The last step is calculating the offloading
gain (γ) for each platoon member (w), i.e., whether global SLO fulfillment would
be improved by offloading s to w, and then return the best possible vehicle.
For this, it first calculates γ (Line 11), which is appended to the collection
Γ. In the final step, it selected the best alternative host among the platoon
members (Line 14); however, if not even the best host would improve overall
SLO fulfillment, it prefers to keep the current host (Line 15). The outcome is
returned to Algorithm 1, which offloads the service accordingly.

4 Evaluation

Here, we evaluate our methodology for a set of heterogeneous perception services
and a composable vehicle platoon. Specifically, we implement a prototype of our
framework that addresses the illustrated scenario; afterward, we document the
experimental setup, including service implementations and applied processing
hardware, then present the experimental results, and critically discuss them.
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4.1 Implementation

To implement our methodology, we provide a Python-based prototype2 that
follows a clear modular structure for services, their SLOs, and device types.

Hence, the framework can be extended with new services as long as they
are supported by the underlying edge device. Once the framework is installed3,
services can be started or stopped remotely through HTTP; for running the
experiments, we send the respective instructions to different platoon members
using Postman flows. To isolate resource consumption, services are executed in
individual Python threads. During that time, each service observes its SLO ful-
fillment as part of its service wrapper (i.e., Algorithm 1); in the present state, this
is done every 500ms, though it can be customized for service types or instances.
To avoid interfering with regular service execution, model training and evalua-
tion of alternative service hosts run detached from the main service thread.4

Vehicles communicate exclusively over HTTP; the respective connection is
established either through a local access point managed by the platoon leader,
or through IBSS, i.e., a peer-to-peer network. Training and updating of SLO-I
models, or rather their underlying BNs, uses pgmpy [1], a Python library for
Bayesian Network Learning (BNL). In pgmpy, BNs can be encoded in XML,
which each had a size of roughly 10kB in our evaluation; hence, a feasible size
to be transmitted and shared within the platoon.

4.2 Experimental Setup

To evaluate our prototype in a realistic environment, we implement the scenario
illustrated in Sect. 2.1, i.e., perception services are offloaded within a vehicle
platoon according to their local SLO fulfillment. We provide three perception
services that can be executed on edge devices; Table 1 provides essential infor-
mation on these services: CV uses Yolov8 to detect objects in a video stream,
LI processes point clouds from a Lidar sensor to map the environment, and QR
uses OpenCV to detects QR codes in a video. Each service has specific tuning
parameters, such as the resolution (pixel) and fps for CV and QR; LI accepts
an additional parameter mode to define the point cloud radius.

According to our expert knowledge, each service’s expected QoS level is spec-
ified through a list of SLOs; through heuristic trial and error, the following ones
proved useful: we constrain the processing time ≤ 1000 / fps, i.e., frames must
be processed faster than they come in; the maximum energy consumption can
be adjusted for individual devices: we put a limit of ≤ 15 W for regular platoon
members and ≤ 25 W for the platoon leader. Notice, that this considers the
vehicle-wide energy consumption over all executed services. According to the
video resolution (pixel) provided to CV, the service uses the respective Yolov8

2 The framework prototype is available at GitHub, accessed on July 14th 2024.
3 Postman is a common tool for sending HTTP requests; Postman flows is a UI exten-

sion that allows to specify sequences of requests, e.g., start/stop services.
4 Instructions are provided in the following README, accessed on July 14th 2024.

https://anonymous.4open.science/r/intelligentVehicle-720C/
https://anonymous.4open.science/r/intelligentVehicle-720C/README.md
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Table 1. List of all predefined services that were added to the framework

ID Service Description CUDA Parameters SLOs

CV Object Detection with Yolov8 [26] Yes pixel, fps time, energy, rate

LI Lidar Point Cloud Processing [6] Yes mode, fps time, energy

QR Detect QR Code w/ OpenCV [21] No pixel, fps time, energy

Table 2. List of all edge devices that were involved in the evaluation

Full Device Name ID Pricea CPU RAM GPU CUDA

Jetson Orin NX (3)NX 450 e ARM Cortex 8C 8 GB Volta 1k 11.4

Jetson Orin AGX AGX 800 e ARM Cortex 12C 64 GB Volta 2k 12.2
aPrices adopted from sparkfun, accessed Jul 14th 2024

model size (i.e., v8n, v8s, v8m); however, this affects the number of objects that
are detected, which is ensured through the rate SLO.

The presented framework is evaluated on two different instances of Nvidia
Jetson boards, namely Jetson Orin NX and Orin AGX, which are described
in more detail in Table 2: the AGX is superior in terms of memory and GPU
and has a slightly better CPU. While the specific Nvidia CUDA version has
minor importance, CUDA itself is crucial to accelerate the CV and LI services.
Each Jetson NX is embedded in a Rosmaster R25 car – a battery-powered multi-
sensory vehicle used for development. To ensure a stable evaluation environment,
the service processed either prerecorded videos (CV & QR) or binary-encoded
point clouds (LI); Fig. 3 shows a demo output for each service.

4.3 Results

We evaluate the prototype by observing: (1) what is the overhead of continuously
interpreting services, and what limitations arise from the platoon size; (2) if
the SLO-aware retraining ensure prediction accuracy regardless of unexpected
runtime behavior; and (3) if the framework fulfills high-level SLOs within the
platoon by offloading computations. We assess these aspects using two base cases
and one advanced scenario, all of which involve real workloads and devices:

Scenario 1A. An individual vehicle (i.e., NX or AGX ) executes the QR service;
every 25 s, we add a vehicle to its platoon, up to a maximum size of 4 vehicles.
Given this, we track the time to execute the service wrapper, i.e., how long it
takes to retrain the SLO-I model and evaluate alternative hosts for QR.

Figure 4 visualizes the times required to train the SLO-I model or evaluate
alternative hosts for offloading; both processes are executed as part of the service
wrapper. The wrapper runs every 500 ms for a total of 100 s, hence, the plot

5 More information about the Rosmaster R2 here, accessed Jul 14th 2024.

https://sparkfun.com/
https://github.com/YahboomTechnology/ROSMASTER-R2
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(a) CV (Yolov8) (b) LIdar (SFA3D) (c) QR (OpenCV)

Fig. 3. Demo output for each service according to the prerecorded input data

(a) Orin NX (b) Orin AGX

Fig. 4. Time required to train the SLO-I model and evaluate alternative hosts

contains 200 wrapper iterations. Vertical grey lines indicate when an additional
device is introduced to the platoon, i.e., at 50, 100, and 150 iterations.

Given this, we conclude that the platoon size has a linear impact on the time
required to evaluate alternative hosts; the exception is |P | = 1, when evaluating
other vehicles for offloading is obsolete. For a platoon with |P | ≤ 3, the entire
service wrapper finished mostly in ≤ 500 ms; however, |P | ≥ 4 starts exceeding
500 ms, which indicates that it would not be possible to interpret the SLO ful-
fillment every 500 ms. This could be overcome by either structuring the platoon
into smaller subgroups or adjusting the evaluation interval.

Scenario 1B. An individual vehicle (i.e., AGX) runs CV locally; however, the
respective SLO-I model was not yet fine-tuned and initial predictions are likely
inaccurate. Additionally, variable drifts occur, which we simulate through stress-
ng: after 125 s the CPU load of AGX is stressed 40%. We measure pφ and Wφ,
and compare our presented training strategy with a static service wrapper.

Figure 5 visualizes for both runs the predicted (pφ) and actual SLO fulfill-
ment (Wφ); vertical grey lines indicate when retraining happened, and the red
line when the perturbation occurred. Not only does the left side perform fewer
retraining, i.e., 8 instead of 12, but more importantly, the right side presents
shorter training intervals when the SLO fulfillment is unstable, such as during
the period between x = [250, 350]. Consequentially, the Mean Squared Error
(MSE) was 0.07 on the left and 0.01 on the right side; given that, we conclude
that SLO-dependent retaining helped to increase the prediction accuracy for
initially inaccurate models or at runtime when perturbations occur.
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(a) Without SLO-dependent retraining (b) With SLO-dependent retraining

Fig. 5. Improved prediction accuracy through SLO-dependent retraining

t=30s

Jetson NX1

Jetson AGX

Platoon at t=0s

QR1, [time, energy], {pixel: 480, fps: 5}

CV2, [time, energy, rate], {pixel: 480, fps: 10}

LI3, [time, energy], {mode: single, fps: 5}

CV4, [time, rate, energy], {pixel: 720, fps: 10}
Jetson NX1

Jetson AGX

Jetson NX2

Jetson NX3

Jetson AGX

Jetson NX2

Platoon at t=90s Platoon at t=120s

Fig. 6. Sequential description of Scenario 2: starting services and adjusting the platoon

Scenario 2. Figure 6 provides a sequential description of this scenario: at time
t = 0s the platoon P = {NX1, AGX} starts 3 services (i.e., QR1, CV2, LI3); at
t = 30 s NX1 starts CV4; at t = 90 s NX2 joins the platoon, and at t = 120 s
NX3 joins, NX1 leaves the platoon, and leadership is transferred to AGX.

Figure 7 visualizes the SLO fulfillment of all services executed at NX1 and
AGX; at first, all three services (i.e., QR1, CV2, LI3) achieve maximum SLO
fulfillment, i.e., Wφ = 1.0. However, as soon as CV4 is started at t = 30 s, NX1

fails to ensure the SLOs for both LI3 and CV4. Due to that, NX1 decides to load
off both services to AGX, which in turn, causes AGX to fail most of its services’
SLOs. This changes at t = 55 s, when AGX decides to move one of its services
(i.e., QR-1 ) to NX1, which slightly recovers the SLO fulfillment of the remaining
three services. Next, at t = 90 s, NX2 joins the platoon, which encourages AGX
to offload another service (i.e., CV4) to NX2. Here, Fig. 7c shows the decision-
making of AGX : since NX1 already executes QR1, it estimates how adding CV4

would have a negative impact on QR1 due to predicted resource shortage; hence,
it chooses NX2, which promises global SLO improvement of γ = 0.35.

Given this, we conclude that services can react in ≤ 10 s to local SLO viola-
tions, which appears practical for real-time systems. This highlights the impact
of co-locating too many services at one edge device and how this can be resolved
by adding new vehicles to the platoon. Furthermore, changing the platoon leader
at t = 120 showed no negative impact on the remaining vehicles – its ongoing
computations were shifted to an idle vehicle (i.e., NX4) that just had joined.
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(a) Orin NX1 (b) Orin AGX

pcpu

S = [QR1]
γ = 0.07

S = ∅
γ = 0.35

pcpu pgpu

pgpuJetson NX1

Jetson NX2

(c) CV4 at t = 90s

Fig. 7. SLO fulfillment and decision making for constrained services in the platoon

5 Conclusion and Future Work

This paper introduced a novel V2V offloading mechanism that ensures high-
level requirements during runtime. By leveraging probabilistic models, individ-
ual services can estimate the resource demand over multiple services and the
consequential SLO fulfillment at alternative hosts. We evaluated the proposed
framework in a physical setup, in which platoon members feature heterogeneous
processing devices. Noteworthy, we showed how the framework could handle an
increasing number of platoon members and a series of perception services; hence,
it improves platoon-wide SLO fulfillment through decentralized decision-making.
While our work showed promising results, there remain limitations and areas of
improvement: First, although baselines are scarce, the work must be contrasted
with comparable approaches to provide further insights. While we ruled net-
work latency negligible in our case, future work could also include this for more
detailed analyses. Furthermore, our implementation executes services in Python
threads; we plan to implement a more effective and elegant solution, container-
izing each service instance. Another interesting direction would be to explore
more complex architectures in which a single platoon has multiple swarms or
when multiple platoons need to coordinate with each other.
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